备战2020年浙江省高考数学优质卷分类解析:函数(解析版)
2020年浙江省高考数学试卷及详细解答
【解析】由题意, 到直线的距离等于半径,即 , ,
所以 ,所以 (舍)或者 ,解得 .
16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为 ,则 _______; ______.
【解析】先确定 对应事件,再求对应概率得结果;第二空,先确定随机变量,再求对应概率,最后根据数学期望公式求结果.
若取 ,则 ,此时 ,包含5个元素,排除选项C;
若取 ,则 ,此时 ,包含7个元素,排除选项B;
下面来说明选项A的正确性:
设集合 ,且 , ,
则 ,且 ,则 ,
同理 , , , , ,
若 ,则 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 ,故 ,矛盾,舍.
若 ,则 ,故 即 ,
又 ,故 ,所以 ,
联立直线方程: ,可得点A的坐标为: ,
据此可知目标函数的最小值为: ,且目标函数没有最大值.
故目标函数的取值范围是 .故选:B
4.函数y=xcosx+sinx在区间[–π,+π]的图象大致为()
A. B.
C. D.
【解析】因为 ,则 ,
即题中所给的函数为奇函数,函数图象关于坐标原点对称,
据此可知选项CD错误;且 时, ,据此可知选项B错误,故选:A.
【解析】因为 为实数,所以 ,故选:C
3.若实数x,y满足约束条件 ,则z=2x+y的取值范围是()
A. B. C. D.
【解析】画出不等式组表示的平面区域如图所示,
目标函数即: ,
其中z取得最大值时,其几何意义表示直线系在y轴上的截距最大,z取得最小值时,其几何意义表示直线系在y轴上的截距最小,据此结合目标函数的几何意义可知目标函数在点A处取得最小值,
专题03 导数-备战2020年浙江省高考数学优质卷分类解析(原卷版)
《备战2020年浙江省高考数学优质卷分类解析》第三章 导数1.从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.2.浙江省恢复对导数的考查后,已连续三年将导数应用问题设计为压轴题,同时在小题中也加以考查,难度控制在中等以上.特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.3.常见题型,选择题、解答题各一道,难度基本稳定在中等以上.一.选择题1.【浙江省宁波市2019届高三上期末】已知存在导函数,若既是周期函数又是奇函数,则其导函数( ) A .既是周期函数又是奇函数 B .既是周期函数又是偶函数 C .不是周期函数但是奇函数 D .不是周期函数但是偶函数2.【浙江省2019届高三高考全真模拟(二)】已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()xg x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)3.【浙江省温州市2019届高三2月高考适应性测试】已知实数 a > 0,b > 0,a ≠ 1,且满足lnb =,则下列判断正确的是( )A .a > bB .a <bC . b > 1D .b <14.【浙江省台州市2019届高三4月调研】已知,且函数.若对任意的不等式恒成立,则实数的取值范围为( )A .B .C .D .5.【浙江省金华十校2019届下学期高考模拟】已知函数2()xf x xe =,下列说法正确的是( ) A .任意12m e>-,函数()y f x m =-均有两个不同的零点; B .存在实数k ,使得方程()(2)f x k x =+有两个负数根; C .若()()()f a f b a b =≠,则10a b -<+<; D .若实数a ,b 满足2212()ab ee e a b -+<≠,则()()f a f b ≠.6.【浙江省镇海中学2019届高三上期中】已知函数,则函数的图象为( )A .B .C .D .二.填空题7.【浙江省杭州高级中学2019届高三上期中】函数的图象在点处的切线方程为___.8.【浙江省浙南名校联盟2019届高三上期末联考】已知函数在开区间上单调递减,则的取值范围是_____.9.【浙江省2019届高考模拟卷(二)】已知函数,若对任意的恒成立,则的取值范围是___.三.解答题10.【浙江省宁波市2019届高三上期末】已知函数,其中为实数.(1)若函数的图像关于点对称,求的解析式;(2)若,且,为函数的极小值点,求的取值范围.11.【浙江省2019届高三高考全真模拟(二)】已知函数()2a f x x x=+,()ln g x x x =+,其中0a >.(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.12.【浙江省台州市2019届高三4月调研】已知函数(为自然对数的底数,).(I)若关于的方程有三个不同的解,求实数的取值范围;(Ⅱ)若实数,满足,其中,分别记:关于的方程在上两个不同的解为,;关于的方程在上两个不同的解为,,求证:.13.【浙江省三校2019年5月份第二次联考】已知函数. (1)求函数的单调区间; (2)若方程有两个不相等的实数根,求证:14.【浙江省温州市2019届高三2月高考适应性测试】记(I )若对任意的x >0恒成立,求实数a 的值;(II )若直线l:与的图像相切于点Q(m ,n) ;(i )试用m 表示a 与k ;(ii )若对给定的k ,总存在三个不同的实数a1,a2,a3,使得直线l 与曲线,,同时相切,求实数k 的取值范围.15.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知函数,,曲线与有且仅有一个公共点.(Ⅰ)求的值;(Ⅱ)若存在实数,,使得关于的不等式对任意正实数恒成立,求的最小值.16.【浙江省金华十校2019届高三上期末】已知,,其中,为自然对数的底数.若函数的切线l 经过点,求l 的方程;Ⅱ若函数在为递减函数,试判断函数零点的个数,并证明你的结论.17.【浙江省金华十校2019届下学期高考模拟】设函数2()ln ()f x ax x a R =-∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,求实数a 的取值范围.18.【浙江省金丽衢十二校2019届高三第一次联考】已知函数.(1)若在处导数相等,证明:为定值,并求出该定值;(2)已知对于任意,直线与曲线有唯一公共点,求实数的取值范围.19. 【浙江省嘉兴市2019 届高三上期末】已知函数,且曲线在点处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)函数有两个不同的零点,,求证:.20. 【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】设,已知函数,.Ⅰ若恒成立,求的范围Ⅱ证明:存在实数使得有唯一零点.21.【浙江省浙南名校联盟2019届高三上期末联考】设,函数.(I)证明:当时,对任意实数,直线总是曲线的切线;(Ⅱ)若存在实数,使得对任意且,都有,求实数的最小值.22.【浙江省七彩联盟2019届高三上期中】已知函数.证明:函数存在唯一的极值点,并求出该极值点;若函数的极值为1,试证明:.23.【浙江省2019届高考模拟卷(一)】已知函数.(1)当时,求的极值;(2)当时,讨论的单调性;(3)若对任意的,,恒有成立,求实数的取值范围.24.【浙江省2019届高考模拟卷(二)】已知函数.(1)试讨论的单调性;(2)设点,是函数图像上异于点的两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.25.【浙江省2019届高考模拟卷(三)】已知函数,.(1)求的单调区间;(2)证明:存在,使得方程在上有唯一解.26.【浙江省杭州高级中学2019届高三上期中】已知函数.(1)若关于的方程在内有两个不同的实数根,求实数的取值范围.(2)求证:当时,.27. 【浙江省镇海中学2019届高三上期中】已知,函数在点处与轴相切(1)求的值,并求的单调区间;(2)当时,,求实数的取值范围.28.【浙江省台州市2019届高三上期末】设函数,R.(Ⅰ)求函数在处的切线方程;(Ⅱ)若对任意的实数,不等式恒成立,求实数的最大值;(Ⅲ)设,若对任意的实数,关于的方程有且只有两个不同的实根,求实数的取值范围.29.【浙北四校2019届高三12月模拟】已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.30.【浙北四校2019届高三12月模拟】设,已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)求函数在上的最小值;(Ⅲ)若, 求使方程有唯一解的的值.。
2020年浙江省高考数学试卷-含详细解析
2020年浙江省⾼考数学试卷-含详细解析2020年浙江省⾼考数学试卷副标题题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共40.0分)1. 已知集合P ={x|1A. {x|1B. {x|2C. {x|3≤x <4}D. {x|12. 已知a ∈R ,若a ?1+(a ?2)i(i 为虚数单位)是实数,则a =( )A. 1B. ?1C. 2D. ?2 3. 若实数x ,y 满⾜约束条件{x ?3y +1≤0x +y ?3≥0,则z =x +2y 的取值范围是( )A. (?∞,4]B. [4,+∞)C. [5,+∞)D. (?∞,+∞)4. 函数y =xcosx +sinx 在区间[?π,π]的图象⼤致为( )A.B.C.D.5. 某⼏何体的三视图(单位:cm)如图所⽰,则该⼏何体的体积(单位:cm 3)是( )A. 73 B. 143 C. 3 D. 66. 已知空间中不过同⼀点的三条直线m ,n ,l ,则“m ,n ,l 在同⼀平⾯”是“m ,n ,l 两两相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7.已知等差数列{a n}的前n项和S n,公差d≠0,a1d1.记b1=S2,b n+1=S n+2?S2n,n∈N?,下列等式不可能成⽴的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b88.已知点O(0,0),A(?2,0),B(2,0),设点P满⾜|PA|?|PB|=2,且P为函数y=3√4?x2图象上的点,则|OP|=()A. √222B. 4√105C. √7D. √109.已知a,b∈R且a,b≠0,若(x?a)(x?b)(x?2a?b)≥0在x≥0上恒成⽴,则()A. a<0B. a>0C. b<0D. b>010.设集合S,T,S?N?,T?N?,S,T中⾄少有两个元素,且S,T满⾜:①对于任意x,y∈S,若x≠y,都有xy∈T;②对于任意x,y∈T,若xx∈S;下列命题正确的是()A. 若S有4个元素,则S∪T有7个元素B. 若S有4个元素,则S∪T有6个元素C. 若S有3个元素,则S∪T有5个元素D. 若S有3个元素,则S∪T有4个元素⼆、填空题(本⼤题共7⼩题,共36.0分)11.我国古代数学家杨辉、宋世杰等研究过⾼阶等差数列求和问题,如数列{n(n+1) 2}就是⼆阶等差数列,数列{n(n+1)},(n∈N?)的前3项和______.12.⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=______;a1+a2+a3=______.13.已知tanθ=2,则cos2θ=______;tan(θ?π4)=______.14.已知圆锥的侧⾯积(单位:cm2)为2π,且它的侧⾯展开图是⼀个半圆,则这个圆锥的底⾯半径(单位:cm)是______.15.已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x?4)2+y2=1均相切,则k=______,b=______.16.盒中有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个不放回,直到取出红球为⽌,设此过程中取到黄球的个数为ξ,则P(ξ=0)=______,E(ξ)=______.17.已知平⾯向量e1 ,e2 满⾜|2e1??? ?e2??? |≤√2,设a?=e1 +e2 ,b? =3e1 +e2 ,向量a?,b? 的夹⾓为θ,则cos2θ的最⼩值为______.三、解答题(本⼤题共5⼩题,共74.0分)18.在锐⾓△ABC中,⾓A,B,C的对边分别为a,b,c.已知2bsinA?√3a=0.(1)求⾓B;(2)求cosA+cosB+cosC的取值范围.19.如图,三棱台ABC?DEF中,⾯ADFC⊥⾯ABC,∠ACB=∠ACD=45°,DC=2BC.(1)证明:EF⊥DB;(2)求DF与⾯DBC所成⾓的正弦值.20.已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n+1=a n+1?a n,c n+1=b nb n+2c n(n∈N?).(1)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+?+c n<1+1,n∈N?.d21.如图,已知椭圆C1:x2+y2=1,抛物线C2:y2=2px(p>0),点A是椭圆C1与抛物线C2的交点.过点A的直线l交椭圆C1于点B,交抛物线C2于点M(B,M不同于A).(1)若p=1,求抛物线C2的焦点坐标;16(2)若存在不过原点的直线l使M为线段AB的中点,求p的最⼤值.22.已知1底数.(1)证明:函数y=f(x)在(0,+∞)上有唯⼀零点;(2)记x0为函数y=f(x)在(0,+∞)上的零点,证明:(ⅰ)√a?1≤x0≤√2(a?1);(ⅰ)x0f(e x0)≥(e?1)(a?1)a.答案和解析1.【答案】B【解析】解:集合P ={x|1直接利⽤交集的运算法则求解即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.【答案】C【解析】解:a ∈R ,若a ?1+(a ?2)i(i 为虚数单位)是实数,可得a ?2=0,解得a =2.故选:C .利⽤复数的虚部为0,求解即可.本题考查复数的基本概念,是基础题. 3.【答案】B【解析】解:画出实数x ,y 满⾜约束条件{x ?3y +1≤0x +y ?3≥0所⽰的平⾯区域,如图:将⽬标函数变形为?12x +z2=y ,则z 表⽰直线在y 轴上截距,截距越⼤,z 越⼤,当⽬标函数过点A(2,1)时,截距最⼩为z =2+2=4,随着⽬标函数向上移动截距越来越⼤,故⽬标函数z =2x +y 的取值范围是[4,+∞).故选:B .作出不等式组表⽰的平⾯区域;作出⽬标函数对应的直线;结合图象判断⽬标函数z =x +2y 的取值范围.本题考查画不等式组表⽰的平⾯区域、考查数形结合求函数的最值. 4.【答案】A【解析】解:y =f(x)=xcosx +sinx ,则f(?x)=?xcosx ?sinx =?f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除B ,D ,当x =π时,y =f(π)=πcosπ+sinπ=?π<0,故排除B ,故选:A .先判断函数的奇偶性,再判断函数值的特点.本题考查了函数图象的识别,掌握函数的奇偶性额函数值得特点是关键,属于基础题. 5.【答案】A【解析】解:由题意可知⼏何体的直观图如图,下部是直三棱柱,底⾯是斜边长为2的等腰直⾓三⾓形,棱锥的⾼为2,上部是⼀个三棱锥,⼀个侧⾯与底⾯等腰直⾓三⾓形垂直,棱锥的⾼为1,所以⼏何体的体积为:12×2×1×2+13×12×2×1×1=73.故选:A.画出⼏何体的直观图,利⽤三视图的数据求解⼏何体的体积即可.本题考查三视图求解⼏何体的体积,判断⼏何体的形状是解题的关键.6.【答案】B【解析】【分析】本题借助空间的位置关系,考查了充分条件和必要条件,属于基础题.由m,n,l在同⼀平⾯,则m,n,l相交或m,n,l有两个平⾏,另⼀直线与之相交,或三条直线两两平⾏,根据充分条件,必要条件的定义即可判断.【解答】解:空间中不过同⼀点的三条直线m,n,l,若m,n,l在同⼀平⾯,则m,n,l相交或m,n,l有两个平⾏,另⼀直线与之相交,或三条直线两两平⾏.故m,n,l在同⼀平⾯”是“m,n,l两两相交”的必要不充分条件,故选:B.7.【答案】B【解析】解:在等差数列{a n}中,a n=a1+(n?1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n?1)2d,b1=S2=2a1+d,b n+1=S n+2?S2n=(2?n)a1?3n2?5n?22d.∴b2=a1+2d,b4=?a1?5d,b6=?3a1?24d,b8=?5a1?55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=?2a1?10d,b2+b6=a1+2d?3a1?24d=?2a1?22d,若2b4=b2+b6,则?2a1?10d=?2a1?22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d1,故C正确;D.若b42=b2b8,则(?a1?5d)2=(a1+2d)(?5a1?55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满⾜a1d1,故D正确.∴等式不可能成⽴的是B.故选:B.由已知利⽤等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成⽴时是否满⾜公差d≠0,a1 d1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能⼒,是中档题.8.【答案】D【解析】解:点O(0,0),A(?2,0),B(2,0).设点P满⾜|PA|?|PB|=2,可知P的轨迹是双曲线x21?y23=1的右⽀上的点,P为函数y=3√4?x2图象上的点,即y236+x24=1在第⼀象限的点,联⽴两个⽅程,解得P(√132,3√32),所以|OP|=√134+274=√10.故选:D.求出P满⾜的轨迹⽅程,求出P的坐标,即可求解|OP|.本题考查圆锥曲线的综合应⽤,曲线的交点坐标以及距离公式的应⽤,是中档题.9.【答案】C【解析】解:由题意知,x=0时,不等式ab(?2a?b)?0恒成⽴,即ab(2a+b)?0,∵ab≠0,∴可得1a +2b0,则a,b⾄少有⼀个是⼩于0的,(1)若a<0,b<0,(x?a)(x?b)(x?2a?b)?0在x?0时恒成⽴,符合题意;(2)若a<0,b>0,则2a+b(3)若a>0,b<0,则2a+b>b,当2a+b=a时,(x?a)(x?b)(x?2a?b)?0在x?0时恒成⽴,符合题意.综合,b<0成⽴.故选:C.本题考查不等式恒成⽴问题,注意三次函数的图象,考查分类讨论思想和转化思想,属于中档题.10.【答案】A【解析】解:取:S={1,2,4},则T={2,4,8},S∪T={1,2,4,8},4个元素,排除C.S={2,4,8},则T={8,16,32},S∪T={2,4,8,16,32},5个元素,排除D;S={2,4,8,16}则T={8,16,32,64,128},S∪T={2,4,8,16,32,64,128},7个元素,排除B;故选:A.利⽤特殊集合排除选项,推出结果即可.本题考查命题的真假的判断与应⽤,集合的基本运算,利⽤特殊集合排除选项是选择题常⽤⽅法,难度⽐较⼤.11.【答案】10【解析】【分析】本题考查数列求和,数列通项公式的应⽤,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满⾜a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.【答案】80 130【解析】解:∵(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=C54?24=80.a1+a2+a3=C51?2+C52?4+C53?8=130.故答案为:80;130.直接利⽤⼆项式定理的通项公式,求解即可.本题考查⼆项式定理的应⽤,只有⼆项式定理系数以及项的系数的区别,是基本知识的考查.13.【答案】?351 3【解析】解:tanθ=2,则cos2θ=cos2θ?sin2θcos2θ+sin2θ=1?tan2θ1+tan2θ=1?41+4=?35.tan(θ?π4)=tanθ?tanπ41+tanθtanπ4=2?11+2×1=13.故答案为:?35;13.利⽤⼆倍⾓公式以及同⾓三⾓函数基本关系式求解第⼀问,利⽤两⾓和与差的三⾓函数转化求解第⼆问.本题考查⼆倍⾓公式的应⽤,两⾓和与差的三⾓函数以及同⾓三⾓函数基本关系式的应⽤,是基本知识的考查.14.【答案】1【解析】解:∵圆锥侧⾯展开图是半圆,⾯积为2π,设圆锥的母线长为a,则12×a2π=2π,∴a=2,∴侧⾯展开扇形的弧长为2π,设圆锥的底⾯半径OC=r,则2πr=2π,解得r=1.故答案为:1.利⽤圆锥的侧⾯积,求出母线长,求解底⾯圆的周长,然后求解底⾯半径.本题考查圆锥的母线长的求法,注意利⽤圆锥的弧长等于底⾯周长这个知识点.15.【答案】√33?2√33【解析】解:由条件得C1(0,0),r1=1,C2(4,0),r2=1,因为直线l与C1,C2都相切,故有d 1=√1+k 2=1,d 2=√1+k 2=1,则有√1+k 2=√1+k 2,故可得b 2=(4k +b)2,整理得k(2k +b)=0,因为k >0,所以2k +b =0,即b =?2k ,代⼊d 1=√1+k 2=1,解得k =√33,则b =?2√33,故答案为:√33;?2√33.根据直线l 与两圆都相切,分别列出⽅程d 1=√1+k 2=1,d 2=√1+k 2=1,解得即可.本题考查直线与圆相切的性质,考查⽅程思想,属于中档题.16.【答案】13 1【解析】解:由题意知,随机变量ξ的可能取值为0,1,2;计算P(ξ=0)=C 11C 41+C 11?C 11C 41?C 31=13;P(ξ=1)=C 21?C 11A 42+C 21C 11A 22C 11A 43=13; P(ξ=2)=A 22?C 11A 43+C 22C 11A 33A 22C 11A 44=13;所以E(ξ)=0×13+1×13+2×13=1.故答案为:13,1.由题意知随机变量ξ的可能取值为0,1,2;分别计算P(ξ=0)、P(ξ=1)和P(ξ=2),再求E(ξ)的值.本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.17.【答案】2829【解析】解:设e 1 、e 2 的夹⾓为α,由e 1 ,e 2 为单位向量,满⾜|2e 1??? ?e 2??? |≤√2,所以4e 1 2?4e 1 ?e 2 +e 2 2=4?4cosα+1≤2,解得cosα≥34;⼜a ? =e 1 +e 2 ,b ? =3e 1 +e 2 ,且a,b ? 的夹⾓为θ,所以a ? ?b ? =3e 1 2+4e 1 ?e 2 +e 2 2=4+4cosα, a ? 2=e 1 2+2e 1 ?e 2 +e 2 2=2+2cosα,b ? 2=9e 1 2+6e 1 ?e 2 +e 2 2=10+6cosα;则cos 2θ=(a ? ?b)2a2×b2=(4+4cosα)2(2+2cosα)(10+6cosα)=4+4cosα5+3cosα=43?835+3cosα,所以cosα=34时,cos 2θ取得最⼩值为43?835+3×34=2829.故答案为:2829.设e1 、e2 的夹⾓为α,由题意求出cosα≥34;再求a?,b? 的夹⾓θ的余弦值cos2θ的最⼩值即可.本题考查了平⾯向量的数量积与夹⾓的运算问题,是中档题.18.【答案】解:(1)∵2bsinA=√3a,∴2sinBsinA=√3sinA,∵sinA≠0,∴sinB=√32,,∴B=π3,(2)∵△ABC为锐⾓三⾓形,B=π∴C=2π3A,,△ABC为锐⾓三⾓形,,,解得,,,,∴cosA+cosB+cosC的取值范围为(√3+12,32 ].【解析】本题考查了正弦定理,三⾓函数的化简,三⾓函数的性质,考查了运算求解能⼒和转化与化归能⼒,属于中档题.(1)根据正弦定理可得sinB=√32,结合⾓的范围,即可求出,(2)根据两⾓和差的余弦公式,以及利⽤正弦函数的性质即可求出.19.【答案】解:(1)证明:作DH⊥AC,且交AC于点H,∵⾯ADFC⊥⾯ABC,⾯ADFC∩⾯ABC=AC,DH?⾯ADFC,∴DH⊥⾯ABC,BC?⾯ABC,∴DH⊥BC,∴在Rt△DHC中,CH=CD?cos45°=√22CD,∵DC=2BC,∴CH=√22CD=√222BC=√2BC,∴BCCH =√22,⼜∠ACB=45°,∴△BHC是直⾓三⾓形,且∠HBC=90°,∴BC⊥⾯DHB,∵DB?⾯DHB,∴BC⊥DB,∵在三棱台DEF?ABC中,EF//BC,∴EF⊥DB.(2)设BC=1,则BH=1,HC=√2,在Rt△DHC中,DH=√2,DC=2,在Rt△DHB中,DB=√DH2+HB2=√2+1=√3,作HG⊥BD于G,∵BC⊥⾯DHB,HG?⾯DHB,∴BC⊥HG,⽽BC?⾯BCD,BD?⾯BCD,BC∩BD=B,∴HG⊥⾯BCD,∵GC?⾯BCD,∴HG⊥GC,∴△HGC是直⾓三⾓形,且∠HGC=90°,设DF与⾯DBC所成⾓为θ,则θ即为CH与⾯DBC的夹⾓,且sinθ=sin∠HCG=HGHC =√2,∵在Rt△DHB中,DH?HB=BD?HG,∴HG=DH?HBBD =√2?1√3=√63,∴sinθ=√2=√63√2=√33.【解析】本题主要考查空间直线互相垂直的判定和性质,以及直线与平⾯所成⾓的⼏何计算问题,考查了空间想象能⼒和思维能⼒,平⾯与空间互相转化是能⼒,⼏何计算能⼒,以及逻辑推理能⼒,本题属综合性较强的中档题.(1)题根据已知条件,作DH⊥AC,根据⾯⾯垂直,可得DH⊥BC,进⼀步根据直⾓三⾓形的知识可判断出△BHC是直⾓三⾓DF与⾯DBC 所成⾓的正弦值.20.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2?q?1=0,解得q=?13(舍去),或q=12,∴c n+1=b nb n+2?c n=1b n+2b nc n=1q2c n=1(12)2c n=4c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1?4n?1=4n?1,n∈N?.∴a n+1?a n=c n+1=4n,则a1=1,a2?a1=41,a3?a2=42,a na n1=4n1,各项相加,可得a n=1+41+42+?+4n?1=1?4n1?4=4n?13b n+2c n(n∈N?),可得b n+2?c n+1=b n?c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dddb n b n+1=(1+1d)?b n+1?b nb n b n+1=(1+1d)(1b n1b n+1),∴c1+c2+?+c n=(1+1d)(1b11b2)+(1+)(1b21b3)+?+(1+ 1d)(1b n1b n+1 )=(1+1 d)(1b11b2+1b21b3 +?+1b nb n+1)=(1+1d)(1b11b n+1)=(1+1d)(1?1b n+1)<1+1d,∴c1+c2+?+c n<1+1d,故得证.【解析】本题主要考查数列求通项公式,等差数列和等⽐数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,⽅程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能⼒和数学运算能⼒.本题属综合性较强的偏难题.(1)先根据等⽐数列的通项公式将b2=q,b3=q2代⼊b1+b2=6b3,计算出公⽐q的值,然后根据等⽐数列的定义化简c n+1=b nb n+2c n可得c n+1=4c n,则可发现数列{c n}是以1为⾸项,4为公⽐的等⽐数列,从⽽可得数列{c n}的通项公式,然后将通项公式代⼊c n+1=a n+1?a n,可得a n+1?a n=c n+1=4n,再根据此递推公式的特点运⽤累加法可计算出数列{a n}的通项公式;(2)通过将已知关系式c n+1=b nb n+2c n不断进⾏转化可构造出数列{b n b n+1c n},且可得到数列{b n b n+1c n }是⼀个常数列,且此常数为1+d ,从⽽可得b n b n+1c n =1+d ,再计算得到c n =1+d,根据等差数列的特点进⾏转化进⾏裂项,在求和时相消,最后运⽤放缩法即可证明不等式成⽴.21.【答案】解:(1)p =116,则?p 2=132,则抛物线C 2的焦点坐标(132,0),(2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0),将直线l 的⽅程代⼊椭圆C 1:x 22+y 2=1得(m 2+2)y 2+2mty +t 2?2=0∴点M 的纵坐标y M =?mtm 2+2。
2020年浙江省高考数学试卷 试题+答案详解
13.已知 ,则 ________; ______.
14.已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.
15.设直线 ,圆 , ,若直线 与 , 都相切,则 _______;b=______.
16.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为 ,则 _______; ______.
21【答案】(Ⅰ) ;(Ⅱ)
【解析】(Ⅰ)当 时, 的方程为 ,
故抛物线 的焦点坐标为 ;
(Ⅱ)设 ,
由 ,得
∴ ,
由 在抛物线上,∴ ,整理得
又 ,消元得 ,即
∴ ,∴ ,
∴ .
由 消元得 ,即
∴
∴ ,
∴ , , ,
∴ 的最大值为 ,此时 .
法2:设直线 , .
将直线 的方程代入椭圆 得 ,
∴点 的纵坐标为 .
,解得 .故答案为 .
15【答案】(1) (2) .
【解析】由题意, 到直线的距离等于半径,即 , ,
∴ ,∴ (舍)或者 ,
解得 .故答案为 .
16【答案】(1). (2).
【解析】∵ 对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,
∴ ,随机变量 ,
, ,
∴ .故答案为 .
17【答案】
【解析】∵ ,∴ ,∴ ,
在 中,设 ,则 , ,
∴ .故 与平面 所成角的正弦值为 .
20【答案】(I) ;(II)证明见解析.
【解析】(I)依题意 ,
而 ,即 ,
由于 ,解得 ,∴ .
备战2020年浙江省高考数学优质卷分类解析:函数(原卷版)
3
f (x) 1
3
1
x
1
2
3
则
g(x) 3
2
1
f [g(1)] 的值为
;满足 f [g(x)] g[ f (x)] 的 x 的值是
.
25.【浙江省衢州市五校联盟 2019 届高三年级上联考】.
__________,
(,
)的最大值为_________.
26.【浙江省温州市 2019 届高三 2 月高考适应性测试】已知
,且
,则
的取值范围是__________.
20.【浙江省三校 2019 年 5 月份第二次联考】定义
,已知函数
,,
,则 的取值范围是__________,若
有四个不同的
实根,则 的取值范围是__________.
x 6, x 2 21.【浙江省 2019 届高三高考全真模拟(二)】若函数 f (x) 3 loga x, x 2 ( a 0 且 a 1)的值 域为[4, ) ,则 f (1) ________;实数 a 的取值范围为________.
《备战 2020 年浙江省高考数学优质卷分类解析》
第二章 函数
1.关于函数图象的考查: (1)函数图象的辨识与变换,五年三考; (2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力, 五年五考; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本 考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性 与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想 和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查,五年五考;
2020学年普通高等学校招生全国统一考试(浙江卷)数学及答案解析
2020年普通高等学校招生全国统一考试(浙江卷)数学一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U={1,2,3,4,5},A={1,3},则C U A=( )A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}解析:根据补集的定义,C U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.C U A={2,4,5}.答案:C2.双曲线221 3xy-=的焦点坐标是( )A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c=22a b+=2,∴该双曲线的焦点坐标为(±2,0)答案:B3.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2B.4C.6D.8解析:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=()112222+⋅⋅=6.答案:C4.复数21i-(i为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i解析:化简可得()()()2121111iz ii i i+===+--+,∴z的共轭复数z=1-i.答案:B5.函数y=2|x|sin2x的图象可能是( ) A.B.C.D.解析:根据函数的解析式y=2|x|sin2x ,得到:函数的图象为奇函数,故排除A 和B.当x=2π时,函数的值也为0,故排除C.答案:D6.已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析:∵m ⊄α,n ⊂α,∴当m ∥n 时,m ∥α成立,即充分性成立, 当m ∥α时,m ∥n 不一定成立,即必要性不成立, 则“m ∥n ”是“m ∥α”的充分不必要条件. 答案:A7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时,( ) A.D(ξ)减小 B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小解析:设0<p <1,随机变量ξ的分布列是E(ξ)=1110122222p p p -⨯+⨯+⨯=+;方差是D(ξ)=2222211111111012222222422p p p p p p p p ---⨯+--⨯+--⨯=-++=--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎭⎝,∴p ∈(0,12)时,D(ξ)单调递增; p ∈(12,1)时,D(ξ)单调递减;∴D(ξ)先增大后减小. 答案:D8.已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1解析:∵由题意可知S 在底面ABCD 的射影为正方形ABCD 的中心.过E 作EF ∥BC ,交CD 于F ,过底面ABCD 的中心O 作ON ⊥EF 交EF 于N ,连接SN ,取CD 中点M ,连接SM ,OM ,OE ,则EN=OM , 则θ1=∠SEN ,θ2=∠SEO ,θ3=∠SMO. 显然,θ1,θ2,θ3均为锐角.∵13tan tan SN SN SONE OM OM θθ===,,SN ≥SO ,∴θ1≥θ3, 又32sin sin SO SOSM SE θθ==,,SE ≥SM ,∴θ3≥θ2.答案:D9.已知a b e ,,是平面向量,e 是单位向量.若非零向量a 与e 的夹角为3π,向量b 满足2430b e b -⋅+=,则a b -的最小值是( )3323解析:由2430b e b -⋅+=,得()()3b e b e -⋅-=0,∴()()3b e b e -⊥-,如图,不妨设e =(1,0),则b 的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量a 与e 的夹角为3π,则a 的终点在不含端点O 的两条射线y=3x(x >0)上.不妨以3为例,则a b-的最小值是(2,0)3x=y=0的距离减1.231=3131-+.答案:A10.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),若a 1>1,则( ) A.a 1<a 3,a 2<a 4 B.a 1>a 3,a 2<a 4 C.a 1<a 3,a 2>a 4 D.a 1>a 3,a 2>a 4解析:a 1,a 2,a 3,a 4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a 1>1,设公比为q ,当q >0时,a 1+a 2+a 3+a 4>a 1+a 2+a 3,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),不成立, 即:a 1>a 3,a 2>a 4,a 1<a 3,a 2<a 4,不成立,排除A 、D.当q=-1时,a 1+a 2+a 3+a 4=0,ln(a 1+a 2+a 3)>0,等式不成立,所以q ≠-1;当q <-1时,a 1+a 2+a 3+a 4<0,ln(a 1+a 2+a 3)>0,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)不成立, 当q ∈(-1,0)时,a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 答案:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2020年浙江省高考数学试卷和答案解析
2020年浙江省高考数学试卷含答案解析
一、选择题(本大题共10小题,共40.0分)
1.已知集合P={xll<x<4},Q={xl2<x<3}, 则PnQ=( )
A. {xll<.x:s2}
B. {xl2<x<3}
C. {习3�x<4}
D. {xll<x<4}
2.已知aER,若a-1+(a-2) i Ci为虚数单位)是实数,则a=( )
A. 1
B. -1
C.2
D.-2
3.若实数X,y满足约束条件{
x-3y + 1::; 0
X + y-3 :2:: 0'则z=x+2y的取值范围是()
A. (-oo, 4]
B. [4, +oo)
C.[5,+oo)
4.函数y=xcosx+sin.x在区间[-兀,兀]的图象大致为()
D.C-oo, 十oo)
y v
A.
C.
V
r
X
X
B.
D.
y
X
X
5.某几何体的三视图(单位:cm)如图所示,则该几何
体的体积(单位:cm3)是()
A7 . 3
B.:;
C.3�
D.6主视图侧视图
勹
俯视图
6.已知空间中不过同一点的三条直线m,n, l, 则"m,n, l在同一平面”是"m,n,
l两两相交”的(
A. 充分不必要条件
C.充分必要条件
B.必要不充分条件
D.既不充分也不必要条件。
2020年浙江省高考数学试卷(解析版)
为 x1 a, x2 b, x3 2a b
当 a 0 时,则 x2 x3 , x1 > 0 ,要使 f (x) 0 ,必有 2a b a ,且 b 0 ,
即 b a ,且 b 0 ,所以 b 0 ;
当 a 0 时,则 x2 x3 , x1 0 ,要使 f (x) 0 ,必有 b 0 .
1 3
1 2
21 1
1 2
2
1
2
1 3
2
7 3
.
故选:A
【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.
6.已知空间中不过同一点的三条直线 m,n,l,则“m,n,l 在同一平面”是“m,n,l 两两相交”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充分必要条件 【答案】B
A.
B.
C.
D.
【答案】A 【解析】 【分析】
首先确定函数的奇偶性,然后结合函数在 x 处的函数值排除错误选项即可确定函数的图象.
【详解】因为 f x x cos x sin x ,则 f x x cos x sin x f x ,
即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项 CD 错误;
成立的是( )
A. 2a4=a2+a6
B. 2b4=b2+b6
C. a42 a2a8
D. b42 b2b8
【答案】D
【解析】
【分析】
根据题意可得, bn1 S2n2 S2n a2n1 a2n2 ,而 b1 S2 a1 a2 ,即可表示出题中 b2 , b4 , b6 , b8 ,再结
)
A. (, 4]
B. [4, )
备战2020年浙江省高考数学优质卷分类解析:平面解析几何(原卷版)
《备战2020年浙江省高考数学优质卷分类解析》第八章平面解析几何纵观近几年的高考试题,考查圆锥曲线的题目有小有大,其中小题以考查圆、椭圆、双曲线的方程及几何性质为主,难度在中等或以下,其中圆的问题是五年两考,直线与椭圆的位置关系,五年三考,圆锥曲线基本问题五年五考;大题则主要考查直线与抛物线的位置关系问题,五年五考,直线与椭圆位置关系问题只2016年理科考查一次;命题的主要特点有:一是以过特殊点的直线与圆锥曲线相交为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;二是以不同曲线(圆、椭圆、抛物线)的位置关系为基础设计“连环题”,结合曲线的定义及几何性质,利用待定系数法先行确定曲线的标准方程,进一步研究弦长、图形面积、最值、取值范围等;三是直线与圆锥曲线的位置关系问题,综合性较强,往往与向量(共线、垂直、数量积)结合,涉及方程组联立,根的判别式、根与系数的关系、弦长问题等.一.选择题1.【浙江省三校2019年5月份第二次联考】双曲线的焦距是()A.B.C.D.2.【浙江省2019届高三高考全真模拟(二)】双曲线22132x y-=的焦距是()A.1 B.2 C.5D.253.【浙江省温州市2019届高三2月高考适应性测试】双曲线的一个顶点坐标是()A.( 2,0) B.( -,0) C.(0,) D.(0 ,)4.【浙江省湖州三校2019年普通高等学校招生全国统一考试】双曲线的一个焦点到一条渐近线的距离是()A.1 B.2 C.4 D.5.【浙江省金丽衢十二校2019届高三第一次联考】双曲线的渐近线方程为( )A .B .C .D .6.【浙江省金华十校2019届下学期高考模拟】过点(1,0)且与直线220x y --=垂直的直线方程为( ) A .210x y --= B .210x y -+= C .220x y +-=D .210x y +-=7.【浙江省金华十校2019届高三上期末】已知双曲线的一个焦点在圆上,则双曲线的渐近线方程为A .B .C .D .8.【浙江省宁波市2019届高三上期末】已知椭圆的离心率的取值范围为,直线交椭圆于点为坐标原点且,则椭圆长轴长的取值范围是( )A .B .C .D .9.【浙江省金华十校2019届高考模拟】已知椭圆C :2214x y +=上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是ABC ∆的重心,且BMA ∆与CMO ∆的面积之比为32,则直线BC 的斜率为( )A .2B .14-C .3D .310.【浙江省金华十校2019届下学期高考模拟】双曲线2214yx-=的渐近线方程是_____,离心率为_____.11.【浙江省三校2019年5月份第二次联考】已知抛物线,过点作直线交抛物线于另一点,是线段的中点,过作与轴垂直的直线,交抛物线于点,若点满足,则的最小值是__________.12.【浙江省台州市2019届高三4月调研】已知为双曲线的左焦点,过点作直线与圆相切于点,且与双曲线右支相交于点,若,则双曲线的离心率为______. 13.【浙江省温州市2019届高三2月高考适应性测试】已知F是椭圆的右焦点,直线交椭圆于A、B 两点,若cos ∠AFB,则椭圆C 的离心率是_____.14.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.15.【浙江省金华十校2019届高三上期末】已知F为抛物线C:的焦点,点A在抛物线上,点B在抛物线的准线上,且A,B两点都在x轴的上方,若,,则直线F A的斜率为______.16.【浙江省金丽衢十二校2019届高三第一次联考】已知是椭圈上的动点,过作椭圆的切线与轴、轴分别交于点、,当(为坐标原点)的面积最小时,(、是椭圆的两个焦点),则该椭圆的离心率为__________.17.【浙江省宁波市2019届高三上期末】过抛物线的焦点的直线交抛物线于两点,抛物线在处的切线交于.(1)求证:;(2)设,当时,求的面积的最小值.18.【浙江省三校2019年5月份第二次联考】对于椭圆,有如下性质:若点是椭圆外一点,,是椭圆的两条切线,则切点所在直线的方程是,利用此结论解答下列问题:已知椭圆和点,过点作椭圆的两条切线,切点是,记点到直线(是坐标原点)的距离是,(Ⅰ)当时,求线段的长;(Ⅱ)求的最大值.19.【浙江省2019届高三高考全真模拟(二)】如图所示,曲线C 由部分椭圆1C :22221(0,0)y x a b y a b+=>>≥和部分抛物线2C :21(0)y x y =-+≤连接而成,1C 与2C 的公共点为A ,B ,其中1C 所在椭圆的离心率为22.(Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与1C ,2C 分别交于点P ,Q (P ,Q ,A ,B 中任意两点均不重合),若AP AQ ⊥,求直线l 的方程.20.【浙江省台州市2019届高三4月调研】已知斜率为的直线经过点,且直线交椭圆于,两个不同的点. (I)若,且是的中点,求直线的方程;(Ⅱ)若随着的增大而增大,求实数的取值范围.21.【浙江省温州市2019届高三2月高考适应性测试】如图,A 为椭圆的下顶点,过 A 的直线l 交抛物线于B 、C 两点,C 是 AB 的中点.(I)求证:点C的纵坐标是定值;(II)过点C作与直线l 倾斜角互补的直线l 交椭圆于M、N两点,求p的值,使得△BMN的面积最大.22.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知抛物线:的焦点为,过点的动直线与抛物线交于,两点,直线交抛物线于另一点,的最小值为4.(Ⅰ)求抛物线的方程;(Ⅱ)记、的面积分别为,,求的最小值.23.【浙江省金华十校2019届高三上期末】已知椭圆C:,过点分别作斜率为,的两条直线,,直线交椭圆于A,B两点,直线交椭圆于C,D两点,线段AB的中点为M,线段CD的中点为N.Ⅰ若,,求椭圆方程;Ⅱ若,求面积的最大值.24.【浙江省金丽衢十二校2019届高三第一次联考】已知椭圆左顶点为,为原点,,是直线上的两个动点,且,直线和分别与椭圆交于,两点(1)若,求的面积的最小值;(2)若,,三点共线,求实数的值.25.【浙江省七彩联盟2019届高三上期中】抛物线Q :,焦点为F .若是抛物线内一点,P 是抛物线上任意一点,求的最小值;过F 的两条直线,,分别与抛物线交于A 、B 和C 、D 四个点,记M 、N 分别是线段AB 、CD 的中点,若,证明:直线MN 过定点,并求出这个定点坐标.26.【浙江省金华十校2019届下学期高考模拟】已知抛物线C :22(0)y px p =>的焦点是(1,0)F ,直线1l :1y k x =,2l :2y k x =分别与抛物线C 相交于点A 和点B ,过A ,B 的直线与圆O :224x y +=相切.(1)求直线AB 的方程(含1k 、2k );(2)若线段OA 与圆O 交于点M ,线段OB 与圆O 交于点N ,求MON S 的取值范围.27.【浙江省浙南名校联盟2019届高三上期末联考】已知直线与椭圆恰有一个公共点,与圆相交于两点.(I )求与的关系式;(II )点与点关于坐标原点对称.若当时,的面积取到最大值,求椭圆的离心率.28.【浙江省2019届高考模拟卷(三)】如图,直线交椭圆于两点,点是线段的中点,连接并延长交椭圆于点.(1)设直线的斜率为,求的值;(2)若,求面积的最大值.29.【浙江省2019届高考模拟卷(一)】抛物线上纵坐标为的点到焦点的距离为2.(Ⅰ)求的值;(Ⅱ)如图,为抛物线上三点,且线段与轴交点的横坐标依次组成公差为1的等差数列,若的面积是面积的,求直线的方程.30.【浙江省2019届高考模拟卷(二)】已知椭圆,过点,且离心率为,过点作互相垂直的直线、,分别交椭圆于、两点.(1)求椭圆方程;(2)求面积的最大值.。
备战2020年浙江省高考数学优质卷分类解析:三角函数与解三角形(解析版)
【答案】 ; 8.
4
【解析】
由余弦定理可知: b2 a2 c2 2ac cos B ,而 a2 c2 b2 2ac ,所以有
cos B 2 B (0, ) B .
2
4
sin A 2sin B sin C sin( B C) 2sin B sin C 所以有
由正弦定理知 因为 为钝角,
所以
,即
所以
所以
,即 的取值范围是
.
11.【浙江省三校 2019 年 5 月份第二次联考】在锐角
中,内角
所对的边分别是 , ,
,则
__________. 的取值范围是__________.
【答案】 【解析】
由正弦定理,可得
,则
.
由
,可得
,
所以
由
是锐角三角形,可得
,
,
.
,则
), BOC
( I)求 sin 的值;
( II)求 2cos( )sin )
【答案】(1) sin (2)
【解析】
(I)
,
∴
,
∴
,
=
(II)∵
=
,
∴
=
=
.
23.【浙江省湖州三校 2019 年普通高等学校招生全国统一考试】已知函数
.
(Ⅰ)求函数 的单调递减区间;
(Ⅱ)求方程
在区间 内的所有实根之和.
,
所以
,
.
所以
.
12.【浙江省 2019 届高考模拟卷(二)】在
中,角
的对边分别为 , ,
则
____, ___.
【答案】 【解析】
专题07 不等式-备战2020年浙江省高考数学优质卷分类解析(原卷版)
《备战2020年浙江省高考数学优质卷分类解析》第七章.不等式高考试题不等式的考查有两类,一是涉及不等式的性质、不等式的解法、绝对值不等式、基本不等式及其应用等,一般不独立命题,而是以工具的形式,与充要条件、函数与导数、解析几何、三角函数、数列等综合考查,五年五考;二是涉及简单线性规划问题,五年五次独立考查.对简单线性规划的考查角度有两种:一种是求目标函数的最值或范围,但目标函数变化多样,有截距型、距离型、斜率型等;另一种是线性规划逆向思维型,提供目标函数的最值,反求参数的范围等.题型为选择题或填空题,近两年主要考查截距型目标函数的最值问题,且目标函数中自变量的系数均为正数,属于教科书中同类问题的最低要求.一.选择题1.【浙江省台州市2019届高三4月调研】已知,满足条件,则的最小值是()A.B.C.D.2.【浙江省三校2019年5月份第二次联考】已知实数满足,则()A.有最小值,无最大值B.有最大值,无最小值C.有最小值,也有最大值D.无最小值,也无最大值3.【浙江省三校2019年5月份第二次联考】已知,则取到最小值时()A.B.C.D.4.【浙江省温州市2019届高三2月高考适应性测试】以下不等式组表示的平面区域是三角形的是()A.B.C.D.5.【浙江省湖州三校2019年普通高等学校招生全国统一考试】若变量,满足约束条件,则的最大值是( )A .1B .2C .3D .46.【浙江省金华十校2019届高三上期末】若实数x ,y 满足约束条件,则的最小值是A .6B .5C .4D .7.【浙江省金华十校2019届高三上期末】若关于x 的不等式在上恒成立,则实数a 的取值范围是 A .B .C .D .8.【浙江省台州市2019届高三4月调研】已知,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件9.【浙江省2019届高三高考全真模拟(二)】若x ,y 满足约束条件20404x y x y y -≤⎧⎪+-≥⎨⎪<⎩,则2z x y =+的取值范围是( )A .16,83⎛⎫ ⎪⎝⎭B .16,163⎛⎫ ⎪⎝⎭C .16,163⎡⎫⎪⎢⎣⎭D .16,163⎡⎤⎢⎥⎣⎦10.【浙江省金华十校2019届高考模拟】若x ,y 满足约束条件42y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .611.【2018年11月浙江省学考】关于x 的不等式的解集是( )A .B .C .∪D . [-1,2]12.【2018年11月浙江省学考】若实数a ,b 满足ab >0,则的最小值为( )A . 8B . 6C . 4D . 2 13.【浙江省宁波市2019届高三上期末】关于的不等式组表示的平面区域内存在点,满足,则实数的取值范围是( ) A .B .C .D .14.【浙江省2019届高三高考全真模拟(二)】已知01b a <<+,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则a 的取值范围为( ) A .(1,1)-B .(0,2)C .(1,3)D .(2,5)15.【浙北四校2019届高三12月模拟考数学试题】若直线与不等式组表示的平面区域无公共点,则的取值范围是( ) A .B .C .D . R16.【浙江省镇海中学2019届高三上学期期中考试数学试题】已知正项等比数列满足,若存在两项,使得,则的最小值为( )A .B .C .D .17. 【浙江省2019届高考模拟卷(二)】若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .二.填空题18.【浙江省宁波市2019届高三上期末】已知不等式对任意正整数均成立,则实数的取值范围___19.【浙江省金华十校2019届高三上期末】已知,则的最小值为______.20.【浙江省金丽衢十二校2019届高三第一次联考】若实数、满足,且,则的最小值是__________,的最大值为__________.21.【浙江省衢州市五校联盟2019届高三上学期联考】若,满足,的最小值为__________;的最大值为_______.22. 若实数,满足约束条件则目标函数的最小值为___;最大值为_____.23.【浙江省杭州高级中学2019届高三上学期期中】已知函数. 设关于的不等式的解集为,若,则实数的取值范围是___.24.【浙江省镇海中学2019届高三上期中】已知,且,则的最小值_________,此时的值为___________.25.【浙江省温州九校2019届高三第一次联考】已知点在不等式组,表示的平面区域上运动,若区域表示一个三角形,则的取值范围是_______,若则的最大值是________.26.【浙江省温州九校2019届高三第一次联考】已知抛物线的焦点,过点作直线交抛物线于两点,则_________.的最大值为________27.【浙江省绍兴市第一中学2019届高三上期末】设变量、满足约束条件则的最大值为______.28.【浙江省绍兴市第一中学2019届高三上期末】己知实数x,y,z[0,4],如果x2,y2,z2是公差为2的等差数列,则的最小值为_______.29.【浙江省浙南名校联盟2019届高三上学期末】已知函数在开区间上单调递减,则的取值范围是_____.30.【浙江省温州九校2019届高三第一次联考】若对恒成立,则实数的取值范围为_______31.【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】设函数,当时,记的最大值为,则的最小值为______.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《备战2020年浙江省高考数学优质卷分类解析》第二章函数1.关于函数图象的考查:(1)函数图象的辨识与变换,五年三考;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力,五年五考;2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查,五年五考;3.常见题型,由于对导数考查的回归,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近三年趋向于稳定在选择题、填空题,难度基本稳定在中等或以下.一.选择题1.【浙江省台州市2019届高三上期末】设不为1的实数,,满足:,则 ( )A. B. C. D.【答案】D【解析】因为底数与的大小关系不确定,故B错;同理,C也错.取,则,从而,故A错,因为为上的增函数,而,故,故D正确.综上,选D.2.【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】设函数,则的值为A. B. C. D.2【答案】C【解析】,=ln2,ln2,即=3.【浙北四校2019届高三12月模拟】若,则()A. B. C. D.【答案】C【解析】∵log m2<log n2<0,∴<<0,∴lgn<lgm<0,可得n<m<1.故选:C.4.【浙江省宁波市2019届高三上期末】已知存在导函数,若既是周期函数又是奇函数,则其导函数()A.既是周期函数又是奇函数B.既是周期函数又是偶函数C.不是周期函数但是奇函数D.不是周期函数但是偶函数【答案】B【解析】若是周期函数,设其周期为,则.所以周期函数的导数仍是周期函数; 若是奇函数,则,所以,即,所以奇函数的导数是偶函数,故选B .5.【浙江省2019届高三高考全真模拟(二)】已知二次函数2()f x x bx a =-+的部分图象如图所示,则函数()'()xg x e f x =+的零点所在区间为( )A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【答案】B 【解析】由函数f (x )的图象可知,0<f (0)=a <1,f (1)=1-b +a =0,所以1<b <2.又f ′(x )=2x -b ,所以g (x )=e x+2x -b ,所以g ′(x )=e x+2>0,所以g (x )在R 上单调递增, 又g (0)=1-b <0,g (1)=e +2-b >0,根据函数的零点存在性定理可知,函数g (x )的零点所在的区间是(0,1), 故选B.6.【浙江省2019届高三高考全真模拟(二)】设0a >,0b >,则“lg()0ab >”是“lg()0a b +>”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】因为lg()0ab >,所以1ab >,0a >,0b >,显然,a b 中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由lg()0a b +>,可得1a b +>,,a b 与1的关系不确定,显然由“lg()0ab >”可以推出lg()0a b +>,但是由lg()0a b +>推不出lg()0ab >,当然可以举特例:如23a b ==,符合1a b +>,但是不符合1ab >,因此“lg()0ab >”是“lg()0a b +>”的充分不必要条件,故本题选A.7.【浙江省湖州三校2019年普通高等学校招生全国统一考试】设函数,则函数的图像可能为( )A .B .C .D .【答案】C 【解析】 因为,所以舍去B,D ,因为ln3>0,所以选C.8.【浙江省嘉兴市2019 届高三上期末】函数的大致图象是( )A .B .C .D .【答案】B根据函数表达式,当x>2时,函数值大于0,可排除A选项,当x<-1时,函数值小于0 故可排除C和D 选项,进而得到B正确.故答案为:B.9.【浙江省台州市2019届高三4月调研】已知,.则当时,的图像不可能...是()A.B.C.D.【答案】A【解析】记,得,对于A、B,图象关于y轴对称,所以,是偶函数,则有,时,>0,所以A不可能,B有可能.对于C、D,图象关于原点对称,所以是奇函数,则有,或,C、D都有可能.故选:A.10.【浙江省三校2019年5月份第二次联考】已知,则取到最小值时()A.B.C.D.【解析】 由,可得,且. 所以,当且时等号成立,解得.所以取到最小值时.故选D.11.【浙江省金华十校2019届下学期高考模拟】在下面四个[,]x ππ∈-的函数图象中,函数sin 2y x x =的图象可能是( )A .B .C .D .【答案】C 【解析】因为()sin(2)sin 2()f x x x x x f x -=--=-=-,即()f x 是奇函数,图象关于原点对称,排除,B D , 当x π=时,()sin 20f πππ==,排除A . 故选:C .12.【浙江省七彩联盟2019届高三上期中】已知函数,且,则不等式的解集为A .B .C .D .【解析】 函数,可知时,,所以,可得解得.不等式即不等式,可得:或,解得:或,即故选:C .13.【浙江省2019届高考模拟卷(一)】定义域为R 的偶函数()f x 满足对x R ∀∈,有(2)()(1)f x f x f +=-,且当[2,3]x ∈时,2()21218f x x x =-+-,若函数()log (||1)a y f x x =-+至少有6个零点,则a 的取值范围是( ) A .2 B .3 C .5 D .6)【答案】B . 【解析】令1x =-,(2)()(1)(1)(1)(1)(1)(1)0f x f x f f f f f f +=-⇒=--⇒=-=, ∴()(2)()f x f x f x =+=-,∴()f x 图象关于直线1x =对称,故将()f x 的图象画出,由图可知,要使()log (||1)a y f x x =-+,即函数()y f x =与log (||1)a y x =+至少要有6个交点,则有01a <<,且点(2,2)-在函数log (||1)a y x =+的下方,即23log 32303a a a ->-⇒<⇒<<,故选B .二.填空题14.【浙江省三校2019年5月份第二次联考】《算法统宗》中有如下问题:“哑子来买肉,难言钱数目,一斤少三十,八两多十八,试问能算者,合与多少肉”,意思是一个哑子来买肉,说不出钱的数目,买一斤(两)还差文钱,买八两多十八文钱,求肉数和肉价,则该问题中,肉价是每两__________文.【答案】6【解析】设肉价是每两文,由题意得,解得,即肉价是每两文.15.【浙江省台州市2019届高三4月调研】我国古代数学著作《孙子算经》中记载:“今有三人共车,二车空,二人共车,九人步.问人车各几何?”其大意是:“每车坐人,两车空出来;每车坐人,多出人步行.问人数和车数各多少?”根据题意,其车.数为______辆.【答案】15【解析】设车数为x辆,则3(x-2)=2x+9,解得:x=15故答案为:15.16.【浙江省湖州三校2019年普通高等学校招生全国统一考试】我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.【答案】9.1尺【解析】设折断处离地面的高为尺.则17. 【浙江省台州市2019届高三上期末】已知则____;不等式的解集为____.【答案】【解析】,等价于或者,解得或,故填.18.【浙江省台州市2019届高三4月调研】设实数,满足,则的最大值为______,的最小值为______.【答案】4 16【解析】===,当a=2时,的最大值为4;====,当a b=1时,的最小值为16故答案为:4;16.19.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知函数,则 __________,若实数,且,则的取值范围是__________.【答案】4【解析】),因为,且,所以,,因此.20.【浙江省三校2019年5月份第二次联考】定义,已知函数,,,则的取值范围是__________,若有四个不同的实根,则的取值范围是__________.【答案】【解析】由题意得,当时,,当时,,故的取值范围是.如图所示,,令,解得,则 .若有四个不同的实根,则,解得,即.21.【浙江省2019届高三高考全真模拟(二)】若函数6,2()3log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域为[4,)+∞,则(1)f =________;实数a 的取值范围为________. 【答案】5 (1,2] 【解析】因为12≤,所以(1)165f =-+=.当2x ≤时,6y x =-+是减函数,所以264y ≥-+=.若01a <<,函数3log a y x =+是减函数,显然当x →+∞时,y →-∞,不符合题意;若1a >,函数3log a y x =+是增函数,所以3log 2a y >+,要想函数()f x 的值域为[4,)+∞,只需3log 24a +≥,即lg 2log 211lg 2lg 2lg a a a a≥⇒≥⇒≥⇒≤,所以12a <≤,实数a 的取值范围为(1,2]. 22.【浙江省宁波市2019届高三上期末】已知实数且若,则____;若,则实数的取值范围是___.【答案】【解析】 ∵实数且,,∴,∴,∴,∵,∴当时,;当时,无解,综上的取值范围是.故答案为,.23. 【浙江省台州市2019届高三上期末】若函数在上有零点,则的最小值为____. 【答案】【解析】 设函数的零点为,则由得到,所以,,当时,有最小值,故填.24.【浙北四校2019届高三12月模拟】已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是.【答案】1,2【解析】[(1)]f g =(3)1f =;当x=1时,[(1)]1,[(1)](1)3f g g f g ===,不满足条件, 当x=2时,[(2)](2)3,[(2)](3)1f g f g f g ====,满足条件, 当x=3时,[(3)](1)1,[(3)](1)3f g f g f g ====,不满足条件, ∴ 只有x=2时,符合条件.25.【浙江省衢州市五校联盟2019届高三年级上联考】.__________,(,)的最大值为_________.x 1 2 3 ()f x13 1 x 1 2 3 ()g x321【答案】 -2【解析】因为;由换底公式可得,因为,,所以,,,,所以,当且仅当时,等号成立,即(,)的最大值为,故答案为.26.【浙江省温州市2019届高三2月高考适应性测试】已知,若对任意的 a∈R,存在∈[0,2] ,使得成立,则实数k的最大值是_____【答案】【解析】当0时,即a≤0时,在[0,2]恒成立,∴,此时在[0,2]上单调递增,∴max f(x)max=f(2)=22﹣2a=4﹣2a,∴k≤4-2a对任意的a≤0成立,∴k≤4;当2时,即a≥4,在[0,2]恒成立,∴,此时在[0,2]上单调递减,∴max f(x)min=-f(2)=-22+2a=-4+2a,∴k≤-4+2a对任意的a≥4成立,∴k≤4;当0时,即0<a≤2时,此时在[0,]上单调递减,在[,2] 上单调递增,且在[0,a]恒成立,在[a,2]恒成立,∴max又-=+2a-4≥0时,即时,max,∴k≤对任意的成立,∴k≤;时,max,∴k≤对任意的成立,∴k≤;当2时,即2<a<4时,f(x)max==,∴k≤对任意的2<a<4成立,∴k≤1;综上所述:k≤;故答案为.27.【浙江省金丽衢十二校2019届高三第一次联考】偶函数满足,且当时,,则__________,则若在区间内,函数有4个零点,则实数的取值范围是__________.【答案】【解析】偶函数满足,,即函数是周期为2的周期函数,则,若,则,则,即,,由得,要使函数有4个零点等价为函数与有四个不同的交点,作出两个函数的图象如图:过定点,,则满足,即,得,即实数的取值范围是,故答案为:,28.【浙江省杭州高级中学2019届高三上期中】已知函数,则___,若,则所有符合条件的组成的集合为____.【答案】0【解析】(1)∵,∴,(2)如图,作出函数的图象,若,则,∴故答案为:29. 【浙江省名校新高考研究联盟(Z20)2019届高三第一次联考】设函数,当时,记的最大值为,则的最小值为______.【答案】【解析】去绝对值,利用二次函数的性质可得,在的最大值为,,,中之一,所以可得,,,,上面四个式子相加可得即有,可得的最小值为.故答案为.30. 【浙江省杭州高级中学2019届高三上期中】已知函数. 设关于的不等式的解集为,若,则实数的取值范围是___.【答案】【解析】由于f(x),关于x的不等式f(x+a)<f(x)的解集为M,若[,]⊆A,则在[,]上,函数y=f(x+a)的图象应在函数y=f(x)的图象的下方.当a=0时,显然不满足条件.当a>0时,函数y=f(x+a)的图象是把函数y=f(x)的图象向左平移a个单位得到的,结合图象(右上方)可得不满足函数y=f(x+a)的图象在函数y=f(x)的图象下方.当a<0时,如图所示,要使在[,]上,函数y=f(x+a)的图象在函数y=f(x)的图象的下方,只要f(a)<f()即可,即﹣a(a)2+(a)<﹣a()2,化简可得a2﹣a﹣1<0,解得a,故此时a的范围为(,0).综上可得,a的范围为(,0),故答案为:(,0).三.解答题31.【2018年11月浙江省学考】已知函数.(Ⅰ)当a=1时,写出的单调递增区间(不需写出推证过程);(Ⅱ)当x>0时,若直线y=4与函数的图像交于A,B两点,记,求的最大值;(Ⅲ)若关于x的方程在区间(1,2)上有两个不同的实数根,求实数a的取值范围. 【答案】(1)递增区间为;(2)4;(3).【解析】(Ⅰ)f(x)的单调递增区间为.(Ⅱ)因为x>0,所以(i)当a>4时,y=f(x)的图像与直线y=4没有交点;(ii)当a=4或a=0时,y=f(x)的图像与直线y=4只有一个交点;(iii)当0<a<4时,0<g(a)<4;(iv)当a<0时,由得,解得;由,得解得.所以.故的最大值是4.(Ⅲ)要使关于x的方程(*)有两个不同的实数根,则.(i)当a>1时,由(*)得,所以,不符合题意;(ii)当0<a<4时,由(*)得,其对称轴,不符合题意;(iii)当a<0,且a-1时,由(*)得,又因,所以a<-1.所以函数在是增函数,要使直线与函数图像在(1,2)内有两个交点,则,只需解得.综上所述,a 的取值范围为.。