成都市七年级数学下期末试卷及答案

合集下载

成都市七年级下册数学期末试题及答案解答

成都市七年级下册数学期末试题及答案解答
【详解】
矩形的面积为:
(a+4)2-(a+1)2
=(a2+8a+16)-(a2+2a+1)
=a2+8a+16-a2-2a-1
=6a+15.
故选D.
3.C
解析:C
【分析】
直接利用图形面积求法得出等式,进而得出答案.
【详解】
梯形面积等于: ,
正方形中阴影部分面积为:a2-b2,
故a2-b2(ab)(a-b).
26.已知在△ABC中,试说明:∠A+∠B+∠C=180°
方法一: 过点A作DE∥BC. 则(填空)
∠B=∠,∠C=∠
∵ ∠DAB+∠BAC+ ∠CAE=180°
∴∠A+∠B+∠C=180°
方法二: 过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程 )
27.如图,在数轴上,点 、 分别表示数 、 .
(1)求 的取值范围.
(2)数轴上表示数 的点应落在()
A.点 的左边B.线段 上C.点 的右边
28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到 这个等式,请解答下列问题:
(1)写出图2中所表示的数学等式.
(2)根据整式乘法的运算法则,通过计算验证上述等式.
②若老徐希望获得总利润为1000元,则 ?
25.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…
回答下列三个问题:
(1)验证:(2× )100=,2100×( )100=;
(2)通过上述验证,归纳得出:(a•b)n=;(abc)n=.

成都市七年级下册数学期末试卷(含答案)

成都市七年级下册数学期末试卷(含答案)

成都市七年级下册数学期末试卷(含答案)一、选择题1.下列各式从左到右的变形中,是因式分解的是( ).A .x (a-b )=ax-bxB .x 2-1+y 2=(x-1)(x+1)+y 2C .y 2-1=(y+1)(y-1)D .ax+bx+c=x (a+b )+c2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α-B .1902α︒+ C .12α D .15402α︒- 4.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2)5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D . 6.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 7.下列方程中,是二元一次方程的是( ) A .x 2+x =1B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 8.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6B .3C .2D .10 9.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6± 10.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题11.多项式2412xy xyz +的公因式是______.12.计算:312-⎛⎫ ⎪⎝⎭= . 13.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.14.甲、乙两种车辆运土,已知5辆甲车和四辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组_________. 15.若关于x ,y 的方程组316215x ay x by -=⎧⎨+=⎩的解是71x y =⎧⎨=⎩,则方程组()32162(2)15x y ay x y by ⎧--=⎨-+=⎩的解是________.16.若2a x =,5b x =,那么2a b x +的值是_______ ;17.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.18.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 19.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.20.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.三、解答题21.如图,CD ⊥AB ,EF ⊥AB ,垂足分别为D 、F ,∠1=∠2,若∠A =65°,∠B =45°,求∠AGD 的度数.22.解方程组:41325x y x y +=⎧⎨-=⎩. 23.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;24.如图,直线AC ∥BD ,BC 平分∠ABD ,DE ⊥BC ,垂足为点E ,∠BAC =100°,求∠EDB 的度数.25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.26.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; … (1)若n 为正整数,猜想3333123n +++⋅⋅⋅+= ;(2)利用上题的结论比较3333(),()()f x x g x x ==与25055的大小.27.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只.(1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?28.已知关于x ,y 的二元一次方程组233741x y m x y m +=+⎧⎨-=+⎩它的解是正数. (1)求m 的取值范围;(2)化简:2|2|m --【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c 的下侧,且∠1和∠2在直线a 、b 之内∴∠1和∠2是同旁内角的关系故选:C .【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.A解析:A【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α,∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE)=270°-12α,∴∠P=180°-(270°-12α)=12α-90°.故选:A.【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.4.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A、(﹣a)2(﹣a)3=(﹣a)5,故A错误;B、(﹣a)(﹣a)4=(﹣a)5,故B错误;C、(﹣a2)a3=﹣a5,故C错误;D、(﹣a3)(﹣a2)=a5,故D正确;故选:D.【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.A解析:A将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.8.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.9.B解析:B【解析】利用完全平方公式的结构特征判断即可确定出a的值.【详解】解:∵x2-ax+36是一个完全平方式,∴a=±12,故选:B.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题11.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.12.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.13.4a2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc 8a2b2c2的各项公因式是4a2bc .故答案为:4a2bc解析:4a 2bc【分析】多项式的公因式的系数是指多项式中各项系数的最大公约数,字母取各项相同字母的最低次幂.【详解】多项式4a3bc+8a2b2c2的各项公因式是4a2bc.故答案为:4a2bc.【点睛】本题属于基础题型,注意一个多项式的各项都含有的公共因式是这个多项式的公因式.14.【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,,故答案为:.【解析:54140 3276 x yx y+=⎧⎨+=⎩【分析】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组.【详解】设甲种车辆一次运土x立方米,乙车辆一次运土y立方米,由题意得,54140 3276x yx y+=⎧⎨+=⎩,故答案为:54140 3276 x yx y+=⎧⎨+=⎩.【点睛】此题考查了二元一次方程组的应用,属于基础题,仔细审题,根据题意的等量关系得出方程是解答本题的关键.15.【分析】已知是方程组的解,将代入到方程组中可求得a,b的值,即可得到关于x,y 的方程组,利用加减消元法解方程即可.【详解】∵是方程组的解∴∴a=5,b=1将a=5,b=1代入得①×解析:91 xy=⎧⎨=⎩【分析】已知71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解,将71xy=⎧⎨=⎩代入到方程组316215x ayx by-=⎧⎨+=⎩中可求得a,b的值,即可得到关于x,y的方程组()32162(2)15x y ayx y by⎧--=⎨-+=⎩,利用加减消元法解方程即可.【详解】∵71xy=⎧⎨=⎩是方程组316215x ayx by-=⎧⎨+=⎩的解∴2116 1415ab-=⎧⎨+=⎩∴a=5,b=1将a=5,b=1代入()3216 2(2)15x y ayx y by⎧--=⎨-+=⎩得31116 2315x yx y-=⎧⎨-=⎩①②①×2,得6x-22y=32③②×3,得6x-9y=45④④-③,得13y=13解得y=1将y=1代入①,得3x=27解得x=9∴方程组的解为91 xy=⎧⎨=⎩故答案为:91 xy=⎧⎨=⎩【点睛】本题考查了方程组的解的概念,已知一组解是方程组的解,那么这组解满足方程组中每个方程,同时也考查了利用加减消元法解方程组,解题的关键是如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等.16.【分析】可从入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(xa)2×xb,接下来将已知条件代入求值即可.对逆用同底数幂的乘法法则,得(xa)2×xb,逆用幂的解析:【分析】可从2a b x +入手,联想到同底数幂的乘法以及幂的乘方的逆用;逆用幂运算法则可得到(x a )2×x b ,接下来将已知条件代入求值即可.【详解】对2a b x +逆用同底数幂的乘法法则,得(x a )2×x b ,逆用幂的乘方法则,得(x a )2×x b ,将2a x =、5b x =代入(x a )2× x b 中,得22×5=20,故答案为:20.【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则.17.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩.此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.18.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CED+∠EDC=180°,∠C=40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解题的关键.20.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 三、解答题21.70°【分析】由CD ⊥AB ,EF ⊥AB 可得出∠CDF=∠EFB=90°,利用“同位角相等,两直线平行”可得出CD ∥EF ,利用“两直线平行,同位角相等”可得出∠DCB=∠1,结合∠1=∠2可得出∠DCB=∠2,利用“内错角相等,两直线平行”可得出DG ∥BC ,利用“两直线平行,同位角相等”可得出∠ADG 的度数,在△ADG 中,利用三角形内角和定理即可求出∠AGD 的度数.【详解】解:∵CD ⊥AB ,EF ⊥AB ,∴∠CDF =∠EFB =90°,∴CD ∥EF ,∴∠DCB =∠1.∵∠1=∠2,∴∠DCB =∠2,∴DG ∥BC ,∴∠ADG =∠B =45°.又∵在△ADG 中,∠A =65°,∠ADG =45°,∴∠AGD =180°﹣∠A ﹣∠ADG =70°【点睛】本题考查了平行线的判定与性质以及三角形内角和定理,利用平行线的性质求出∠ADG 的度数是解题的关键.22.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.23.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a +b +c )2=(a +b +c )(a +b +c )=a 2+ab +ac +ba +b 2+bc +ca +cb +c 2=a 2+b 2+c 2+2ab +2ac +2bc(2)小王:(a +b +c )2=[(a +b )+c ]2=(a +b )2+2(a +b )c +c 2=a 2+b 2+2ab +2ac +2bc +c 2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.24.50°【分析】直接利用平行线的性质,结合角平分线的定义,得出∠CBD =12∠ABD =40°,进而得出答案.【详解】解:∵AC //BD ,∠BAC =100°,∴∠ABD =180°﹣∠BAC =180°-100°=80°,∵BC 平分∠ABD ,∴∠CBD =12∠ABD =40°, ∵DE ⊥BC ,∴∠BED =90°,∴∠EDB =90°﹣∠CBD =90°-40°=50°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,正确得出∠CBD 的度数是解题关键. 25.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.26.(1)221(1)4n n + (2)< 【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案; (2)根据(1)所得出的规律,算出结果,再与50552进行比较,即可得出答案.【详解】解:(1)根据所给的数据可得:13+23+33+…+n 3=14n 2(n+1)2. 故答案为:14n 2(n+1)2. (2)13+23+33+ (1003)2211001014⨯⨯ =21(100101)2⨯⨯=25050<25055 所以13+23+33+…+1003=<25055.【点睛】此题考查规律型:数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.27.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.28.(1)213m -<< (2)m -【分析】 (1)先解方程组,用含m 的式子表示出x 、y ,再根据方程组的解时一对正数列出关于m 的不等式组,解之可得;(2)根据m 的取值范围判断出m-2<0、m+1>0,m-1<0,再根据绝对值性质去绝对值符号、合并同类项即可得.【详解】解:(1)解方程组233741x y m x y m +=+⎧⎨-=+⎩, 得321x m y m=+⎧⎨=-⎩ 因为解为正数,则32010m m +>⎧⎨->⎩,解得213m -<<; (2)原式2(1)(1)m m m m =--+--=-.【点睛】本题考查了二元一次方程组及解法、一元一次不等式组及解法.解题的关键是根据题意列出关于m 的不等式组及绝对值的性质.。

四川省成都市温江区2022-2023学年七年级下学期期末数学试卷(含详解)

四川省成都市温江区2022-2023学年七年级下学期期末数学试卷(含详解)

2022-2023学年四川省成都市温江区七年级(下)期末数学试卷一、选择题:本大题共8个小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(4分)在以下四个标志图案中,是轴对称图形的是( )A.B.C.D.2.(4分)有“新材料之王”称号的石墨烯在新能源、电子信息、航天航空、生物医药等领域具有广阔的应用前景.石墨烯中每两个相邻碳原子间的键长为0.000000000142米,数0.000000000142用科学记数法表示是( )A.1.42×10﹣9B.0.142×10﹣10C.1.42×10﹣11D.1.42×10﹣103.(4分)下列说法正确的是( )A.同旁内角互补B.三角形的内角和为360°C.三角分别相等的两个三角形全等D.任意掷一枚质地均匀的骰子,掷出的点数为质数的概率为4.(4分)现有4张不透明卡片,正面分别标有数字2,4,5,6,卡片除正面的数字外,其余均相同.现将4张卡片正面向下洗匀,小王同学从中随机抽取一张卡片,以剩下的卡片数字分别作为三根小木棒的长度,则三根小木棒不能摆成三角形的概率为( )A.B.C.D.5.(4分)如图,已知AB∥CD,现将一等腰Rt△PMN放入图中,其中∠P=90°,PN交AB于点E,MN 交CD于点F.若∠BEN=26°,则∠NFD的度数为( )A.16°B.19°C.24°D.26°6.(4分)如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB =90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是( )A.AAS B.SAS C.ASA D.SSS7.(4分)如图,已知∠ABC=∠DCB,下列结论中,不能得到△ABC≌△DCB的是( )A.AC=BD B.∠A=∠D C.AB=CD D.∠EBC=∠ECB8.(4分)如图,已知等腰△ABC的底边BC=4,以A,B两点为圆心,大于的长为半径画圆,两弧相交于点E,F,连接EF与AC相交于点D,△BCD的周长为11,则AB等于( )A.4B.5C.6D.7二、填空题:本大题共5小题,每小题4分,共20分。

四川省成都市天府第七中学2023-2024学年七年级下学期期末数学试题

四川省成都市天府第七中学2023-2024学年七年级下学期期末数学试题

四川省成都市天府第七中学2023-2024学年七年级下学期期末数学试题一、单选题1.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A .B .C .D .2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A .7710⨯﹣B .80.710⨯﹣C .8710⨯﹣D .9710⨯﹣ 3.下列计算正确的是( )A .()222a b a b +=+B .224236m m m ⋅=C .()4312x x -=-D .()()a m b n ab mn ++=+4.如图,在ACD V 与ABD △中,C B ∠=∠,再添加一个下列条件,能判断ADC ADB ≌△△的是( ).A .AC AB = B .ADC ADB ∠=∠ C .CD BD = D .AC CD ⊥ 5.下列说法正确的是( )A .“买中奖率为110的奖券10张,中奖”是必然事件 B .福山气象局预报说“明天的降水概率为95%”,意味着福山明天一定下雨C .“汽车累计行驶10000km ,从未出现故障”是不可能事件D .拋掷一枚质地均匀的硬币,正面朝上的概率为0.56.如图,下列条件中,不能判定12l l ∥的是( )A .13∠=∠B .24180∠+∠=︒C .23∠∠=D .45180∠+∠=︒ 7.《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x 尺,木长y 尺,所列方程组正确的是( )A . 4.521x y x y -=⎧⎨+=⎩B . 4.5112x y x y -=⎧⎪⎨+=⎪⎩C . 4.521y x x y -=⎧⎨-=⎩D . 4.5112x y x y -=⎧⎪⎨-=⎪⎩ 8.如图1,在长方形ABCD 中,动点P 从点A 出发,沿AB BC CD --运动,至点D 处停止.点P 运动的路程为x ,ADP △的面积为y ,且y 与x 之间满足的关系如图2所示,则当8y =时,对应的x 的值是( )A .4B .4或12C .4或16D .5或12二、填空题9.计算()200020010.1258-⨯=.10.已知等腰三角形的两边长a b 、满足2|2|10250a b b -+-+=,那么这个等腰三角形的周长为.11.已知()2219x m x -++是一个完全平方式,则m =.12.为了测量一幢6层高楼的层高,在旗杆CD 与楼之间选定一点P .测得旗杆顶C 的视线PC 与地面的夹角21DPC ∠=︒,测楼顶A 的视线PA 与地面的夹角69APB ∠=︒,量得点P 到楼底的距离PB 与旗杆CD 的高度都等于12米,量得旗杆与楼之间距离为30DB =米,则每层楼的高度大约米.13.如图,在ABC V 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点,M N ,作直线MN ,交AC 于点D ,交AB 于点E ,连接BD .若90C ∠=︒,若2ABD CBD ∠=∠,求A ∠的度数是.三、解答题14.(1)计算:()()22021031π 3.1421-⎛⎫-+-⨯--- ⎪⎝⎭; (2)解方程组:4342312x y x y ⎧+=⎪⎨⎪-=⎩.15.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C在小正方形的顶点上.(1)在图中画出与ABC V 关于直线l 成轴对称的DEF V ;(2)在直线l 上找一点P ,使PB PC +的长最短.(3)ABC V 的面积是______.16.如图,已知CD 平分MCB ∠,点F 在线段BC 上,FH NB ⊥于点,1132,23H ∠=︒∠=∠,48MCB ∠=︒.(1)求证:NB CD ⊥;(2)求NDE ∠的度数.17.某社区超市用520元钱从批发商处购进了甲、乙两种商品共100千克,已知甲、乙商品的批发价与零售价如下表所示:(1)该社区超市这天批发甲商品和乙商品各多少千克;(2)甲商品和乙商品按零售价售出相同的重量后,剩下的商品都按零售价打八折售出,最终当天甲乙商品全部卖完,共获得464元利润,求打折后卖出的甲、乙商品的重量分别为多少? 18.已知点A 是线段BD 上的一点,ABC V 是等腰直角三角形,90ABC ∠=︒,将线段AD 绕点D 顺时针旋转90︒得线段DE ,连接,CE F 为CE 的中点,连接,DF BF .(1)如图1,延长BC DF 、交于点G .①求证:G EDF ∠=∠;②判断线段DF 与BF 之间的关系,并证明.(2)将ABC V 绕点B 逆时针旋转到图2的位置时,判断线段DF 与BF 之间的关系,并说明理由.四、填空题19.如果2230m m --=,那么代数式()()()2332m m m +-+-=. 20.已知关于x y ,的二元一次方程组2438x y m x y m +=⎧⎨-=+⎩的解满足3x y m +=,则m 的值为. 21.如图是一盏可调节台灯示意图,其中支架AO 与底座MN 垂直,支架,AB BC 分别为可绕点A 和点B 旋转的调节杆,台灯灯罩EF 可绕C 点旋转调节光线角度.当支架AB 和灯罩EF 平行时,CD MN ∥,140OAB ∠=︒,150BCD ∠=︒,则BCE ∠=.22.如图,ABC V 为等腰直角三角形,90,2ABC AB ∠=︒=,点D 在CB 延长线上,连接AD ,以AD 为边作等腰直角,90ADE DAE ∠=︒V ,连接CE 交AB 于点,4F DC AF =,则BD =.23.如图,ABC V 是等腰直角三角形,90,8,ACB AC BC D ∠=︒==为AC 边上一点,2,AD E =为BC 边上一动点,连接DE ,以DE 为边并在DE 的左侧作等边DEF V ,连接AF ,则AF 的最小值为.(提示:直角三角形中,30︒角所对的直角边等于斜边的一半)五、解答题24.如图1是一个长为4b ,宽为a 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成如图2的正方形.(1)由图2可以直接写出22(),(),a b a b ab +-之间的一个等量关系是______.(2)两个正方形ABCD DEFG ,如图3摆放,边长分别为,x y .15xy =,2AE =,求图中阴影部分面积和.25.2024年成都马拉松比赛将在10月17日举行,小天和爸爸都完成了比赛报名,并且计划每周进行一次全长6000米的训练.第一次训练时小天和爸爸同时从同起点出发,行程S (单位:米)随时间t (单位:分钟)变化的图像如图所示.已知小天中途提速后用了16分钟到达终点.因为爸爸中途体力不支减速,所以当小天到达终点时,爸爸离终点还有1280米.请根据图中信息回答以下问题:(1)小天比爸爸早到终点多长时间?(2)在小天跑步的过程中,小天出发几分钟后和爸爸相距150米? 26.已知ABC V 为等边三角形,过点A 的射线AM 在ABC V 的外部,D 为射线AM 上的一点,E 为平面内的一点,满足BE BD =.(1)如图1,连接CD ,若点E 恰好在CD 上,且60DBE ∠=︒,求ADC ∠的度数;(2)如图2,连接DE 交BC 于点F ,若120DBE ∠=︒,且F 恰为BC 的中点,求证:DF AD EF =+;(3)如图3,若38,120B A M DB E ∠=︒∠=︒,连接CE ,当线段CE 的长度最小时,在射线CE 上截取一点H ,在边BC 上截取一点I ,使C H B I =,连接,,AH AI 则当AH AI +的值最小时,请直接写出HAB ∠的度数.。

四川省成都市七年级下学期数学期末试卷含答案

四川省成都市七年级下学期数学期末试卷含答案

七年级下学期数学期末试卷一、单选题(共10题;共20分)1.下列艺术字中,可以看作是轴对称图形的是( )A. B. C. D.2.下列各式运算正确的是( )A. a2+a2=2a4B. a2•a3=a5C. (﹣3x)3÷(﹣3x)=﹣9x2D. (﹣ab2)2=﹣a2b43.下列事件中,属于必然事件的是( )A. 抛出的篮球会下落B. 打开电视,正在播《新闻联播》C. 任意买一张电影票,座位号是3的倍数D. 校篮球队将夺得区冠军4.计算(x+3)(x﹣3)的结果为( )A. x2+6x+9B. x2﹣6x+9C. x2+9D. x2﹣95.如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=30°,则∠1的度数为( )A. 30°B. 45°C. 60°D. 75°6.下列各组数据,能构成三角形的是( )A. 1cm,2cm,3cmB. 2cm,2cm,5cmC. 3cm,4cm,5cmD. 7cm,5cm,1cm7.如图,D,E是△ABC中BC边上的点,且BD=DE=EC,那么( )A. S1<S2<S3B. S1>S2>S3C. S1=S2=S3D. S2<S1<S38.李老师用直尺和圆规作已知角的平分线.作法:①以点O为圆心,适当长为半径画弧,交OA于点D,交OB于点E②分别以点D、E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.③画射线OC,则OC就是∠AOB的平分线.李老师用尺规作角平分线时,用到的三角形全等的判定方法是()A. SSSB. SASC. ASAD. AAS9.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下面是行驶路程s(m)关于时间t(min)的函数图象,那么符合小明行驶情况的大致图象是()A. B. C. D.10.如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于( )A. 30°B. 40°C. 45°D. 36°二、填空题(共9题;共9分)11.化简(a+b)(a-b)= ________.12.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD,设AB为x 米,则菜园的面积y(平方米)与x(米)的关系式为________.(不要求写出自变量x的取值范围)13.如图有一张直角三角形纸片,两直角边AC=4cm,BC=8cm,把纸片的部分折叠,使点B与点A 重合,折痕为DE,则△ACD的周长为________.14.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停在阴影部分的概率为________.15.若x2+2mx+9是完全平方式,则m=________.16.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=________.17.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD=________.18.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为________.19.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数________度,再沿BF 折叠成图c.则图中的∠CFE的度数是________度.三、解答题(共9题;共68分)20.(1)(﹣1)2020+(﹣)2﹣(3.14﹣π)0;(2)(a﹣1)(a+1)﹣(a﹣2)2;(3)(20x2y﹣10xy2)÷(﹣5xy);(4)(2x3y)2•(﹣2xy)+(﹣2x3y)3÷(2x2).21.先化简,再求值:(x+3y)2﹣2x(x+2y)+(x﹣3y)(x+3y),其中x=﹣1,y=2.22.如图所示,有两个村庄A,B在一公路CD的一侧,如果把A,B村庄的位置放在格点图中.①请作出A点关于CD的对称点A′;②若要在公路CD上修建一个菜鸟驿站P,使得驿站到两个村庄的线段距离和最小,请作出P点的位置.23.如图,E、F分别在、上,,与互余,.求证:.24.已知:如图,点E,D,B,F在同一条直线上,AD∥CB,∠E=∠F,DE=BF.求证:AE =CF.(每一行都要写依据)25.已知:AB=AC,AF=AG,AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.求证:AD=AE.26.如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE 交于点O,AD与BC交与点P,BE与CD交于点Q,连接PQ.求证:(1)AD=BE(2)△APC≌△BQC(3)△PCQ是等边三角形.27.如图1,∠FBD=90°,EB=EF,CB=CD.(1)求证:EF∥CD;(2)如图2所示,若将△EBF沿射线BF平移,即EG∥BC,∠FBD=90°,EG=EF,CB=CD,请问(1)中的结论是否仍成立?请证明.28.(1)如图1,在四边形ABCD中,AB=AD,∠BAD=100°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=50°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是________(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且2∠EAF =∠BAD,上述结论是否仍然成立,若成立,请证明,若不成立,请说明理由;(3)如图3,四边形ABCD是边长为7的正方形,∠EBF=45°,直接写出△DEF的周长.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】D5.【答案】C6.【答案】C7.【答案】C8.【答案】A9.【答案】C10.【答案】D二、填空题11.【答案】a2-b212.【答案】y=﹣2x2+20x13.【答案】12cm14.【答案】15.【答案】±316.【答案】60°17.【答案】218.【答案】1219.【答案】150;135三、解答题20.【答案】(1)解:原式=1+ ﹣1=;(2)解:原式=a2﹣1﹣(a2﹣4a+4)=a2﹣1﹣a2+4a﹣4=4a﹣5;(3)解:原式=﹣4x+2y;(4)解:原式=4x6y2•(﹣2xy)+(﹣8x9y3)÷(2x2)=﹣8x7y3-4x7y3=﹣12x7y3.21.【答案】解:原式=x2+6xy+9y2﹣2x2﹣4xy+x2﹣9y2=2xy,当x=﹣1,y=2时,原式=2×(﹣1)×2=﹣4.22.【答案】解:①如图所示:A′点即为所求;②如图所示:点P即为所求.23.【答案】解:与互余24.【答案】证明:∵AD∥CB(已知),∴∠ADB=∠CBD(两直线平行,内错角相等),∴∠ADE=∠CBF(等角的补角相等).在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF(全等三角形的对应边相等).25.【答案】证明:在△AFC与△AGB中,∴△AFC≌△AGB(SAS),∴∠AFC=∠AGC,∴∠AFD=∠AGB,∵AE⊥BG交BG的延长线于E,AD⊥CF交CF的延长线于D.∴∠ADF=∠AEG=90°,在△ADF与△AEG中,∴△ADF≌△AEG(AAS),∴AD=AE.26.【答案】(1)证明:∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE(2)证明:∵ADC≌△BEC,∴∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,∴△APC≌△BQC(ASA)(3)证明:∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形.27.【答案】(1)证明:如图1,连接FD,∵EB=EF,CB=CD,∴∠EBF=∠EFB,∠CBD=∠CDB,∵∠FBD=90°,∴∠EBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD;(2)解:成立,证明:如图2,连接FD,延长CB到H,∵EG∥BC,∴∠EGF=∠HBF,∵∠FBD=90°,∴∠HBF+∠CBD=90°,∠BFD+∠BDF=90°,∴∠EGF+∠CBD=90°,∵EG=EF,CB=CD,∴∠EGF=∠EFB,∠CBD=∠CDB,∴∠EFB+∠CDB=90°,∴∠EFD+∠CDF=180°,∴EF∥CD.28.【答案】(1)EF=BE+DF(2)解:结论仍然成立,理由如下:如图2,延长EB到G,使BG=DF,连接AG,∵∠ABC+∠D=180°,∠ABG+∠ABC=180°,∴∠ABG=∠D,∵在△ABG与△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵2∠EAF=∠BAD,∴∠DAF+∠BAE=∠BAG+∠BAE=∠BAD=∠EAF,∴∠GAE=∠EAF,又AE=AE,∴△AEG≌△AEF(SAS),∴EG=EF.∵EG=BE+BG.∴EF=BE+FD;(3)解:如图,延长EA到H,使AH=CF,连接BH,∵四边形ABCD是正方形,∴AB=BC=7=AD=CD,∠BAD=∠BCD=90°,∴∠BAH=∠BCF=90°,又∵AH=CF,AB=BC,∴△ABH≌△CBF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=45°,∴∠CBF+∠ABE=45°=∠HBA+∠ABE=∠EBF,∴∠EBH=∠EBF,又∵BH=BF,BE=BE,∴△EBH≌△EBF(SAS),∴EF=EH,∴EF=EH=AE+CF,∴△DEF的周长=DE+DF+EF=DE+DF+AE+CF=AD+CD=14.。

成都市人教版七年级下册数学期末试卷及答案.doc

成都市人教版七年级下册数学期末试卷及答案.doc

成都市人教版七年级下册数学期末试卷及答案.doc一、选择题1.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x = C .322()2x x x÷-=-D .236(2)2x x -=-3.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭4.如图所示的四个图形中,∠1和∠2不是同位角的是( ) A .B .C .D .5.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 6.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米7.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩8.如图,AB ∥CD ,DA ⊥AC ,垂足为A ,若∠ADC=35°,则∠1的度数为( )A .65°B .55°C .45°D .35° 9.一个三角形的两边长分别是2和4,则第三边的长可能是( )A .1B .2C .4D .710.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.12.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .13.若2(3)(2)x x ax bx c +-=++(a 、b 、c 为常数),则a b c ++=_____.14.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________. 15.若(x ﹣2)x =1,则x =___.16.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABCS =,则图中阴影部分的面积是 ________.17.计算:x(x﹣2)=_____18.已知12xy=⎧⎨=-⎩是关于x,y的二元一次方程ax+y=4的一个解,则a的值为_____.19.对有理数x,y定义运算:x*y=ax+by,其中a,b是常数.例如:3*4=3a+4b,如果2*(﹣1)=﹣4,3*2>1,则a的取值范围是_______.20.已知x2a+y b﹣1=3是关于x、y的二元一次方程,则ab=_____.三、解答题21.(数学经验)三角形的中线的性质:三角形的中线等分三角形的面积.(经验发展)面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM.若△ABC的面积为a,若△CBM的面积为S,则S=_______(用含a的代数式表示).(结论应用)(2)如图2,已知△CDE的面积为1,14 CDAC=,13CECB=,求△ABC的面积.(迁移应用)(3)如图3.在△ABC中,M是AB的三等分点(13AM AB=),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为________.22.已知关于x,y的二元一次方程组533221x y nx y n+=⎧⎨-=+⎩的解适合方程x+y=6,求n的值.23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子:;(2)探索以上式子的规律,试写出第n个等式,并说明等式成立的理由.24.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239345x yx y-=⎧⎨+=⎩①②.25.如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.26.解下列方程组或不等式组(1)24231x yx y+=⎧⎨-=⎩(2)()211113x xxx⎧--≤⎪⎨+>-⎪⎩27.如图,ABC∆中,B ACB∠=∠,点,D F分别在边,BC AC的延长线上,连结,CE CD平分ECF∠.求证://AB CE.28.解方程组:(1)2531y xx y=-⎧⎨+=-⎩;(2)3000.050.530.25300x yx y+=⎧⎨+=⨯⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据三角形内角和为180°,求出三个角的度数进行判断即可.【详解】解:∵三角形内角和为180°,∴118030123A ∠=⨯︒=︒++218060123B ∠=⨯︒=︒++318090123C ∠=⨯︒=︒++,∴△ABC 为直角三角形, 故选:B . 【点睛】 此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.2.C解析:C 【解析】试题解析:A.不是同类项,不能合并,故错误. B.235236.x x x ⋅= 故错误.C.()3222.x xx ÷-=- 正确.D.()32628.x x -=- 故错误.故选C.点睛:同底数幂相乘,底数不变,指数相加. 同底数幂相除,底数不变,指数相减.3.B解析:B 【分析】根据因式分解的意义求解即可. 【详解】A 、从左边到右边的变形不属于因式分解,故A 不符合题意;B 、把一个多项式转化成几个整式积的形式,故B 符合题意;C 、从左边到右边的变形不属于因式分解,故C 不符合题意;D 、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D 不符合题意. 【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.C解析:C 【分析】根据同位角的定义,逐一判断选项,即可得到答案.A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C.【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.5.C解析:C【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.8.B【解析】试题分析:由DA⊥AC,∠ADC=35°,可得∠ACD=55°,根据两线平行,同位角相等即可得∵AB∥CD,∠1=∠ACD=55°,故答案选B.考点:平行线的性质.9.C解析:C【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的取值范围,即可求解..【详解】设第三边为x,由三角形三条边的关系得4-2<x<4+2,∴2<x<6,∴第三边的长可能是4.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m和k的值,然后计算m+k的值.x −4x −5=x −4x+4−4−5 =(x −2) −9, 所以m=2,k=−9, 所以解析:-7 【解析】 【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值. 【详解】x 2−4x−5=x 2−4x+4−4−5 =(x−2) 2−9, 所以m=2,k=−9, 所以m+k=2−9=−7. 故答案为:-7 【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.12.150°或30°. 【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数 【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =6解析:150°或30°. 【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数 【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°, ∴∠BAD =60°+90°=150°;故答案为:150°或30°. 【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.13.-4 【分析】由x=1可知,等式左边=-4,右边=,由此即可得出答案. 【详解】 解:当x=1时, , , ∵, ∴故答案为:-4. 【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x解析:-4 【分析】由x=1可知,等式左边=-4,右边=a b c ++,由此即可得出答案. 【详解】 解:当x=1时,()()(3)(2)13124x x +-=+⨯-=-,2ax bx c a b c ++=++,∵2(3)(2)x x ax bx c +-=++, ∴4a b c ++=- 故答案为:-4. 【点睛】本题考查了代数式求值.利用了特殊值法解题,抓住当x=1时2ax bx c a b c ++=++是解题的关键.14.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.16.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.17.x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.解析:x2﹣2x【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x2﹣2x故答案为:x2﹣2x.【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.18.6【分析】把代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12xy=⎧⎨=-⎩代入已知方程可得关于a的方程,解方程即得答案.【详解】解:把12xy=⎧⎨=-⎩代入方程ax+y=4,得a-2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.19.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)23a(2)12(3)512【分析】(1)根据三角形的面积公式及比例特点即可求解;(2)连接AE,先求出△ACE的面积,再得到△ABC的面积即可;(3)连接BD,设△ADM的面积为a,则△BDM的面积为2a,设△CDN的面积为b,则△BDN的面积为b,根据图形的特点列出方程组求出a,b,故可求解.【详解】(1)设△ABC中BC边长的高为h,∵BM=2AM.∴BM=23 AB∴S=12BM×h=12×23AB×h=23S△ABC=23a故答案为:23 a;(2)如图2,连接AE,∵14 CD AC=∴CD=14 AC∴S△DCE=14S△ACE=1∴S△ACE=4,∵13 CE CB=∴CE=13 CB∴S△ACE=13S△ABC=4∴S△ABC=12;(3)如图3,连接BD,设△ADM的面积为a,∵13 AM AB=∴BM=2AM,BM=23 AB,∴S△BDM=2S△ABM=2a, S△BCM=23S△ABC=23设△CDN的面积为b,∵N是BC的中点,∴S△CDN=S△BDN=b,S△ABN=12S△ABC=12∴1 22223a a bb b a⎧++=⎪⎪⎨⎪++=⎪⎩,解得11214ab⎧=⎪⎪⎨⎪=⎪⎩∴四边形BMDN的面积为2a+b=512故答案为512.【点睛】此题主要考查三角形面积公式的应用,解题的关键是根据题意找到面积的之间的关系.22.116【分析】方程组消去n后,与已知方程联立求出x与y的值,即可确定出n的值.【详解】解:方程组消去n得,-7x-8y=1,联立得:7816x yx y--=⎧⎨+=⎩解得4943xy=⎧⎨=-⎩把x=49,y=-43代入方程组,解得n=116.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)8×10+1=81;(2)2n(2n+1)+1=(2n+1)2,理由见解析.【分析】(1)根据上面式子的规律即可写出第4个式子;(2)探索以上式子的规律,结合(1)即可写出第n个等式.【详解】解:观察下列式子:2×4+1=9=32;4×6+1=25=52:6×8+1=49=72;…(1)发现规律:第4个式子:8×10+1=81=92;故答案为:8×10+1=81;(2)第n个等式为:2n(2n+1)+1=(2n+1)2,理由:2n(2n+1)+1=4n2+4n+1=(2n+1)2.【点睛】本题考查了规律型-数字的变化类,解决本题的关键是根据数字的变化寻找规律,总结规律.24.(1)43xy=⎧⎨=⎩;(2)31xy=⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x=7﹣y③,把③代入②得:2(7﹣y)﹣3y=﹣1,解得:y=3,把y=3代入③得:x=4,所以这个二元一次方程组的解为:43 xy=⎧⎨=⎩;(2)①×4+②×3得:17x=51,解得:x=3,把x=3代入①得:y=﹣1,所以这个方程组的解为31 xy=⎧⎨=-⎩.【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.25.见解析【分析】由DF∥AC,得到∠BFD=∠A,再结合∠BFD=∠CED,有等量代换得到∠A=∠CED,从而可得DE∥AB,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF∥AC,∴∠BFD=∠A.∵∠BFD=∠CED,∴∠A=∠CED.∴DE∥AB,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.26.(1)21xy=⎧⎨=⎩(2)12x≤<【分析】(1)运用加减消元法先消除x ,求y 的值后代入方程②求x 得解;(2)先分别解每个不等式,然后求公共部分,确定不等式组的解集.【详解】解:(1)24231x y x y +=⎧⎨-=⎩①② ①×2-②,得 7y=7,∴y=1.把y=1代入②,得 x=2.∴21x y =⎧⎨=⎩. (2)解不等式 ()211x x --≤得 1x ≥. 解不等式113x x +>- 得 2x <. ∴不等式组的解集为12x ≤<.【点睛】此题考查解方程组和不等式组,属常规基础题,难度不大.27.证明见详解.【分析】根据B ACB ∠=∠,DCF ACB ∠=∠,CD 平分ECF ∠,可得B DCF ∠=∠,ECD DCF ,容易得ECD B ∠=∠,即可得//AB CE .【详解】∵B ACB ∠=∠,DCF ACB ∠=∠,∴B DCF ∠=∠,又∵CD 平分ECF ∠,∴ECD DCF ∴ECD B ∠=∠∴//AB CE .【点睛】本题考查了对顶角的性质,角平分线的定义和平行线的证明,熟悉相关性质是解题的关键.28.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y xx y=-⎧⎨+=-⎩①②,把①代入②得:x+6x﹣15=﹣1,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)方程组整理得:300 5537500x yx y+=⎧⎨+=⎩①②,①×53﹣②得:48x=8400,解得:x=175,把x=175代入①得:y=125,则方程组的解为175125 xy=⎧⎨=⎩.【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.。

成都市高新区2022-2023学年度七年级下期期末统考试题参考答案及评分意见

成都市高新区2022-2023学年度七年级下期期末统考试题参考答案及评分意见

2022-2023学年下学期期末学业质量监测七年级数学参考答案及评分意见A 卷一、选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.B2.D3.A4.C5.C6.D7.C8.C二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.110.180°11.106+-=x y 12.7513.12三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(本小题满分12分,每小题6分)(1)解:原式……4分第一个四个每个一分……6分只有答案-1给2分只要有简略步骤加正确答案给满分过程有错,按步骤给分(2)解:原式……4分上面括号内每个两分……5分……6分只要有简略步骤加正确答案给满分只有答案给2分15.(本小题满分8分)解:(1)111232231112222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△;……3分答案对给3分,答案错给0分(2)如图所示,△A 1B 1C 1即为所求;……6分只画没标字母A 1B 1C 1扣一分没用直尺作图扣一分(3)如图所示,连接BC 1,与直线MN 的交点P 即为所求.……8分(连接CB 1与直线MN 相交于点P 也正确)未连BC 1或CB 1扣一分1132=--+-1=-()222422x y x xy y=---÷()2422y xy y =--÷2y x=--2y x --16.(本小题满分8分)解:(1)所有可能出现的结果共有9种,其中转盘指针指向红色的有4种,……2分∴.……4分(2)公平.……5分∵,∴.∴游戏公平.……8分17.(本小题满分10分)解:(1)7a =……2分(2)……6分未化到最简,扣一分(3)不能.……8分把y =18代入解得:不是整数,所以不能.……10分理由可文字说明,只要有合理的理由给分18.(本小题满分10分)证明:(1)∵AE 是∠BAD 的角平分线,∴∠BAD=2∠BAF .∵∠BFE =45°,∴∠FBA+∠BAF =45°.∴2∠FBA+2∠BAF =90°.∵AD 为BC边上的高,()49P =哥哥去,1.54y x =+283x =,()49P =小明去()()P P =哥哥去小明去1.5418x +=,()49P =小明去∴∠EBF+∠FBA+2∠BAF =90°.∴∠EBF=∠FBA .∴BF 平分∠ABE .……3分(2)过点F 作FM ⊥BC 于点M ,FN ⊥AB 于点N ,∵BF 平分∠ABE ,且FM ⊥BC ,FN ⊥AB ,∴FM=FN .∵S △ABF =S △CBF ,∴AB=BC .∵BF 平分∠ABE ,∴∠ABF=∠CBF .在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△CBF (SAS ).∴∠AFB=∠CFB .∵∠BFE =45°,∴∠AFB=∠CFB =135°.∴∠AFC=90°.……6分(3)∵△ABF ≌△CBF ,∴AF=FC ,∠AFC=90°.∴∠AFC=∠EFC .∵AD 为BC 边上的高,∴∠ADE=90°.∴∠EAD+∠AEC=∠FCE+∠AEC .∴∠EAD=∠FCE .在△AFG 和△CFE 中,EAD FCE AF CF AFC EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFG ≌△CFE (ASA ).∴AG=EC=4.5.∵BE =3,∴BC =BE+EC=7.5.∵△ABF ≌△CBF ,∴AB =BC=7.5.……10分B 卷一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.1620.21.或22.67°23.24.(本小题满分8分)解:(1)结合图形可得:客厅面积为(平方米),……2分∵卧室的长为:米,卧室的宽为:米,∴卧室的面积为:(平方米).∴客厅面积为平方米,卧室的面积为平方米.……4分(2)卧室比客厅大:……5分正确表示出表达式给1分……7分把代入,原式.……8分25.(本小题满分10分)解:(1)200;……2分(2)小亮的速度为:米/分,则,……4分解得:.……5分∴.……6分(3)设爸爸追上小亮后还需t 分钟到达公园,则小亮还需(t+2)分钟到达公园.则,……8分解得:.……9分2512()xy x y x x +=+28010800=÷()1420080-=a a 370=a 2-2725或()y x +2()[]()y x y x x +=--2()()22322y xy x y x y x ++=++()xy x +2()2232y xy x ++82==-xy y x ,()36842422=⨯+=+-=xy y x 3560037080=⨯=b ()t t 200280=+34=t ()()xyx y xy x +-++22232()().4232222222xy y x y x y xy x xy y xy x +-=+=++=-++=4-∴爸爸追上小亮时离公园的距离为:……10分用算术方法计算正确全分26.(本小题满分12分)解:(1)∵点B 关于直线AD 的对称点为E ,∴AB=AE ,∠BAD=∠DAE=15°.∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ACB=60°.∴AE=AC ,∠EAC=30°.∴∠ACE=75°.∴∠BCE=15°.……3分只有答案给一分,步骤酌情给分(2)ⅰ)∵△ABC 是等边三角形,∴AB=AC=BC ,∠BAC=∠ACB=∠B=60°.∵DG ∥AC ,∴∠BGD=∠BAC=60°,∠BDG=∠BCA=60°.∴∠B=∠BGD=∠BDG=60°.∴△BDG 是等边三角形.∴BG=BD .∴AG=CD .……4分∵点B 关于直线AD 的对称点为E ,∴AB=AE ,设∠BAD=∠DAE=α.∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ACB=60°.∴AE=AC ,∠EAC=60-2α.∴∠ACE=60+α.∴∠BCE=α.∴∠BAD=∠BCE .……5分∴在△ADC 中,∠ADC=60+α.∴∠GDA=60-α,∠CDF=120-α,∠BDA=120-α.∵点B 关于直线AD 的对称点为E ,.380034200米=⨯∴∠GDE=180-2α.∵GD=DB ,∴GD=DE .∴∠DGE=∠DEG=α.∴∠AGH=120-α.∴∠AGH=∠CDF .……6分在△AGH 和△CDF 中,BAD BCE AG CD AGH CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGH ≌△CDF (ASA ).……7分ⅱ)如图,∵△ABC 是等边三角形,∴AB=AC=BC ,∠BAC=∠ACB=∠B=60°.∵DG ∥AC ,∴∠BGD=∠BAC=60°,∠BDG=∠BCA=60°.∴∠DBG=∠BGD=∠BDG=60°.∴△BDG 是等边三角形.∴BG=BD .∴AG=CD .……8分∵点B 关于直线AD 的对称点为E ,∴AB=AE ,设∠BAD=∠DAE=α.∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ACB=60°.∴AE=AC ,∠EAC=60+2α.∴∠ACE=60-α.∴∠BCE=α.∴∠BAD=∠BCE .……9分∴在△ADC 中,∠CDF=60-α.∵点B 关于直线AD 的对称点为E,∴∠GDE=180-2α.∵GD=DB ,∴GD=DE .∴∠DGE=∠DEG=α.∴∠AGH=60-α.∴∠AGH=∠CDF .……10分在△AGH 和△CDF 中,BAD BCE AG CD AGH CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AGH ≌△CDF (ASA ).∴AH=CF .在△AFC 中,∠AFC=60°,∴∠EFH=60°.∵∠EHF=∠DEG+∠EDH=60°,∴∠EFH=∠EHF=∠HEF=60°.∴HF=EF .∴CE=EF+CF=HF+AH .……12分其他方法参考此答案执行。

成都市人教版七年级下册数学期末试卷及答案

成都市人教版七年级下册数学期末试卷及答案

成都市人教版七年级下册数学期末试卷及答案一、选择题1.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为( )A .三角形B .四边形C .六边形D .八边形 2.下列计算中,正确的是( ) A .235235x x x += B .236236x x x =C .322()2x x x ÷-=-D .236(2)2x x -=- 3.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( ) A .8B .-8C .0D .8或-8 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .145.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .186.端午节前夕,某超市用1440元购进A 、B 两种商品共50件,其中A 种商品每件24元,B 品件36元,若设购进A 种商品x 件、B 种商品y 件,依题意可列方程组( ) A .5036241440x y x y +=⎧⎨+=⎩ B .5024361440x y x y +=⎧⎨+=⎩ C .144036241440x y x y +=⎧⎨+=⎩ D .144024361440x y x y +=⎧⎨+=⎩ 7.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .6 8.△ABC 是直角三角形,则下列选项一定错误的是( ) A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:29.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④ 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( ) A .1- B .1-或11-C .1D .1或11 二、填空题 11.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.12.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .13.已知a+b=5,ab=3,求:(1)a 2b+ab 2; (2)a 2+b 2.14.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.15.233、418、810的大小关系是(用>号连接)_____.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.若2m =3,2n =5,则2m+n =______.20.已知12x y =⎧⎨=-⎩是关于x ,y 的二元一次方程ax+y=4的一个解,则a 的值为_____. 三、解答题21.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.22.因式分解:(1)249x - (2) 22344ab a b b --23.四边形ABCD 中,∠A=140°,∠D=80°.(1)如图①,若∠B=∠C ,试求出∠C 的度数;(2)如图②,若∠ABC 的角平分线交DC 于点E ,且BE ∥AD ,试求出∠C 的度数;(3)如图③,若∠ABC 和∠BCD 的角平分线交于点E ,试求出∠BEC 的度数.24.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.25.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.26.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE 平分∠ACB ,求∠BEC 的度数.27.解下列方程组或不等式组(1)24231x y x y +=⎧⎨-=⎩ (2)()211113x x x x ⎧--≤⎪⎨+>-⎪⎩28.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n ,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D .【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.2.C解析:C【解析】试题解析:A.不是同类项,不能合并,故错误.B.235236.x x x ⋅= 故错误.C.()3222.x x x ÷-=- 正确.D.()32628.x x -=- 故错误. 故选C.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.3.B解析:B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.6.B解析:B【分析】本题有2个相等关系:购进A种商品件数+购进B种商品件数=50,购进A种商品x件的费用+购进B种商品y件的费用=1440元,据此解答即可.【详解】解:设购进A种商品x件、B种商品y件,依题意可列方程组50 24361440 x yx y+=⎧⎨+=⎩.故选:B.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7.B解析:B【解析】分析:推出DF∥CE,推出∠FDB=∠ECB,∠EDF=∠CED,根据DE∥AC推出∠ACE=∠DEC,根据角平分线得出∠ACE=∠ECB,即可推出答案.详解:∵CE⊥AB,DF⊥AB,∴DF∥CE,∴∠ECB=∠FDB,∵CE是∠ACB的平分线,∴∠ACE=∠ECB,∴∠ACE=∠FDB,∵AC∥DE,∴∠ACE=∠DEC=∠FDB,∵DF∥CE,∴∠DEC=∠EDF=∠FDB,即与∠FDB相等的角有∠ECB、∠ACE、∠CED、∠EDF,共4个,故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.8.B解析:B【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,和选项求出∠C(或∠B或∠A)的度数,再判断即可.【详解】解:A、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故A选项是正确的;B、∵∠A=60°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣40°=80°,∴△ABC是锐角三角形,故B选项是错误的;C、∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故C选项是正确的;D、∵∠A:∠B:∠C=1:1:2,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故D选项是正确的;故选:B.【点睛】本题考查了三角形的内角和定理的应用,主要考查学生的推理能力和辨析能力.9.B解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.10.D解析:D【解析】【分析】此题先把a2-ab-ac+bc因式分解,再结合a、b、c是正整数和a>b探究它们的可能值,从而求解.【详解】解:根据已知a2-ab-ac+bc=11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A的个位数字是1,故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.12.22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm解析:22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 13.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.14.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.16.65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解解析:65【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可.【详解】解:如图,由题意可知,AB∥CD,∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.18.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.6【分析】把代入已知方程可得关于a 的方程,解方程即得答案.【详解】解:把代入方程ax+y=4,得a -2=4,解得:a=6.故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基解析:6【分析】把12x y =⎧⎨=-⎩代入已知方程可得关于a 的方程,解方程即得答案. 【详解】解:把12x y =⎧⎨=-⎩代入方程ax +y =4,得a -2=4,解得:a =6. 故答案为:6.【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟知二元一次方程的解的概念是关键.三、解答题21.(1)见详解;(2)50°.【分析】(1)由//AB DC ,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平行即可得证;(2)由EF 与OC 平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B 的度数.【详解】(1)证明:∵AB ∥CD ,∴∠A=∠C ,又∵∠1=∠A ,∴∠C=∠1,∴FE ∥OC ;(2)解:∵FE ∥OC ,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A =60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(1)()()2323x x +-;(2)()22--b a b . 【分析】(1)直接利用平方差公式因式分解即可;(2)先提取公因式,然后利用完全平方公式分解因式即可.【详解】(1) ()()249=2323x x x -+-; (2)()223224444ab a b b b a ab b--=--+=()22--b a b .【点睛】 本题考查了用提公因式法和公式法进行因式分解.注意先提公因式,再利用公式法分解,同时因式分解要彻底,直到不能分解为止.23.(1)70°;(2)60°;(3)110°【分析】(1)根据四边形的内角和是360°,结合已知条件就可求解;(2)根据平行线的性质得到∠ABE 的度数,再根据角平分线的定义得到∠ABC 的度数,进一步根据四边形的内角和定理进行求解;(3)根据四边形的内角和定理以及角平分线的概念求得∠EBC+∠ECB 的度数,再进一步求得∠BEC 的度数.【详解】(1)在四边形ABCD 中,∵∠A+∠B+∠C+∠D=360°, 又∠A=140°,∠D=80°,∠B=∠C,∴140°+∠C+∠C+80°=360°,即∠C=70°.(2)∵BE ∥AD ,∠A=140°,∠D=80°,∴∠BEC=∠D ,∠A+∠ABE=180°.∴∠BEC=80°,∠ABE=40°.∵BE 是∠ABC 的平分线,∴∠EBC=∠ABE=40°.∴∠C=180°-∠EBC-∠BEC=180°-40°-80°=60°.(3)在四边形ABCD 中, 有∠A+∠ABC+∠BCD+∠D=360°, ∠A=140°,∠D=80°,所以∠ABC+∠BCD=140°,从而有12∠ABC+12∠BCD=70°. 因为∠ABC 和∠BCD 的角平分线交于点E,所以有∠EBC=12∠ABC,∠ECB=12∠BCD. 故∠C=180°-(∠EBC +∠ECB)=180°-(12∠ABC+12∠BCD)=180°-70°=110°. 24.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键. 25.68︒【分析】根据已知首先求得∠BAD 的度数,进而可以求得∠BAE ,而∠CAE=∠BAE ,在△ACD 中利用内角和为180°,即可求得∠C .【详解】解:∵AD 是△ABC 的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键. 26.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE 中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键27.(1)21x y =⎧⎨=⎩(2)12x ≤< 【分析】(1)运用加减消元法先消除x ,求y 的值后代入方程②求x 得解;(2)先分别解每个不等式,然后求公共部分,确定不等式组的解集.【详解】解:(1)24231x y x y +=⎧⎨-=⎩①② ①×2-②,得 7y=7,∴y=1.把y=1代入②,得 x=2.∴21x y =⎧⎨=⎩. (2)解不等式 ()211x x --≤得 1x ≥. 解不等式113x x +>- 得 2x <. ∴不等式组的解集为12x ≤<.【点睛】此题考查解方程组和不等式组,属常规基础题,难度不大.28.证明见解析.【分析】根据对顶角的性质得到BD ∥CE 的条件,然后根据平行线的性质得到∠B=∠C ,已知∠C=∠D ,则得到满足AB ∥EF 的条件,再根据两直线平行,内错角相等得到∠A=∠F .【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C=∠ABD ;又∵∠C=∠D ,∴∠D=∠ABD ,∴AB ∥EF ,∴∠A=∠F .考点:平行线的判定与性质;对顶角、邻补角.。

2022-2023学年四川省成都市新都区七年级(下)期末数学试卷(含解析)

2022-2023学年四川省成都市新都区七年级(下)期末数学试卷(含解析)

2022-2023学年四川省成都市新都区七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

1. 2023年全国城市节约用水宣传周活动时间为5月14日至20日,成都市宣传主题为“推进城市节水,建设宜居城市”,如图所示倡导节约用水的标志中,是轴对称图形的是( )A. B. C. D.2. 手机处理器工艺制程是指手机处理器内部集成电路的精细程度,工艺制程数字越小,越先进、耗电量也越低,并且发热量也更少.某款国内厂商最近发布的手机处理器拥有顶尖的5n m(5nm=0.000000005m)制程和架构设计.用科学记数法表示0.000000005为( )A. 0.5×10−8B. 5×10−9C. 5×10−10D. 5×10−83. 下列计算正确的是( )A. a2+a3=2a5B. a2⋅a3=a6C. (−2a2)3=−8a6D. (a+b)2=a2+b24.如图,AD//BC,∠B=30°,DB平分∠ADE,则∠DEC为( )A. 120°B. 90°C. 60°D. 30°5. 三角形的两边长分别是7,15,则此三角形第三边的长不可能是( )A. 7B. 9C. 15D. 216. 下列各式能用平方差公式计算的是( )A. (2a +b )(2b−a )B. (1+12x )(12x−1)C. (a +b )(a−2b )D. (2x−1)(−2x +1)7. 下列说法正确的是( )A. 某彩票中奖率是1%,买100张彩票一定有一张中奖B. 篮球运动员在罚球线投篮一次投中是必然事件C. 从装有5个红球的袋子中摸出一个白球是随机事件D. 经过红绿灯路口遇到绿灯是随机事件8.如图,已知CA =CD ,∠1=∠2,在不加辅助线的情况下,增加下列4个条件中的一个:①BC =EC ,②∠B =∠E ,③AB =DE ,④∠A =∠D ,能使△ABC≌△DEC 的条件的个数为( )A. 1B. 2C. 3D. 49. 已知a m =6,a n =2,则a m −n =______.10. 作为“中国名柚之乡”,2022年新都柚产量达到了1500吨以上,如表是一段时间在集贸市场卖出的柚子重量x (kg )与售价y (元)之间的关系表: 重量x /kg123…售价y /元10+120+130+1…根据表中数据可知,售价y (元)与重量x (kg )之间的关系式为______ (不考虑x 的取值范围).11. 一个不透明的布袋中装有除颜色外均相同的14个黑球,5个白球和若干个红球,每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到白球的频率稳定在0.2,则袋中红球的个数为______ 个.12. 如图,△ABC 中,AB =AC ,∠BAC =120°,分别以点A ,C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则∠ADB = ______ 度.13. 学习完平方差公式之后,数学兴趣小组在活动中发现:(x−1)(x+1)=x2−1;(x−1)(x2+x+1)=x3−1;(x−1)(x3+x2+x+1)=x4−1;⋯(x−1)(x n+x n−1+x n−2+⋯+x2+x+1)=x n+1−1.请你利用发现的规律计算:22022+22021+22020+⋯+22+2+1=______ .14. (1)(x−3.14)0−(−1)2023+(−1)−2−|−5|;2(2)已知a=2,b=−1,求(2a+b)2−2(a−2b)(a+2b)+(b−2a)(b+a)的值.15. 如图,△ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A1B1C1,使它与△ABC关于直线l成轴对称;(2)求△ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).16. 第31届世界大学生运动会将于2023年7月28日至8月8日在成都举行,新都区某中学开展“爱成都,迎大运”系列宣传活动,其中采取网络问卷的方式随机调查了本校部分学生对“A 足球,B篮球,C乒乓球,D羽毛球”四种球类运动的喜爱程度,让学生投票选出自己最喜爱的一个运动,并对调查结果进行了整理,绘制出如所示两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)这次活动共调查了______ 人,请补全条形统计图;(2)求扇形统计图中D区域的圆心角的度数;(3)根据调查结果,估计该校1200名学生中喜欢蓝球的共有多少人?17. 学习完平行线的知识后,甲,乙,丙三位同学利用两个三角形进行探究活动,分别得到以下图形.已知Rt△EDF中,∠D=90°,∠F=60°.请根据他们的叙述条件完成题目.(1)若△ACB为等腰直角三角形,且∠C=90°,∠A=45°;①甲同学:如图1,Rt△ACB和Rt△EDF的直角边DE,BC在同一直线上,点E和点C互相重合,斜边CF与AB相交于点P,那么∠APF=______ 度;②乙同学:如图2,Rt△ACB和Rt△EDF直角顶点C,D互相重合于点P,斜边AB与斜边EF互相平行,求∠EPB的度数,并写出解答过程;(2)若△ACB为等腰三角形,已知AC=BC.丙同学:如图3,若Rt△EDF直角顶点D恰好与△ACB底边AB的中点重合,Rt△EDF的斜边E F经过△ACB的顶点C,若EF//AB,设∠ACB=x,请用含x的式子表示∠EPB的度数,并写出解答过程.18. 如图1,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,先将边BC沿过点B的直线l 对折得到BD,连接CD,然后以CD为边在左侧作△CDE,其中∠CDE=90°,CD=DE,BD与CE交于点F,连接BE,AD.(1)求证:△ACD≌△BDE;(2)如图2,当点D在△ABC的斜边AB上时,请直接写出用BC,BE表示AB的关系式;(3)如图3,当点D在△ABC的内部时,若点F为BD的中点,且△ACD的面积为10,求△CDF 的面积.19. 已知:x+1x =3,则x2+1x2=______.20. 汽车的刹车距离d米与汽车行驶速度v千米/小时和路面的摩擦系数f有关,它们之间满足经验公式v2=250df.经测试,某型小客车在行驶速度v=50千米/小时的情况下,紧急刹车直至停止,刹车距离为16米,则路面的摩擦系数f为______ .21.如图,在△ABC中,线段AF平分∠BAC,交BC边于点E,过点F作FD⊥BC于点D,若∠C−∠B=36°,则∠F=______ 度.22. 将24×25×26×27+1表示成一个自然数的平方,则这个自然数是______ ;若从一个正整数a开始,连续的四个整数的积再加上1,也可以用一个自然数的平方表示所得结果,即a×(a+1)×(a+2)×(a+3)+1=A2,其中a为正整数,那么这个自然数A=______ .23. 如图,将两个正方形拼在一起,A,B,E在同一直线上,连接DE,DG,GE,当BE=1时,△DGE的面积记为S1,当BE=2时,△DGE的面积记为S2,⋯,以此类推,当BE=n时,△DGE的面积记为S n,则S2024−S2023+S2022−S2021+⋯+S2−S1=______ .24. 我国当代著名数学家华罗庚先生有一首关于数形结合的词:“数与形,本是相倚依,焉能分作两边飞.数无形时少直觉,形少数时难入微.数形结合百般好,隔离分家万事非,切莫忘,几何代数统一体,永远联系,切莫分离!”.这首小词形象、生动、深刻地指明了“数形结合”的价值,也揭示了“数形结合”的本质,而数形结合的方法是我们解决数学问题常用到的思想方法.如图,我们通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)图中所表示的数学等式为______ ;(2)利用(1)中得到结论,解决问题:①已知13x2−6xy+y2−4x+1=0,求(x+y)2024⋅x2023的值;②已知(x−2022)2+(2023−x)2=25,求(x−2022)(2023−x)的值.25. 甲和乙两人同时开车从A地出发,沿一条笔直的公路匀速前往相距450千米的B地,已知甲的速度大于乙的速度,1小时后,甲发现有物品落在A地,于是立即按原速度返回A地取物品,返回途中与乙相遇,在第2小时时取到物品后立即提速20%继续前往B地(所有掉头时间和取物品的时间忽略不计),在第5小时时再次遇到乙,并超过乙.已知甲和乙之间的距离y(千米)与甲车行驶的时间x(小时)之间的部分关系如图所示.根据图象解答下列问题.(1)乙的速度为______ 千米/小时;(2)甲提速后的速度为多少千米/小时;(3)当甲到达B地时,乙离B地的距离为多少千米.26. 在△ABC中,AB=AC,AB⊥AC,D,E分别为平面内两点,连接AD,AE,BD,CE,DE,使∠BAD=∠CAE且AD=AE.(1)如图1,①BD与CE有怎样的数量关系,请说明理由;②BD与CE有怎样的位置关系,请说明理由;(2)如图2,若延长BD与CE相交于H,且BH过AC的中点N,∠DAE的角平分线交BH于F,过点A作AM⊥BH于M,已知AM=3,BN=7,EF:EH=5:2.设BD=y,FN=x,请用含x的代数式表示y.答案和解析1.【答案】A【解析】解:B,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:A.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:由题意得0.000000005=5×10−9,故选:B.运用科学记数法的定义进行求解.此题考查了运用科学记数法表示较小数的能力,关键是能准确理解并运用该知识.3.【答案】C【解析】解:A、a2与a3不是同类项,不能合并,故不符合题意;B、a2⋅a3=a5,原计算错误,故不符合题意;C、(−2a2)3=−8a6,故符合题意;D、(a+b)2=a2+2ab+b2,原计算错误,故不符合题意;故选:C.根据合并同类项法则,同底数幂乘法,幂的乘方及完全平方公式分别计算并判断.本题考查了合并同类项法则,同底数幂乘法,幂的乘方及完全平方公式,掌握各计算法则是解题的关键.4.【答案】C【解析】解:∵AD//BC,∠B=30°,∴∠ADB=∠B=30°,∠ADE=∠DEC,∵DB平分∠ADE,∴∠ADE=2∠ADB=60°,∴∠DEC=60°.故选:C.由平行线的性质可得∠ADB=∠B=30°,∠ADE=∠DEC,再由角平分线的定义可求得∠ADE=60°,即可求解.本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.5.【答案】A【解析】解:设第三边长为x,则15−7<x<15+7,即8<x<22.故选:A.根据已知边长求第三边x的取值范围为:8<x<22,因此只有选项C符合.本题考查了三角形的三边关系,正确记忆第三边的范围为大于两边差且小于两边和是解题关键.6.【答案】B【解析】解:A、中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;B、1x是相同的项,互为相反项是1与−1,符合平方差公式的要求,故本选项正确;2C、中不存在相反的项,不能用平方差公式计算,故本选项错误;D、中符合完全平方公式,不能用平方差公式计算,故本选项错误;因此A、C、D都不符合平方差公式的要求.故选:B.运用平方差公式(a+b)(a−b)=a2−b2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.【答案】D【解析】解:A、某彩票中奖率是1%,买100张彩票不一定有一张中奖,不符合题意;B、篮球运动员在罚球线投篮一次投中是随机事件,不符合题意;C、从装有5个红球的袋子中摸出一个白球是不可能事件,不符合题意;D、经过红绿灯路口遇到绿灯是随机事件,符合题意.故选:D.根据概率的意义和随机事件的定义进行解答即可.本题考查的是概率的意义和随机事件,熟知在一定条件下,可能发生也可能不发生的事件,称为随机事件是解题的关键.8.【答案】C【解析】解:∵∠1=∠2,∴∠1+∠ACE=∠2+∠ACE,即∠ACB=∠DCE.又∵CA=CD,∴可以添加BC=EC,此时满足SAS,①正确;添加条件∠B=∠E,此时满足AAS,②正确;添加条件∠A=∠D,此时满足ASA,④正确;添加条件AB=DE,不能证明△ABC≌△DEC,③不正确.故能使△ABC≌△DEC的条件的个数为3个.故选:C.根据图形可知证明△ABC≌△DEC已经具备了一对角和一对相等边,因此可以利用ASA、SAS、A AS证明两三角形全等.本题考查了全等三角形的判定,解题的关键是牢记全等三角形的判定方法.9.【答案】3【解析】解:∵a m=6,a n=2,∴a m−n=a m÷a n=6÷2=3.故答案为:3.根据同底数幂的除法法则的逆用计算即可,同底数幂的除法法则:同底数幂相除,底数不变,指数相减.本题主要考查了同底数幂的除法,熟练掌握幂的运算法则是解答本题的关键.10.【答案】y=10x+1【解析】解:根据表中数据可知,售价y(元)与重量x(kg)之间的关系式为:y=10x+1.故答案为:y=10x+1.根据题意求出x、y的对应关系,得到答案.本题考查函数关系式,根据给出的x、y的对应关系,列出y与x的函数关系式是解题的关键.11.【答案】6【解析】解:设红球x个,根据题意可得:5=0.2,14+5+x解得:x=6,经检验得:x=6是原方程的根.故答案为:6.直接利用白个数÷总数=0.4,进而得出答案.此题主要考查了利用频率估计概率,正确掌握频率求法是解题关键.12.【答案】60【解析】解:∵AB=AC,∠BAC=120°,(180°−120°)=30°,∴∠C=∠B=12由作图可知MN垂直平分线段AC,∴DA=DC,∴∠C=∠DAC=30°,∴∠ADB=∠C+∠DAC=60°.故答案为:60.利用三角形内角和定理求出∠C=30°,再证明∠C=∠DAC=30°,利用三角形的外角的性质求解.本题考查作图−基本作图,等腰三角形的性质,线段从垂直平分线的性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.13.【答案】22023−1【解析】解:22022+22021+22020+⋯+22+2+1=(2−1)(22022+22021+22020+⋯+22+2+1)=22023−1,故答案为:22023−1.根据平方差公式以及各个等式所呈现的规律,将原式配上因式(2−1)即可.本题考查平方差公式,掌握平方差公式的结构特征以及各个等式所呈现的规律是正确解答的前提.14.【答案】解:(1)原式=1−(−1)+4−5=1;(2)原式=4a2+4ab+b2−2(a2−4b2)+b2−ab−2a2=4a2+4ab+b2−2a2+8b2+b2−ab−2a2=3ab+9b2,把a=2,b=−1代入3ab+9b2,可得:3×2×(−1)+9×(−1)2=−6+9=3.【解析】(1)根据零指数幂的计算、负整数指数幂的计算解答即可;(2)根据整式的乘法公式计算解答即可.此题考查整式的混合计算,关键是根据零指数幂的计算、负整数指数幂的计算、整式的乘法公式计算解答.15.【答案】解:(1)如图,△A1B1C1为所作;(2)△ABC的面积=3×4−12×4×2−12×2×1−12×2×3=4;(3)如图,点P为所作.【解析】(1)分别作出点A、B、C关于直线l的对称点A1、B1、C1即可;(2)用一个矩形的面积减去三个直角三角形的面积去计算△ABC的面积;(3)连接A1B交直线l于P,点P即为所作.本题考查了作图−轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.16.【答案】200【解析】解:(1)参加问卷调查的同学的人数为40÷20%=200(人).喜爱乒乓球的人数为100−40−80−10=70(人).补全条形统计图如图所示:故答案为:200;=18°;(2)D区域的圆心角的度数360°×10200(3)1200×80=480(人),200答:估计该校1200名学生中喜欢蓝球的共有480人.(1)用喜爱足球的人数除以其所占的百分比可得参加问卷调查的同学的人数;用参加问卷调查的同学的人数分别减去喜爱篮球、足球、羽毛球的人数,求出喜爱乒乓球的人数,补全条形统计图即可;(2)用D区域的比值×360°即可;(3)根据用样本估计总体,用1500乘以参加问卷调查的同学中喜爱篮球运动的人数的百分比,即可得出答案.本题考查条形统计图、扇形统计图、用样本估计总体,能够理解条形统计图和扇形统计图是解答本题的关键.17.【答案】105【解析】解:(1)①∵∠D =90°,∠F =60°,∴∠DCF =90°−∠F =30°,∵∠ACB =90°,∴∠ACP =∠ACB−∠DCF =90°−30°=60°,∴∠APF =∠A +∠ACP =45°+60°=105°,故答案为:105;②∵∠APB =∠EPF =90°,∠A =45°,∠F =60°,∴∠B =90°−∠A =45°,∠E =90°−∠F =30°,如图2,过点P 作PM //AB ,∵AB //EF ,∴PM //AB //EF ,∴∠BPM =∠B =45°,∠EPM =∠E =30°,∴∠EPB =∠BPM +∠EPM =45°+30°=75°,即∠EPB 的度数为75°;(2)由②得:∠E =30°,∵EF //AB ,∴∠BDP =∠E =30°,∵AC =BC ,∠ACB =x ,∴∠A =∠B =12(180°−∠ACB )=90°−12x ,∴∠E P B =∠B +∠B D P =90°−12x +30°=120°−12x .(1)①由直角三角形的性质得∠DCF =30°,则∠ACP =60°,再由三角形的外角性质即可得出结论;②过点P作PM//AB,则PM//AB//EF,由平行线的性质得∠BPM=∠B=45°,∠EPM=∠E=30°,即可得出结论;(2)由平行线的性质得∠BDP=∠E=30°,再由等腰三角形的性质和三角形内角和定理得∠A=∠B =90°−1x,然后由三角形的外角性质即可得出结论.2本题是三角形综合题目,考查了等腰三角形的性质、三角形内角和定理、平行线的判定与性质、直角三角形的性质以及三角形的外角性质等知识,本题综合性强,熟练掌握平行线的判定与性质和三角形的外角性质是解题的关键.18.【答案】(1)证明:∵边BC沿过点B的直线l对折得到BD,∴BC=BD,∴∠BCD=∠BDC,∵∠ACB=∠CDE=90°,∴∠ACB−∠BCD=∠CDE−∠BDC,∴∠ACD=∠BDE,∵AC=BC,∴BD=AC,∴△ACD≌△BDE(SAS);(2)解:由(1)得:△ACD≌△BDE,∴AD=BE,∴AB=BD+AD=BD+BE,∵BC=BD,∴AB=BD+BE;(3)解:如图,设直线l交CD于点H,交CE于K,取DH的中点G,连接FG,连接DK,∵点F是BD的中点,∴FG//BH,∴ CKFK =CHGH,由折叠得:CH=DH,∴CH=2GH,∴CKFK=2,∵l⊥CD,CD⊥DE,∴FG//DE,∴FK EF =GHDG=1,∴CFEF=3,∴S△C D F:S△D E F=3:1,由(1)知:△BDE≌△ACD,∴S△B D E=S△A C D=10,∵点F是BD的中点,∴S△D E F=12S△A C D=5,∴S△C D F=15.【解析】(1)可得出∠BCD=∠BDC,∠ACB=∠CDE=90°,从而∠ACD=∠BDE,进一步得出结论;(2)由(1)得△ACD≌△BDE,从而得出AD=BE,结合BC=BD,进一步得出结果;(3)设直线l交CD于点H,交CE于K,取DH的中点G,连接FG,连接DK,可推出 CKFK =CHGH,结合CH=DH得出CH=2GH,从而CKFK =2,可推出FG//DE,从而FKEF=GHDG=1,进而得出CFEF=3,从而得出S△C D F:S△D E F=3:1,进一步得出结果.本题考查了轴对称的性质,全等三角形的判定和性质,三角形中位线的性质,平行线分线段成比例性质等知识,解决问题的关键是构造三角形的中位线.19.【答案】7【解析】【分析】本题考查了完全平方公式,熟记完全平方公式是解题的关键.根据完全平方公式解答即可.【解答】解:∵x +1x=3,∴(x +1x )2=x 2+2+1x 2=9,∴x 2+1x 2=7,故答案为:7.20.【答案】58【解析】解:由题意得,v =50,d =16,把v =50,d =16代入v 2=250df ,得2500=250×16f ,解得f =58,故答案为:58.由题意得v =50,d =16代入v 2=250df 计算即可.本题考查函数关系式,把v =50,d =16代入v 2=250df 是正确解答的关键.21.【答案】14【解析】解:∵∠BAC +∠C +∠B =180°,∠C−∠B =28°,∴∠BAC +2∠C =208°,∴12∠BAC +∠C =104°,∵AF 平分∠BAC ,∴∠CAE =12∠BAC ,∵∠CEA =180°−(∠CAE +∠C )=180°−(12∠BAC +∠C )=180°−104°=76°,∴∠FED =∠CEA =76°,∵FD ⊥BC ,∴∠FDE =90°,∴∠F =180°−∠FED−∠FDE =180°−76°−90°=14°,故答案为:14.由三角形内角和定理结合已知条件得出12∠BAC +∠C =104°,由角平分线的定义得出∠CAE =12∠B AC ,进而得出∠CEA =76°,得出∠FED =∠CEA =76°,由垂直的定义求出∠FDE =90°,再利用三角形内角和定理即可求出∠F =的度数.本题考查了三角形内角和定理,熟练掌握三角形内角和定理,角平分线的定义,垂直的定义是解决问题的关键.22.【答案】649 a 2+3a +1【解析】解:24×25×26×27+1=24×(24+1)×(24+2)×(24+3)+1=[24×(24+3)]×[(24+1)×(24+2)]+1=(242+24×3)×(242+24×3+2)+1=(242+24×3)2+2×(242+24×3)+1=(242+24×3+1)2=(576+72+1)2=6492;a ×(a +1)×(a +2)×(a +3)+1=[a ×(a +3)]×[(a +1)×(a +2)]+1=(a 2+3a )×(a 2+3a +2)+1=(a 2+3a )2+2(a 2+3a )+1=(a 2+3a +1)2,即A =a 2+3a +1,故答案为:649;a 2+3a +1.将24×25×26×27+1变为24×(24+1)×(24+2)×(24+3)+1,整理成[24×(24+3)]×[(24+1)×(24+2)]+1并计算后利用完全平方公式因式分解后即可求得答案;同理将a ×(a +1)×(a +2)×(a +3)+1整理成[a ×(a +3)]×[(a +1)×(a +2)]+1并计算后利用完全平方公式因式分解后即可求得答案.本题考查因式分解的应用,结合已知条件,将24×25×26×27+1及a ×(a +1)×(a +2)×(a +3)+1分别变形整理成[24×(24+3)]×[(24+1)×(24+2)]+1和[a ×(a +3)]×[(a +1)×(a+2)]+1是解题的关键.23.【答案】1024650【解析】解:连接BD ,则BD //EG ,∠DBA =∠GEB =45°,∴△DEG 的边EG 上的高与△BEG 的边EG 上的高相等,∴S △D E G =S △B E G =12BE 2,当BE =n 时,S △D E G =S n =12n 2,∴S n −1=12(n−1)2,∴S n −S n −1=n−12,∴S 2024−S 2023+S 2022−S 2021+…+S 2−S 1=2024−12+2022−12+…+2−12=(−12)×1012+2×(1012+1011+ (1)=−506+1012×1013=1024650.故答案为:1024650.△DGE 的面积总等于以BE 为边长的正方形面积的一半,即12BE 2,求出S n −S n −1=n−12即可.此题考查正方形的性质,利用图形中的面积得出相应的等式是得出正确答案的前提.24.【答案】(a +b )2=a 2+2ab +b 2【解析】解:(1)由图形可得大正方形的面积为(a +b )2,还可以表示为a 2+2ab +b 2,则(a +b )2=a 2+2ab +b 2,故答案为:(a +b )2=a 2+2ab +b 2;(2)①已知13x 2−6xy +y 2−4x +1=0,则9x 2+4x 2−6xy +y 2−4x +1=0,即(9x 2−6xy +y 2)+(4x 2−4x +1)=0,那么(3x−y )2+(2x−1)2=0,则3x−y =0,2x−1=0,解得:x =12,y =32,∴(x+y)2024⋅x2023=(12+32)2024×(12)2023=22024×(12)2023=2×22023×(12)2023=2×(2×12)2023=2×1=2;②∵(x−2022)2+(2023−x)2=25,∴[(x−2022)+(2023−x)]2−2(x−2022)(2023−x)=25,∴(x−2022+2023−x)2−2(x−2022)(2023−x)=25,即1−2(x−2022)(2023−x)=25,则(x−2022)(2023−x)=−12.(1)根据大正方形的面积=两个小正方形的面积+两个小长方形的面积列得等式即可;(2)①利用完全平方公式将原式进行变形,再根据偶次幂的非负性确定x及y的值,然后代入(x+y )2024⋅x2023中计算即可;②利用完全平方公式将(x−2022)2+(2023−x)2=25变形后计算即可.本题考查完全平方公式的应用,配方法及偶次幂的非负性,(2)小题①中将原式变形整理为(3x−y )2+(2x−1)2=0,②中将原式变形为[(x−2022)+(2023−x)]2−2(x−2022)(2023−x)=25是解题的关键.25.【答案】60【解析】解:(1)∵甲出发1小时后,按原速度返回A地取物品,∴当甲返回A地的时刻为2小时,此时,甲和乙之间的距离为120千米,即乙出发2小时行驶了120千米,∴乙的速度为1202=60(千米/小时),故答案为:60;(2)设甲原来的速度为x千米/小时,则甲提速后的速度为(1+20%)x千米/小时,∵在第5小时时,甲、乙再次相遇,∴(1+20%)x⋅(5−2)=5×60,,解得:x=2503=100,∴(1+20%)×2503∴甲提速后的速度为100千米/小时;(3)甲取回物品后从A地驶往B地所需时间为450=4.5(小时),100∴当甲到达终点时,乙行驶的时间为2+4.5=6.5(小时),∴乙行驶的路程为60×6.5=390(千米),∴当甲到达B地时,乙离B地的距离为450−390=60(千米).(1)分析题意结合函数图象可知,乙出发2小时行驶了120千米,利用“速度=路程÷时间”求解即可;(2)设甲原来的速度为x千米/小时,则甲提速后的速度为(1+20%)x千米/小时,根据“在第5小时时,甲、乙再次相遇”列出方程,求解即可;(3)先求出当甲到达终点时,乙行驶的时间,再用总路程减去乙行驶的路程即可求解.本题主要考查函数的图象、行程问题,正确理解题意,读懂函数图象,从函数图象中获取解题所需信息是解题关键.26.【答案】解:(1)①BD=CE,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,{A B=A C∠B A D=∠C A E,A D=A E∴△ABD≌△ACE(SAS),∴BD=CE;②BD⊥CE,理由如下:延长BD交CE的延长线于点P,由①知,△ABD≌△ACE,∴∠ABD=∠ACE,∵∠ABD+∠DBC+∠ACB=90°,∴∠ACE+∠DBC+∠ACB=90°,∵∠P=180°−(∠ACE+∠DBC+∠ACB)=90°,∴BD⊥CE;(2)由(1)知,CE=BD=y,∵点N是AC的中点,∴AN=CN,在△AMN和△CHN中,{∠A M N=∠C H N∠A N M=∠C N H,A M=C H∴△AMN≌△CHN(AAS),∴CH=AM=3,由(1)知,CE=BD=y,∴CE−CH=EH=y−3,∵AF是∠DAF的角平分线,∴DF=EF,∵EF :EH =5:2,∴DF =EF =52EH ,∵DF =DN−BD−FN ,DN =7,∴7−x−y =52EH ,即7−x−y =52(y−3),整理得y =297−27x . 【解析】(1)①证△ABD≌△ACE ,即可得出结论;②延长BD 交CE 的延长线于点P ,证∠DBC +∠BCE =90°,即可得出结论;(2)由(1)知,CE =BD =y ,证△AMN≌△CHN ,得出CH =AM =3,即y−3=EH ,再根据角平分线的性质得出DF =EF =52EH ,即7−x−y =52EH ,联立两式得出y 和x 的关系式即可.本题主要考查三角形的综合题,熟练掌握等腰三角形的性质,全等三角形的判定和性质等知识是解题的关键.。

成都市人教版七年级下学期期末数学试题

成都市人教版七年级下学期期末数学试题

成都市人教版七年级下学期期末数学试题一、选择题1.从边长为a 的大正方形板挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()()22a b a b a b +-=- 2.下列图形可由平移得到的是( ) A . B . C . D .3.若(x+2)(2x-n)=2x 2+mx-2,则( )A .m=3,n=1;B .m=5,n=1;C .m=3,n=-1;D .m=5,n=-1;4.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y 5.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 6.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .67.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣88.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .9.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 10.已知a 、b 、c 是正整数,a >b ,且a 2-ab-ac+bc=11,则a-c 等于( )A .1-B .1-或11-C .1D .1或11 二、填空题11.若a m =5,a n =3,则a m +n =_____________.12.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.13.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 14.已知一个多边形的每个外角都是24°,此多边形是_________边形.15.一个n 边形的内角和是它外角和的6倍,则n =_______.16.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.17.若2a +b =﹣3,2a ﹣b =2,则4a 2﹣b 2=_____.18.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 19.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______. 20.若2m =3,2n =5,则2m+n =______.三、解答题21.解方程组:41325x y x y +=⎧⎨-=⎩. 22.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.23.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).24.已知a 6=2b =84,且a <0,求|a ﹣b|的值.25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --26.如图,点F 在线段AB 上,点E ,G 在线段CD 上,FG ∥AE ,∠1=∠2.(1)求证:AB ∥CD ;(2)若FG ⊥BC 于点H ,BC 平分∠ABD ,∠D =112°,求∠1的度数.27.因式分解:(1)()()36x m n y n m ---;(2)()222936x x +-28.解不等数组:3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分别表示出图甲和图乙中阴影部分的面积,二者相等,从而可得答案.【详解】解:图甲中阴影部分的面积为:22a b -, 图乙中阴影部分的面积为:()()()1()4=22a b a b a b a b -+⨯⨯⨯+-, 甲乙两图中阴影部分的面积相等 22()()a b a b a b ∴-=+-∴可以验证成立的公式为22()()a b a b a b +-=-故选:D .【点睛】本题考查了平方差公式的几何背景,属于基础题型,比较简单.2.A【详解】解:观察可知A选项中的图形可以通过平移得到,B、C选项中的图形需要通过旋转得到,D选项中的图形可以通过翻折得到,故选:A3.A解析:A【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n)=2x2+4x-nx-2n,又∵(x+2)(2x-n)=2x2+mx-2,∴2x2+(4-n)x-2n=2x2+mx-2,∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.4.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 5.A解析:A【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.【详解】A、a4÷a3=a,故本选项正确;B、a4和a3不能合并,故本选项错误;C、 (-a3)2=a6,故本选项错误;D、a4⋅a3=a7,故本选项错误.故选:A.本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.C解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4,∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.7.C解析:C【分析】用科学计数法将0.00000012表示为a×10-n 即可.【详解】解:0.00000012=1.2×10﹣7,【点睛】本题考查用科学计数法表示较小的数,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.8.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.9.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.D解析:D【解析】【分析】此题先把a 2-ab -ac +bc 因式分解,再结合a 、b 、c 是正整数和a >b 探究它们的可能值,从而求解.【详解】解:根据已知a 2-ab -ac +bc =11,即a(a-b)-c(a-b)=11,(a-b)(a-c)=11,∵a>b,∴a-b>0,∴a-c>0,∵a、b、c是正整数,∴a-c=1或a-c=11故选D.【点睛】此题考查了因式分解;能够借助因式分解分析字母的取值范围是解决问题的关键.二、填空题11.15【分析】根据幂的运算公式即可求解.【详解】∵am=5,an=3,∴am+n= am×an=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15【分析】根据幂的运算公式即可求解.【详解】∵a m=5,a n=3,∴a m+n= a m×a n=5×3=15故答案为:15.【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.1【分析】把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1解析:1把2写成3-1后,利用平方差公式化简,归纳总结得到一般性规律,即可确定出A 的个位数字.【详解】解:A=(3-1)(3+1)(32+1)(34+1)(316+1)(332+1)+1=(32-1)(32+1)(34+1)(316+1)(332+1)+1=(34-1)(34+1)(316+1)(332+1)+1=(316-1)(316+1)(332+1)+1=(332-1)(332+1)+1=364-1+1=364,观察已知等式,个位数字以3,9,7,1循环,64÷4=16,则A 的个位数字是1, 故答案为:1.【点睛】本题考查平方差公式,熟练掌握平方差公式是解本题的关键.13.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②, ①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消14.十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360° 24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.15.14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6解析:14【分析】根据多边形的内角和公式及外角和列出等式,解出n即可.【详解】多边形的外角和为:360°,多边形的内角和公式为:(n-2)×180°,根据题意得:(n-2)×180=360×6,解得:n=14,故答案为:14.【点睛】本题是对多边形内角和及外角和的考查,熟练掌握多边形的内角和公式及外角和是解决本题的关键.16.1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学解析:1×10-10.【解析】【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m).故答案为:1×10-10.【点睛】本题考查科学记数法,其形式为:a×10n(1≤a<10,n为整数).17.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.18.-2根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=12,∴a-b=-1÷12=-2,故答案为-2.19.【分析】将,代入方程组,首先求得,进而可以求得.【详解】解:将代入方程组得:,解得:,故的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解解析:1-【分析】将x,y代入方程组,首先求得m,进而可以求得n.【详解】解:将11xy=⎧⎨=⎩代入方程组得:31=1mm n-⎧⎨-=⎩,解得:21mn=⎧⎨=-⎩,故n的值为-1.【点睛】本题考查二元一次方程组,难度不大,理解二元一次方程组的解的含义是顺利解题的关键.20.15根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.三、解答题21.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩.本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.22.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.(1)20°;(2)1122n m - 【分析】(1)根据∠DAE =∠EAC ﹣∠DAC ,求出∠EAC ,∠DAC 即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B =35°,∠C =75°,∴∠BAC =180°﹣35°﹣75°=70°,∵AE 平分∠BAC ,∴∠CAE =12∠CAB =35°,∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣75°=15°,∴∠DAE =∠EAC ﹣∠DAC =35°﹣15°=20°.(2)∵∠B =m °,∠C =n °,∴∠BAC =180°﹣m °﹣n °,∵AE 平分∠BAC ,∴∠CAE =12∠CAB =90°﹣(12m )°﹣(12n )°, ∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣n °,∴∠DAE =∠EAC ﹣∠DAC =(12n ﹣12m )°, 故答案为:(12n ﹣12m ). 【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解. 【详解】解:(1)2()4()a x y x y ---()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1)见解析;(2)56°【分析】(1)先证∠1=∠CGF 即可,然后根据平行线的判定定理证明即可;(2)先根据平行线的性质、角平分线的性质以及垂直的性质得到∠1+∠4=90°,再求出∠4即可.【详解】(1)证明:∵FG ∥AE ,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB ∥CD .(2)解:∵AB ∥CD ,∴∠ABD +∠D =180°,∵∠D =112°,∴∠ABD =180°﹣∠D =68°,∵BC 平分∠ABD ,∴∠4=12∠ABD =34°, ∵FG ⊥BC ,∴∠1+∠4=90°,∴∠1=90°﹣34°=56°.【点睛】本题考查三角形内角和定理、平行线的性质、角平分线的定义等知识,解题的关键是熟练应用相关性质和定理.27.(1)3()(2)m n x y -+;(2)22(3)(3)x x +-.【分析】(1)原式变形后,提取公因式即可;(2)原式先利用平方差公式进行因式分解,再利用完全平方公式分解即可.【详解】(1)原式3()6()x m n y m n =-+-3()3()2m n x m n y =-⋅+-⋅3()(2)m n x y =-+(2)原式()2229(6)x x =+-()()229696x x x x =+++-22(3)(3)x x =+-【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.28.解集为1≤x ﹤4,数轴表示见解析【分析】分别解两个不等式的解集,它们的公共部分即为不等式组的解集,然后把解集表示在数轴上即可.【详解】 3(2)41213x x x x --≤-⎧⎪⎨+>-⎪⎩①② 解不等式①得:x ≥1,解不等式②得:x ﹤4,∴不等式组的解集为1≤x ﹤4,在数轴上表示为:.【点睛】本题考查一元一次不等式组和在数轴上表示不等式的解集,正确求出每个不等式的解集是解答的关键.。

2022-2023学年四川省成都市双流区天府七中七年级(下)期末数学试卷(含答案)

2022-2023学年四川省成都市双流区天府七中七年级(下)期末数学试卷(含答案)

2022-2023学年四川省成都市双流区天府七中七年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一个符合题目要求,答案涂在答题卡上)1.(4分)剪纸社团是天七的特色学生社团,以下剪纸作品中,轴对称图形是( )A.B.C.D.2.(4分)清代•袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A.8.4×10﹣5B.8.4×10﹣6C.84×10﹣7D.8.4×1063.(4分)已知三角形两边的长分别为2cm、7cm,第三边长为整数,则第三边的长可以为( )A.4cm B.5cm C.8cm D.9cm4.(4分)下列说法正确的是( )A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是5.(4分)如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件( )A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E6.(4分)如图所示,要得到DE∥BC,则需要的条件是( )A.CD⊥AB,GF⊥AB B.∠DCE+∠DEC=180°C.∠EDC=∠DCB D.∠BGF=∠DCB7.(4分)如果4x2﹣(a﹣b)x+9是一个整式的平方,则2a﹣2b的值是( )A.±24B.±9C.±6D.128.(4分)如图1,在矩形MNPO中,动点R从点N出发,沿N→P→O→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPO的周长是( )A.11B.15C.16D.24二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)若代数式(2x+5)0有意义,则x满足的条件是 .10.(4分)一个角的余角比它的补角的大15°,则这个角的度数是 °.11.(4分)若(x2+px+2)(x﹣q)中不含x2项,则(p﹣q)2023的值为 .12.(4分)如图,在△ABC中,AC=12,BC=8分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接DE,则△BCE的周长为 .13.(4分)如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为 cm.三、解答题(本大题共5个小题,共48分)14.(12分)计算:(1)﹣32+(﹣)﹣4﹣(﹣3)0;(2)[a2b﹣b2(2a+b)]÷b﹣(a+b)(a﹣b).15.(8分)如图,方格图中每个小正方形的边长为1,点A,点B,点O都在格点上.(1)画出△AOB关于直线MN的对称图形△A'OB';(2)在直线MN上是否存在一点P,使得PA+PB的值最小?若存在,请在图中画出点P;若不存在,请说明理由;(3)求出四边形ABB′A′的面积.16.(8分)第六届天七数学文化节期间,学校开展了丰富多彩的游园活动.王老师为了解本班学生对华容道、数独、24点、七巧板这4项活动的喜爱情况,在本班学生中随机抽查部分学生,对他们最喜爱的游园项目(每人只选一项)进行问卷调查,将调查结果绘制成两幅不完整的统计图(如图,A:华容道,B:数独,C:24点,D:七巧板).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为进一步优化游园活动,提升活动的体验感,王老师从被调查最喜爱A和D学生中分别选取一名学生分享参与文化节活动的感受与建议,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.17.(10分)如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE∥BC时,若△DEF的面积为2,请直接写出△ABC的面积.18.(10分)如图,在△ABC中,点D在BC的延长线上,过点A作直线AE∥BC.(1)如图1,点F在直线AE,BD之间,连接AF,CF,探究∠EAF,∠F,∠BCF之间的数量关系,并说明理由;(2)如图2,过点C作CG∥AB交AE于点G,CH平分∠GCD,AH平分∠GAC,若∠BAC=x°,求∠H的度数(用含x的式子表示);(3)如图3,∠BAC=60°,∠ABC:∠ACB=2:1,射线AM从AB的位置开始绕点A逆时针旋转,旋转y°(0<y<240),同时射线AN满足∠MAN=20°,且AN始终在AM前面运动,射线AT平分∠BAM,当∠BAT:∠NAC=1:2时,求∠BAT的度数.一、填空题(本大题共5小题,每小题4分,共20分)19.(4分)已知3×3m÷9n=38,则代数式m﹣2n+1= .20.(4分)如图,点M,点N是长方形ABCD的边AD、BC上的两个点,把长方形ABCD沿线段MN折叠,当点D的对应点D'落在长方形的外部时,测量得∠AMN=m°,则∠D'MD= °(用含m 的式子表示).21.(4分)在△ABC中,AB=AC,过AB的中点D作AB的垂线,交直线AC于点E,若∠AED=58°,则∠B= °.22.(4分)如图,分别以△ABC的边AB、BC为边向外作等边△ABE和等边△BCD,连接AD,EC,EC 交AB于点N,交AD于点M.若S△MAN=4S△MBN,ME=25,则BM的长度为 .23.(4分)如图,点D,点E,点F分别是Rt△ABC的三边上的动点,若AB=5x cm,BC=12x cm,AC=13x cm,则DE+DF+EF的最小值y与x的关系式为: .二、解答题(本大题共3小题,共30分)24.(8分)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)根据上述过程,写出(a+b)2、(a﹣b)2、ab之间的等量关系: ;(2)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.观察图3,把一个大正方体分割成如图所示的小长方体和小正方体,从中可以得到一个恒等式: ;(3)两个正方形ABCD,CEFG如图4摆放,边长分别为x,y(x>y),若这两个正方形面积之和为34,且BE=8,求图中阴影部分面积.25.(10分)甲、乙两人分别驾驶充电汽车和燃油汽车从A地前往B地,他们的行驶路程y(千米)与行驶时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲在中途因充电停止了一段时间).(1)甲、乙两人, 先到达B地;甲在充电之前的速度为 千米/时;(2)若甲充完电后以原来速度的两倍继续行驶,则甲充电多少小时?(3)在(2)的条件下,从甲、乙两人首次距A地距离相等开始,到甲到达B地结束,在这段时间内两人何时相距30千米?26.(12分)如图,在等边△ABC中,点D,点E分别是AC,BC边上的点(不与端点重合),连接AE,BD交于点F,且∠BAE=∠CBD.点M,点N分别是线段FD,AF上的动点,连接AM,DN交于点P.(1)如图1,求证:BE=CD;(2)如图2,若AM平分∠DAF,DN平分∠ADF,猜想AN,DM与CE之间存在怎样的数量关系,并说明理由;(3)如图3,若AP=DF,∠FAP=∠FDP,点G在ND的延长线上,连接AG,FP,且AG交FP的延长线于点H,若点H为AG的中点,求证:AF=PG.2022-2023学年四川省成都市双流区天府七中七年级(下)期末数学试卷参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一个符合题目要求,答案涂在答题卡上)1.(4分)剪纸社团是天七的特色学生社团,以下剪纸作品中,轴对称图形是( )A.B.C.D.选:D.2.(4分)清代•袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A.8.4×10﹣5B.8.4×10﹣6C.84×10﹣7D.8.4×106选:B.3.(4分)已知三角形两边的长分别为2cm、7cm,第三边长为整数,则第三边的长可以为( )A.4cm B.5cm C.8cm D.9cm选:C.4.(4分)下列说法正确的是( )A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是选:B.5.(4分)如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件( )A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E选:B.6.(4分)如图所示,要得到DE∥BC,则需要的条件是( )A.CD⊥AB,GF⊥AB B.∠DCE+∠DEC=180°C.∠EDC=∠DCB D.∠BGF=∠DCB选:C.7.(4分)如果4x2﹣(a﹣b)x+9是一个整式的平方,则2a﹣2b的值是( )A.±24B.±9C.±6D.12选:A.8.(4分)如图1,在矩形MNPO中,动点R从点N出发,沿N→P→O→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则矩形MNPO的周长是( )A.11B.15C.16D.24选:C.二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)若代数式(2x+5)0有意义,则x满足的条件是 x≠﹣ .10.(4分)一个角的余角比它的补角的大15°,则这个角的度数是 40 °.11.(4分)若(x2+px+2)(x﹣q)中不含x2项,则(p﹣q)2023的值为 0 .12.(4分)如图,在△ABC中,AC=12,BC=8分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接DE,则△BCE的周长为 20 .13.(4分)如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为 30 cm.三、解答题(本大题共5个小题,共48分)14.(12分)计算:(1)﹣32+(﹣)﹣4﹣(﹣3)0;(2)[a2b﹣b2(2a+b)]÷b﹣(a+b)(a﹣b).【解答】解:(1)原式=﹣9+16﹣1=6;(2)原式=(a2b﹣2ab2﹣b3)÷b﹣(a2﹣b2)=a2﹣2ab﹣b2﹣a2+b2=﹣2ab.15.(8分)如图,方格图中每个小正方形的边长为1,点A,点B,点O都在格点上.(1)画出△AOB关于直线MN的对称图形△A'OB';(2)在直线MN上是否存在一点P,使得PA+PB的值最小?若存在,请在图中画出点P;若不存在,请说明理由;(3)求出四边形ABB′A′的面积.【解答】解:(1)如图,△A'OB'即为所求.(2)存在.如图,连接A'B,交直线MN于点P,连接AP,此时PA+PB=PA'+PB=A'B,为最小值,则点P即为所求.(3)四边形ABB′A′的面积为=12.16.(8分)第六届天七数学文化节期间,学校开展了丰富多彩的游园活动.王老师为了解本班学生对华容道、数独、24点、七巧板这4项活动的喜爱情况,在本班学生中随机抽查部分学生,对他们最喜爱的游园项目(每人只选一项)进行问卷调查,将调查结果绘制成两幅不完整的统计图(如图,A:华容道,B:数独,C:24点,D:七巧板).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 20 名学生;(2)将条形统计图补充完整;(3)为进一步优化游园活动,提升活动的体验感,王老师从被调查最喜爱A和D学生中分别选取一名学生分享参与文化节活动的感受与建议,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【解答】解:(1)本次调查中,王老师一共调查了(5+5)÷50%=20(名)学生.故答案为:20.(2)由题意得,A类别的人数为20×15%=3(人),∴A类别中女生的人数为3﹣2=1(人),补全条形统计图如图1所示.(3)列表如下:男女男(男,男)(男,女)男(男,男)(男,女)女(女,男)(女,女)共有6种等可能的结果,其中恰好选中一名男生和一名女生的结果有3种,∴恰好选中一名男生和一名女生的概率为.17.(10分)如图1,在Rt△ABC中,∠A=90°,∠B=30°,D,G分别是AB,BC上的点,连接GD,且GD=GB.以点D为顶点作等边△DEF,使点E,F分别在AC,GC上.(1)求∠DGF的大小;(2)求证:△FDG≌△EFC;(3)如图2,当DE∥BC时,若△DEF的面积为2,请直接写出△ABC的面积.【解答】(1)解:如图1中,∵GB=GD,∴∠BDG=∠B=30°,∴∠BGD=180°﹣∠B﹣∠BDG=120°,∴∠DGF=180°﹣∠BGD=60°.(2)证明:∵∠A=90°,∠B=30°,∴∠C=90°﹣30°=60°,∵△DEF是等边三角形,∴DF=EF,∠DFE=60°,∵∠EFG=∠DFE+∠DFG=∠C+∠FEC,∠DFE=∠C=60°,∴∠DFG=∠FEC,∵∠DGF=60°,∴∠DGF=∠C,在△FDG和△EFC中,,∴△FDG≌△EFC(ASA).(3)解:∵DE∥BC,∴∠EDF=∠DFG=60°,∠DEF=∠EFC=60°,∵∠DGF=∠C=60°,∴△DFG,△EFC都是等边三角形,面积都是2,∴GD=GF=BG,∴△BDG的面积=△DGF的面积=2,如图2中,过点F作FT⊥DE于点T,∵FD=FE,FT⊥DE,∴DT=TE,∴S△EFT=S△DEF=1,∵EF=DE,∠FET=∠AED=60°,∠FTE=∠A=90°,∴△FET≌△DEA(AAS),∴S△ADE=S△EFT=1,∴△ABC的面积=2+2+2+2+1=9.18.(10分)如图,在△ABC中,点D在BC的延长线上,过点A作直线AE∥BC.(1)如图1,点F在直线AE,BD之间,连接AF,CF,探究∠EAF,∠F,∠BCF之间的数量关系,并说明理由;(2)如图2,过点C作CG∥AB交AE于点G,CH平分∠GCD,AH平分∠GAC,若∠BAC=x°,求∠H的度数(用含x的式子表示);(3)如图3,∠BAC=60°,∠ABC:∠ACB=2:1,射线AM从AB的位置开始绕点A逆时针旋转,旋转y°(0<y<240),同时射线AN满足∠MAN=20°,且AN始终在AM前面运动,射线AT平分∠BAM,当∠BAT:∠NAC=1:2时,求∠BAT的度数.【解答】解:(1)∠AFC=∠EAF+∠BCF,理由如下:过点F作FH∥AE,∵AE∥BC,FH∥AE,∴AE∥BC∥FH,∴∠EAF=∠AFH,∠BCF=∠HFC,∴∠AFC=∠EAF+∠BCF;(2)∵AG∥BD,AB∥CG,∴∠GAC+∠ACD=180°,∠BAC=∠ACG=x°,∴∠CAG+∠GCD=180°﹣x°,∵CH平分∠GCD,AH平分∠GAC,∴∠GAH+∠HCD=(180°﹣x°),由(1)可知:∠H=∠GAH+∠HCD=(180°﹣x°)=90°﹣x;(3)∵∠ABC:∠ACB=2:1,∠BAC=60°,∴∠ABC=80°,∠ACB=40°,∵射线AT平分∠BAM,∴∠BAT=∠BAM,当AN在AB和AC之间时,∵∠BAT:∠NAC=1:2,∴y:(60﹣y﹣20)=1:2,∴y=20,∴∠BAT=10°;当AN在AC的上方时,∵∠BAT:∠NAC=1:2,∴y:(y+20﹣60)=1:2,∴方程无解;当AM在直线AB的左侧时,∵∠BAT:∠NAC=1:2,∴(360﹣y):(360﹣y﹣20+60)=1:2,∴方程无解,综上所述:∠BAT=10°.一、填空题(本大题共5小题,每小题4分,共20分)19.(4分)已知3×3m÷9n=38,则代数式m﹣2n+1= 8 .【解答】解:∵3×3m÷9n=38,3×3m÷32n=38,31+m﹣2n=38,1+m﹣2n=8,m﹣2n=8﹣1,m﹣2n=7,∴m﹣2n+1=7+1=8,故答案为:8.20.(4分)如图,点M,点N是长方形ABCD的边AD、BC上的两个点,把长方形ABCD沿线段MN折叠,当点D的对应点D'落在长方形的外部时,测量得∠AMN=m°,则∠D'MD= 2m °(用含m 的式子表示).【解答】解:∵∠AMN=m°,∴∠DMN=180°﹣∠AMN=(180﹣m)°,由折叠得:∠DMN=∠D′MN=(180﹣m)°,∴∠DMD′=360°﹣∠DMN﹣∠D′MN=2m°,故答案为:2m.21.(4分)在△ABC中,AB=AC,过AB的中点D作AB的垂线,交直线AC于点E,若∠AED=58°,则∠B= 74或16 °.【解答】解:分两种情况:①如果△ABC是锐角三角形,如图1,∵DE⊥AB,∴∠ADE=90°,∵∠AED=58°,∴∠A=90°﹣∠AED=90°﹣58°=32°,∵AB=AC,∴∠B=∠C==74°;②如果△ABC是钝角三角形,如图2,∵DE⊥AB,∴∠ADE=90°,∵∠AED=58°,∴∠BAC=∠ADE+∠AED=90°+58°=148°,∵AB=AC,∴∠B=∠C==16°;综上所述,∠B的度数为74°或16°.故答案为:74或16.22.(4分)如图,分别以△ABC的边AB、BC为边向外作等边△ABE和等边△BCD,连接AD,EC,EC交AB于点N,交AD于点M.若S△MAN=4S△MBN,ME=25,则BM的长度为 5 .【解答】解:过B作BQ⊥AD,BP⊥EC,过A作AG⊥EC,AH⊥BP,交BP延长线于H.∵等边△ABE和等边△BCD,∴∠EBA=∠DBC=60°,BE=BA,BD=BC,∴∠EBC=∠ABD,由BE=BA,∠EBC=∠ABD,BD=BC,得△EBC≌△ABD(ASA),∴∠BEC=∠BAD,∵∠BNE=∠ANM,∴∠EMA=∠EBA=60°.由∠BPE=∠BQA,∠BEC=∠BAD,BE=BA,得△BPE≌△BQA(AAS),∴BP=BQ,∴MB平分∠EMD,∴∠BME=∠BMD=∠EMD=(180°﹣∠BMF)=60°.设PM=x,∴BP=PM=x,BM=2PM=2x.∵S△MAN=4S△MBN,∴AG×NM=4×BP×NM,∴AG=4BP=4x.∵AG∥BP,∴△AGN~△BPN,∴==4,∴GN=4NP.∵∠GMA=60°,∴MG==4x,∴GP=GM﹣PM=3x,由矩形AHPG得AH=GP=3x,HP=AG=4x.∴AB===2x,∴AE=AB=2x,∵AE2=AG2+EG2,∴(2x)2=(4x)2+(25﹣3x﹣x)2,∴x=(x=﹣舍去).∴BM=2x=5.故答案为:5.23.(4分)如图,点D,点E,点F分别是Rt△ABC的三边上的动点,若AB=5x cm,BC=12x cm,AC=13x cm,则DE+DF+EF的最小值y与x的关系式为: y=x .【解答】解:∵AB=5x cm,BC=12x cm,AC=13x cm,∴AB2+BC2=AC2.∴∠B=90°.∵点D,点E,点F分别是Rt△ABC的三边上的动点,求DE+DF+EF的最小值y与x的关系式,∴点D、E、F有两点重合在△ABC的某个顶点处.①点D、F在点A处,∵点A到BC的最小距离为AB,∴点E在点B处.∴DE+DF+EF=2AB.②点D、E在点B处,作BM⊥AC于点M.∵点B到AC的最小距离为BM,∴点F在点M处.∴DE+DF+EF=2BM.③点E、F在点C处,∵点C到BA的最小距离为CB,∴点D在点B处.∴DE+DF+EF=2CB.∵BC>AB>BM.∴DE+DF+EF的最小值为2BM.∵S△ABC=AB•BC=AC•BM.∴BM==x.∴DE+DF+EF的最小值y与x的关系式为:y=x.二、解答题(本大题共3小题,共30分)24.(8分)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)根据上述过程,写出(a+b)2、(a﹣b)2、ab之间的等量关系: (a+b)2=(a﹣b)2+4ab ;(2)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.观察图3,把一个大正方体分割成如图所示的小长方体和小正方体,从中可以得到一个恒等式: (a+b)3=a3+3a2b+3ab2+b3 ;(3)两个正方形ABCD,CEFG如图4摆放,边长分别为x,y(x>y),若这两个正方形面积之和为34,且BE=8,求图中阴影部分面积.【解答】解:(1)图2“整体”上是边长为a+b的正方形,因此面积为(a+b)2,图2中间“小正方形”的边长为a﹣b,因此面积为(a﹣b)2,四个小长方形的面积和为4ab,所以有(a+b)2=(a﹣b)2+4ab,故答案为:(a+b)2=(a﹣b)2+4ab;(2)图3“整体”上是棱长为a+b的正方体,因此体积为(a+b)3,分割成的8个部分的体积和为a3+3a2b+3ab2+b3,所以有(a+b)3=a3+3a2b+3ab2+b3,故答案为:(a+b)3=a3+3a2b+3ab2+b3;(3)设正方形ABCD的边长m,正方形CEFG的边长为n,由于两个正方形面积之和为34,且BE=8,∴m2+n2=34,m+n=8,∵(m+n)2=m2+n2+2mn,即64=34+2mn,∴mn=15,∵(m﹣n)2=(m+n)2﹣4mn=64﹣60=4,∴m﹣n=2或m﹣n=﹣2(舍去),∴S阴影部分=S△BCD+S△DFG=m2+n(m﹣n)=(m+n)(m﹣n)+mn=×8×2+×15=.25.(10分)甲、乙两人分别驾驶充电汽车和燃油汽车从A地前往B地,他们的行驶路程y(千米)与行驶时间t(小时)之间的关系如图所示(其中实线表示甲,虚线表示乙,且甲在中途因充电停止了一段时间).(1)甲、乙两人, 甲 先到达B地;甲在充电之前的速度为 50 千米/时;(2)若甲充完电后以原来速度的两倍继续行驶,则甲充电多少小时?(3)在(2)的条件下,从甲、乙两人首次距A地距离相等开始,到甲到达B地结束,在这段时间内两人何时相距30千米?【解答】解:(1)由图象可得,甲先到达B地.由题意,设乙的行驶路程y(千米)与行驶时间t(小时)之间的关系为y=kt+b,又过(2,40),(8,400),∴.∴.∴乙的行驶路程y(千米)与行驶时间t(小时)之间的关系为y=60t﹣80.令t=3,则y=60×3﹣80=100.∴甲在充电前的行驶路程y(千米)与行驶时间t(小时)之间的关系图象过(2,100),又设甲在充电前的函数为y=mt,∴2m=100.∴m=50.∴甲在充电前的行驶路程y(千米)与行驶时间t(小时)之间的关系为y=50t.∴甲在充电前的速度为1×50=50(千米/小时).故答案为:甲;50.(2)由题意,根据图象可得,甲充电的时间为:4﹣2=2(小时).(3)由题意,设甲在充电后的函数关系式为y=ct+d,又过(4,100),(7,400),∴.∴.∴甲在充电后的函数关系式为y=100t﹣300.又结合图象当t=3时,甲乙首次距A距离相等.联列,∴t=5.5.∴F的横坐标为5.5.设行驶t小时,两人相距30千米,①当3<t<4时,60t﹣80﹣100=30.∴t=3.5.②当4≤t<5.5时,60t﹣80﹣(100t﹣300)=30.∴t=4.75.③当5.5≤t<7时,100t﹣300﹣(60t﹣80)=30.∴t=6.25.④当7≤t<8时,400﹣(60t﹣80)=30.∴t=7.5.综上,当行驶3.5小时或4.75小时或6.25小时或7.5小时,两人相距30千米.26.(12分)如图,在等边△ABC中,点D,点E分别是AC,BC边上的点(不与端点重合),连接AE,BD交于点F,且∠BAE=∠CBD.点M,点N分别是线段FD,AF上的动点,连接AM,DN交于点P.(1)如图1,求证:BE=CD;(2)如图2,若AM平分∠DAF,DN平分∠ADF,猜想AN,DM与CE之间存在怎样的数量关系,并说明理由;(3)如图3,若AP=DF,∠FAP=∠FDP,点G在ND的延长线上,连接AG,FP,且AG交FP的延长线于点H,若点H为AG的中点,求证:AF=PG.【解答】(1)证明:∵△ABC是等边三角形,∴∠ABE=∠C=60°,AB=BC,∵∠BAE=∠CBD,∴△ABE≌△CBD(ASA),∴BE=CD;(2)解:如图1,作∠APD的平分线PQ,交AC于Q,∵∠BAE=∠CBD,∴∠BAE+∠ABD=∠CBD+∠ABD=∠ABC=60°,∴∠AFD=∠BAE+∠ABD=60°,∴∠DAF+∠ADF=180°﹣∠AFD=120°,∵AM平分∠DAF,DN平分∠ADF,∴∠PAN=∠DAP=,∴∠DAP+∠ADP=,∴∠APD=120°,∴∠APN=∠DPM=60°,∠APQ=∠DPQ=60°,∴∠DPQ=∠DPM,∠APQ=∠APN,∵PD=PD,∴△DPQ≌△DPM(ASA),∴DQ=PM,同理可得,AQ=AN,∴AD=DQ+AQ=DM+AN,∵△ABC是等边三角形,∴AC=BC,由(1)得,BE=CD,∴CE=AD,∴CE=DM+AN;(3)证明:如图2,在AF上截取AV=DN,连接PV,延长PH至T,使HT=PH,以G为圆心,GT为半径画弧,连接GW,∴GT=GW,∴∠T=∠GWT,∵AP=DF,∠FAP=∠FDP,∴△APN≌△DFN(SAS),∴PV=FN,∠AVP=∠DNF,∴180°﹣∠AVP=180°﹣∠DNF,∴∠PVN=∠PNV,∴PV=PN,∴PN=FN,∴∠AFP=∠NPF,∵∠GPW=∠NPF,∴∠AFP=∠GPW,∵H是AG的中点,∴AH=GH,∵∠AHP=∠GHT,∴△AHP≌△GHT(SAS),∴GT=AP,∠T=∠APH,∴∠GWT=∠APH,∴∠PWG=∠APN,∴△PGW≌△FAP(AAS),∴AF=PG.。

2022-2023学年四川省成都市天府新区七年级(下)期末数学试卷

2022-2023学年四川省成都市天府新区七年级(下)期末数学试卷

2022-2023学年四川省成都市天府新区七年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题给出的四个选项中,只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列运算正确的是()A.x6÷x3=x2B.(x3)2=x5C.x3•x4=x7D.x3+x3=x62.(4分)很多人可能都知道蓝鲸是迄今发现的地球上最大的动物,却都不了解体积最小的动物,世界上体积最小的动物要比蚂蚁小很多倍,它是被命名为H39的原生动物,它的最长直径也不过才0.0000003米.其中数据0.0000003用科学记数法表示为()A.0.3×10﹣6B.3×10﹣6C.3×10﹣7D.3×1073.(4分)甲骨文,又称“契文”“甲骨卜辞”“殷墟文字”或“龟甲兽骨文”,是迄今为止中国发现的年代最早的成熟文字系统,是汉字的源头和中华优秀传统文化的根脉.下列甲骨文中,一定不是轴对称图形的是()A.B.C.D.4.(4分)下列说法正确的是()A.买一张电影票,座位号是奇数是随机事件B.任意画一个三角形,其内角和为180°是随机事件C.打开北师大版七下数学课本刚好翻到《图形的全等》是必然事件D.汽车经过红绿灯路口时刚好遇上绿灯是必然事件5.(4分)将一个长方形纸条折成如图的形状,已知∠2=55°,则∠1为()A.66°B.70°C.76°D.80°6.(4分)如图,在△ABC和△ADE中,AB=AD,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△ADE的是()A.∠B=∠D B.∠C=∠E C.BC=DE D.AC=AE7.(4分)如图,在△ABC中,∠BAC=90°,AC=AB,BE⊥AD于点E,CD⊥AD于点D,BE=11,CD =5,则DE的长是()A.5B.6C.7D.88.(4分)如图,梯形上底的长为8,下底长为x,高为10,梯形的面积为y,则下列说法不正确的是()A.梯形面积y与下底长x之间的关系式为y=5x+40B.当y=40时,x=0,10此时它表示三角形面积C.当x每增加1时,y增加5D.当x从15变到8时,y的值从105变化到80二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)已知∠A=36°,则∠A的补角的度数为°.10.(4分)已知a+b=13,b﹣a=5,则b2﹣a2=.11.(4分)一个长方形的周长为14,其中它的长x为自变量,宽y为因变量,则y与x之间的关系式为.12.(4分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,若∠BPC=148°,则∠A的度数为.13.(4分)如图,△ABC中,AC=3AB,按以下步骤作图:①以顶点A为圆心,以任意长为半径作弧,分别交AB,AC于点M,N;②分别以点M,N为圆心,以大于的长为半径作弧,两弧在∠BAC内交于点P;③作射线AP,交边BC于点D,若△ABD的面积为2,则△ABC的面积为.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)先化简,再求值:(x﹣y)(2x﹣y)﹣(x+y)2+5xy,其中.15.(8分)如图,在正方形网格中,△ABC三个顶点在格点上,每个小方格的边长为1个单位长度.(1)请在正方形网格中画出△ABC关于直线l对称的△A1B1C1;(2)连接BB1,CC1,求四边形BB1C1C的面积;(3)请在直线l找一点P,使得PA=PB.16.(8分)为了方便市民绿色出行和锻炼身体,政府倡导大家使用共享单车.图1是一辆共享单车放在水平地面上的实物图,图2是其示意图,其中AB,CD都与地面l平行,∠BCD=55°,∠BAC=52°.当∠MAC等于多少度时,AM与BC平行?17.(10分)行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才能停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种型号的汽车进行了测试,测得的数据如下表:刹车时车速(km /h )010********…刹车距离(m )0 2.557.51012.5…(1)当刹车时车速为80km /h 时,刹车距离是m ;(2)该种型号汽车的刹车距离用y (m )表示,刹车时车速用x (km /h )表示,根据上表反映的规律,直接写出y 与x 之间的关系式;(3)该种车型的汽车在车速为120km /h 的行驶过程中,司机至少和前面的汽车保持多远的距离,才能在紧急情况时急刹不会和前车追尾?18.(10分)已知,在△ABC 中,∠CAB =90°,AD ⊥BC 于点D ,点E 在线段BD 上,且CD =DE ,点F 在线段AB 上,且∠BEF =45°.(1)如图1,试说明∠DAE =∠B ;(2)如图1,若AC =2,且AF =2BF ,求△ABC 的面积;(3)如图2,若点F 是AB 的中点,求的值.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.(4分)若x m ﹣2•x 2m =x 4,则m 2﹣1=.20.(4分)按下列图示的程序计算,若开始输入的值为x =4,则最后输出的结果是.21.(4分)小明往一个如图所示的三角板区域内部掷飞镖,已知CD 平分∠ACB ,AD ⊥CD 于点D ,连接BD ,则飞镖落在阴影部分的概率是.22.(4分)若三角形一个内角度数为α,另外两个内角的度数比为k(k≥1),则称此三角形为[α,k]型三角形.若一个三角形为[60,2]型三角形,则该三角形中最大内角的度数为;若一个三角形既是[m,3]型三角形,又为[n,8]型三角形,则n的最大值为.23.(4分)如图,等边△ABC边长为3cm,点D,E分别在边AB,AC边上,以DE为边往下作等边△DEF,连接BF,当BF=DF且△DEF的周长最小时,AD的长为cm.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)手工课上,小新将一张正方形纸片沿对角线AC,BD剪开,得到四个全等的等腰直角三角形,如图1.然后将四个等腰直角三角形拼接成风车图案,如图2.此时,四边形EFGH是正方形,连接NP,PQ,QM,MN,通过探索,小新发现四边形PQMN也是正方形,如图3.设FP=a,EF=b.(1)请用含a,b的代数式表示图3中阴影部分的面积.(2)若图3中空白部分面积为168,AG=19,求EP的长.25.(10分)今年大年初一上午十点整,首届四川天府新区兴隆湖新春环湖跑正式开跑.男子竞速组、女子竞速组、新春欢乐行三大方队相继出发,十余位世界及全国冠军领跑,来自各地数千名跑友一起奔向新的一年.新春欢乐行路线为天府新区大阳台南(起点)—环湖跑道—天府路演艺术中心(终点),全长为5000米.小成和爸爸的行程S(单位:米)随时间t(单位:分钟)变化的图象如图所示.根据图中信息回答以下问题:(1)第6分钟时,小成和爸爸相距多少米?(2)由于体力不支,小成在中途降低速度,降速后小成速度是爸爸速度的50%,求小成和爸爸相遇时距天府路演艺术中心(终点)还有多远?(3)调整状态后,小成再次提高速度,当爸爸到达终点时,小成离终点还有880米,求整个跑步过程中爸爸和小成相距400米时的时间.26.(12分)已知线段AB,点C是平面内一动点,且AB=AC,连接BC,将线段BC绕点B顺时针旋转90°得到线段BD,连接CD,AD,AD交BC于点E.(1)如图1,若∠BAC=60°.①求∠AEB的度数;②如图2,作∠CBD的角平分线BF交AD于F,试探究线段AD与2DF+BF之间的数量关系,并说明理由;(2)若AB=2,当AD最长时,求DE的长.。

2022-2023学年四川省成都市龙泉驿区七年级(下)期末数学试卷

2022-2023学年四川省成都市龙泉驿区七年级(下)期末数学试卷

2022-2023学年四川省成都市龙泉驿区七年级(下)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1.(4分)秦始皇统一六国后,推行“书同文,车同轨”,统一度量衡的政策,下令以秦国的“小篆”作标准,统一全国文字.下列四个字是中,国,你,好四个汉字对应的小篆体,其中是轴对称图形的是()A.B.C.D.2.(4分)下列各式计算正确的是()A.3a﹣2a=1B.a2•a3=a6C.(a3)2=a5D.a6÷a3=a33.(4分)中芯国际集成电路制造有限公司,是世界领先的集成电路晶圆代工企业之一,也是中国内地技术最先进、配套最完善、规模最大、跨国经营的集成电路制造企业集团,中芯国际第一代14纳米FinFET 技术取得了突破性进展,并于2019年第四季度进入量产,代表了中国大陆自主研发集成电路的最先进水平,14纳米=0.000000014米,0.000000014用科学记数法表示为()A.0.14×10﹣8B.14×10﹣7C.1.4×10﹣8D.1.4×10﹣94.(4分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数是()A.35°B.45°C.50°D.65°5.(4分)下列事件中,是必然事件的是()A.打开电视机,它正在播放动画片B.任意投掷一枚均匀的骰子,掷出的点数是奇数C.早上的太阳从西方升起D.将油滴滴入水中,油会浮出水面上6.(4分)如图,∠ABC=∠DCB,下列条件中不能判断△ABC≌△DCB的是()A.AC=DB B.∠ACB=∠DBC C.AB=DC D.∠A=∠D7.(4分)如图,在△ABC中,∠C=90°,若AC=7,,BD平分∠ABC,则点D到AB的距离等于()A.2B.3C.4D.78.(4分)位于意大利蒙泰格罗托的“Y﹣40深悦”游泳池是世界上最深的泳池,它深达40米,相当于12层楼高的建筑沉在其中,该游泳池装满水的横截面示意图如图所示,匀速把水全部放出,能大致表示水的深度h与放水时间t之间关系的图象是()A.B.C.D.二、填空题(本大题共5个小题,每小题4分共20分,答案写在答题卡上)9.(4分)运用乘法公式简便计算:20232﹣2022×2024=.10.(4分)端午食粽,是节日习俗之一,粽子有咸粽和甜粽两大类.小丽的妈妈准备了形状大小一样的豆沙粽3个,红枣粽4个,腊肉粽2个,蛋黄粽3个,其中腊肉粽和蛋黄粽是咸粽,其它粽是甜粽.小丽随机选一个,选到咸粽的概率是.11.(4分)若x2+mx+9是一个完全平方式,则m的值是.12.(4分)初夏时节,正是枇杷成熟的时候,枇杷园给每位入园采摘枇杷的顾客配一个篮子.每位顾客采摘枇杷需付总金额y(元)与采摘枇杷质量x(kg)的关系如表:采摘枇杷质量x(kg)12345…需付总金额y(元)1833486378…请根据上表中的数据写出需付总金额y(元)与采摘枇杷质量x(kg)之间的关系式:.13.(4分)如图,在△ABC中,分别以点B和点C为圆心,大于长为半径画弧,两弧相交于点M,N.作直线MN,交CA于点D,交BC于点E,连接BD.若AB=6,AC=10,BC=8,则△ABD的周长为.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)计算:2a2•a4﹣(a2)3+(﹣2a4)3÷(2a6).15.(8分)先化简,再求值:[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=10,.16.(8分)如图,在长度为1个单位的小正方形组成的网格中,点A,B,C在正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A'B'C'.(2)△ABC的面积为;(3)在直线l上找一点P,使PB+PC的值最小.(在图形中标出点P,保留作图痕迹)17.(10分)如图,已知点C,D都在线段BF上,BD=CF,AC∥DE,∠A=∠E.(1)求证:△ABC≌△EFD;(2)求证:AB∥EF.(本题每一行都要写明依据)18.(10分)《2022新课标》指明推理能力是指从一些事实和命题出发,依据规则推出其他命题或结论的能力.目前我们已经具备通过一次全等或者二次全等证明其他结论的能力.【模型证明】阅读下列材料,完成相应证明.命题:直角三角形斜边上的中线等于斜边的一半.如图1,△ABC中,∠ABC=90°,BD是斜边AC上的中线.求证:.分析:如图2,要证明BD等于AC的一半,可以用“中线倍长法”延长BD到E,使得DE=BD,连接AE,可证△ADE≌△CDB,再证明△ABE≌△BAC,最后得到:.请你按材料中的分析写出完整的证明过程;【模型应用】如图3,在△ABC中,∠ACB=90°,延长BC到E,使得,D是AB边的中点,连接ED,求证:∠B=2∠E;【模型构造】如图4,在△ABC中,∠B=30°,延长BC到D,使得CD=BC,连接AD,求∠D的度数.一、填空题(本大题共5个小题每小题4分,共20分,答案写在答题卡上)19.(4分)若3a=6,3b=2,则3a+b=.20.(4分)如图,在2×2网格中放置了三枚棋子,在其余格点处再放置1枚棋子,则这四枚棋子构成的图形是轴对称图形的概率是.21.(4分)按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…,第2023次得到的结果为.22.(4分)如图,△ABC的面积为8,AB=AC,BC=2,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC的中点,点P为线段EF上一动点,则△PCD周长的最小值为.23.(4分)在△ABC中,AB=AC,∠BAC<90°,点D在边BC上,CD=2BD,点E,F在线段AD上,+S△CDF=.∠BED=∠CFD=∠BAC.若△ABC的面积为9,则S△ABE二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)“以形释数”是利用数形结合思想证明代数问题的一种体现,若干张边长为a的正方形A纸片,边长为b的正方形B纸片,长和宽分别为a与b的长方形C纸片(如图1).(1)小李同学拼成一个宽为(a+b),长为(a+2b)的长方形(如图2),并用不同的方法计算面积,从而得出相应的等式:(答案直接填写到横线上);(2)如果用这三种纸片拼出一个面积为(2a+b)(a+3b)的大长方形,求需要A,B,C三种纸片各多少张;(3)利用上述方法,画出面积为2a2+5ab+2b2的长方形,并求出此长方形的周长(用含a,b的代数式表示).25.(10分)共享电动车是一种新理念下的交通工具,主要面向3~10千米的出行市场,现有A、B两种品牌的共享电动车,收费与骑行时间之间的关系如图所示,其中A品牌收费方式对应y1,B品牌的收费方式对应y2.(1)B品牌10分钟后,每分钟收费元;(2)写出A品牌的关系式;(3)如果小明每天早上需要到距家9千米的工厂上班,且两种品牌共享电动车的平均行驶速度均为20千米/小时,那么小明选择哪个品牌的共享电动车更省钱呢?(4)直接写出两种收费相差2元时x是分钟或分钟.26.(10分)[问题]如图1,△ABC为等边三角形,过点A作直线MN平行于BC,点D在直线MN上移动,过点D作∠BDE =60°,DE与直线AC交于点E.研究BD和DE的数量关系.[极端位置](1)某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D移动到与点A重合时为最特殊情况,由此得到BD和DE的数量关系为;[特殊位置](2)如图2,该数学兴趣小组运用第二种特殊情况,当BD⊥MN时,此时发现(1)的结论依然成立,请你写出证明过程;[一般位置](3)当点D在如图3的一般位置时,请证明(1)的结论依然成立.。

2021-2022学年四川省成都市成华区七年级(下)期末数学试卷

2021-2022学年四川省成都市成华区七年级(下)期末数学试卷

2021-2022学年四川省成都市成华区七年级(下)期末数学试卷一.选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个逆其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)在以下节水、节能、回收、绿色食品四个标志中,是轴对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2+a2=2a4B.a2•a=a3C.(3a)2=6a2D.a6÷a2=a33.(4分)氢能产业被列入我国十四五期间能源技术装备的主攻方向和重点任务.氢原子的半径为31皮米(1皮米=0.000000000001米).用科学记数法表示31皮米为()A.31×10﹣12米B.3.1×10﹣12米C.3.1×10﹣11米D.3.1×10﹣10米4.(4分)下列日常生活中的事件,属于不可能事件的是()A.没有水分,种子发芽B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.三天内将下雨5.(4分)三角形的下列线中,能将三角形分成面积相等的两部分的是()A.中线B.角平分线C.高线D.垂直平分线6.(4分)如图,点B,F,C,E在一条直线上,∠B=∠E,BF=EC,添加下列一个条件,仍不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥DF7.(4分)如图,直线m∥n,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,已知∠1=60°,则下列结论错误的是()A.∠5=135°B.∠4=100°C.∠3=45°D.∠2=75°8.(4分)某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟二.填空题(本大题共5个小题,每小题4分,共20分)9.(4分)在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是.10.(4分)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.11.(4分)三角形的三边长分别是2,5,m,则|m﹣3|+|m﹣7|等于.12.(4分)如图,在等腰△ABC中,∠ACB=90°,点D是AC的中点,过点A作直线BD的垂线交BC 的延长线于点E,若BC=4,则CE的长为.13.(4分)如图是一张直角三角形纸片ABC,其中∠ACB=90°,请按下列步骤操作:①沿BC的垂直平分线l1折叠,折痕与AB交于点D;②沿过点C的直线l2折叠,使点A落到AB上的点E处.若DE=CE,则∠A的度数为.三.解答题(本大题共5个小题,共48分)14.(8分)(1)计算:(﹣)﹣2﹣(2022﹣π)0﹣(﹣)﹣1;(2)计算:a(2a+3b)+(a﹣b)2.15.(12分)(1)先化简,再求值:(2x+1)(2x﹣1)﹣(2x﹣3)2,其中x=﹣1;(2)先化简,再求值:(x+2y)2﹣(x﹣2y)(x+2y)+x(x﹣4y),其中x=3,y=﹣2.16.(8分)如图,在△ABC中,∠B=36°,∠C=50°.(1)通过图中尺规作图的痕迹,可以发现:直线GF是线段AB的,射线AE是∠DAC的.(2)求∠DAE的度数.17.(10分)甲水果店进行苹果优惠促销活动,苹果的标价为10元/千克,如果一次购买4千克以上的苹果,超过4千克的部分按标价6折售卖.(1)购买3千克苹果需付款元;购买5千克苹果需付款元;(2)求付款金额y(单位:元)与购买苹果的重量x(单位:千克)的关系式;(3)隔壁的乙水果店也在进行苹果优惠促销活动,同样的苹果的标价也为10元/千克,且全部按标价的8折售卖.张阿姨和李阿姨分别在甲乙两个水果店购买,结果付款金额与购买苹果的重量都一样,问她们各自花了多少钱?各自买了多少千克苹果?18.(10分)如图,在△ABC和△ADE中,AB=AC,AD=AE,AB≠AE,∠BAC=∠DAE=38°.连接BD,CE交于点O.(1)求证:BD=CE;(2)求∠BOC的度数;(3)小明同学对该题进行了进一步研究,他连接了AO,并提出了下面两个结论:①AO平分∠CAD;②OA平分∠BOE.请你选一个正确的结论,并给予证明.一.填空题(本大题共5个小题,每小题4分,共20分)19.(4分)已知(a+b)2=49,a2+b2=25,则ab=.20.(4分)在﹣2,﹣1,1,2这四个数中随机取出一个数,其倒数等于本身的概率是.21.(4分)点P从△ABC的顶点B出发,沿BC匀速运动到点C停止,线段AP的长度y随BP的长度x 变化的关系如图所示,其中M是图象部分的最低点,则△ABC的面积是.22.(4分)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置,顶点D,E,F,G,H 均在等边三角形ABC的边上.若等边三角形ABC边长为5,则五边形DECHF的周长为.23.(4分)如图,AB=3,P为平面内一动点,且PA=2,以PB为边在PB上方作等边三角形PBM,连接MA,则MA的最小值为.二.解答题(本大题共3个小题,共30分)24.(8分)将图1中阴影部分裁剪下来,重新拼成一个如图2的长方形.(1)比较图2和图1的阴影部分面积,可以推得公式:(用含x,y的式子表达);(2)运用你所得到的公式,计算下列各题:①(2m+n﹣p)(2m﹣n+p);②(a+2b﹣3c)2﹣(a﹣2b+3c)2.25.(10分)青城山景区的三个主要景点导游草图如图,图中所标数据为相邻两点间的路程(米).甲游客考虑到自己体力有限,决定不游览C景点,他匀速沿线路A→B→E→D→A游览,且在每个景点逗留的时间相同.当他回到大门时,共耗时3小时5分钟,其中从大门游览到E处的路程s(米)与游览时间t(分钟)之间的图象如图.(1)求甲在每个景点逗留的时间;(2)求从E到D的路程;(3)乙游客以3千米/小时的平均速度游览完三个景点(途中线路不重复,在每个景点逗留的时间相同),若乙和甲同时从大门出发,并同时回到大门处,求乙游客在每个景点逗留的时间.26.(12分)已知:∠AOB=42°,点C在OA边上,点D在OB边上,且OC=OD.(1)如图1,点P在∠AOB内部,且PC=PD,则射线OP为∠AOB的平分线.理由如下:由PC=PD,OC=OD,OP=OP得△OCP≌△ODP,则∠POC=∠POD,即射线OP是∠AOB的平分线.其中△OCP ≌△ODP的依据是(选填SSS;SAS;AAS;ASA);(2)在OA上取点E(不与点O,C重合),在OB上取点F,使OF=OE,连接CF,DE,交于点P,作射线OP(如图2),求证:射线OP是∠AOB的平分线;(3)在(2)的条件下,若点E在射线OA上的移动,则△CEP能形成等腰三角形吗?若能,请求出∠CED的度数;若不能,请说明理由.。

成都市七年级下册末数学试卷及答案

成都市七年级下册末数学试卷及答案

一、填空题1.将1,2,3,6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,如(5,4)表示的数是2(即第5排从左向右第4个数),那么(2021,1011)所表示的数是 ___.答案:1 【分析】所给一系列数是4个数一循环,看是第几个数,除以4,根据余数得到相应循环的数即可. 【详解】解:前2020排共有的个数是:, 表示的数是第个数, ,第2021排的第1011个数为1.解析:1 【分析】所给一系列数是4个数一循环,看(2021,1011)是第几个数,除以4,根据余数得到相应循环的数即可. 【详解】解:前2020排共有的个数是:(20201)20201234202020412102+⨯++++⋯⋯+==,(2021,1011)∴表示的数是第204121010112042221+=个数,204222151055541=⨯+,∴第2021排的第1011个数为1.故答案为:1. 【点睛】本题考查算术平方根与规律型:数字的变化类,根据规律判断出是第几个数是解本题的关键.2.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.答案:90° 【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E解析:90° 902n︒【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠. 【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD , ∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q , ∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°; 同理可得:∠P 2=14(∠AEF +∠CFE )=45°,∠P 3=18(∠AEF +∠CFE )=22.5°,..., ∴902n nP ︒∠=, 故答案为:90°,902n︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.3.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、、…、…,若点的坐标为,则点的坐标为__________.答案:-3,3【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次解析:【解析】【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2019=4×504+3可判断点P2019的坐标与点P3的坐标相同.【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(-3,3),点P4的坐标为(-2,-1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(-3,3).故答案为(-3,3).【点睛】本题考查了几何变换:四种变换方式:对称、平移、旋转、位似.掌握在直角坐标系中各种变换的对应的坐标变化规律,是解决问题的关键.4.如图所示一个质点在第一象限内及x轴、y轴上运动,在第一秒内它由原点移动到(0,1)点,而后接着按图所示在x轴,y轴平行的方向运动,且每秒移动一个单位长度,那么质点运动到点(n,n)(n为正整数)的位置时,用代数式表示所用的时间为_________秒.答案:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向解析:n(n+1);【解析】分析:归纳走到(n,n)处时,移动的长度单位及方向即可.详解:质点到达(1,1)处,走过的长度单位是2,方向向右;质点到达(2,2)处,走过的长度单位是6=2+4,方向向上;质点到达(3,3)处,走过的长度单位是12=2+4+6,方向向右;质点到达(4,4)处,走过的长度单位是20=2+4+6+8,方向向上;…,质点到达(n,n)处,走过的长度单位是2+4+6+…+2n=n(n+1),点睛:本题属于归纳推理,要归纳出质点运动到点(n,n)处的时间可先推出质点运动到点(1,1)点(2,2)点(3,3)点(4,4)所需的时间(单位长度),发现其中的规律进而归纳出质点运动到点(n,n)处的时间.其中需知道2+4+6+…+2n=n(n+1)即可.5.如图:在平面直角坐标系中,已知P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,依次扩展下去,则点P2021的坐标为_____________.答案:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限, ∵2021÷4=505…1, ∴点P 2021在第二象限,∵点P 5(﹣2,1),点P 9(﹣3,2),点P 13(﹣4,3), ∴点P 2021(﹣506,505), 故答案为:(﹣506,505). 【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标. 6.如图,在平面直角坐标系中,一动点从原点О出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点()()()()12340,1,1,1,1,0,2,0A A A A …那么点2017A 的坐标为________________________.答案:【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点的坐标. 【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动、、、 解析:()1008,1【分析】先求出前几个点的坐标,然后根据点的坐标找到规律,由此即可求得点2017A 的坐标. 【详解】根据题意和图的坐标可知:每次都移动一个单位长度 ,图中按向上、向右、向下、向右的方向依次不断地移动1(0,1)A 、2(1,1)A 、3(1,0)A 、4(2,0)A 、5(2,1)A 、6(3,1)A 、7(3,0)A ... ∴坐标变化的规律:每移动4次,它的纵坐标都为1,而横坐标向右移动了2个单位长度,也就是移动次数的一半; ∴2017÷4=504 (1)∴2017A 纵坐标是1A 的纵坐标1; ∴2017A 横坐标是0+2×504=1008, ∴点2017A 的坐标为(1008,1) .故答案为:()1008,1. 【点睛】本题考查点坐标规律探索、学生的数形结合和归纳能力,仔细观察图象,找到点的坐标的变化规律是解答的关键.7.在数轴上,点M ,N 分别表示数m ,n ,则点M ,N 之间的距离为|m ﹣n |.(1)若数轴上的点M ,N 分别对应的数为2M ,N 间的距离为 ___,MN 中点表示的数是 ___.(2)已知点A ,B ,C ,D 在数轴上分别表示数a ,b ,c ,d ,且|a ﹣c |=|b ﹣c |=23|d ﹣a |=1(a ≠b ),则线段BD 的长度为 ___.答案:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c|=|b ﹣c|与a≠解析:2 【分析】(1)直接根据定义,代入数字求解即可得到两点间的距离;根据两点之间的距离得出其一半的长度,然后结合其中一个端点表示的数求解即可得中点表示的数;(2)先根据|a ﹣c |=|b ﹣c |与a ≠b 推出C 为AB 的中点,然后根据题意分类讨论求解即可. 【详解】解:(1)由题意,M ,N 间的距离为(222==; ∵2MN =, ∴112MN =, 由题意知,在数轴上,M 点在N 点右侧, ∴MN 的中点表示的数为1;(2)∵1a c b c -=-=且ab ,∴数轴上点A 、B 与点C 不重合,且到点C 的距离相等,都为1, ∴点C 为AB 的中点,2AB =, ∵213d a -=, ∴32d a -=, 即:数轴上点A 和点D 的距离为32,讨论如下:1>若点A位于点B左边:①若点D在点A左边,如图所示:此时,37222 BD AD AB=+=+=;②若点D在点A右边,如图所示:此时,31222 BD AB AD=-=-=;2>若点A位于点B右边:①若点D在点A左边,如图所示:此时,31222 BD AB AD=-=-=;②若点D在点A右边,如图所示:此时,37222 BD AD AB=+=+=;综上,线段BD的长度为12或72,故答案为:2;21;12或72.【点睛】本题考查数轴上两点间的距离,以及与线段中点相关的计算问题,理解数轴上点的特征以及两点间的距离表示方法,灵活根据题意分类讨论是解题关键.8.对于有理数a,b,规定一种新运算:a※b=ab+b,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a※b=b※a,则a=b;③方程(x﹣4)※3=6的解为x=5;④(a※b)※c=a※(b※c).其中正确的是_____(把所有正确的序号都填上).答案:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若 a=b ,两式相等,若解析:①③【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确; 左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误. 综上所述,正确的说法有①③. 故答案为①③. 【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.9.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________.答案:403 【解析】当k=6时,x6=T (1)+1=1+1=2, 当k=2011时,=T()+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达解析:403 【解析】当k=6时,x 6=T (1)+1=1+1=2, 当k=2011时,2011x =T(20105)+1=403. 故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk 的表达式并写出用T 表示出的表达式是解题的关键.10.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.答案:﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10-<<时,[x]=-1,(x)=0,[x)=-1或0,x∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!11.如图,按照程序图计算,当输入正整数x时,输出的结果是161,则输入的x的值可能是__________.答案:、、、.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【详解】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.对于正整数n ,定义2,10()(),10n n F n f n n ⎧<=⎨≥⎩其中()f n 表示n 的首位数字、末位数字的平方和.例如:2(6)636F ==,2(123)(123)1F f ==2310+=.规定1()()F n F n =,()1()()k k F n F F n +=.例如:1(123)(123)10F F ==,()21(123)(123)F F F =(10)1F ==.按此定义2021(4)F =_____.答案:145 【分析】根据题意分别求出F1(4)到F8(4),通过计算发现,F1(4)=F8(4),然后根据所得的规律即可求解. 【详解】解:F1(4)=16,F2(4)=F (16)=37, F3(4解析:145 【分析】根据题意分别求出F 1(4)到F 8(4),通过计算发现,F 1(4)=F 8(4),然后根据所得的规律即可求解. 【详解】解:F 1(4)=16,F 2(4)=F (16)=37, F 3(4)=F (37)=58,F 4(4)=F (58)=89, F 5(4)=F (89)=145,F 6(4)=F (145)=26, F 7(4)=F (26)=40,F 8(4)=F (40)=16, ……通过计算发现,F 1(4)=F 8(4), ∴202172885÷=,∴20215(4)(4)145F F ==;故答案为:145. 【点睛】本题考查了有理数的乘方,新定义运算,能准确理解定义,多计算一些数字,进而确定循环规律是解题关键.13.对于正整数a ,我们规定:若a 为奇数,则()f a 3a 1=+;若a 为偶数,则()af a .2=例如()f 15315146=⨯+=,()8f 842==,若1a 16=,()21a f a =,()32a f a =,()43a f a =,⋯,依此规律进行下去,得到一列数1a ,2a ,3a ,4a ,⋯,n a ,(n ⋯为正整数),则1232018a a a a +++⋯+=______.答案:4728 【分析】先求出,,,,寻找规律后即可解决问题.【详解】由题意,,,,,,, ,从开始,出现循环:4,2,1,,,,故答案为4728.【点睛】本题考查了规律型——数字的变解析:4728【分析】先求出1a ,2a ,3a ,⋯,寻找规律后即可解决问题.【详解】由题意1a 16=,2a 8=,3a 4=,4a 2=,5a 1=,6a 4=,7a 2=,8a 1=⋯,, 从3a 开始,出现循环:4,2,1,()201823672-÷=,2018a 1∴=,1232018a a a a 16867274728∴+++⋯+=++⨯=,故答案为4728.【点睛】本题考查了规律型——数字的变化类问题,解题的关键是从一般到特殊,寻找规律,利用规律解决问题.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.答案:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0)解析:(15,5)【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是是一道比较容易出错的题目.15.在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2016的值?如能求出,其正确答案是 ______ .答案:.【解析】试题分析:设S =1+m +m2+m3+m4+…+m2016…………………①, 在①式的两边都乘以m ,得:mS =m +m2+m3+m4+…+m2016+m2017…………………②②一①得: 解析:.【解析】试题分析:设S =1+m +m 2+m 3+m 4+…+m 2016…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2016+m 2017…………………② ②一①得:mS―S =m 2017-1.∴S =. 考点:阅读理解题;规律探究题.16.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.答案:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2, 解析:(2,0)【详解】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解. 详解:根据题意得,P 1(2,0),P 2(1,4),P 3(-3,3),P 4(-2,-1),P 5(2,0),P 6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P 2017与P 1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.17.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.答案:.【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3 -3-++解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.18.定义运算“@”的运算法则为:2@6 =____.答案:4【分析】把x=2,y=6代入x@y=中计算即可.【详解】解:∵x@y=,∴2@6==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子. 解析:4【分析】把x=2,y=6代入【详解】解:∵x@y=xy 4+,∴2@6=26416⨯+==4,故答案为4.【点睛】本题考查了有理数的运算能力,注意能由代数式转化成有理数计算的式子.19.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).答案:【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:()1180n -⋅︒【分析】过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B ,得到321////...////n A E A D A B A C ,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点2A 向右作21//A D A B ,过点3A 向右作31//A E A B1//n A B A C321////...////n A E A D A B A C ∴112180A A A D ∴∠+∠=︒,2323180DA A A A E ∠+∠=︒...()11231...1180n n A A A A A A C n -∴∠+∠++∠=-⋅︒故答案为:()1180n -⋅︒.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.20.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.答案:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.21.如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.答案:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.22.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.答案:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.23.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________答案:【解析】试题分析:过B 作BE ∥m ,则根据平行公理及推论可知l ∥BE ,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.解析:【解析】试题分析:过B 作BE ∥m ,则根据平行公理及推论可知l ∥BE ,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.24.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.答案:①④【分析】①由BC ∥OA ,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC ∥OA ,∠B =∠A =100°,∠AOB =∠ACB =180°-100°=80°,得到∠A +∠AOB =180°,得出OB ∥AC .②OE 平分∠BOF ,得出∠FOE =∠BOE =12∠BOF ,∠FOC =∠AOC =12∠AOF ,从而计算出∠EOC =∠FOE +∠FOC =40°.③由∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,得出∠OCB :∠OFB =1:2.④由∠OEB =∠OCA =∠AOE =∠BOC ,得到∠AOE -∠COE =∠BOC -∠COE ,∠BOE =∠AOC ,再得到∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°,从而计算出∠OCA =∠BOC =3∠BOE =60°.【详解】解:∵BC ∥OA ,∠B =∠A =100°,∴∠AOB =∠ACB =180°-100°=80°,∴∠A +∠AOB =180°,∴OB ∥AC .故①正确;∵OE 平分∠BOF ,∴∠FOE =∠BOE =12∠BOF ,∴∠FOC =∠AOC =12∠AOF ,∴∠EOC =∠FOE +∠FOC =12(∠BOF +∠AOF )=12×80°=40°.故②错误;∵∠OCB =∠AOC ,∠OFB =∠AOF =2∠AOC ,∴∠OCB :∠OFB =1:2.故③错误;∵∠OEB =∠OCA =∠AOE =∠BOC ,∴∠AOE -∠COE =∠BOC -∠COE ,∴∠BOE =∠AOC ,∴∠BOE =∠FOE =∠FOC =∠AOC =14∠AOB =20°, ∴∠OCA =∠BOC =3∠BOE =60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.25.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.答案:(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.26.如图,已知//AB CD ,13EAF EAB ∠=∠,13ECF ECD ∠=∠,86AFC ∠=︒,则AEC ∠的度数是__________.答案:【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2解析:129【分析】连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°−(2x+2y),求出∠AEC=2(x+y),∠AFC═2(x+y),即可得出答案.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°−(3x+3y),∠FAC+∠FCA=180°−(2x+2y)∴∠AEC=180°−(∠CAE+∠ACE)=180°−[180°−(3x+3y)]=3x+3y=3(x+y),∠AFC=180°−(∠FAC+∠FCA)=180°−[180°−(2x+2y)]=2x+2y=2(x+y),∠AFC=129°.∴∠AEC=32故答案为:129°.【点睛】本题考查了平行线的性质和三角形内角和定理的应用,根据题意作出辅助线,构造出三角形,利用三角形内角和定理求解是解答此题的关键.27.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D'、C′的位置处,若∠1=56°,则∠EFB的度数是___.答案:62°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°,∴∠DED′=180°-∠1=124°,∴∠DEF=62°,又∵AD∥BC,∴∠EFB=∠DEF=62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.BC=,将长方形ABCD沿着BC方向平移得到28.如图,在长方形ABCD中,4AB=,6''''.若ABB A''是正方形,则四边形ABC D''的周长是______.长方形A B C D答案:28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.29.把一张对边互相平行的纸条,折成如图所示,EF 是折痕,若32EFB ∠=︒,则下列结论:(1)'32C EF ∠=︒;(2)148AEC ∠=︒;(3)64BGE ∠=︒;(4)116BFD ∠=︒.正确的有________个.答案:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF ,可得∠AEC <148°,解析:3【分析】(1)根据平行线的性质即可得到答案;(2)根据平行线的性质得到:∠AEF=180°-∠EFB=180°-32°=148°,又因为∠AEF=∠AEC+∠GEF,可得∠AEC<148°,即可判断是否正确;(3)根据翻转的性质可得∠GEF=∠C′EF,又因为∠C′EG=64°,根据平行线性质即可得到∠BGE=∠C′EG=64°,即可判断是否正确;(4)根据对顶角的性质得:∠CGF=∠BGE=64°,根据平行线得性质即可得:∠BFD=180°-∠CGF即可得到结果.【详解】解:(1)∵//AE BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠AEF=180°-∠EFB=180°-32°=148°,∵∠AEF=∠AEC+∠GEF,∴∠AEC<148°,故本小题错误;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵//DF CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故正确的为:(1)(3)(4)共3个,故答案为:3.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.30.对于数x,符号[x]表示不大于x的最大整数,例如[3.14]=3,[﹣7.59]=﹣8,则关于x的方程[347x]=2的整数解为_____.答案:6,7,8【解析】【分析】根据已知可得,解不等式组,并求整数解可得. 【详解】因为,,所以,依题意得,所以,,解得,所以,x的正数值为6,7,8. 故答案为:6,7,8.【点睛】此题解析:6,7,8【解析】【分析】根据已知可得34237x-≤,解不等式组,并求整数解可得.【详解】因为,3427x-⎡⎤=⎢⎥⎣⎦,所以,依题意得34237x-≤,所以,34273437xx-⎧≤⎪⎪⎨-⎪⎪⎩,解得1 683x≤,所以,x的正数值为6,7,8.故答案为:6,7,8.【点睛】此题属于特殊定义运算题,解题关键在于正确理解题意,列出不等式组,求出解集,并确定整数解.31.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.答案:3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.解析:3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.32.已知不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解,则a 的取值范围为________. 答案:【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可【详解】∵,∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a ,∵不等式组有解但没有解析:01a ≤<【分析】先求得不等式组的解集,根据解集没有整数解,建立起新的不等式组,解之即可【详解】 ∵32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩①②, ∴解①得,x <-a ,解②得,x >-1,∴不等式组的解集为:-1<x <-a ,∵不等式组32,152,33x a x x x +<⎧⎪⎨-<+⎪⎩有解但没有整数解, ∴01a a -≤⎧⎨-<-⎩, ∴01a ≤<,故答案为:01a ≤<.【点睛】本题考查了一元一次不等式组的解法,能根据不等式组无整数解建立新不等式组并解之是解题的关键.33.已知关于x 的不等式x ﹣a <0的最大整数解为3a+6,则a =_____.答案:【分析】求出不等式的解集,根据已知得出,求出,设,则,得出不等式组,求出即可.【详解】解:解不等式得:,关于的不等式的最大整数解为,,解得:,为整数,设,则,即,解得:,为整 解析:103- 【分析】 求出不等式的解集,根据已知得出3637a a a ,求出 3.53a,设36m a ,则123a m ,得出不等式组13.5233m ,求出m 即可. 【详解】解:解不等式0x a -<得:x a <,关于x 的不等式0x a -<的最大整数解为36a +,3637a a a ,解得: 3.53a , 36a 为整数,设36m a ,则123a m , 即13.5233m ,解得: 4.53m,m 为整数, 4m ∴=-,即110(4)233a , 故答案为:103-. 【点睛】 本题考查了一元一次不等式的整数解,解此题的关键是得出关于a 的不等式组. 34.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________.答案:【分析】用含a 的式子表示出不等式的解集,由不等式的正整数解,得到x 的范围,再根据x 与a 的关系列不等式(组)求解.【详解】因为3x -a≤0,所以x≤,因为原不等式的正整数解恰是1,2,3,4。

成都市七年级数学下册期末测试卷及答案

成都市七年级数学下册期末测试卷及答案

成都市七年级数学下册期末测试卷及答案一、选择题1.对于算式20203﹣2020,下列说法错误的是( ) A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除2.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20°3.下列图形可由平移得到的是( )A .B .C .D .4.若一个多边形的每个内角都为108°,则它的边数为( ) A .5B .8C .6D .105.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( ) A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( ) A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩7.已知,()()212x x x mx n +-=++,则m n +的值为( ) A .3-B .1-C .1D .38.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .69.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .610.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°二、填空题11.分解因式:m 2﹣9=_____.12.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.13.如果9-mx +x 2是一个完全平方式,则m 的值为__________. 14.若29x kx -+是完全平方式,则k =_____. 15.计算:5-2=(____________)16.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________.17.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______. 20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.装饰公司为小明家设计电视背景墙时需要A 、B 型板材若干块,A 型板材规格是a ⨯b ,B 型板材规格是b ⨯b .现只能购得规格是150⨯b 的标准板材.(单位:cm )(1)若设a =60cm ,b =30cm .一张标准板材尽可能多的裁出A 型、B 型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一 裁法二 裁法三 A 型板材块数 1 2 0 B 型板材块数3mn则上表中, m =___________, n =__________;(2)为了装修的需要,小明家又购买了若干C 型板材,其规格是a ⨯a ,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a 2+5ab +3b 2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)23.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.24.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).25.计算: (1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.26.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.27.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.28.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 解:20203﹣2020 =2020×(20202﹣1) =2020×(2020+1)×(2020﹣1) =2020×2021×2019,故能被2020、2021、2019整除, 故选:D .2.C解析:C连接FB ,根据三角形内角和和外角知识,进行角度计算即可. 【详解】 解:如图连接FB ,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠ ∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠, 即AFE CFD EFD EBD ∠+∠=∠+∠, 又∵180AFE EFD DFC ∠+∠+∠=︒, ∴2180EFD EBD ∠+∠=︒, ∵100ABC ∠=︒, ∴180100=402EFD ︒-︒∠=︒, 故选:C . 【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.3.A解析:A 【详解】解:观察可知A 选项中的图形可以通过平移得到, B 、C 选项中的图形需要通过旋转得到, D 选项中的图形可以通过翻折得到, 故选:A4.A解析:A 【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.D解析:D根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.6.B解析:B 【解析】 【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组. 【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B . 【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.A解析:A 【解析】 【分析】根据多项式的乘法法则即可化简求解. 【详解】∵()()2212222x x x x x x x +-=-+-=--∴m=-1,n=-2, 故m n +=-3 故选A. 【点睛】此题主要考查整式的乘法运算,解题的关键是熟知多项式乘多项式的运算法则.8.C解析:C 【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和. 【详解】解:解不等式2034x x a x -<⎧⎨+>-⎩得:44a -<x <2, ∵不等式组恰好只有2个整数解, ∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a-≥0, ∴a ≤5, 又∵0≤a <4, ∴a=1, 3, ∴1+3=4,∴所有满足条件的整数a 的值之和为4. 故选:C . 【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.9.B解析:B 【解析】分析:推出DF ∥CE ,推出∠FDB=∠ECB ,∠EDF=∠CED ,根据DE ∥AC 推出∠ACE=∠DEC ,根据角平分线得出∠ACE=∠ECB ,即可推出答案. 详解:∵CE ⊥AB ,DF ⊥AB , ∴DF ∥CE , ∴∠ECB =∠FDB , ∵CE 是∠ACB 的平分线, ∴∠ACE =∠ECB , ∴∠ACE =∠FDB , ∵AC ∥DE ,∴∠ACE =∠DEC =∠FDB , ∵DF ∥CE ,∴∠DEC =∠EDF =∠FDB ,即与∠FDB 相等的角有∠ECB 、∠ACE 、∠CED 、∠EDF ,共4个, 故选B.点睛:本题考查了平行线的性质:两直线平行,内错角相等、同位角相等,同旁内角互补;解决此类题型关键在于正确找出内错角、同位角、同旁内角.10.A解析:A 【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.二、填空题11.(m+3)(m ﹣3) 【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b )(a ﹣b ). 【详解】 解:m2﹣9 =m2﹣32=(m+3)(m ﹣3). 故答案为解析:(m +3)(m ﹣3) 【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a 2﹣b 2=(a +b )(a ﹣b ). 【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.12.m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.解析:m<2【分析】根据不等式的性质即可求解.【详解】依题意得m-2<0解得m<2故答案为:m<2.【点睛】此题主要考查不等式的求解,解题的关键是熟知不等式的性质.13.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x 2=0对应的判别式△=0,因此得到:m 2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.14.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式的结构特点是解本题的关键15.【分析】直接根据负整数指数幂的运算法则求解即可.【详解】,故答案为:.【点睛】本题考查了负整数指数幂的运算法则,比较简单. 解析:125【分析】直接根据负整数指数幂的运算法则求解即可.【详解】22115525-==, 故答案为:125. 【点睛】本题考查了负整数指数幂的运算法则,比较简单.16.6【分析】设这个多边形的边数是n ,重复计算的内角的度数是x ,根据多边形的内角和公式(n ﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n ,重复计算的内角的度数是x ,根据多边形的内角和公式(n ﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n ,重复计算的内角的度数是x ,则(n ﹣2)•180°=840°﹣x ,n =6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.17.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组. 故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可. 18.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.20.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-.(2)原式=[(2x−1)(2x+1)]2=(4x2−1)2=16x4−8x2+1.【点睛】本题考查零指数幂、负整数指数幂、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.23.(1)∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.24.(1)20°;(2)11 22 n m【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n ﹣12m ). 【点睛】 本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)﹣2;(2)7a 4+4a 6+a 2.【分析】(1)由负整数指数幂、零指数幂、绝对值的意义进行判断,即可得到答案;(2)由积的乘方,同底数幂相乘进行计算,然后合并同类项,即可得到答案.【详解】解:(1)201()2016|5|2----=4﹣1﹣5=﹣2;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2=9a 4﹣2a 4+4a 6+a 2=7a 4+4a 6+a 2.【点睛】本题考查了积的乘方,同底数幂相乘,负整数指数幂,零指数幂,以及绝对值,解题的关键是熟练掌握运算法则进行解题.26.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S△ABC=1323 2⨯⨯=S△ABP=2S△ABC=6画格点△ABP如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.27.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC∠=∠,根据平行线的判定得出//AB CF,根据平行线的性质得出C EBC∠=∠,求出A EBC∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB∠=∠,根据平行线的性质得出FDA C∠=∠,ADB DBC∠=∠,C EBC∠=∠,求出EBC DBC∠=∠即可.【详解】()12180BDC∠+∠=,12180∠+∠=,1BDC∴∠=∠,//AB CF∴,C EBC∴∠=∠,A C∠=∠,A EBC∴∠=∠,//AD BC∴;()2AD平分BDF∠,FDA ADB∴∠=∠,//AD BC,FDA C∴∠=∠,ADB DBC∠=∠,C EBC∠=∠,EBC DBC∴∠=∠,BC∴平分DBE∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.28.2辆大货车与1辆小货车可以一次运货11吨【分析】设1辆大货车一次运货x吨,1辆小货车一次运货y吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x,y的二元一次方程组,解之即可得出x ,y 的值,将其代入(2)x y +中即可求出结论.【详解】设1辆大货车一次运货x 吨,1辆小货车一次运货y 吨由题意得:32175429x y x y +=⎧⎨+=⎩解得:51x y =⎧⎨=⎩则225111x y +=⨯+=答:2辆大货车与1辆小货车可以一次运货11吨.【点睛】本题考查了二元一次方程组的实际应用,理解题意,正确列出方程组是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B ′C ′D ′O ′A ′O D C B A(第9题图) 七年级数学下测期末试题全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷(共100分)第Ⅰ卷(选择题,共30分)一、 选择题(本大题共10个小题,每小题3分,共30分) 1. 下列运算正确的是( )A .()222a b a b -=- B .32a a a -=C .()()212141a a a +-=-D .()23624aa -=2.某流感病毒的直径大约为0.00000008米,用科学计数法表示为( )A .0.8×10-7米 B .8×10-8米 C .8×10-9米 D .8×10-7米 3.下列长度的3条线段,能首尾依次相接组成三角形的是( ) A .1,3,5 B .3,4,6 C .5,6,11 D .8,5,2 4. 下列图形中,有无数条对称轴的是( )A.等边三角形B.线段C.等腰直角三角形D.圆5.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 6.能判断两个三个角形全等的条件是( )A .已知两角及一边相等B .已知两边及一角对应相等C .已知三条边对应相等D .已知三个角对应相等7.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是( )A .三角形的稳定性B .长方形的对称性C .长方形的四个角都是直角D .两点之间线段最短(第7题图) (第8题图)312AB CD E F G 第 6 题8. 如图,已知FD ∥BE ,则∠1+∠2-∠3=( )A .90°B .135°C .150°D .180° 9.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ( ) A .SAS B .ASA C .AAS D .SSS10.如图向高为H 的圆柱形空水杯中注水,则下面表示注水量y与水深x的关系的图象是( )第Ⅱ卷(非选择题,共70分)二.填空题:(本大题共4个小题,每小题4分,共16分)11. 计算:()2301220112-⎛⎫+-- ⎪⎝⎭=12. 从一个袋子中摸出红球的概率为15,已知袋子中红球有5个,则袋子中共有球的个数为 13. 如图1所示,若︒=∠+∠18021,︒=∠753,则=∠414.如图所示,△ABC 中,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足是E ,AC=10cm ,CD=6cm,则DE的长为__________________DCBAXX图1N MO 4321ba BADCE第14题图三、解答题(本大题共6个小题,共54分) 15. 计算(本题满分12分)(1))21()2()(22862a a a a --+÷ (2)()()()2112x x x +--+16.先化简,再求值(本题满分6分)x x y x x 2)1()2(2++-+,其中3,31-==y x17.解答题(本题满分8分)(1)已知a+b=3, a 2+b 2=5,求ab 的值 (2)若,23,83==nm 求1323+-n m 的值18.(本小题满分8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)求证:CD∥EF(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(本小题满分10分)小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图6-32所示).图6-32(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他到达离家最远的地方是什么时间?离家多远?(3)11时到12时他行驶了多少千米?(4)他可能在哪段时间内休息,并吃午餐?(5)他由离家最远的地方返回时的平均速度是多少?BAFE DC20.(本小题满分10分)如图,四边形ABCD 中,E 是AD 中点,CE 交BA 延长线于点F .此时E 也是CF 中点 (1)判断CD 与FB 的位置关系并说明理由 (2)若BC =BF ,试说明:BE ⊥CF .B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)21. 如果(x +1)(x 2-5ax +a)的乘积中不含x 2项,则a 为22.如图,已知∠1=∠2,AC =AD ,增加下列条件:①AB =AE ; ②BC =ED ;③∠C =∠D ; ④∠B =∠E ,其中能使△ABC ≌△AED 的条件有: (只需填序号)23.如图,∠A+∠ABC+∠C+∠D+∠E+∠F =__第22题图 第23题图24. 如图a 是长方形纸带,∠DEF =25°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是_______.25. 在数学中,为了简便,记1nk k =∑=1+2+3+…+(n -1)+n ,1()nk x k =+∑=(x +1)+(x +2)+…+(x +n).若101()k x k =-∑+23x =31[k =∑(x -k)(x -k -1)].则=x二、解答题(本大题共3个小题,共30 分) 26.(本小题满分8分).已知:43,322=-+=+xy y x y x , 求:33xy y x +的值27.(本小题满分10分) 操作实验:如图,把等腰三角形沿顶角平分线对折并展开,发现被折痕分成的两个三角形成轴对称. 所以△ABD ≌△ACD ,所以∠B=∠C .归纳结论:如果一个三角形有两条边相等,那么这两条边所对的角也相等. 根据上述内容,回答下列问题: 思考验证:如图(4),在△ABC 中,AB=AC .试说明∠B=∠C 的理由.DB EFCAA A AA探究应用:如图(5),CB ⊥AB ,垂足为A ,DA ⊥AB ,垂足为B .E 为AB 的中点,AB=BC ,CE ⊥BD . (1)BE 与AD 是否相等?为什么?(2)小明认为AC 是线段DE 的垂直平分线,你认为对吗?说说你的理由。

(3)∠DBC 与∠DCB 相等吗?试说明理由.28.(本小题满分12分)如图,已知ABC △中,20AB AC ==厘米,ABC ACB ∠=∠,16BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以6厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①设点P 运动的时间为t,用含有t 的代数式表示线段PC 的长度; ②若点Q 的运动速度与点P 的运动速度相等,经过1秒后△BPD 与△CQP 是否全等,请说明理由;③若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以8厘米/秒的运动速度从点C 出发.点P 的速度不变,从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上重合?图(5)C A BD E参考答案二、 选择题(本大题共10个小题,每小题3分,共30分) D B B D D C A D D A二.填空题:(本大题共4个小题,每小题4分,共16分) 11. -5 12. 25 13. ︒10514. 4cm三、解答题(本大题共6个小题,共54分) 15. 计算(本题满分12分)(1)解:原式=422812214a a a a a-=⎪⎭⎫⎝⎛-+÷------------------------6分(2)解:原式=54--x --------------------------------------------6分16.先化简,再求值(本题满分6分) 解: 原式=x x x xy x 2)12(222+++-+=x x x xy x 212222+---+=12-xy -------------------------------------------4分 把3,31-==y x 代入,得 原式=12-xy=1)3(312--⨯⨯=-2-1=-3-----------------------------6分17.解答题(本题满分8分)(1)2 ----------------------------4分 (2)24----------------------------4分18.(本小题满分8分) ⑴∵CD ⊥AB,EF ⊥AB∴CD ∥EF ……… 2分 ⑵∵CD ∥EF∴∠DCB=∠2 ……… 4分 ∵∠1=∠2∴∠1=∠DCB ……… 6分 ∴DG ∥BC∴∠ACB=∠3=115° ……… 8分19.(本小题满分10分)(1)时间与距离,时间是自变量,距离是因变量;……… 2分 (2)到达离家最远的时间是12时,离家30千米;……… 2分 (3)11时到12时,他行驶了13千米;……… 2分(4)他可能在12时到13时间休息,吃午餐;……… 2分 (5)共用了2时,因此平均速度为15千米/时. ……… 2分20.(本小题满分10分)(1) 判断:CD ∥FB 得1分,证明:△DEC ≌△AEF 得2分,证明:CD ∥FB 得2分 (2)证明:△BEC ≌△BEF 得3分,证明:BE ⊥CF 得2分B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分) 21.5122. ① ③ ④ 23. 360 24. 105 25. 3二、解答题(本大题共3个小题,共30 分) 26.(本小题满分8分),1=xy …3分,722=+y x ……3分 ,()72233=+=+y x xy xy y x …2分27.(本小题满分10分) 思考验证:说明:过A 点作AD ⊥BC 于D 所以∠ADB =∠ADC =90° 在Rt △ABD 和Rt △ACD 中,⎩⎨⎧==AD AD ACAB 所以△ABD ≌△ACD (HL ) 所以∠B =∠C ……… 3分探究应用(令∠ABD =∠1,∠DBC =∠2) (1)说明:因为CB ⊥AB 所以∠CBA =90°所以∠1+∠2=90°因为DA ⊥AB 所以∠DAB =90°所以∠ADB+∠1=90° 所以∠ADB =∠2 在△ADB 和△BEC 中⎪⎩⎪⎨⎧=∠=∠=∠=∠ 902EBC DAB BCAB ADB 所以△DAB ≌△EBC (ASA )所以DA =BE ……… 2分 (2)因为E 是AB 中点 所以AE =BE 因为AD =BE 所以AE =AD 在△ABC 中,因为AB =AC 所以∠BAC =∠BCA 因为AD ∥BC 所以∠DAC =∠BCA 所以∠BAC =∠DAC在△ADC 和△AEC 中, ⎪⎩⎪⎨⎧=∠=∠=AC AC EACDAC AEAD 所以△ADC ≌△AEC (SAS )所以OC =CE 所以C 在线段DE 的垂直平分线上 因为AD =AE 所以A 在线段DE 的垂直平分线上所以AC 垂直平分DE ……… 2分 (3)……… 3分28.(本小题满分12分)解(1)①PC=16-6t ………… 1分②∵1t =秒,∴616BP CQ ==⨯=厘米,∵20AB =厘米,点D 为AB 的中点, ∴10BD =厘米.又∵16PC BC BP BC =-=,厘米, ∴16610PC =-=厘米,∴PC BD =. ………… 4分 ∵BD PC =,ABC ACB ∠=∠,BP CQ =∴BPD CQP △≌△.(SAS ) ………… 5分 ③∵P Q v v ≠, ∴BP CQ ≠,∴BP PC =,,B C ∠=∠CQ BD =BPD CQP △≌△(SAS ) ………… 6分∴6166t t =- 43t = ………… 8分∴1030(/)443Q CQ v cm s t ===, ………… 9分(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得86220x x =+⨯, ………… 11分 解得20x =秒.∴点P 共运动了206120⨯=厘米... ∵()12022020168=⨯+++,∴点P 、点Q 在BC 边上相遇,∴经过20秒点P 与点Q 第一次在边AB 上重合. ………… 12分。

相关文档
最新文档