2012届高考数学第一轮复习考试题23-矩阵与变换
2012年高考试题分项解析数学(理科)专题18 选修系列:矩阵与变换(教师版).pdf
[提问] 什么叫相对原子质量呢?它是如何来表示原子的质量的?请大家带着问题阅读P69相对原子质量一段内容。 1个氢原子的质量为1.67×10-27 kg,作为标准碳原子质量的1/12为 1.66×10-27 kg,所以氢的相对原子质量=≈1。 1个氧原子的质量为2.657×10-26 kg。 所以氧的相对原子质量=≈16。 相对原子质量=质子数+中子数 经过这样的计算得到的数字都比较简单,便于书写、记忆和计算,对于这个计算过程大家要掌握。 [作业]《基础训练册》P31-32 第二课时 一、引入: 问题激疑 我们每天喝的水由什么粒子构成?温度计里的金属汞怎样构成? 二、新授: 投影:行星围绕太阳运转图片 视频:核外电子的分层运动 问题:行星围绕太阳运动与核外电子的运动有何不同? 学生: 行星绕太阳旋转有固定的轨道,而核外电子的运动没有固定的轨道。 师讲解: 行星绕太阳旋转有固定的轨道,而核外电子的运动没有固定的轨道。但核外电子的运动也有自己的特点,即有经常 出现的区域,科学家把电子经常出现的区域称为电子层。电子是在不同的电子层上运动的,人们又把这种现象叫做核外 电子的分层排布。离核最近的为第一层,依次往外第二层、第三层……,到目前为止,发现最多的为七层。 提问:核外电子的分层排布如何直观的表示出来呢?大家看书78页 板书:原子结构示意图。 投影:一些元素的原子结构示意图表4-4 学生说出其中一种原子结构示意图中各部分的含义 投影:1-18号元素原子结构示意图。 小组活动探究 同学们观察以上原子结构示意图,从中你会发现核外电子排布的某些规律 学生迷惑时提示:如第一层电子最多排了几个?第二层电子最多排了几个?最外层呢? 学生回答 第一层最多排2个, 第二层最多排2个, 最外层最多排8个。 教师评价 回答得很好。而且这些电子在排布的时候,它先要排满离核近的电子层,然后再依次往外排在离核渐 远的电子层。 投影 练一练 某元素的原子结构示意图为 +9 2 7,该元素原子核内有( )个质子,核外共有( )个电子层,最外电子层 上有( )个电子。 投影思考: (1)以上1-18号元素的原子核外电子排布中,最后一纵行的元素——氦、氖、氩属于什么元素?它们的化学性质 怎样?它们的最外层电子数有什么特点? (2)什么叫相对稳定结构?原子具有相对稳定结构,其化学性质怎样? (3)金属元素、非金属元素的原子最外层电子数有何特点?结构稳定吗?在化学反应中易得、失电子?化学性质 怎样? 投影总结:稀有气体元素,它们的化学性质很稳定,最外层电子数除氦为2个外,其余为8个。相对稳定结构:最外 层有8个电子(只有一个电子层的具有2个电子)的结构。 金属元素的原子最外层电子数一般核外电子数,粒子带正电为阳离子; 核内质子数<核外电子数,粒子带负电为阴离子。离子符号的书写: 3.离子和原子的区别和联系:质子数、核电荷数、元素种类、中子数、质量相同;最外层电子数、化学性质、电 子总数、带电情况、电子层数不同。(强调:失电子形成离子时电子层数改变,得电子形成离子时电子层数不变。)
高考数学 3-2-1精品系列 专题16 矩阵与变换、行列式
2012版高考数学 3-2-1精品系列专题16 矩阵与变换、行列式(教师版)【考点定位】2012考纲解读和近几年考点分布变换:恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换.(3)变换的复合——二阶方阵的乘法① 了解矩阵与矩阵的乘法的意义.② 理解矩阵乘法不满足交换律.③ 会验证二阶方阵乘法满足结合律.④ 理解矩阵乘法不满足消去律.(4)逆矩阵与二阶行列式① 理解逆矩阵的意义,懂得逆矩阵可能不存在.② 理解逆矩阵的唯一性和111()AB B A ---= 等简单性质,了解其在变换中的意义.③ 了解二阶行列式的定义,会用二阶行列式求逆矩阵.(5)二阶矩阵与二元一次方程组① 能用变换与映射的观点认识解线性方程组的意义.② 会用系数矩阵的逆矩阵解线性方程组.③ 理解线性方程组解的存在性、唯一性.(6)变换的不变量① 掌握矩阵特征值与特征向量的定义,理解特征向量的意义.② 会求二阶矩阵的特征值与特征向量(只要求特征值是两个不同实数的情形).(7)矩阵的应用 利用矩阵A 的特征值、特征向量给出A nα简单的表示,并能用它来解决问题.例1:已知曲线C :xy =1.(1)将曲线C 绕坐标原点逆时针旋转45°后,求得到的曲线C ′的方程;(2)求曲线C 的焦点坐标和渐近线方程.(2)曲线C ′的焦点坐标为F 1(0,-2),F 2(0,2),渐近线方程为y =±x .再顺时针旋转45°后,即可得到曲线C 的焦点坐标(-2,-2)和(2,2);渐近线方程为:x =0,y =0. 【名师点睛】把握常见矩阵变换类型,比用一般矩阵运算处理要方便得多,同时,从前后曲线性质分析上,可以加深对曲线性质的理解. 考点二、二阶逆矩阵例2 求矩阵A =⎣⎢⎡⎦⎥⎤3221的逆矩阵.解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤x y z ω,则⎣⎢⎡⎦⎥⎤3 22 1 ⎣⎢⎡⎦⎥⎤x y z ω=⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤3x +2z 3y +2ω2x +z 2y +ω=⎣⎢⎡⎦⎥⎤1001,故⎩⎪⎨⎪⎧3x +2z =1,3y +2ω=0,2x +z =0,2y +ω=1解得x =-1,z =2,y =2,ω=-3,从而A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-1 22 -3.3).(1) 求实数a 的值;(2)求矩阵A 的特征值及特征向量.解 (1)由题意得⎣⎢⎡⎦⎥⎤1 -1a 1 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-3,所以a +1=-3,所以a =-4.【名师点睛】(1)注意特征值与特征向量的求法及特征向量的几何意义:从几何上看,特征向量的方向经过变换矩阵M 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0),特别地,当λ=0时,特征向量就被变换成了零向量.(2)计算矩阵M =⎣⎢⎡⎦⎥⎤ab cd 的特征向量的步骤如下:①由矩阵M 得到特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d ;②求特征多项式的根,即求λ2-(a +d )λ+(ad -bc )=0的根;③将特征多项式的根(特征值)代入特征方程⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0,求解得非零解对应的向量,即是矩阵M 对应的特征向量.【三年高考】10、11、12 高考试题及其解析 12 高考试题及其解析1 .(2012年高考(上海理))函数1sin cos 2)(-=xx x f 的值域是_________ .【解析】x x x x f 2sin 2cos sin 2)(21--=--=∈],[2325--.2 .(2012年高考(上海春))若矩阵11122122a a a a ⎛⎫⎪⎝⎭ 满足:11122122,,,{1,1},a a a a ∈-且111221220a a a a = ,则这样的互不相等的矩阵共有______个.【解析】23.(2012年高考(江苏))[选修4 - 2:矩阵与变换]已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.【解析】∵1-A A =E ,∴()11--A =A . ∵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,∴()11 2 32 1--⎡⎤=⎢⎥⎣⎦A =A . ∴矩阵A 的特征多项式为()22 3==342 1 f λλλλλ--⎡⎤--⎢⎥--⎣⎦. 令()=0f λ,解得矩阵A 的特征值12=1=4λλ-,.【考点】矩阵的运算,矩阵的特征值.4.(2012年高考(福建理))选修4-2:矩阵与变换设曲线22221x xy y ++=在矩阵0(0)1a A a b ⎛⎫=> ⎪⎝⎭对应的变换作用下得到的曲线为221x y +=.(Ⅰ)求实数,a b 的值.(Ⅱ)求2A 的逆矩阵.11年高考试题及解析1、2011年数学理(上海)行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是【解析】62、2011年数学(江苏卷)已知矩阵1121A⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2Aαβ=.2111132212143A⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3、2011年数学理(福建)(1)(本小题满分7分)选修4-2:矩阵与变换设矩阵aMb⎛⎫= ⎪⎝⎭(其中a>0,b>0).(I)若a=2,b=3,求矩阵M的逆矩阵M-1;(II)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C’:1y4x22=+,求a,b的值.本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
2012版高考数学 3-2-1精品系列专题16 矩阵与变换、行列式(教师版)
2012版高考数学 3-2-1精品系列专题16 矩阵与变换、行列式(教师版)【考点定位】2012考纲解读和近几年考点分布变换:恒等变换、伸压变换、反射变换、旋转变换、投影变换、切变变换.(3)变换的复合——二阶方阵的乘法① 了解矩阵与矩阵的乘法的意义.② 理解矩阵乘法不满足交换律.③ 会验证二阶方阵乘法满足结合律.④ 理解矩阵乘法不满足消去律.(4)逆矩阵与二阶行列式① 理解逆矩阵的意义,懂得逆矩阵可能不存在.② 理解逆矩阵的唯一性和111()AB B A ---= 等简单性质,了解其在变换中的意义.③ 了解二阶行列式的定义,会用二阶行列式求逆矩阵.(5)二阶矩阵与二元一次方程组① 能用变换与映射的观点认识解线性方程组的意义.② 会用系数矩阵的逆矩阵解线性方程组.③ 理解线性方程组解的存在性、唯一性.(6)变换的不变量① 掌握矩阵特征值与特征向量的定义,理解特征向量的意义.② 会求二阶矩阵的特征值与特征向量(只要求特征值是两个不同实数的情形).(7)矩阵的应用 利用矩阵A 的特征值、特征向量给出A nα简单的表示,并能用它来解决问题.例1:已知曲线C :xy =1.(1)将曲线C 绕坐标原点逆时针旋转45°后,求得到的曲线C ′的方程;(2)求曲线C 的焦点坐标和渐近线方程.(2)曲线C ′的焦点坐标为F 1(0,-2),F 2(0,2),渐近线方程为y =±x .再顺时针旋转45°后,即可得到曲线C 的焦点坐标(-2,-2)和(2,2);渐近线方程为:x =0,y =0. 【名师点睛】把握常见矩阵变换类型,比用一般矩阵运算处理要方便得多,同时,从前后曲线性质分析上,可以加深对曲线性质的理解. 考点二、二阶逆矩阵例2 求矩阵A =⎣⎢⎡⎦⎥⎤3221的逆矩阵. 解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤x y z ω,则⎣⎢⎡⎦⎥⎤3221 ⎣⎢⎡⎦⎥⎤x y z ω=⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤3x +2z 3y +2ω2x +z 2y +ω=⎣⎢⎡⎦⎥⎤1 001,故⎩⎪⎨⎪⎧3x +2z =1,3y +2ω=0,2x +z =0,2y +ω=1解得x =-1,z =2,y =2,ω=-3,从而A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-1 22 -3.3).(1) 求实数a 的值;(2)求矩阵A 的特征值及特征向量.解 (1)由题意得⎣⎢⎡⎦⎥⎤1 -1a 1 ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-3,所以a +1=-3,所以a =-4.【名师点睛】(1)注意特征值与特征向量的求法及特征向量的几何意义:从几何上看,特征向量的方向经过变换矩阵M 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0),特别地,当λ=0时,特征向量就被变换成了零向量.(2)计算矩阵M =⎣⎢⎡⎦⎥⎤ab cd 的特征向量的步骤如下:①由矩阵M 得到特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d ;②求特征多项式的根,即求λ2-(a +d )λ+(ad -bc )=0的根;③将特征多项式的根(特征值)代入特征方程⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0,求解得非零解对应的向量,即是矩阵M 对应的特征向量.【三年高考】10、11、12 高考试题及其解析 12 高考试题及其解析1 .(2012年高考(上海理))函数1sin cos 2)(-=x xx f 的值域是_________ .【解析】x x x x f 2sin 2cos sin 2)(21--=--=∈],[2325--. 2 .(2012年高考(上海春))若矩阵11122122a a a a ⎛⎫⎪⎝⎭ 满足:11122122,,,{1,1},a a a a ∈-且111221220a a a a = ,则这样的互不相等的矩阵共有______个.【解析】23.(2012年高考(江苏))[选修4 - 2:矩阵与变换]已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.【解析】∵1-A A =E ,∴()11--A =A . ∵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,∴()11 2 32 1--⎡⎤=⎢⎥⎣⎦A =A . ∴矩阵A 的特征多项式为()22 3==342 1 f λλλλλ--⎡⎤--⎢⎥--⎣⎦. 令()=0f λ,解得矩阵A 的特征值12=1=4λλ-,. 【考点】矩阵的运算,矩阵的特征值.4.(2012年高考(福建理))选修4-2:矩阵与变换设曲线22221x xy y ++=在矩阵0(0)1a A a b ⎛⎫=> ⎪⎝⎭对应的变换作用下得到的曲线为221x y +=.(Ⅰ)求实数,a b 的值.(Ⅱ)求2A 的逆矩阵.11年高考试题及解析1、2011年数学理(上海)行列式a bc d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是【解析】62、2011年数学(江苏卷)已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 2111132212143A ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦3、2011年数学理(福建)(1)(本小题满分7分)选修4-2:矩阵与变换 设矩阵00a M b ⎛⎫=⎪⎝⎭(其中a >0,b >0).(I )若a=2,b=3,求矩阵M 的逆矩阵M -1;(II )若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ’:1y 4x 22=+,求a ,b 的值.本小题主要考查矩阵与交换等基础知识,考查运算求解能力,考查化归与转化思想,满分7分。
矩阵与变换高考题精选
汇报人: 2024-01-07
目录
• 矩阵的基本概念 • 矩阵的变换 • 高考中的矩阵与变换题目 • 解题技巧与策略 • 高考真题解析
01
矩阵的基本概念
矩阵的定义与性质
矩阵的元素
矩阵中的每个元素都有行标和 列标,表示为“aij”,其中i表 示行标,j表示列标。
矩阵的标量乘法
03
利用矩阵的变换和几何 意义解决一些复杂的几 何问题,如平面上的曲
线、曲面等。
利用矩阵的性质和运算 解决一些复杂的代数问 题,如高次方程的求解 、多项式的因式分解等
。
利用矩阵的逆和其他高 级性质解决一些优化问 题,如最小二乘法、线
性规划等。
04
解题技巧与策略
解题思路分析
明确题目要求
首先需要仔细阅读题目,明确题目要求解决的问 题和给定的条件。
逆矩阵的求解错误
在求解逆矩阵时,未能正确使用逆矩阵的公 式或方法,导致结果不正确。
忽略矩阵的单位元性质
在计算过程中,忽略了矩阵的单位元性质, 导致结果出现偏差。
对空间几何变换理解不足
对平移、旋转、缩放等变换理解不透彻,导 致在解决相关问题时出现错误。
05
高考真题解析
近年真题回顾
2018年全国卷
考察矩阵的乘法运算及逆矩阵的概念。
2019年全国卷解析
利用矩阵的初等变换,将原方程组化为标准 形式,进而求解。
2021年全国卷解析
利用逆矩阵的性质,求解线性变换问题。
真题总结与启示
总结
从近年高考真题来看,矩阵与变换是 高考数学的重要考点之一,主要考察 矩阵的基本运算、逆矩阵、初等变换 、行列式以及特征值等知识点。
启示
高考数学压轴专题(易错题)备战高考《矩阵与变换》经典测试题附答案解析
【高中数学】数学《矩阵与变换》期末复习知识要点一、151.已知函数()2cos 2sin 3sin cos 3x f x x πααπαα⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭.(1)求()f x 的单调增区间. (2)函数()f x 的图象F 按向量,13a π⎛⎫=-⎪⎝⎭v 平移到'F ,'F 的解析式是()'y f x =.求()'f x 的零点.【答案】(1)42,233k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈;(2)23x k ππ=±,k Z ∈. 【解析】 【分析】(1)由题意根据二阶行列式的运算法则及利用两角和差的三角公式,化简函数的解析式,再利用正弦函数的单调性,得出结论.(2)由题意利用sin()y A x ωϕ=+的图象变换规律求得()2cos 1f x x '=-,再根据函数零点的定义和求法求得()f x '的零点. 【详解】解:(1)()2cos 2sin 3sin cos 3x f x x πααπαα⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭Q()2cos cos 2sin sin 33f x x x ππαααα⎛⎫⎛⎫=+--+- ⎪ ⎪⎝⎭⎝⎭∴2cos 3x π⎛⎫=+ ⎪⎝⎭,令223k x k ππππ-≤+≤,k Z ∈,求得42233k x k ππππ-≤≤-,k Z ∈, 则()f x 的单调增区间42,233k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈. (2)()2cos 3f x x π⎛⎫=+ ⎪⎝⎭Q 按向量,13a π⎛⎫=- ⎪⎝⎭r 平移到'F'F ∴的解析式是()'2cos 1y f x x ==-,令2cos 10x -=,解得23x k ππ=±,k Z ∈.所以()'f x 的零点为23x k ππ=±,k Z ∈.【点睛】本题主要考查两角和差的三角公式,正弦函数的单调性,sin()y A x ωϕ=+的图象变换规律,函数零点的定义和求法,属于基础题.2.解方程:23649x xx=.【答案】1x = 【解析】 【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xxxx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x ,可得322()3()123xx⨯-⨯=,令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =. 【点睛】本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.3.解方程组()32021mx y x m y m+-=⎧⎨+-=⎩,并求使得x y >的实数m 的取值范围.【答案】()1,3 【解析】 【分析】计算出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,求出方程组的解,再由x y >列出关于m 的不等式,解出即可. 【详解】由题意可得()()2362321m D m m m m m ==--=+--,2321x D m m m ==---,()()224222y m D m m m m==-=-+.①当0D ≠时,即当260m m --≠时,即当2m ≠-且3m ≠时,1323x y D x D m D m y D m ⎧==⎪⎪-⎨-⎪==⎪-⎩.x y >Q ,则()()()2222133m m m ->--,即()22130m m ⎧-<⎪⎨-≠⎪⎩,解得13m <<; ②当2m =-时,方程组为2320232x y x y -+-=⎧⎨-=-⎩,则有232x y -=,该方程组有无穷多解,x y >不能总成立;③当3m =时,方程组为33202230x y x y +-=⎧⎨+-=⎩,即203302x y x y ⎧+-=⎪⎪⎨⎪+-=⎪⎩,该方程组无解.综上所述,实数m 的取值范围是()1,3. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,在解题时要注意对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.4.讨论关于x ,y ,z 的方程组2112x y z x y az x ay a z ++=⎧⎪++=⎨⎪++=⎩解的情况.【答案】当1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩;当1a =时,无解.【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项计算出D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:2111111121x a a a y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,2211111(1)1a a D a a ==--,21111(1)(2)12x D a a a a a ==---, 211111112y D a a a ==-+,111101112z D a ==,(1)当系数行列式||0D ≠时,方程组有唯一解,即1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩(2)当1a =时,原方程组等价于112x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩所以无解.【点睛】本题考查三元一次方程组的矩阵形式、线性方程组解的存在性、唯一性、三元一次方程的解法等基础知识,考查运算求解能力.5.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-,()()11233323x D a a a a a a -==-+=--=-++-, ()()212332623323y aD a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323x y a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想6.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.7.(1)用行列式判断关于x y 、的二元一次方程组2373411x y x y -=⎧⎨-=⎩解的情况;(2)用行列试解关于x y 、的二元一次方程组12mx y m x my m+=+⎧⎨+=⎩,并对解的情况进行讨论.【答案】(1)51x y =⎧⎨=⎩;(2)当1m ≠-,1m ≠时,0D ≠,方程组解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩,令()x t t R =∈ ,原方程组的解为()2x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】(1) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D ,即可求解方程组的解. (2) 先根据方程组中x ,y 的系数及常数项计算出D ,x D ,y D 下面对m 的值进行分类讨论:①当1m ≠-,1m ≠时,②当1m =-时,③当1m =时,分别求解方程组的解即可. 【详解】(1)列出行列式系数 112a =,123a =-,17b =,213a =,224a =,211b =,23D =34--891=-+=,711x D = 34--=28335-+=,23y D =711=22211-= ,5xD x D ∴== ,1y D y D== , 所以二元一次方程组2373411x y x y -=⎧⎨-=⎩的解为51x y =⎧⎨=⎩ . (2)1m D =1m=21m - =()()11m m +- , 12x m D m+=1m=2m m - =()1m m - ,1y m D =12m m+ =()()221211m m m m --=+- ,当1m ≠-,1m ≠时,0D ≠,方程组有唯一解,解为1211m x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩, 当1m =-时,0D =,0x D ≠,方程组无解,当1m =时,0x y D D D ===,方程组有无穷多组解,22x y x y +=⎧⎨+=⎩ ,令()x t t R =∈ ,原方程组的解为()2x tt R y t=⎧∈⎨=-⎩ .【点睛】本题主要考查二元一次方程组的矩阵形式、线性方程组解的存在性,唯一性、二元方程的解法等基础知识,考查运算求解能力与转化思想,属于中档题.8.设点(,)x y 在矩阵M 对应变换作用下得到点(2,)x x y +. (1)求矩阵M ;(2)若直线:25l x y -=在矩阵M 对应变换作用下得到直线l ',求直线l '的方程.【答案】(1)2011⎡⎤⎢⎥⎣⎦;(2)3x -4y -10=0. 【解析】 【分析】(1)设出矩阵M ,利用矩阵变换得到关于x 、y 的方程组,利用等式恒成立求出矩阵M ;(2)设点(,)x y 在直线l 上,利用矩阵变换得到点(,)x y '',代入直线l 中,求得直线l '的方程. 【详解】解:(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,由题意,2a b x x M c d y x y ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦g ,所以2ax by x +=,且cx dy x y +=+恒成立; 所以2a =,0b =,1c =,1d =;所以矩阵2011M ⎡⎤=⎢⎥⎣⎦;(2)设点(,)x y 在直线l 上,在矩阵M 对应变换作用下得到点(,)x y ''在直线l '上, 则2x x '=,y x y '=+,所以12x x =',12y y x ='-'; 代入直线:25l x y -=中,可得34100x y '-'-=; 所以直线l '的方程为34100x y --=. 【点睛】本题考查了矩阵变换的计算问题,也考查了运算求解能力,是基础题.9.已知1m >,1n >,且1000mn <,求证:lg 901lg 4m n <. 【答案】证明见解析 【解析】 【分析】由题意,求得11000mn <<,利用基本不等式,得到2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,再结合行列式的运算,即可求解. 【详解】由题意,实数1m >,1n >,且1000mn <,可得11000mn <<,则2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,又由lg 919lg ln 9lg ln 144lg 4m m n m n n=-⨯=-,所以lg 901lg 4m n <. 【点睛】本题主要考查了行列式的运算性质,以及对数的运算性质和基本不等式的应用,其中解答中熟记行列式的运算法则,以及合理应用对数的运算和基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.已知函数2sin ()1x xf x x -=.(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域;(2)已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若2A f ⎛⎫=⎪⎝⎭4a =,5b c +=,求ABC V 的面积.【答案】(1)1⎡⎤+⎢⎥⎣⎦;(2 【解析】 【分析】(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域求得当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. (2)由条件求得A ,利用余弦定理求得bc 的值,可得△ABC 的面积. 【详解】 解:(1)21()sin cos cos 2)sin 2sin 223f x x x x x x x π⎛⎫=+=++=+ ⎪⎝⎭Q , 又02x π≤≤,得42333x πππ≤+≤,所以sin 21,0sin 2133x x ππ⎛⎫⎛⎫≤+≤≤+≤ ⎪ ⎪⎝⎭⎝⎭,即函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的值域为0,12⎡⎤+⎢⎥⎣⎦;(2)∵2A f ⎛⎫=⎪⎝⎭,sin 3A π⎛⎫∴+=⎪⎝⎭, 由(0,)A π∈,知4333A πππ<+<,解得:233A ππ+=,所以3A π=. 由余弦定理知:2222cos a b c bc A =+-,即2216b c bc =+-,216( c)3b bc ∴=+-.因为5b c +=,所以3bc =,1sin 2ABC S bc A ∆∴==【点睛】本题主要考查三角恒等变换,正弦函数的周期性、正弦函数的定义域和值域,余弦定理的应用,属于中档题.11.已知矩阵120A x -⎡⎤=⎢⎥⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦,B 的逆矩阵1B -满足17177AB y --⎡⎤=⎢⎥-⎣⎦. (1)求实数x ,y 的值;(2)求矩阵A 的特征值和特征向量.【答案】(1)1,3x y ==;(2)特征值为2-和1,分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)计算()1AB B -,可得12514721y y -⎡⎤⎢⎥--⎣⎦,根据()1A AB B -=,可得结果.(2)计算矩阵A 的特征多项式()121f λλλ+-=-,可得2λ=-或1λ=,然后根据Ax x λ=r r,可得结果.【详解】 (1)因为17177ABy --⎡⎤=⎢⎥-⎣⎦,5723B ⎡⎤=⎢⎥⎣⎦所以()17175712723514721ABB y y y ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦由()1A ABB -=,所以12120514721x y y --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦所以514172103y x x y y -==⎧⎧⇒⎨⎨-==⎩⎩(2)矩阵A 的特征多项式为:()()()()1212211f λλλλλλλ+-==+-=+--令()0f λ=,解得2λ=-或1λ= 所以矩阵A 的特征值为2-和1. ①当2λ=-时,12222102x x x y xy y x y--+=-⎡⎤⎡⎤⎡⎤⎧=-⇒⎨⎢⎥⎢⎥⎢⎥=-⎣⎦⎣⎦⎣⎦⎩ 令1y =,则2x =-,所以矩阵M 的一个特征向量为21-⎡⎤⎢⎥⎣⎦. ②当1λ=时,12210x x x y x y y x y--+=⎡⎤⎡⎤⎡⎤⎧=⇒⎨⎢⎥⎢⎥⎢⎥=⎣⎦⎣⎦⎣⎦⎩ 令1y =,则1x =所以矩阵M 的一个特征向量为11⎡⎤⎢⎥⎣⎦.因此,矩阵A 的特征值为2-和1, 分别对应一个特征向量为21-⎡⎤⎢⎥⎣⎦,11⎡⎤⎢⎥⎣⎦. 【点睛】本题考查矩阵的应用,第(1)问中,关键在于()1A ABB -=,第(2)问中,关键在于()1201f λλλ+-==-,考验分析能力以及计算能力,属中档题.12.已知函数cos 2()sin 2m x f x nx=的图象过点(12π和点2(,2)3π-. (1)求函数()f x 的最大值与最小值;(2)将函数()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()y g x =的图象;已知点(0,5)P ,若函数()y g x =的图象上存在点Q ,使得||3PQ =,求函数()y g x =图象的对称中心.【答案】(1)()f x 的最大值为2,最小值为2-;(2)(,0)()24k k Z ππ+∈. 【解析】 【分析】(1)由行列式运算求出()f x ,由函数图象过两点,求出,m n ,得函数解析式,化函数式为一个角的一个三角函数式,可求得最值;(2)由图象变换写出()g x 表达式,它的最大值是2,因此要满足条件,只有(0,2)Q 在()g x 图象上,由此可求得ϕ,结合余弦函数的性质可求得对称中心.【详解】(1)易知()sin 2cos 2f x m x n x =-,则由条件,得sin cos 6644sin cos 233m n m n ππππ⎧-=⎪⎪⎨⎪-=-⎪⎩,解得 1.m n ==-故()2cos22sin(2)6f x x x x π=+=+.故函数()f x 的最大值为2,最小值为 2.-(2)由(1)可知: ()()2sin(22)6g x f x x πϕϕ=+=++.于是,当且仅当(0,2)Q 在()y g x =的图象上时满足条件.(0)2sin(2)26g πϕ∴=+=. 由0ϕπ<<,得.6πϕ=故()2sin(2)2cos 22g x x x π=+=. 由22x k =+ππ,得().24k x k Z ππ=+∈ 于是,函数()y g x =图象的对称中心为:(,0)()24k k Z ππ+∈. 【点睛】本题考查行列式计算,考查两角和的正弦公式,图象平移变换,考查三角函数的性质,如最值、对称性等等.本题主要是考查知识点较多,但不难,本题属于中档题.13.已知矩阵2101M ⎡⎤=⎢⎥⎣⎦(1)求矩阵M 的特征值及特征向量;(2)若21α⎡⎤=⎢⎥-⎣⎦r,求3M αv.【答案】(1)特征值为2;对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r(2)91⎡⎤⎢⎥-⎣⎦【解析】 【分析】(1)先根据特征值得定义列出特征多项式,令()0f λ=解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量;(2)由12ααα=+u u r u u r r可得33312M M M ααα=+u u r u u r r ,求解即可. 【详解】(1)矩阵M 的特征多项式为21()01f λλλ--=-(2)(1)λλ=--,令()0f λ=,得矩阵M 的特征值为1或2, 当1λ=,时由二元一次方程0000x y x y --=⎧⎨+=⎩.得0x y +=,令1x =,则1y =-,所以特征值1λ=对应的特征向量为111α⎡-⎤=⎢⎥⎣⎦;当2λ=时,由二元一次方程0000x y x y -=⎧⎨+=⎩. 得0y =,令1x =,所以特征值2λ=对应的特征向量为210α⎡⎤=⎢⎥⎣⎦u u r;(2)1221ααα⎡⎤==+⎢⎥-⎣⎦u ur u u r rQ ,33312M M M ααα∴=+u u r u u r r 331212αα=+u u r u u r 311210⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦91⎡⎤=⎢⎥-⎣⎦.【点睛】本题考查矩阵特征值与特征向量的计算,矩阵的乘法运算,属于基础题.14.关于x 的不等式201x a x+<的解集为()1,b -.()1求实数a ,b 的值;()2若1z a bi =+,2z cos isin αα=+,且12z z 为纯虚数,求tan α的值.【答案】(1)1a =-,2b =(2)12- 【解析】 【分析】(1)由题意可得:1-,b 是方程220x ax +-=的两个实数根,利用根与系数的关系即可得出答案;(2)利用(1)的结果得()()1222z z cos sin cos sin i αααα=--+-为纯虚数,利用纯虚数的定义即可得出. 【详解】 解:(1)不等式201x a x+<即()20x x a +-<的解集为()1,b -.1∴-,b 是方程220x ax +-=的两个实数根,∴由1b a -+=-,2b -=-,解得1a =-,2b =. (2)由(1)知1,2a b =-=,()()()()121222z z i cos isin cos sin cos sin i αααααα∴=-++=--+-为纯虚数,20cos sin αα∴--=,20cos sin αα-≠,解得12tan α=-.【点睛】本题考查了行列式,复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.15.已知,R a b ∈,矩阵 a b c d A ⎡=⎤⎢⎥⎣⎦,若矩阵A 属于特征值5的一个特征向量为11⎡⎤⎢⎥⎣⎦,点()2,1P -在A 对应的变换作用下得到点()1,2P '-,求矩阵A .【答案】2314A ⎡⎤=⎢⎥⎣⎦ 【解析】 【分析】根据矩阵的特征值和特征向量的定义建立等量关系,列方程组求解即可. 【详解】由题意可知,1155115a b c d ⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,且2112a b c d --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以552122a b c d a b c d +=⎧⎪+=⎪⎨-+=-⎪⎪-+=⎩,解得2314a b c d =⎧⎪=⎪⎨=⎪⎪=⎩,即矩阵2314A ⎡⎤=⎢⎥⎣⎦. 【点睛】此题考查矩阵特征值和特征向量的辨析理解,根据题中所给条件建立等量关系解方程组得解.16.解关于x 、y 的方程组(1)2024160x m y m mx y +++-=⎧⎨++=⎩,并对解的情况进行讨论.【答案】答案见解析; 【解析】【分析】将原方程组写成矩阵形式为Ax b =,其中A 为22⨯方阵,x 为2个变量构成列向量,b 为2个常数项构成列向量. 而当它的系数矩阵可逆,或者说对应的行列式D 不等于0的时候,它有唯一解.并不是说有解. 【详解】 解:Q (1)2024160x m y m mx y +++-=⎧⎨++=⎩化成矩阵形式Ax b =则1124m A m +⎛⎫= ⎪⎝⎭,216m b -⎛⎫= ⎪-⎝⎭()()()24212242111242m m D m m m m m m ∴==-+=+=-++---,()()()42161122116422412x D m m m m m m ==-++-=-+=++,()()()162222412216y D m mm m m m ==----+-=-当系数矩阵D 非奇异时,或者说行列式24220D m m =--≠, 即1m ≠且2m ≠-时,方程组有唯一的解, 61x D x D m ==-,41y D m y D m-==-. 当系数矩阵D 奇异时,或者说行列式24220D m m =--=, 即1m =或2m =-时,方程组有无数个解或无解.当2m =-时,原方程为4044160x y x y --=⎧⎨-++=⎩无解,当1m =时,原方程组为21024160x y x y +-=⎧⎨++=⎩,无解.【点睛】本题主要考查克莱姆法则,克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立,属于中档题.17.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程.试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.18.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题主要考查矩阵的乘法运算及逆矩阵的求解.19.已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α. 【答案】(1)1a =,2b =;(2)11α⎡⎤=⎢⎥⎣⎦u r. 【解析】 【分析】(1)利用特征多项式,结合韦达定理,即可求a ,b 的值; (2)利用求特征向量的一般步骤,可求出其对应的一个特征向量. 【详解】(1)令2()()(4)(4)4014a bf a b a a b λλλλλλλ--==--+=-+++=-, 于是124a λλ+=+,124a b λλ=+.解得1a =,2b =. (2)设x y α⎡⎤=⎢⎥⎣⎦u r,则122331443x x y x x A y x y y y α+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦r, 故2343x y x x y y +=⎧⎨-+=⎩解得x y =.于是11α⎡⎤=⎢⎥⎣⎦r .【点睛】本题主要考查矩阵的特征值与特征向量等基础知识,考查运算求解能力及函数与方程思想,属于基础题.20.定义()111111n n n n x x n N y y +*+-⎛⎫⎛⎫⎛⎫=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为向量()111,n n n OP x y +++=u u u u u v 的一个矩阵变换, (1)若()12,3P ,求2OP u u u v ,3OP u u u v;(2)设向量()11,0OP =u u u v ,O 为坐标原点,请计算9OP u u u v 并探究2017OP u u u u u u v的坐标.【答案】(1)()21,5OP =-u u u v ,()36,4OP =-u u u v;(2)()25216,0. 【解析】 【分析】(1)根据递推关系可直接计算2OP uuu r ,3OP u u ur .(2)根据向量的递推关系可得816n n OP OP +=u u u u u r u u u r 对任意的*n N ∈恒成立,据此可求9OP u u u r、2017OP u u u u u u r的坐标.【详解】(1)因为()12,3P ,故123OP⎛⎫= ⎪⎝⎭u u u r ,设2x OP y ⎛⎫= ⎪⎝⎭u u u r , 则11211135x y --⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以215OP -⎛⎫= ⎪⎝⎭u u u r 即()21,5OP =-u u u r ,同理()36,4OP =-u u u r . (2)因为111111n n n n x x y y ++-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11n n n n nn x x y y x y ++-⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭, 故21121122n n n n n n n n x x y y y x y x ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,3223222222n n n n n n n n n n x x y y x y x y y x ++++++---⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭,43343344n n n n n n n n x x y x y x y y ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭,所以44n n OP OP +=-u u u u u r u u u r ,故816n n OP OP +=u u u u u r u u u r . 又9811=⨯+,20174504182521=⨯+=⨯+,()911616,0OP OP ==u u u r u u u r所以()252252201711616,0OP OP ==u u u u u u r u u u r . 【点睛】本题考查向量的坐标计算及向量的递推关系,解题过程中注意根据已知的递推关系构建新的递推关系,此问题为中档题.。
矩阵与变换二阶矩阵平面逆变换等一轮复习专题练习(一)附答案人教版高中数学高考真题汇编
高中数学专题复习
《矩阵与变换二阶矩阵平面逆变换等》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.已知X 是二阶矩阵,且满足满足23321211X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,则X =_____。
4511-⎡⎤⎢⎥-⎣⎦
132233223451112111211X ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
2.行列式cos
sin
66sin
cos 66ππππ的值是 0.5 。
评卷人
得分 二、解答题
3.已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦
⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢
⎣⎡-=232α.求矩阵A 的逆矩阵. 4.已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.。
2012年江苏高考数学试题及答案
2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh,其中S 为底面积,h 为高.一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{124}A ,,,{246}B ,,,则A B ▲.2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取▲名学生.3.设a b R ,,117ii 12i a b(i 为虚数单位),则a b的值为▲.4.右图是一个算法流程图,则输出的k 的值是▲.5.函数()f x 的定义域为▲.6.现有10个数,它们能构成一个以1为首项,3 为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是▲.7.如图,在长方体1111ABCD A BCD 中,3cm AB AD ,12cm AA ,则四棱锥11A BB D D 的体积为▲cm 3.8.在平面直角坐标系xOy 中,若双曲线22214x y m m 的离心率的值为▲.9ABCD 中,2AB BC ,点E 为BC 的中点,开始k ←1k 2-5k +4>0k ←k +1NY 输出k 结束(第4题)DA B C1C 1D 1A 1B (第7题)点F 在边CD上,若AB AF AE BF 的值是▲.10.设()f x 是定义在R 上且周期为2的函数,在区间[11] ,上,0111()201x x ax f x bx x≤≤≤,,,,其中a b R ,.若1322f f,则3a b 的值为▲.11.设 为锐角,若4cos 65 ,则sin 212的值为▲.12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x ,若直线2y kx 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是▲.13.已知函数2()()f x x ax b a b R ,的值域为[0) ,,若关于x 的不等式()f x c 的解集为(6)m m ,,则实数c 的值为▲.14.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b ≤≤≥,,则b a 的取值范围是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在ABC 中,已知3AB AC BA BC.(1)求证:tan 3tan B A ;(2)若cos 5C,求A 的值.16.(本小题满分14分)如图,在直三棱柱111ABC A B C 中,1111A B A C ,D E ,分别是棱1BC CC ,上的点(第9题)(点D 不同于点C ),且AD DE F ,为11B C 的中点.求证:(1)平面ADE 平面11BCC B ;(2)直线1//A F 平面ADE .17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.18.(本小题满分16分)若函数()y f x 在x =x 0取得极大值或者极小值则x =x 0是()y f x 的极值点已知a ,b 是实数,1和1 是函数32()f x x ax bx 的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x,求()g x 的极值点;(3)设()(())h x f f x c ,其中[22]c ,,求函数()y h x 的零点个数.FECADB(第16题)x (千米)y (千米)O(第17题)19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b 的左、右焦点分别为1(0)F c ,,2(0)F c ,.已知(1)e ,和2e ,都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的离心率;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i)若122AF BF,求直线1AF 的斜率;(ii )求证:12PF PF 是定值.20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a nN .(1)设11n n n b b n a N ,,求证:数列2n n b a是等差数列;(2)设1n n nbb n aN ,,且{}n a 是等比数列,求1a 和1b 的值.(第19题)绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)21.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)D,E为圆上位于AB异侧的两点,连结BD并延长至点C,AC,AE,DE..注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共2页,均为非选择题(第21题~第23题)。
(江苏专用)高考数学一轮复习 第二十三章 选修系列 23.2 矩阵与变换课件.pptx
,
2
所以A-1B=
1 0 0 1 2
1 2 0 6
= 1 . 2
ቤተ መጻሕፍቲ ባይዱ0 3
7
B组 统一命题·省(区、市)卷题组
考点 矩阵与变换
(2013福建,21(1),7分)选修4—2:矩阵与变换
1 2
已知直线l:ax+y=1在矩阵A=
01 对 应的变换作用下变为直线l':x+by=1.
(1)求实数a,b的值;
,即 xy
所以2x0y0y,x,
x0 y,
y0
x. 2
因为点Q(x0,y0)在曲线C1上,则 x02 + y02 =1,
82
从而 y2 + x2 =1,即x2+y2=8.
88
因此曲线C1在矩阵AB对应的变换作用下得到曲线C2:x2+y2=8.
3
2.(2016江苏,21B,10分)已知矩阵A= 10 2,矩2阵B的逆矩阵B-1=
10, 求 12矩 2阵AB.
解析
设B=
a c
,db
则B-1B= 10 12 2 =ac db ,
1 0
10
即
a
1c
2=
2c
b1
, 2
2d
d
1 0
10
a
1 2
c
1,
故 b
1 2
d
解0,得
2c 0,
2d 1,
a 1,
b
1
,
c
4所以B=
0,
d
1 2
,
82
2
解析 本小题主要考查矩阵的乘法、线性变换等基础知识,考查运算求解能力.
矩阵与变换二阶矩阵平面逆变换等一轮复习专题练习(二)带答案人教版高中数学高考真题汇编
高中数学专题复习《矩阵与变换二阶矩阵平面逆变换等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知矩阵27b A a -⎡⎤=⎢⎥-⎣⎦的逆矩阵是273a B ⎡⎤=⎢⎥⎣⎦,则=+b a . 2.三阶行列式21145324---k 第2行第1列元素的代数余子式为10-,则=k ____________. 评卷人得分 二、解答题3.选修4—2:矩阵与变换已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α.求矩阵A 的逆矩阵.【考点定位】本题考查的是矩阵的特征值特征向量和逆矩阵的运算,正确理解概念是本题的关键。
4.已知曲线2:2C y x = ,在矩阵1002M ⎡⎤=⎢⎥⎣⎦,对应的变换作用下得到曲线1C ,在矩阵0110N -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程.5.已知矩阵33A c d ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值6的一个特征向量为111α⎡⎤=⎢⎥⎣⎦,属于特征值1的一个特征向量为232α⎡⎤=⎢⎥-⎣⎦.求矩阵A 的逆矩阵.6.已知二阶矩阵A 有特征值11λ=及对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e 和特征值22λ=及对应的一个特征向量210⎡⎤=⎢⎥⎣⎦e ,试求矩阵A .7. 若点A (2,2)在矩阵M= ⎢⎣⎡ααsin cos ⎥⎦⎤-ααc oss in 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵。
(本小题满分10分)8.已知二阶矩阵A 有特征值31=λ及其对应的一个特征向量111轾犏=犏臌α,特征值12-=λ及其对应的一个特征向量211轾犏=犏-臌α,求矩阵A 的逆矩阵1A -.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.82.14- 评卷人得分 二、解答题3.4.选修4-2:矩阵与变换解:设A NM =,则011002100210A --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,……………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y ,则 02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2''x y y x =-⎧⎨=⎩, ∴'1'2x y y x =⎧⎪⎨=-⎪⎩.……………7分 又点()','P x y 在曲线2:2C y x = 上,∴ 21()22x y -=,即218y x =.……………10分 5.6.(选修4—2:矩阵与变换)设矩阵a b A c d ⎡⎤=⎢⎥⎣⎦,这里a b c d ∈R ,,,, 因为11⎡⎤⎢⎥⎣⎦是矩阵A 的属于11λ=的特征向量,则有110110a b c d --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦①, ………4分 又因为10⎡⎤⎢⎥⎣⎦是矩阵A 的属于22λ=的特征向量,则有210100a b c d --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ ②, ………6分根据①②,则有1010200a b c d a c --=⎧⎪-+-=⎪⎨-=⎪⎪-=⎩,,,,………………………………………………………………8分 从而21a b c d ==-==,,,,因此2101A -⎡⎤=⎢⎥⎣⎦, …………………………………………10分 7.解:11222cos 2sin 2,,222sin 2cos 2cos sin 1cos 0,sin cos 1sin 1011001,10011001cos90sin 90,10sin 90cos90o o o o M M M M M M αααααααααα-----⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦-=-=⎧⎧∴⎨⎨+==⎩⎩-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫-⎛⎫== ⎪ ⎪⎝⎭⎝⎭即得即由得另解:1O 9001cos 90sin 9010sin 90cos 90o o o o o M-⎛⎫--⎛⎫== ⎪ ⎪---⎝⎭⎝⎭看作绕着原点逆时针旋转旋转变换矩阵,(-)()于是()()8.。
2012江苏省高考数学真题(含答案)
绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{124}A =,,,{246}B =,,,则A B = ▲ . 解析:由已知,集合{124}A =,,,{246}B =,,,所以A B = {1,2,4,6}. 答案:{1,2,4,6},2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 解析:由已知,高二人数占总人数的310,所以抽取人数为3501510⨯=. 答案:153.设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ . 解析:由已知,2117i 117i i 2515i 2515ii ===53i 12i (12i)(12i 1-4i 5a b --+++==+--+()(1+2)). ∴538a b +=+=.答案:8.4.右图是一个算法流程图,则输出的k解析:将1k =带入0=0不满足, 将2k =带入40-<不满足, 将3k =带入20-<不满足, 将4k =带入00=不满足, 将5k =带入40>满足, 所以5k =. 答案:5.5.函数()f x 的定义域为 ▲ . 解析:由题意6012log 0x x >⎧⎨-≥⎩,所以x ∈.答案:6.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 ▲ .解析:满足条件的数有1,-3,33-,53-,73-,93-;所以63105p ==. 答案:35.7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3.解析:12632V =⨯=. 答案:6.8.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+m 的值为 ▲ . DABC 1 1D 1A1B(第7题)解析:22450m m e mm ⎧++==⎪⎨⎪>⎩,解得2m =. 答案:2.9.如图,在矩形ABCD中,2AB BC =,点E 为BC 的中点,点F 在边CD上,若AB AF = AE BF的值是 ▲ .解析:以A 为坐标原点,AB,AD 所在直线分别为x 轴和y 轴建立 平面直角坐标系, 则由题意知:点B ,点E),设点F (,)a b ,所以AB =u u u r ,(,)AF a b =u u u r;由条件解得点(1,2)F ,所以AE =uu u r,()12BF uu u r ;所以AE BF =uu u r uu u rg10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上,0111()201x x ax f x bx x <+-⎧⎪=+⎨⎪+⎩≤≤≤,,,,其中a b ∈R ,.若1322f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则3a b +的值为 ▲ . 解析:因为2T =,所以(1)(1)f f -=,求得20a b +=.由13()()22f f =,2T =得11()()22f f =-,解得322a b +=-.联立20322a b a b +=⎧⎨+=-⎩,解得24a b =⎧⎨=-⎩所以310a b +=-.答案10-(第9题)11.设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则sin 212απ⎛⎫+ ⎪⎝⎭的值为 ▲ .解析: Q α为锐角,2663πππα∴<+<,4cos 65απ⎛⎫+= ⎪⎝⎭Q ,3sin 65απ⎛⎫∴+= ⎪⎝⎭;12cos 66sin 22sin 253αααππ⎛π⎛⎫∴+= ⎫⎛⎫++= ⎪ ⎪⎭⎝⎭⎪⎝⎭⎝,sin 2sin 2sin 2cos cos 2sin 1234343450ααααπππππππ⎛⎫⎛⎫⎛⎫⎛⎫∴+=+-=+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭答案:50.12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ .解析:圆C 的圆心为(4,0),半径为1;由题意,直线2y kx =-上至少存在一点00(,2)A x kx -,以该点为圆心,1为半径的圆与圆C 有公共点;故存在0x R ∈,使得11AC ≤+成立,即min 2AC ≤;而min AC 即为点C 到直线2y kx =-2≤,解得403k ≤≤,即k 的最大值是43. 答案:4313.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 ▲ .解析:由值域为[0)+∞,得240a b =-=V ,即24a b =;2222()42a a f x x ax b x ax x ⎛⎫∴=++=++=+ ⎪⎝⎭,2()2a f x x c ⎛⎫∴=+< ⎪⎝⎭解得2a x +<;Q 不等式()f x c <的解集为(6)m m +,,)()622a a∴-=,解得9c =. 答案:914.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 ▲ .答案:[,7]e二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知3AB AC BA BC ⋅=⋅ .(1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 解析:16.(本小题满分14分)如图,在直三棱柱111ABC A B C -中,1111AB AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE . 解析:17.(本小题满分14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.1A1C(第16题)FDCA B E1B解析:18.(本小题满分16分)若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点. 已知a ,b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数. 解析:19.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛⎝⎭都在椭圆上,其中e 为椭圆的离心率. (1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线与直线2BF 平行,2AF 与1BF 交于点P .(i )若12AF BF -=,求直线1AF 的斜率; (ii )求证:12PF PF +是定值.解析:(第19题)20.(本小题满分16分)已知各项均为正数的两个数列{}n a 和{}n b满足:1n a n *+∈N .(1)设11n n n b b n a *+=+∈N ,,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设1nn nb b n a *+=∈N ,,且{}n a 是等比数列,求1a 和1b 的值. 解析:绝密★启用前2012年普通高等学校招生全国统一考试(江苏卷)数学Ⅱ(附加题)准考证号21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作...................答...若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 是圆O 的直径,D ,E 为圆上位于AB 异侧的两点,连结BD 并延长至点C ,使BD = DC ,连结AC ,AE ,DE . 求证:E C ∠=∠. 解析:B .[选修4 - 2:矩阵与变换](本小题满分10分)已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值.解析:21-A 题)C .[选修4 - 4:坐标系与参数方程](本小题满分10分)在极坐标中,已知圆C 经过点()4P π,,圆心为直线()sin 3ρθπ-=与极轴的交点,求圆C 的极坐标方程. 解析:D .[选修4 - 5:不等式选讲](本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 解析:【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ. 解析:23.(本小题满分10分)设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个数: ①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示). 解析:。
2012年江苏高考数学题目及解析
参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.(2012年江苏省5分)已知集合{124}A =,,,{246}B =,,,则A B = ▲ .【答案】{}1,2,4,6。
【考点】集合的概念和运算。
【分析】由集合的并集意义得{}1,2,4,6A B = 。
2.(2012年江苏省5分)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 【答案】15。
【考点】分层抽样。
【解析】分层抽样又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3.(2012年江苏省5分)设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),则a b +的值为 ▲ .【答案】8。
【考点】复数的运算和复数的概念。
【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,所以=5=3a b ,,=8a b + 。
4.(2012年江苏省5分)下图是一个算法流程图,则输出的k 的值是 ▲ .【答案】5。
【考点】程序框图。
【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环k 2k 5k 4-+循环前 0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5。
直击高考——选修4-2《矩阵与变换》2010-2012高考题汇总(含答案)
直击高考——选修4-2《矩阵》2010-2012高考题汇总(含答案)1. (2012·福建高考理科·T21)设曲线2x 2+2xy+y 2=1在矩阵0(0)1a A a b ⎛⎫=>⎪⎝⎭对应的变换作用下得到的曲线为x 2+y 2=1。
(Ⅰ)求实数a ,b 的值。
(Ⅱ)求A 2的逆矩阵。
2.(2012·江苏高考·T21B )已知矩阵A 的逆矩阵113441122-⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦A ,求矩阵A 的特征值. 3.(2011·福建卷理科·T21)(1)设矩阵M=00a b ⎛⎫⎪⎝⎭(其中a >0,b >0). (I )若a=2,b=3,求矩阵M 的逆矩阵M -1;(II )若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:1y 4x 22=+,求a ,b 的值. 4.(2011·江苏高考·T21B )已知矩阵1121A ⎡⎤=⎢⎥⎣⎦,向量12β⎡⎤=⎢⎥⎣⎦,求向量α,使得2A αβ=. 5.(2010·江苏高考·T21B )在平面直角坐标系xOy 中,已知点A(0,0),B(-2,0),C(-2,1)。
设k 为非零实数,矩阵M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值。
6.(2010·福建高考理科·T21)已知矩阵1M b ⎛= ⎝ 1a ⎫⎪⎭,0c N ⎛= ⎝ 2d ⎫⎪⎭,且22MN ⎛= -⎝ 00⎫⎪⎭。
(Ⅰ)求实数,,,a b c d 的值; (Ⅱ)求直线3y x =在矩阵M 所对应的线性变换作用下的像的方程。
解答:1. 解:2. 解:3.解:设曲线C 上任意一点(,)P x y ,它在矩阵M 所对应的线性变换作用下得到点(,).P x y ''' 则0,0a x x b y y '⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭即ax x by y '=⎧⎨'=⎩又点(,)P x y '''在曲线C '上,所以22 1.4x y ''+= 则222214a xb y +=为曲线C 的方程. 又已知曲线C 的方程为22+y 1x =,故2241a b ⎧=⎨=⎩,又0,0a b >>,所以21a b =⎧⎨=⎩. 4.解:设x y α⎡⎤=⎣⎦,由2A αβ=得:321432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,32111,43222x y x x y y α+==--⎧⎧⎡⎤∴∴∴=⎨⎨⎢⎥+==⎩⎩⎣⎦5.解:由题设得0010011010k k MN ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦由00220010001022k k --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,可知A 1(0,0)、B 1(0,-2)、C 1(k ,-2)。
高考数学一轮复习 x42矩阵与变换课件 理
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2021/12/162021/12/16December 16, 2021 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2021年12月2021/12/162021/12/162021/12/1612/16/2021 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/12/162021/12/16
2.已知矩阵A将点(1,0)变换为(2,3),且属于特征值3的一个特 征向量是11,求矩阵A. 解 设A=ac bd,由ac bd 10=23,得ac==32., 由ac bd11=311=33,得ac++db==33., 所以bd= =10, . 所以A=23 10.
3.(2011·苏州调研测试)已知圆C:x2+y2=1在矩阵形A=
解 MN=10 02 -11 01=-12 02. 设P(x′,y′)是曲线2x2-2xy+1=0上任意一点,点P在矩阵 MN对应的变换下变为点P(x,y), 则xy=-12 02xy′′=-2x′+x2′y′, 于是x′=x,y′=x+2y, 代入2x′2-2x′y′+1=0,得xy=1. 所以曲线2x2-2xy+1=0在MN对应的变换作用下得到的曲线 方程为xy=1.
高考数学第一轮知识点巩固题库 矩阵与变换(含解析)新人教A版选修42
选修4-2 矩阵与变换1.已知矩阵A =⎣⎢⎡⎦⎥⎤1 2-2 -3,B =⎣⎢⎡⎦⎥⎤2 31 2,C =⎣⎢⎡⎦⎥⎤0 11 0,求满足AXB =C 的矩阵X .解 AXB =C ,所以(A -1A )XB ·B -1=A -1CB -1而A -1AXB ·B -1=EXBB -1=X (BB -1)=X ,所以X =A -1CB -1因为A -1=⎣⎢⎡⎦⎥⎤-3 -22 1, B -1=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2, 所以X =A -1CB -1=⎣⎢⎡⎦⎥⎤-3 -22 1⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-2 -31 2⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2 =⎣⎢⎡⎦⎥⎤-1 00 1. 2.设圆F :x 2+y 2=1在(x ,y )→(x ′,y ′)=(x +2y ,y )对应的变换下变换成另一图形F ′,试求变换矩阵M 及图形F ′的方程.解 ∵⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +2y y =⎣⎢⎡⎦⎥⎤1 20 1⎣⎢⎡⎦⎥⎤x y , ∴M =⎣⎢⎡⎦⎥⎤1 20 1. ∵圆上任意一点(x ,y )变换为(x ′,y ′)=(x +2y ,y ),∴⎩⎪⎨⎪⎧x ′=x +2y y ′=y , 即⎩⎪⎨⎪⎧x =x ′-2y ′y =y ′. ∵x 2+y 2=1,∴(x ′-2y ′)2+(y ′)2=1.即F ′的方程为(x -2y )2+y 2=1.(1)求实数a 、b 、c 、d 的值;(2)求直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程.解 (1)由题设得:⎩⎪⎨⎪⎧c +0=2,2+ad =0,bc +0=-2,2b +d =0.解得⎩⎪⎨⎪⎧a =-1,b =-1,c =2,d =2.(2)∵矩阵M 对应的线性变换将直线变成直线(或点),∴可取直线y =3x 上的两点(0,0),(1,3),得点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的像是点(0,0),(-2,2). 从而,直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程为y =-x .4.已知二阶矩阵A =⎣⎢⎡⎦⎥⎤ab c d ,矩阵A 属于特征值λ1=-1的一个特征向量为a 1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为a 2=⎣⎢⎡⎦⎥⎤32,求矩阵A . 解 由特征值、特征向量定义可知,Aa 1=λ1a 1,即⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8.解得a =2,b =3,c =2,d =1. 因此矩阵A =⎣⎢⎡⎦⎥⎤2 321. 5.设矩阵M =⎣⎢⎡⎦⎥⎤a00 b (其中a >0,b >0).(1)若a =2,b =3,求矩阵M 的逆矩阵M -1;(2)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a 、b 的值.解 (1)设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2, 则MM -1=⎣⎢⎡⎦⎥⎤1 00 1. 又M =⎣⎢⎡⎦⎥⎤2 00 3.∴⎣⎢⎡⎦⎥⎤2 00 3 ⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2=⎣⎢⎡⎦⎥⎤1 00 1.∴2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13, 故所求的逆矩阵M -1=⎣⎢⎡⎦⎥⎤1200 13. (2)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎪⎨⎪⎧ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上, ∴x ′24+y ′2=1.则a 2x 24+b 2y 2=1为曲线C 的方程. 又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1. 又a >0,b >0,∴⎩⎪⎨⎪⎧a =2,b =1. 6.给定矩阵M =⎣⎢⎡⎦⎥⎤23 -13-13 23,N =⎣⎢⎡⎦⎥⎤2 11 2,向量α=⎣⎢⎡⎦⎥⎤ 1-1. (1)求证:M 和N 互为逆矩阵;(2)求证:向量α同时是M 和N 的特征向量;(3)指出矩阵M 和N 的一个公共特征值. 解 (1)证明:因MN =⎣⎢⎡⎦⎥⎤23 -13-13 23 ⎣⎢⎡⎦⎥⎤2 11 2=⎣⎢⎡⎦⎥⎤1 00 1, 且NM =⎣⎢⎡⎦⎥⎤211 2⎣⎢⎡⎦⎥⎤23 -13-13 23=⎣⎢⎡⎦⎥⎤1 00 1,所以M 和N 互为逆矩阵. (2)证明:因为Mα=⎣⎢⎡⎦⎥⎤23 -13-13 23⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量.因为N α=⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤ 1-1, 所以α是N 的特征向量.(3)由(2)知,M 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值为1,N 对应于特征向量⎣⎢⎡⎦⎥⎤ 1-1的特征值也为1,故1是矩阵M 和N 的一个公共特征值.。
【三年考点汇总】2012年高考数学考点汇总52矩阵与变换(新人教版)
考点52 矩阵与变换
一、解答题
1.(2012·福建高考理科·T21)设曲线在矩阵对应的变换作用下得到的曲线为.
(Ⅰ) 求实数,的值;
(Ⅱ) 求的逆矩阵.
【解题指南】本小题主要考查矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.
【解析】(Ⅰ)设曲线上任一点在矩阵对应变换下的像是,则得
又点在上,所以即
整理得
依题意得解得或
因为,所以.
(Ⅱ)由(Ⅰ)知,,,
所以,.
2.(2012·江苏高考·T21)已知矩阵A的逆矩阵,求矩阵A的特征值.
【解题指南】由矩阵的逆矩阵,根据定义可求出矩阵,从而求出矩阵的特征值.
【解析】∵,∴.
∵,∴。
∴矩阵的特征多项式为.
令,解得矩阵的特征值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-2 矩阵与变换
1.变换⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦
⎥⎤p q =⎣⎢⎡⎦⎥⎤p -q 的几何意义为 ( )
A .关于y 轴反射变换
B .关于x 轴
反射变换
C .关于原点反射变换
D .以上都不对
解析:在坐标系xoy 内,向量⎣⎢⎡⎦
⎥⎤p q 经过变换后变为⎣⎢⎡⎦⎥⎤p -q ,两向量关于x 轴对称,所
以次变换为关于x 轴的反射变换.
答案:B
2
.⎣⎢⎡⎦⎥⎤1 32 4⎣⎢⎡⎦⎥⎤-1 1 0 4结果是
( )
A.⎣⎢⎢⎡⎦
⎥⎥⎤-1 13-2 18 B.⎣⎢⎡⎦⎥⎤13 118 -2 C.⎣⎢⎢⎡⎦⎥⎥⎤-2 18-1 13 D.⎣⎢⎡⎦⎥⎤18 -213 1 答案:A
3
.矩阵⎣⎢⎡⎦⎥⎤0 -11 0的逆矩阵是
( )
A.⎣⎢⎡⎦⎥⎤ 0 1-1 0
B.⎣⎢⎡⎦⎥⎤-1 0 0 1
C.⎣⎢⎡⎦⎥⎤1 00 -1
D.⎣⎢⎡⎦
⎥⎤0 -11 0 解析:设⎣⎢⎡⎦
⎥⎤0 -11 0的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤1 00 1.所以有⎩
⎪⎨⎪⎧ a =0b =1,
=
(f (答案:3或2
6.设A =⎣⎢⎡⎦⎥⎤1 23 4,B =⎣⎢⎡⎦
⎥⎤4 2k 7,若AB =BA ,则实数k =________. 解析:因为AB =⎣⎢⎢⎡⎦
⎥⎥⎤4+2k 1612+4k 34,BA =⎣⎢⎡⎦⎥⎤ 10 16k +21 2k +28,由AB =BA ,得k =3.
答案:3
7.矩阵A =⎣⎢⎡⎦
⎥⎤1 -20 1的逆矩阵为________. 解析:设A -1
=⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1 -20 1⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1 ∴⎩⎪⎨⎪⎧ a -2c =1b -2d =0c =0d =1,∴⎩⎪⎨⎪⎧ a =1
b =2
c =0
d =1.∴A -1=⎣⎢⎡⎦⎥⎤1 20 1. 答案:⎣⎢⎡⎦⎥⎤1 20 1 8.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为________. 解析:因为A -1
=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 所以(AB )-1
=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 答案:⎣⎢⎡⎦
⎥⎤0 11 0 9.(2010·南宁模拟)已知矩阵M =⎣⎢⎢⎡⎦
⎥⎥⎤1 -23 -7,若矩阵X 满足MX =⎣⎢⎡⎦⎥⎤1-1,求矩阵X .
解:设M -1
=⎣⎢⎡⎦⎥⎤a c b d ,则⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎢⎡⎦⎥⎥⎤1 -23 -7=⎣⎢⎡⎦⎥⎤1 00 1, 即⎩⎪⎨⎪⎧ a +3c =1b +3d =0-2a -7c =0-2b -7d =1,解得⎩⎪⎨⎪⎧ a =7b =3c =-2d =-1,
故M -1
=⎣⎢⎢⎡⎦⎥⎥⎤7 -23 -1,又因为MX =⎣⎢⎡⎦⎥⎤1-1, 所以X =M -1
⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎢⎡⎦⎥⎥⎤7 -23 -1⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤94. 10.(扬州模拟)在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在
矩阵A =⎢⎡⎥⎤2 0对应的。