北京市海淀区2011届高三上学期期末考试(数学文)扫描版
海淀区2011年高三年级第一学期文科数学期末练习及答案
海淀区2011年高三年级第一学期文科数学期末练习第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.sin 240的值为A .12-B . 12C .32-D .322. 若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 12 B.11 C.10 D. 93. 设,αβ为两个不同的平面,直线l α⊂,则“l β⊥”是“αβ⊥”成立的 A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件4. 某部门计划对某路段进行限速,为调查限速60 km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有A.75辆B.120辆C.180辆D.270辆 5.点(2,)P t 在不等式组4030x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为 A.2 B. 4 C. 6 D.8 6. 一空间几何体的三视图如图所示,则该几何体的体 积为A .12B .6C . 4D .27. 已知函数1()sin ,[0,π]3f x x x x =-∈,01cos 3x =(0[0,π]x ∈),那么下面结论正确的是A .()f x 在0[0,]x 上是减函数 B. ()f x 在0[,π]x 上是减函数 C. [0,π]x ∃∈, 0()()f x f x > D. [0,π]x ∀∈, 0()()f x f x ≥车速O40506070800.0100.0350.030a频率组距正视图左视图俯视图222112218. 已知椭圆E :1422=+y m x ,对于任意实数k ,下列直线被椭圆E 所截弦长与l :1+=kx y 被椭圆E 所截得的弦长不可能...相等的是 A .0kx y k ++= B .01=--y kx C .0kx y k +-= D .20kx y +-=二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 若直线l 经过点(1,2)且与直线210x y +-=平行,则直线l 的方程为__________.10.某程序的框图如图所示,执行该程序,若输入4, 则输出的S 为 .11.椭圆2212516x y +=的右焦点F 的坐标为 .则顶点在原点的抛物线C 的焦点也为F ,则其标准方程为 .12.在一个边长为1000米的正方形区域的每个顶点处设有一个监测站,若向此区域内随机投放一个爆破点,则爆破点距离监测站200米内都可以被检测到.那么随机投入一个爆破点被监测到的概率为_______.13已知向量(1,),(1,)t t ==-a b .若-2a b 与b 垂直, 则||___=a .14.在平面直角坐标系xOy 中,O 为坐标原点.定义()11,P x y 、()22,Q x y 两点之间的“直角距离”为1212(,)d P Q x x y y =-+-为. 若点()1,3A -,则(,)d A O = ; 已知()1,0B ,点M 为直线20x y -+=上动点,则(,)d B M 的最小值为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)开始0;0S n ==n i<21n S S =++是否1n n =+S输出结束i 输入设函数13()sin cos 22f x x x =+,R x ∈. (I )求函数)(x f 的周期和值域;(II )记ABC ∆的内角C B A ,,的对边分别为c b a ,,,若3(),2f A = 且32a b =, 求角C 的值.16. (本小题满分13分)某学校三个社团的人员分布如下表(每名同学只参加一个社团)围棋社戏剧社书法社学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果围棋社被抽出12人. (I) 求这三个社团共有多少人?(II) 书法社从3名高中和2名初中成员中,随机选出2人参加书法展示,求这2人中初、高中学生都有的概率.17. (本小题满分13分)如图,棱柱ABCD —1111A B C D 的底面ABCD 为菱形 ,AC BD O ,侧棱1AA ⊥BD,点F高中 45 30 a初中151020为1DC 的中点.(I ) 证明://OF 平面11BCC B ; (II )证明:平面1DBC ⊥平面11ACC A .18. (本小题满分13分)已知函数322()1,a f x x x=++其中0a >.(I )若曲线()y f x =在(1,(1))f 处的切线与直线1y =平行,求a 的值; (II )求函数()f x 在区间[1,2]上的最小值. 19. (本小题满分14分)已知圆22:4O x y +=,点P 为直线:4l x =上的动点.(I)若从P 到圆O 的切线长为23,求P 点的坐标以及两条切线所夹劣弧长;(II )若点(2,0),(2,0)A B -,直线,PA PB 与圆O 的另一个交点分别为,M N ,求证:直线MN 经过定点(1,0).20. (本小题满分14分)已知集合{}1,2,3,,2A n = *()n N ∈.对于A 的一个子集S ,若存在不大于n 的正整数m ,使得对于S 中的任意一对元素12,s s ,都有12s s m -≠,则称S 具有性质P.(Ⅰ)当10n =时,试判断集合{}9B x A x =∈>和{}*31,C x A x k k N =∈=-∈是否具有性质P ?并说明理由.(II)若集合S 具有性质P ,试判断集合 {}(21)T n x x S =+-∈)是否一定具有性质P ?并说明理由.答案及评分参考第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案CAACBDBD第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA, ...............................7分 π<<A 0 ,3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分 ,23b a =且B b A a sin sin = , ....................................10分 32s i n 32b b B ∴=, ∴1sin =B , ....................................11分 π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O = ,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A = 且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,x(1,)a a(,2)a()f x ' - 0 + ()f x极小由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分....................................10分所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+; 当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+; 当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242(23)t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠= ,所以120DOC ∠= . ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩ , 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2t y x =-得到2222288(2)244t t t y t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+ 显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠, 所以有212212240836722112136MQ t y t t k t x t t -+===----+, 22222280842811214NQ t y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A = ,{}{}910,11,12,,19,20B x A x =∈>= 不具有性质P . ...................................1分 因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+, 使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈,因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m , 从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分。
北京市西城区2011届高三第一学期期末考试(数学文)
北京市西城区2010 — 2011学年度第一学期期末试卷高三数学(文科) 2011.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{1}A x x =≥-,{3}B x x =<,那么集合A B = [来源:学#科#网Z#X#X#K] (A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <-(D ){3}x x >2. 下列函数中,图象关于坐标原点对称的是 (A )lg y x =(B )cos y x =(C )||y x =(D )sin y x =3. 若a b >,则下列不等式正确的是 (A )11a b< (B )33a b >(C )22a b >(D )a b >4. 命题“若a b >,则1a b +>”的逆否命题是 (A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤(D )若1a b +<,则a b <5. 设{}n a 是等差数列,若24a =,57a =,则数列{}n a 的前10项和为 (A )12(B )60(C )75(D )1206. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,那么输入实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞7. 如图,四边形ABCD 中,1AB AD CD ===,2BD =BD CD ⊥,将四边形ABCD沿对角线BD 折成四面体A BCD '-,使平 面A BD '⊥平面BCD ,则下列结论正确的是 (A )A C BD '⊥ (B )90BA C'∠=(C )A DC '∆是正三角形(D )四面体A BCD '-的体积为138. 设函数121()log ()2xf x x =-,2121()log ()2xf x x =-的零点分别为12,x x ,则(A )1201x x << (B )121x x = (C )1212x x << (D )122x x ≥第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. i 为虚数单位,则22(1i)=+______. 10. 已知1==a b ,12⋅=a b ,则平面向量a 与b 夹角的大小为______. 11.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为______.12.在ABC ∆中,若3,3a b =,3B 2π∠=,则c =____. 13. 已知双曲线22221x y a b-=的离心率为2,它的一个焦点与抛物线28y x =的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为_______.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形; ②到原点的“折线距离”等于1的点的集合是一个圆;③到(1,0),(1,0)M N -两点的“折线距离”之和为4的点的集合是面积为6的六边形; ④到(1,0),(1,0)M N -两点的“折线距离”差的绝对值为1的点的集合是两条平行线. 其中正确的命题是____________.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数2()3sin 22sin f x x x -. (Ⅰ)求()6f π的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的最大值和最小值.16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A均为正方形,90BAC ∠=,D 为BC 中点.(Ⅰ)求证:1//A B 平面1ADC ; (Ⅱ)求证:11C A B C ⊥.[来源:学科网ZXXK] [来源:学|科|网]17.(本小题满分13分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: [来源:Z&xx&](Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率. [来源:学科网]18.(本小题满分13分)分组[来频数 频率 [10,15) 10 0.25[15,20)24n[20,25)mp[25,30)20.05 合计M1ABCDC 1 A 1B 1已知椭圆2222:1x y C a b+= (0>>b a )的一个焦点坐标为(1,0),且长轴长是短轴长的2.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点,A B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积.19.(本小题满分14分)已知函数()ln f x ax x =+()a ∈R .(Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.[来源:学.科.网Z.X.X.K]20.(本小题满分14分)[来源:Z,xx,]已知数列}{n a 的首项为1,对任意的n ∈*N ,定义n n n a a b -=+1. (Ⅰ) 若1n b n =+,求4a ;(Ⅱ) 若11(2)n n n b b b n +-=≥,且12,(0)b a b b ab ==≠.[来源:学&科&网] (ⅰ)当1,2a b ==时,求数列{}n b 的前3n 项和;(ⅱ)当1a =时,求证:数列}{n a 中任意一项的值均不会在该数列中出现无数次.北京市西城区2010 — 2011学年度第一学期期末高三数学参考答案及评分标准(文科) 2011.1一、选择题:本大题共8小题,每小题5分,共40分.2[来二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 6011. 412.3 13. (2,0)±30x y ±= 14. ①③④[来源:] 注:13题第一问2分,第二问3分;14题①③④选对其中两个命题得2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分) 解:(Ⅰ)()6f π232sin 36ππ- ………………2分 321241=-⨯=. ………………4分 (Ⅱ)()f x 3sin2cos21x x =+- ………………6分2sin(2)16x π=+-. ………………8分[来源:]因为[,]62x ππ∈-,所以65626πππ≤+≤-x , ………………10分 所以 1sin(2)126x π-≤+≤, ………………11分 所以()f x 的最大值为1 ,最小值为2-. ………………13分16.(本小题满分13分)解:(Ⅰ)连结1AC ,设1AC 交1AC 于点O ,连结OD . ………………2分 因为11ACC A 为正方形,所以O 为1AC 中点,又D 为BC 中点,所以OD 为1A BC ∆的中位线,[来源:学科网]所以1//A B OD . ………………4分 因为OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . ………………6分 (Ⅱ)由(Ⅰ)可知,11C A CA ⊥ ………………7分因为侧面11ABB A 是正方形,1AB AA ⊥, 且90BAC ∠=, 所以AB ⊥平面11ACC A . 又11//AB A B ,所以11A B ⊥平面11ACC A . ………………9分 又因为1C A ⊂平面11ACC A ,所以111A B C A ⊥. ………………10分 所以111C A A B C ⊥平面. ………………12分 又1B C ⊂平面11A B C ,所以11C A B C ⊥. ………………13分 17.(本小题满分13分)解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=, 所以40M =. ………………2分 因为频数之和为40,所以1024240m +++=,4m =. ………………3分40.1040m p M ===. ………………4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯.……………6分 (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人. ………8分 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况, ………………10分AB CDC 1A 1B 1O而两人都在[25,30)内只能是()12,b b 一种, ………………12分 所以所求概率为11411515P =-=.(约为0.93) ………………13分18.(本小题满分13分)解:(Ⅰ)由题意得1,2c a b ==, ………………2分又221a b -=,所以21b =,22a =. ………………3分所以椭圆的方程为2212x y +=. ………………4分 (Ⅱ)设(0,1)A ,11(,)B x y ,00(,)P x y ,联立2222,1x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)40k x kx ++=……(*), ………………6分解得0x =或2412k x k =-+,所以12412kx k=-+, 所以222412(,)1212k k B k k--++,2221(,)1212k P k k -++, ………………8分 因为直线OP 的斜率为1-,所以112k-=-,[来源:学科网ZXXK] 解得12k =(满足(*)式判别式大于零). ………………10分 O 到直线1:12l y x =+5………………11分 2211(1)AB x y =+-=253………………12分 所以△OAB 的面积为12252335=. ………………13分19.(本小题满分14分)解:(Ⅰ)由已知1()2(0)f x x x'=+>, ………………2分(1)213f '=+=.故曲线()y f x =在1x =处切线的斜率为3. ………………4分[来源:学§科§网](Ⅱ)11'()(0)ax f x a x x x+=+=>. ………………5分 ①当0a ≥时,由于0x >,故10ax +>,'()0f x >所以,()f x 的单调递增区间为(0,)+∞. ………………6分②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>,在区间1(,)a -+∞上()0f x '<,所以,函数()f x 的单调递增区间为1(0,)a -,单调递减区间为1(,)a-+∞.………………8分(Ⅲ)由已知,转化为max max ()()f x g x <. ………………9分max ()2g x = ………………10分由(Ⅱ)知,当0a ≥时,()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a =+>,故不符合题意.) ………………11分当0a <时,()f x 在1(0,)a -上单调递增,在1(,)a -+∞上单调递减,故()f x 的极大值即为最大值,11()1ln()1ln()f a a a-=-+=----, ………13分 所以21ln()a >---, 解得31ea <-. ………………14分 [来源:学科网ZXXK]20.(本小题满分14分)(Ⅰ) 解:11a =,211123a a b =+=+=,322336a a b =+=+=4336410a a b =+=+=. ………………3分(Ⅱ)(ⅰ)解:因为11n n n b b b +-=(2n ≥),所以,对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, 即数列{}n b 各项的值重复出现,周期为6. ………………5分又数列}{n b 的前6项分别为21,21,1,2,2,1,且这六个数的和为7.设数列{}n b 的前n 项和为n S ,则,当2()n k k =∈*N 时,36123456()7n k S S k b b b b b b k ==+++++=,当21()n k k =+∈*N 时,363123456616263()n k k k k S S k b b b b b b b b b ++++==++++++++ 123775k b b b k =+++=+ , ………………7分 所以,当n 为偶数时,372n S n =;当n 为奇数时,3732n n S +=. ………………8分(ⅱ)证明:由(ⅰ)知:对任意的n ∈*N 有6n n b b +=,又数列}{n b 的前6项分别为111,,,1,,b b b b,且这六个数的和为222b b ++.设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1n n c c +-=66666162636465n i n i n i n i n i n i n i n i a a b b b b b b ++++++++++++++-=+++++222b b=++. 所以,数列}{6i n a +均为以222b b++为公差的等差数列. ………………10分 因为0b >时,2220b b ++>,0b <时,22220b b++≤-<, ………………12分所以{6n i a +}为公差不为零的等差数列,其中任何一项的值最多在该数列中出现一次.所以数列}{n a 中任意一项的值最多在此数列中出现6次,即任意一项的值不会在此数列中重复出现无数次. ………………14分。
2011海淀高三二模数学(文科)
海淀区高三年级第二学期期末练习数 学 (文科) 2011.5选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 在复平面上,复数2i z =-对应的点在A .第一象限B . 第二象限 C. 第三象限 D. 第四象限2.已知全集,U =R 集合{1,2,3,4,5}A =,{|2}B x x =∈≥R ,则右图中阴影部分所表示的集合为A.{1}B.{0,1}C.{1,2}D.{0,1,2} 3.函数21()log f x x x=-的零点所在区间为A .1(0,)2B. 1(,1)2C. (1,2)D. (2,3)4.若函数sin()3y x π=+的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,则得到的图象所对应的函数解析式为 A .1sin()26y x π=+B. 1sin()23y x π=+C. 2sin(2)3y x π=+D. sin(2)3y x π=+5.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如下: 甲 乙 9 8 8 1 7 7 9 9 6 1 0 2 2 5 6 7 9 95323237 1 0 4根据上图对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 A .甲运动员得分的极差大于乙运动员得分的极差B .甲运动员得分的中位数大于乙运动员得分的中位数C .甲运动员得分的平均值大于乙运动员得分的平均值D .甲运动员的成绩比乙运动员的成绩稳定6. 圆2220x y ax +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为A. 250x y --=B. 210x y --=C. 20x y --=D. 40x y +-=7. 已知正方体1111ABC D A B C D -中,点M 为线段11D B 上的动点,点N 为线段A C 上的动点,则与线段1D B 相交且互相平分的线段M N 有A .0条 B.1条 C. 2条 D.3条1D 1A 1C 1BDCM8. 若椭圆1C :1212212=+b y a x(011>>b a )和椭圆2C :1222222=+b y a x(022>>b a )的焦点相同且12a a >.给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点 ② 22212221b b a a -=- ③1122a b a b > ④1212a a b b -<-其中,所有正确结论的序号是A .②③④ B. ①③④ C .①②④ D. ①②③非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.双曲线C :22122xy-=的渐近线方程为 ;若双曲线C 的右焦点和抛物线22y px =的焦点相同,则抛物线的准线方程为 .10.点(,)P x y 在不等式组22y x y x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域内,则z x y =+的最大值为_______.11. 一个几何体的三视图如图所示,则这个几何体的体积 为____________. 12. 已知ABC ∆的面积3=S ,3A π∠=,则=⋅AC AB _________.13.已知数列}{n a 满足,11=a 且)(1n n n a a n a -=+(*n ∈N ), 则2_____a =;n a =________.14.已知函数'()f x 、'()g x 分别是二次函数()f x 和三次函数()g x 的 导函数,它们在同一坐标系下的图象如图所示: ①若(1)1f =,则(1)f -= ;② 设函数()()(),h x f x g x =-则(1),(0),(1)h h h -的 大小关系为 .(用“<”连接))x 正视图俯视图左视图三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题共13分)已知函数x x x x f 2sin cos sin )(+=. (Ⅰ)求()4f π的值;(II )若[0,]2x π∈,求)(x f 的最大值及相应的x 值.16. (本小题共13分)已知直三棱柱111C B A ABC -的所有棱长都相等,且F E D ,,分别为11,,AA BB BC 的中点. (I) 求证:平面//1FC B 平面EAD ;(II )求证:⊥1BC 平面EAD .17.(本小题共14分)某学校餐厅新推出A B C D 、、、四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:(Ⅰ)若同学甲选择的是A 款套餐,求甲的调查问卷被选中的概率;(Ⅱ)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D 款套餐的概率.D1C FEBAC1A 1B 种类A B C D18. (本小题共14分)已知函数321().3f x x ax bx =-+ (,)a b ∈R(I )若'(0)'(2)1f f ==,求函数()f x 的解析式;(II )若2b a =+,且()f x 在区间(0,1)上单调递增,求实数a 的取值范围.19.(本小题共14分)已知椭圆C :22221 (0)x y a b ab+=>>两个焦点之间的距离为2,且其离心率为2.(Ⅰ) 求椭圆C 的标准方程;(Ⅱ) 若F 为椭圆C 的右焦点,经过椭圆的上顶点B 的直线与椭圆另一个交点为A ,且满 足=2BA BF ⋅,求ABF ∆外接圆的方程.20. (本小题共13分)对于数列12n A a a a :,,,,若满足{}0,1(1,2,3,,)i a i n ∈=⋅⋅⋅,则称数列A 为“0-1数列”.定义变换T ,T 将“0-1数列”A 中原有的每个1都变成0,1,原有的每个0都变成1,0. 例如A :1,0,1,则():0,1,1,0,0,1.T A 设0A 是“0-1数列”,令1(),k k A T A -= 12k = ,,3,.(Ⅰ) 若数列2A :1,0,0,1,0,1,1,0,1,0,0,1. 求数列10,A A ;(Ⅱ) 若数列0A 共有10项,则数列2A 中连续两项相等的数对至少有多少对?请说明理由;(Ⅲ)若0A 为0,1,记数列k A 中连续两项都是0的数对个数为k l ,1,2,3,k =⋅⋅⋅.求k l 关于k 的表达式.海淀区高三年级第二学期期末练习数 学(文)答案及评分参考 2011.5选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9. y x=±,2x =- 10. 6 11. 1π+12. 2 13. 2,n 14. 1 ,(0)(1)(1)h h h <<- 三、解答题(本大题共6小题,共80分) 15. (共13分)解:(Ⅰ) x x x x f 2sin cos sin )(+=,∴4sin4cos4sin)4(2ππππ+=f …………………1分2222=+((…………………4分1= . …………………6分(Ⅱ)x x x x f 2sin cos sin )(+= 22cos 12sin 21xx -+=…………………8分21)2cos 2(sin 21+-=x x21)42sin(22+-=πx , …………………9分 由]2,0[π∈x 得]43,4[42πππ-∈-x , …………………11分所以,当242ππ=-x ,即π83=x 时,)(x f 取到最大值为212+. ……………13分16. (共13分)证明:(Ⅰ)由已知可得1//AF B E ,1AF B E =, ∴四边形E AFB 1是平行四边形,∴1//FB AE , ……………1分1C FE1A 1BA E ⊄ 平面FCB 1,1F B ⊂平面FC B 1, //A E ∴平面FC B 1; ……………2分又 E D ,分别是1,BB BC 的中点, ∴C B DE 1//, ……………3分E D ⊄ 平面FC B 1,1B C ⊂平面FC B 1,//E D ∴平面FC B 1; ……………4分,AE DE E AE =⊂ 平面EAD ,ED ⊂平面EAD , ……………5分∴平面FC B 1∥平面EAD . ……………6分 (Ⅱ) 三棱柱111C B A ABC -是直三棱柱,∴⊥C C 1面ABC ,又 ⊂AD 面ABC , ∴⊥C C 1AD . ……………7分 又 直三棱柱111C B A ABC -的所有棱长都相等,D 是B C 边中点, ∴A B C ∆是正三角形,∴B C A D ⊥, ……………8分 而1C C BC C = , 1C C ⊂面11B BCC ,B C ⊂面11B BCC ,⊥∴AD 面11B BCC , ……………9分故 1AD BC ⊥ . ……………10分四边形11BCC B 是菱形,∴C B BC 11⊥, ……………11分而C B DE 1//,故 1D E BC ⊥ , ……………12分由D DE AD = A D ⊂,面EAD ,ED ⊂面EAD ,得 ⊥1BC 面EAD . ……………13分17. (共13分)解:(Ⅰ)由条形图可得,选择A ,B ,C ,D 四款套餐的学生共有200人, ……………1分 其中选A 款套餐的学生为40人, ……………2分 由分层抽样可得从A 款套餐问卷中抽取了 42004020=⨯份. ……………4分设事件M =“同学甲被选中进行问卷调查”, ……………5分 则.10404)(==M P . ……………6分答:若甲选择的是A 款套餐,甲被选中调查的概率是0.1.(II) 由图表可知,选A ,B ,C ,D 四款套餐的学生分别接受调查的人数为4,5,6,5. 其中不满意的人数分别为1,1,0,2个 . ……………7分记对A 款套餐不满意的学生是a ;对B 款套餐不满意的学生是b ;对D 款套餐不满意的学生是c ,d. ……………8分设事件N=“从填写不满意的学生中选出2人,至少有一人选择的是D 款套餐” ……………9分 从填写不满意的学生中选出2人,共有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)6个基本事件,……10分 而事件N 有(a,c),(a,d),(b,c),(b,d),(c,d)5个基本事件, ……………11分 则 65)(=N P . ……………13分答:这两人中至少有一人选择的是D 款套餐的概率是65.18. (共14分)解:(Ⅰ)因为2'()2f x x ax b =-+ , …………………2分由'(0)'(2)1f f ==即1441b a b =⎧⎨-+=⎩得11a b =⎧⎨=⎩ , …………………4分所以()f x 的解析式为321()3f x x x x=-+. …………………5分(Ⅱ)若2b a =+,则2'()22f x x ax a =-++,244(2)a a ∆=-+ , …………………6分 (1)当0∆≤,即12a -≤≤时,'()0f x ≥恒成立,那么()f x 在R 上单调递增,所以,当12a -≤≤时,()f x 在区间(0,1)上单调递增; …………………8分 (2)解法1:当0∆>,即2a >或1a <-时, 令2'()220f x x ax a =-++=解得1x a =-2x a =+…………………9分 列表分析函数()f x 的单调性如下:…………………10分要使函数()f x 在区间(0,1)上单调递增, 只需210'(0)0a a a f ><-⎧⎪<⎨⎪≥⎩或或211'(1)0a a a f ><-⎧⎪>⎨⎪≥⎩或,解得21a -≤<-或23a <≤. …………………13分解法2:当0∆>,即2a >或1a <-时,因为2'()22f x x ax a =-++的对称轴方程为x a = …………………9分要使函数()f x 在区间(0,1)上单调递增,需1'(0)0a f <-⎧⎨≥⎩或2'(1)0a f >⎧⎨≥⎩解得21a -≤<-或23a <≤. …………………13分 综上:当[2,3]a ∈-时,函数()f x 在区间(0,1)上单调递增. …………………14分19. (共14分) 解:(Ⅰ)22,22===ac e c , ……………1分2,1==∴a c ,122=-=∴c a b , …………4分椭圆C 的标准方程是1222=+y x. ………………5分(Ⅱ)由已知可得)0,1(),1,0(F B , …………………6分 设),(00y x A ,则)1,1(),1,(00-=-=BF y x BA , 2=⋅BF BA ,2)1(00=--∴y x ,即001y x += , …………………8分代入12220=+y x ,得:⎩⎨⎧-==1000y x 或⎪⎪⎩⎪⎪⎨⎧==313400y x , 即)1,0(-A 或)31,34(A . ………………10分当A 为)1,0(-时,1===OF OB OA ,ABF ∆的外接圆是以O 为圆心,以1为半径的圆,该外接圆的方程为122=+y x ; ………………12分当A 为)31,34(时,1,1=-=AF BF k k ,所以ABF ∆是直角三角形,其外接圆是以线段BA 为直径的圆.由线段BA 的中点)32,32(以及352=BA 可得ABF ∆的外接圆的方程为95)32()32(22=-+-y x . ………………14分综上所述,ABF ∆的外接圆的方程为122=+y x 或95)32()32(22=-+-y x .20. (共13分)解:(Ⅰ)由变换T 的定义可得1:0,1,1,0,0,1A ………………2分0:1,0,1A ………………4分(Ⅱ) 数列0A 中连续两项相等的数对至少有10对 ………………5分证明:对于任意一个“0-1数列”0A ,0A 中每一个1在2A 中对应连续四项1,0,0,1,在0A 中每一个0在2A 中对应的连续四项为0,1,1,0,因此,共有10项的“0-1数列”0A 中的每一个项在2A 中都会对应一个连续相等的数对, 所以2A 中至少有10对连续相等的数对. ………………8分 (Ⅲ) 设k A 中有k b 个01数对,1k A +中的00数对只能由k A 中的01数对得到,所以1k k l b +=,1k A +中的01数对有两个产生途径:①由k A 中的1得到; ②由k A 中00得到,由变换T 的定义及0:0,1A 可得k A 中0和1的个数总相等,且共有12k +个,所以12kk k b l +=+,所以22kk k l l +=+,由0:0,1A 可得1:1,0,0,1A ,2:0,1,1,0,1,0,0,1A 所以121,1l l ==, 当3k ≥时,若k 为偶数,222k k k l l --=+,4242k k k l l ---=+,2422l l =+.上述各式相加可得122421(14)11222(21)143k k kk l ---=++++==-- ,经检验,2k =时,也满足1(21)3kk l =-.若k 为奇数,222k k k l l --=+ 4242k k k l l ---=+ 312l l =+.上述各式相加可得12322(14)112221(21)143k k kk l ---=++++=+=+- ,经检验,1k =时,也满足1(21)3kk l =+.所以1(21),31(21),3kk k k l k ⎧+⎪⎪=⎨⎪-⎪⎩为奇数为偶数 .………………13分说明:其它正确解法按相应步骤给分.。
北京市海淀去2011-2012高三上学期期中数学文科试卷及答案
北京市海淀区2011-2012学年高三年级第一学期期中练习数 学(文科)2011.11选择题(共4O 分)一、选择题:本大题共8小题,毎小题5分,共40分。
在每小题列出的四个迭項中,选出符合题目要求的一项1. 设集合{|3}A x x =≥, {|14}B x x =≤≤,则R B A ð= A.[1,3) B. (-∞,4] C [3,4] D.[l ,+∞)A. [0,1)B. [0, +∞) C(l, +∞) D [0,1)(1,)+∞ 3. 已知等差数列{}n a 中,11a =,35a =-,则1234a a a a ---= A. -14 B. -9C. 11D. 16A. b a c >> B . b c a >> C. a b c >> D. a c b >> 5. 要得到函数1()2x f x -=的图象.可以将A. 函数2x y =的图象向左平移1个单位长度B.函数2x y =的图象向右移1个单位长度C. 函数2xy -=的图象向左平移1个单位长度 D.函数2xy -=的图象向右平移1个单位长度A B C DA.5B. 6 C 7 D.8非选择题(共110分〉二、填空埋:本大题共6小题,每小题5分,共30分.10已知向量a = (l,2). b = (l ,λ〉, c = (3,4).若a +b 与c 共线.则实效λ=______. 11.函数()log (1)a f x x =+(0a >且1a ≠)在[12,1]上的最小值是1,则a =_______.12.已知命题p: x R ∃∈,2210ax x ++≤.若命题p是假命题,则实数a的取值范围是_______则c =_______;sin A =_______14. 已知集合123,,,,*n A a a a a n N ∈={} ,且2n >,令{|,A i j T x x a a ==+,i j a A a A ∈∈,1}i j n ≤<≤,()A card T 表示集合A T 中元素的个数.①若A={ 2,4,8,16},则()A card T =_________;②若1i i a a c +-=(11i n ≤≤-, c 为非零常数),则()A card T =_________. 三、解答题:本大理共6小题.共80分.解答应写出文宇说明,演算步骤或证明过程. 15. (本小理共13分)(I)求()f x 的最小正周期已知数列{}n a 是公差不为零的等差数列,且23a =, 又4a , 5a ,8a 成等比数列. (I)求数列{}n a 的通项公式;(II ) 设n S 为数列{}n a 的前n 项和,求使n n a S =成立的所有n 的值.17. (本小题共13分)某工厂生产某种产品,每日的成本C(单位:万元)与日产里x (单位:吨)满足函数关系式已知每日的利润 L= S - C ,且当x =2时,L=3.(I )求k 的值;(II )当日产量为多少吨时,毎日的利润可以达到最大,并求出最大值18.(木小越共13分)已知数列{}n a 的前n 项和为n S ,且满足21n n S a =-(*n N ∈) (I)求证:数列{}n a 是等比数列;*n N ∈恒成立,求实数t 的取值范围.(1)当3a =时,求()f x 的单调递增区间; (II )求证:曲线()y f x =总有斜率为a 的切线;(III)若存在[1,2]x ∈-,使()0f x <成立,求a 的取值范围.(20)(本小题共14分) 已知函数,(),x x P f x x x M∈⎧=⎨-∈⎩其中集合P ,M 是非空数集.设(){|(),}f P y y f x x P ==∈(){|(),}f M y y f x x M ==∈.(I)若 P = [l,3],M=(-∞,-2],求()()f P f M ;(II)若P M =∅ ,且函数()f x 是定义在R 上的单调递增函数,求集合P,M ; (III)判断命题“若P M R ≠ ,则()()f P f M R ≠ ”的真假,并说明理由.北京市海淀区2011-2012学年高三年级第一学期期中练习数 学(文科)2011.11参考答案一、选择题1、A ;2、D ;3、D ;4、C ;5、D ;6、C ;7、A ;8、B ; 二、填空题9、14-;10、23;11、32;12、(1,)+∞;137;14、6,23n -;三、解答题15、解:(1)∵2()sin cos f x x x x =-=11cos 2sin 222xx --……4分=1sin 22222x x +-sin(2)32x π+-……6分∴函数()f x 的最小正周期为π……7分(2)由(1)知:()f x=sin(2)32x π+-02x π≤≤,所以42333x πππ≤+≤所以,当232x ππ+=,即12x π=时,()f x取得最大值12-;……10分当4233x ππ+=,即2x π=时,()f x取得最小值……13分16、解:(1)因为4a , 5a ,8a 成等比数列,所以2548a a a =.……2分设等差数列{}n a 的公差为d ,则2222(3)(2)(6)a d a d a d +=++,……4分因为23a =,所以220d d +=,因为0d ≠所以2d =-,……6分 所以27n a n =-+……7分(2)由27n a n =-+可知,15a =,所以1()2n n a a nS +=…9分(572)2n n+-=26n n =-…11分由n n a S =可得:2276n n n -+=-所以1n =或7n =……13分17、解:(1)由题意可得22,(06)811,(6)k x x L x x x ⎧++<<⎪=-⎨⎪-≥⎩……2分因为x =2……4分所以18k =……5分(2)当06x <<时,228L x x =++-所以182(8)188L x x =-++-18[2(8)]188x x=--++-186≤=……9分当且仅当182(8)8x x-=-即5x =时取得等号……10分当6x ≥时,115L x =-≤……12分 所以当5x =时L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元。
北京海淀高三文科数学第一学期期末试题及答案
海淀区高三年级第一学期期末练习学(文科)本试港扶4頁,I 刊分.考试时悅120分钟°考生务必将答案答在答题卡上,在试卷上 柞轉尤数。
考试结束所.将本试誉和菩题卡…并交回a一、选择题:本大艇共8小題,每小題5分,共40分"在每小題列出的四个选项中,选出 符合题日要求的一项•L 复数亠化简前结眠为Ar 1 4 iB, - 1 十 iC 1 ■ iD. — 1 — i乞向W <» = { I b 1) ► = (2 h t ),若灯丄0.则实數/的值为A. -2B. - I(:. 1T ). 2工住等边皿扯的边/?(:上任取一点几 则仏仙疼寻邑亦的概聿是2013. JB- n = 4T S =45D. n = 5 p S =45C, >■ = x + 1 或戸二-x - 1□- y = J2尢 +1密或 y = _ J2x -匝5)是偶晦数ri/(x )的值域是[」」]5}的值域是[卑1]高三数学(文科)试题第1页(共斗页)a MB i m 菇、则直线朋则下血结论中正确的是5门是奇函数4.点尸是牠物线/=4x±一点.卩到该抛物线慄点的距离対斗,则点尸的横坐标为匸某程序的框图如图所屁执行该程序"苦输人的p为24.咖输率]出的“ S的值分别为二A.n = 4, 5 = 3()C. n = 5 S = 306.已知点X ( - L, 0) s B (ccuga, sinof} … 的方程为A. y = ^3x十J于或y =-V3x - J3K-如图,在橈氏为I的止方体中,点E. F并别足棱施乙卩的中点,户是侧面肌GE,内一点.芙 m平面肘几则线段.4,PK度的取值范圉是A- [1, yJ 氐L窜%C [夕②n [血,再]二、填空歴:本大題共6小题,毎小題5分,共咒分-9.皿辽25。
的值为_______ .10 XW蜂-辛=1的斷近线方程为_____________ ;离心率为_________ •sII,数列丨“计是公差不为0的尊差数列.且旳I"阳则』二____________ .f主事0.12-不等式纽*+了劲,表示的平血区域为舁.直线_丫 =后-1与区域门有公共点.恻实敦*+ t的取値范围星_______ .-口-三楼锥I)-ARC及氏三观图中的主视图和左视图如图所示,则棱也」的艮为_________ .严 x趴a X0NO”14.定文。
北京市海淀区2011届高三上学期期末考试(政治)扫描版
海淀区高三年级第一学期期末练习政治科评分标准2011.1(共24分)25.坚持中国共产党的领导;(1分)依法实行民主选举、民主决策、民主管理、民主监督;(2分)依法行使政治权利、履行政治义务,坚持权利和义务的统一;(2分)提高自身参与政治生活的素养和能力。
(1分)26. 进行调查研究,听取和反映人民群众的意见和要求;(1分)了解周边居民对站点设置的建议(1分);行使提案权;(1分)对相关部门解决这一问题进行监督。
(1分)人大代表代表人民的利益和意志,依照宪法和法律规定行使权利、履行义务(2分)。
(2)国际组织在国际社会中发挥着重要作用。
(1分)国际组织可以促进主权国家在政治、经济、文化等领域开展交流、协调、合作,调停和解决国际政治冲突和经济纠纷,促进世界和平与发展。
(2分)国际组织的作用受诸多因素的制约,有其局限性。
(1分)某些大国依仗实力,力图控制国际组织,使之成为其推行强权和霸权的工具。
(2分)三、论述题(共28分)28.(1)拓展群众政治参与的方式和途径,扩大基层民主。
(1分)密切党同人民群众的关系,提高党员干部为人民服务的宗旨意识和责任意识。
(1分)体现党的科学执政和民主执政,推动我国社会主义民主政治建设。
(1分)(2)矛盾具有普遍性,要承认矛盾,分析矛盾。
(2分)既要看到“公推直选”的优点,也要看到它在实践过程中存在不完善的地方。
(1分)矛盾的主要方面决定事物的性质,要坚持两点论和重点论的统一。
(2分)虽然“公推直选”这一选举方式在实践中存在一些问题,但促进社会主义民主的作用是主要的,因此需要坚持和完善。
(1分)矛盾具有特殊性,要具体问题具体分析。
(2分)对“公推直选”不同阶段出现的不同问题作具体分析,并找到解决问题的正确办法。
(1分)29.(1)证监会、发改委依据《刑法》和证券业管理条例及国家有关价格政策,处理基金老鼠仓和企业价格违法行为,体现了“合法行政”;(2分)发改委披露查处价格违法案件,责成有关部门严肃处理,体现了“程序正当”;(2分)要求依法从重从快严肃处理,体现了“高效便民”;(2分)案件处理过程遵循了公平公正的原则,体现了“合理行政”。
2011届人教版高三上册数学期末试卷(文)
2011—2012学年度上学期高三年级期末考试数 学 试 题(文)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1.设i 是虚数单位,则复数1ii -+等于 ( )A .12i-+ B .12i --C .12i+ D .12i- 2.已知全集,U R =集合{|2,}{|2,}nA x x n NB x x n n N ==∈==∈与,则正确表示集合A 、B 关系的韦恩(Venn )图是( )3.已知-7、12,a a ,-1四个实数成等差数列,-4,123,,b b b ,-1五个实数成等比数列,则212a ab -等于 ( ) A .1 B .2 C .-1 D .1±4.一个简单几何体的主视图,左视图如图所示,则其府视图不可能为①长方形;②正方形;③圆;④椭圆,其中正确的是 ( )A .①②B .②③C .③④D .①④5.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m n >的概率为( )A .710B .310C .35D .256.若0,04a b a b >>+=且,则下列不等式恒成立的是 ( )A .112ab > B .111a b+≤ C2≥D .22118a b ≤+ 7.若z mx y =+在平面区域20,20,30y x y x x y -≤⎧⎪-≥⎨⎪+-≤⎩上取得最小值时的最优解有无穷多个,则z 的最小值是( )A .-1B .1C .0D .0或1±8.圆222650x y x y a +-++=关于直线2y x b =+成轴对称图形,则a-b 的取值范围是 ( )A .(,4)-∞B .(0)-∞C .(4,)-+∞D .(4,)+∞9.已知(cos sin ),(sin ,cos ),()a x x b x x f x a b ===⋅记,要得到函数22cos sin y x x =-的图像,只需将函数()y f x =的图像( )A .向左平移2π个单位长度 B .向右平移2π个单位长度 C .向左平移4π个单位长度D .向右平移4π个单位长度10.矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD ,使面BAC ⊥面DAC ,则四面体A —BCD 的外接球的体积为 ( )A .12512π B .1259π C .1256π D .1253π 11.若3a >,则方程3210x ax -+=在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根12.已知点P 是双曲线22221(0,0)x y a b a b-=>>右支上一点,F 1、F 2分别是双曲线的左、右焦点,I 为12PF F ∆的内心,若12122IF F IRF IPF S S S ∆∆∆=+成立,则双曲线的离心率为( )A .5B .4C .3D .2第Ⅱ卷(共90分)本卷包括必考题和选考题两部分,第13—第21题为必考题,每个试题考生都必须做答。
北京市海淀区2011届高三模拟数学(文)试题及答案
海淀区高三年级第二学期期中练习数学 (文科)2011.4选择题 (共 40 分)一、选择题:本大题共8 小题 ,每题 5 分 ,共 40 分.在每题列出的四个选项中 ,选出切合题目要求的一项 .1、已知会合 Ax R 0 x 3 , B xR x 2 4 ,则 A BA. x x2 或 2 x 3B.x 2 x 3C. x 2 x 32. 设 a 30.5, blog 3 2, ccos2,则3A. c b aB. c a bC. a b cD. bx 13.函数 f ( x) 图象的对称中心为xA . (0,0)B.(0,1)C. (1,0)D.(1,1)4. 履行以下图的程序框图,若输入x 的值为 2,则输出的 x 值为A. 25B . 24 C. 23 D . 225.从会合 A { 1,1,2}中随机选用一个数记为k ,从会合 B { 2,1,2} 中随机选用一个数记为b ,则直线 ykx b 不经过第三象限的概率为2 1 C.4 5A .B.9D.9396. 在 同 一 个 坐 标 系 中 画 出 函 数 y a x, y sin ax 的 部 分 图 象 , 其 中a 0且a 1 ,则以下所给图象中可能正确的选项是yy11O12xO 1D. Rc a开始 输入 xn 1n ≤3否 输出 x 结束2n n 1x 2x 1是xAByy11O12xO12xC D7. 已知函数f ( x)x2ax1,x1,则“ 2 a 0 ”是“ f (x)在 R 上单一递加”的ax2x1,x1,A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件8.若直线 l 被圆 C : x2y2 2 所截的弦长不小于2,则 l 与以下曲线必定有公共点的是A2y 21B..x 2y21 C. y x2D.x2y21. ( x 1)2非选择题(共 110 分)二、填空题 :本大题共 6 小题 ,每题 5 分,共 30 分 .把答案填在题中横线上.29. 计算__________________.1i10.为认识本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每个月平时花费额”的检查.他们将检查所获得的数据分别绘制成频次分布直方图(以下图),记甲、乙、丙所检查数据的标准差分别为s1, s2,s3, 则它们的大小关系为. (用“”连结)频次频次频次组距组距组距0.00080.00080.00080.00060.00060.00060.00040.00040.00040.00020.00020.0002O1000 1500 2000 2500 3000 3500 元O1000 1500 2000 2500 3000 3500 元O10001500 2000 2500 3000 3500 元甲乙丙11.如图,在正方体ABCD A1B1C1D1中,点P是上底面A1B1C1 D1内一动点,则三棱锥P ABC 的主视图与左视图的面积的比值为_________.D1C1A1PB1[根源 :]DC左视A B主视12. 已知函数f ( x) xe x ,则 f ' (x) =________;函数 f ( x) 图象在点 (0, f (0)) 处的切线方程为_______13. 已知向量 a ( x,2), b (1,y) ,此中 x, y 0 .若 agb 4 ,则 y x 的取值范围为.14.如图, 线段 AB =8,点 C 在线段 AB 上,且 AC =2, P 为线段 CB 上一动点, 点 A 绕点 C 旋转后与点B 绕点 P 旋转后重合于点 D .设 CP = x , △ CPD 的面积为 f (x) .则 f (x) 的定义域为 ________; f ( x) 的最大值为________.D ACP B三、解答题 : 本大题共 6 小题 ,共 80 分 .解答应写出文字说明 , 演算步骤或证明过程 .15. (本小题共 13 分)在 ABC 中,内角 A 、B 、 C 所对的边分别为1 , tan C1a 、b 、c ,已知 tan B, 且23c 1 .[ 根源 :Z#xx #](Ⅰ ) 求 tan(B C ) ;(Ⅱ) 求 a 的值 .16. (本小题共 13 分)数列 { a n } 的前 n 项和为 S n ,若 a 12 且 S n S n 1 2n ( n 2 , n N * ) . [根源 :]( I )求 S n ;( II ) 能否存在等比数列{ b n } 知足 b 1 a 1, b 2a 3,b 3 a 9 ?若存在, 则求出数列 { b n } 的通项公式;若不存在,则说明原因.17. (本小题共 13 分)如图:梯形 ABCD 和正△PAB 所在平面相互垂直,此中 AB//DC,ADCD1AB ,且 O 为 AB 中点.P2( I ) 求证: BC // 平面 POD ;OAB(II) 求证:AC PD .18. (本小题共14 分)已知函数 f (x)1a ln x ( a 0, a R) x(Ⅰ)若 a 1,求函数 f ( x) 的极值和单一区间;(II) 若在区间[1,e] 上起码存在一点 x0,使得 f ( x0 )0 建立,务实数 a 的取值范围.19.(本小题共 14 分)已知椭圆 C :x2y2b 0) 经过点 M (1,3), 其离心率为1 . a2b2 1 ( a22(Ⅰ)求椭圆C的方程;( Ⅱ) 设直线l与椭圆C订交于 A、B 两点,以线段OA, OB为邻边作平行四边形OAPB,其中极点 P 在椭圆C上,O为坐标原点 . 求O到直线距离的l 最小值.20.(本小题共 13 分)已知每项均是正整数的数列a1, a2 ,a3 ,L ,a100,此中等于i 的项有k i个(i1,2,3L ) ,设 b j k1 k 2k j( j1,2,3L ) ,g(m) b1b2L b m 100m ( m1,2,3L ).(Ⅰ)设数列 k140, k230, k3 20,k4 10, k5...k1000 ,求 g(1), g(2), g(3), g(4) ;(II)若 a1 ,a2 , a3 ,L , a100中最大的项为50,比较 g(m), g(m1) 的大小;(Ⅲ)若 a1 a2La100200 ,求函数 g( m) 的最小值.[根源:][根源 : ][根源 : ]海淀区高三年级第二学期期中练习数学(文)答案及评分参照2011. 4(共 40 分) [ 根源 :]一、 (本大 共8 小 , 每小 5 分 , 共 40 分) [ 根源 :Z § xx § ]号 12 3 45 6 7 8答案CABC ADBB非(共 110 分)二、填空 (本大 共 6小 , 每小 5分 . 共 30分 . 有两空的 目,第一空3 分,第二空 2分)9.1 i10. s 1 > s 2 > s 3 11. 1 12.xy x13. [ 4,2]14.(1 x e ,,2 2)(2, 4) 三、解答 ( 本大 共 6 小 , 共 80 分)15. (共 13 分)解:( I )因 tan B1 , tanC 1 , tan(B C ) tan B tan C⋯⋯⋯⋯⋯⋯⋯3分231 tan B tan C1 1代入获得, tan(B C) 2 3 1 .⋯⋯⋯⋯⋯⋯⋯6分1 1 12 3( II )因 A180o B C⋯⋯⋯⋯⋯⋯⋯7分因此 tan A tan[180 o(B C )]tan( B C )1⋯⋯⋯⋯⋯⋯⋯9分 又 0oA180o ,因此 A 135o .⋯⋯⋯⋯⋯⋯⋯10分因 tan C1 ,且 0oC180o,因此 sin C10⋯⋯⋯⋯⋯⋯⋯11分0 ,310ac 5 . ⋯⋯⋯⋯⋯⋯⋯13分 [来由,得 asin Asin C源 :学§科§网 ]16. (共 13 分)解:( I )因 S n Sn 12n ,因此有S n S n 1 2n n 2 , nN *建立 ⋯⋯⋯2 分即 a n 2n n 2建立,又 a 1 S 12 1 , 因此 a n2n nN *建立⋯⋯⋯⋯⋯⋯⋯3分 因此 a n 1 a n 2 n N * 建立 ,因此 { a n } 是等差数列,⋯⋯⋯⋯⋯⋯⋯4分 因此有 S na 1annn 2 n , nN *⋯⋯⋯⋯⋯⋯⋯6分2( II )存在 .⋯⋯⋯⋯⋯⋯⋯7分[ 来源 :Z|xx|]由( I ), a n 2n , n N * 建立因此有 a 36, a 9 18 ,又 a 12 ,⋯⋯⋯⋯⋯⋯9分因此由b 1 a 1, b 2 a 3, b 3 a 9 b 2b 3 3⋯⋯⋯⋯⋯⋯⋯11分,b 1b 2因此存在以 b 1 2 首 ,公比 3 的等比数列 {b n } ,其通 公式 b n23n 1.⋯⋯⋯⋯⋯⋯13 分P17. (共 13 分)明 : (I) 因 O AB 中点,因此 BO1AB,⋯⋯⋯⋯⋯⋯⋯1分21又 AB / /CD, CDAB ,AO2B因此有 CD BO,CD / /BO,⋯⋯⋯⋯⋯⋯⋯2分D C因此 ODCB 平行四 形 ,因此 BC / /OD ,⋯⋯⋯⋯⋯⋯⋯3分又 DO 平面 POD, BC 平面 POD,因此 BC//平面 POD . ⋯⋯⋯⋯⋯⋯⋯5分(II) 接 OC .P因 CD BO AO, CD / / AO, 因此 ADCO平行四 形,⋯⋯⋯⋯⋯⋯⋯6分又 ADCD ,因此 ADCO 菱形,OABDC因此AC DO ,⋯⋯⋯⋯⋯⋯⋯7分因正三角形PAB , O AB 中点,因此 PO AB ,⋯⋯⋯⋯⋯⋯⋯8分又因平面 ABCD平面 PAB ,平面 ABCD I 平面 PAB AB ,因此 PO平面 ABCD ,⋯⋯⋯⋯⋯⋯⋯10分而 AC平面 ABCD ,因此 PO AC ,[根源:]又POI DO O ,因此 AC平面 POD .⋯⋯⋯⋯⋯⋯⋯12分又 PD平面 POD ,因此 AC PD .⋯⋯⋯⋯⋯⋯⋯13分 [来源 : ]18. (共 14 分)解:( I)因 f '( x)1a ax 1,⋯⋯⋯⋯⋯⋯⋯2分x2x x2当 a 1 , f '( x)x1,x2令 f'( x)0 ,得x 1 ,⋯⋯⋯⋯⋯⋯⋯3分又 f( x) 的定域(0,) ,f( x) , f (x) 随x的化状况以下表:x(0,1)1(1,)f '( x)0f ( x)]极小Z所以 x 1 , f ( x)的极小 1 .⋯⋯⋯⋯⋯⋯⋯5分f ( x) 的增区(1,) ,减区(0,1) ;⋯⋯⋯⋯⋯⋯⋯6分( II)解法一:因 f '( x)1a ax10 ,x2x x2,且 a令 f '( x)0 ,获得 x 1,a若在区 (0, e] 上存在一点 x0,使得 f ( x0 )0 建立,其充要条件是 f (x) 在区 (0, e] 上的最小小于0 即可 .⋯⋯⋯⋯⋯⋯⋯7分( 1)当 x10 , f '( x)0 x(0,) 建立,0 ,即 aa因此, f ( x) 在区 (0, e] 上 减,故 f ( x) 在区 (0, e] 上的最小 f (e)1 a ln e 1 a ,e由111) e a 0,得 a,即 a (, ⋯⋯⋯⋯⋯⋯⋯9分e1e e( 2)当 x 0 ,即 a0 ,a① 若 e1, f '( x)0 x(0, e] 建立,因此f ( x) 在区 (0, e] 上 减,a11因此, f ( x) 在区 (0, e] 上的最小 f ( e)a ln ea 0 ,e e然, f ( x) 在区 (0, e] 上的最小 小于0 不建立⋯⋯⋯⋯⋯⋯⋯11分② 若 0 1 e ,即 a1, 有aex(0,11( 1)a, e)a af '( x)f ( x)]极小Z因此 f ( x) 在区 (0, e] 上的最小f ( 1) aa ln 1,aa由 f ( 1)a a ln1a(1 ln a) 0 ,aa得 1ln a,解得ae,即 a(e,) .13⋯⋯⋯⋯⋯⋯⋯分上,由 (1)( 2)可知: a(, 1) U (e, ) 切合 意 .⋯⋯⋯⋯⋯⋯⋯14分e(0, e] 上存在一点 x 0 ,使得 f ( x 0 )0 1 a ln x 0 0 ,解法二:若在区建立,即x 0因 x 00 , 因此,只需 1 ax 0 ln x 0 0⋯⋯⋯⋯⋯⋯⋯7分令 g ( x) 1ax ln x ,只需 g(x) 1 ax ln x 在区 (0, e] 上的最小 小于0 即可因 g '(x)a ln x aa(ln x 1) ,令 g '( x)a(ln x1) 0,得 x 1⋯⋯⋯⋯⋯⋯9 分e( 1)当 a 0 :x1 1 (1, e] [ 来(0, )eee源 :]g '( x) [ 来源:学+科+ 网 ]g(x)Z极大][来源 :Z*xx*]因 x(0, 1) , g( x)1 ax ln x 0 ,而 g(e) 1 ae ln e 1 ae ,e11只需 1 ae 0 ,得 a(⋯⋯⋯⋯⋯⋯⋯11分,即 a, )(2 )当 aee:1x [:(0, ) [根源 :11e根源 学,e]#科#网]学+科+网e(eZ+X+X+K]g '( x)g(x)]极小Z因此,当x (0, e] , g( x) 极小 即最小g( 1 ) 1 a 1 ln 11a ,e e ee由1a 0 , 得ae ,即 a(e,).⋯⋯⋯⋯⋯⋯⋯分e131上,由 (1)( 2)可知,有 a( ,) .⋯⋯⋯⋯⋯⋯⋯14 分 [根源 : 学*) U (e,e科 * 网 Z*X*X*K]19. (共 14 分)解:(Ⅰ)由已知, e 2a 2b 2 1 ,因此 3a 2 4b 2,①⋯⋯⋯⋯⋯⋯⋯1分a 2431 9 1 ,⋯⋯⋯⋯⋯⋯⋯2分又点 M (1, ) 在 C 上,因此a 24b 2②2由①②解之,得 a 24, b 23 .故 C 的方程x 2y 2 1 .⋯⋯⋯⋯⋯⋯⋯5分43( Ⅱ ) 当直 l 有斜率 ,y kx m ,y kxm,由y 2x 2 1.43消 去 y 得 , (34k 2 ) x 2 8kmx 4m 2 12 0 ,⋯⋯⋯⋯⋯⋯⋯6分 [ 来源 :]64k 2m 24(3 4k 2 )(4m 2 12) 48(3 4k 2m 2 ) 0 ,③ ⋯⋯⋯⋯7分A 、B 、 P 点的坐 分 (x 1, y 1 )、(x 2 , y 2 )、( x 0 , y 0 ) , :x 0 x 1x 28km 2 , yy 1 y 2k( x 1x 2 ) 2m6m 2 ⋯⋯⋯⋯8分3 4k3 4k ,因为点 P 在 C 上,因此x 02y 02 1 .⋯⋯⋯9 分43进而16k 2m 212m 21 ,化 得 4m 234k 2 , 足③式 .(3 4k 2 )2(3 4k 2 )2⋯⋯⋯10 分又点 O 到直 l 的距离 :| m | 3 k 21 1 34d1 k 212 )121 k 24(1 k 4[根源 :学| 科 | 网]⋯⋯⋯11分当且 当 k 0 等号建立⋯⋯⋯⋯12 分当直 l无斜率 ,由 称性知,点P 必定在 x 上,进而 P 点 (2,0),(2,0) ,直 l x1 ,因此点 O 到直 l 的距离1 ⋯⋯13 分因此点 O 到直 l 的距离最小3 ⋯⋯14 分220. (共 13 分)解:(I)因 数列 k 140, k 2 30, k 3 20, k 4 10 ,因此 b 1 40, b 2 70,b 3 90, b 4 100 ,因此 g (1)60, g(2)90, g(3)100, g(4)100 .⋯⋯⋯⋯⋯⋯⋯3分(II)一方面, g(m 1) g( m) b m 1 100 ,北京市海淀区2011届高三模拟数学(文)试题及答案依据 b j的含知 b m 1100,故 g(m1)g( m) 0 ,即g( m)g (m1) ,①⋯⋯⋯⋯⋯⋯⋯5分当且当 b m 1100 取等号.因 a1, a2 ,a3,L, a100中最大的50,因此当m50必有b m100 ,因此 g (1) g(2)L g(49)g(50)g(51)L L即当 1m49 ,有g( m) g( m1) ;当 m49 ,有g (m)g(m1) .⋯⋯⋯⋯⋯⋯⋯7分( III)Ma1 , a2 ,L ,a100中的最大 .由( II )能够知道,g( m) 的最小 g (M ) .下边算 g (M ) 的.g(M )b1 b2b3L b M100M( b1100)(b2 100) (b3100)L(b M 1 100)( k2k3 L k M ) ( k3k4 L k M ) ( k4 k5L k M ) L( k M )[ k22k3L( M 1)k M ]( k12k23k3 L Mk M ) ( k1k2L k M )( a1a2a3L a100)b M(a1a2a3L a100)100 ,∵ a1a2a3L a100200,∴ g (M )100 ,∴ g (m)最小100.⋯⋯⋯⋯⋯⋯⋯13分明:其余正确解法按相步分.。
2011年北京海淀区高三一模 数学 文
海淀区高三年级第二学期期中练习数 学 (文科) 2011.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin x y a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7. 已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.PDCBA1A 1D 1B 1C 左视主视乙丙甲12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤ a b ,则y x -的取值范围为 . 14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形A B C D 和正△PAB 所在平面互相垂直,其中//,AB DCCBD18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b+= (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i = , 设j j k k k b +++= 21(1,2,3)j = ,12()100m g m b b b m =+++- (1,2,3).m = (Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++= ,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2011.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)非选择题 (共110分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分)解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分(II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分 又0180A <<,所以135A = . …………………10分 因为1tan 03C =>,且0180C << ,所以sin C = , …………………11分 由sin sin a c A C=,得a = …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b , 其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点,所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =,所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分 又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分 (II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分 又因为平面ABCD ⊥平面PAB ,平面ABCD 平面PAB AB = ,所以PO ⊥平面ABCD , …………………10分BACDOPBA CD OP而AC ⊂平面ABCD ,所以 PO AC ⊥,又PO DO O = ,所以AC ⊥平面POD . …………………12分 又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分)解:(I )因为2211'()a ax f x x x x -=-+= , …………………2分 当1a =, 21'()x f x x-= ,令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以1x =时,()f x 的极小值为1 . …………………5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一:因为2211'()a ax f x x x x -=-+= ,且0a ≠, 令'()0f x =,得到1x a= ,若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分 (1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减,故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e =+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a=>,即0a >时,① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>,显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e<<,即1a >时,则有 所以()f x 在区间(0,]e 上的最小值为()lnf a a aa=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞ 符合题意. …………………14分 解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e =…………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a eee e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分从而222222216121(34)(34)k m mk k+=++,化简得22434m k=+,经检验满足③式.………10分又点O到直线l的距离为:d====………11分当且仅当0k=时等号成立…………12分当直线l无斜率时,由对称性知,点P一定在x轴上,从而P点为(2,0),(2,0)-,直线l为1x=±,所以点O到直线l的距离为1 ……13分所以点O到直线l……14分20.(共13分)解: (I)因为数列1240,30,k k==320,k=410k=,所以123440,70,90,100b b b b====,所以(1)60,(2)90,(3)100,(4)100g g g g=-=-=-=-. …………………3分(II) 一方面,1(1)()100mg m g m b++-=-,根据j b的含义知1100mb+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg,①…………………5分当且仅当1100mb+=时取等号.因为123100,,,,a a a a中最大的项为50,所以当50m≥时必有100mb=,所以(1)(2)(49)(50)(51)g g g g g>>>===即当149m<<时,有()(1)g m g m>+;当49m≥时,有()(1)g m g m=+.…………………7分(III)设M为{}12100,,,a a a中的最大值.由(II)可以知道,()g m的最小值为()g M. 下面计算()g M的值.- 11 - 123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123100()M a a a a b =-+++++123100()100a a a a =-+++++ ,∵123100200a a a a ++++= , ∴()100g M =-,∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
北京市海淀区高三上学期期末考试数学文试题 含答案
海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2014.1阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)πcosππ2()2sinππ44sin cos44f=+=+=+------------------------3分(Ⅱ)由sin cos0x x+≠得ππ,4x k k≠-∈Z.因为cos2()2sinsin cosxf x xx x=++22cos sin2sinsin cosx xxx x-=++------------------------------------5分cos sinx x=+π)4x+,-------------------------------------7分所以()f x的最小正周期2πT=. -------------------------------------9分因为函数siny x=的对称轴为ππ+,2x k k=∈Z, ------------------------------11分又由πππ+,42x k k+=∈Z,得ππ+,4x k k=∈Z,9. 2 10.16 11. 712.{1,2,4}13.50,1015 14.1-;①②③所以()f x 的对称轴的方程为ππ+,4x k k =∈Z .-----------------------------------13分16.(本小题共13分)解:(Ⅰ)由上图可得0.010.190.290.451a ++++=,所以0.06a =. ----------------------------------4分(Ⅱ)设事件A 为“甲队员射击,命中环数大于7环”,它包含三个两两互斥的事件:甲队员射击,命中环数为8环,9环,10环.所以()0.290.450.010.75P A =++=. ----------------------------------9分 (Ⅲ)甲队员的射击成绩更稳定. ---------------------------------13分 17.(本小题共14分)解:(Ⅰ)因为底面ABCD 是菱形,所以//CD AB . ----------------------------1分 又因为CD ⊄平面PAB , -------------------3分 所以//CD 平面PAB . --------------------------4分 (Ⅱ)因为PA PB =,点E 是棱AB 的中点,所以PE AB ⊥. ----------------------------------5分 因为平面PAB ⊥平面ABCD ,平面PAB平面ABCD AB =,PE ⊂平面PAB ,----------------------------------7分所以PE ⊥平面ABCD , ------------------------------------8分 因为AD ⊂平面ABCD ,所以PE AD ⊥. ------------------------------------9分 (Ⅲ)因为CA CB =,点E 是棱AB 的中点,所以CE AB ⊥. --------------------------------10分 由(Ⅱ)可得PE AB ⊥, ---------------------------------11分 所以AB ⊥平面PEC , --------------------------------13分 又因为AB ⊂平面PAB ,所以平面PAB ⊥平面PEC . --------------------------------14分18.(本小题共13分)解:(Ⅰ)'()(1)e x f x x a =++,x ∈R . -------------------------------2分因为函数()f x 是区间[3,)-+∞上的增函数,所以'()0f x ≥,即10x a ++≥在[3,)-+∞上恒成立.------------------------------3分 因为1y x a =++是增函数,所以满足题意只需310a -++≥,即2a ≥. -------------------------------5分 (Ⅱ)令'()0f x =,解得1x a =-- -------------------------------6分 (),'()f x f x 的情况如下:--------------------------------------10分①当10a --≤,即1a ≥-时,()f x 在[0,2]上的最小值为(0)f , 若满足题意只需2(0)e f ≥,解得2e a ≥,所以此时,2e a ≥; --------------------------------------11分②当012a <--<,即31a -<<-时,()f x 在[0,2]上的最小值为(1)f a --, 若满足题意只需2(1)e f a --≥,求解可得此不等式无解,所以a 不存在; ------------------------12分③当12a --≥,即3a ≤-时,()f x 在[0,2]上的最小值为(2)f , 若满足题意只需2(2)e f ≥,解得1a ≥-,所以此时,a 不存在. ------------------------------13分综上讨论,所求实数a 的取值范围为2[e ,)+∞. 19. (本小题共14分)解:(Ⅰ)由题意可得1c =, ----------------------------------1分 又由题意可得12c a =, 所以2a =, ----------------------------------2分所以2223b a c =-=, ----------------------------------3分所以椭圆C 的方程为22143x y +=. ---------------------------------4分所以椭圆C 的右顶点(2,0)A , --------------------------------5分 代入圆F 的方程,可得21r =,所以圆F 的方程为22(1)1x y -+=. ------------------------------6分 (Ⅱ)法1:假设存在直线l :(2)y k x =-(0)k ≠满足条件, -----------------------------7分由22(2),143y k x x y =-⎧⎪⎨+=⎪⎩得2222(43)1616120k x k x k +-+-=----------------------------8分设11(,)B x y ,则21216243k x k +=+, ---------------------------------9分可得中点22286(,)4343k kP k k -++, --------------------------------11分由点P 在圆F 上可得2222286(1)()14343k k k k --+=++化简整理得20k = --------------------------------13分 又因为0k ≠,所以不存在满足条件的直线l . --------------------------------14分 (Ⅱ)法2:假设存在直线l 满足题意.由(Ⅰ)可得OA 是圆F 的直径, -----------------------------7分 所以OP AB ⊥. ------------------------------8分 由点P 是AB 中点,可得||||2OB OA ==. --------------------------------9分设点11(,)B x y ,则由题意可得2211143x y +=. --------------------------------10分又因为直线l 的斜率不为0,所以214x <, -------------------------------11分所以22222211111||3(1)3444x x OB x y x =+=+-=+<,-------------------------------13分这与||||OA OB =矛盾,所以不存在满足条件的直线l . --------------------------14分 20. (本小题共13分)解:(Ⅰ)只有y =是N 函数. ----------------------------3分 (Ⅱ)函数()[ln ]1g x x =+是N 函数.证明如下:显然,*x ∀∈N ,*()[ln ]1g x x =+∈N . ---------------------------------------4分不妨设*[ln ]1,x k k +=∈N ,由[ln ]1x k +=可得1ln k x k -≤<, 即11e e k k x -≤≤<.因为*k ∀∈N ,恒有11e e e (e 1)1k k k ---=->成立, 所以一定存在*x ∈N ,满足1e e k k x -≤<, 所以设*k ∀∈N ,总存在*x ∈N 满足[ln ]1x k +=,所以函数()[ln ]1g x x =+是N 函数. ---------------------------------------8分 (Ⅲ)(1)当0b ≤时,有2(2)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ---------------------------9分(2)当0b >时,① 若0a ≤,有(1)[]0f b a =⋅≤,所以函数()[]x f x b a =⋅都不是N 函数. ------------------10分② 若01a <≤,由指数函数性质易得 x b a b a ⋅≤⋅,所以*x ∀∈N ,都有()[][]x f x b a b a =⋅≤⋅所以函数()[]x f x b a =⋅都不是N 函数. -----------------11分③ 若1a >,令12m m b a b a +⋅-⋅>,则2log (1)am b a >⋅-,所以一定存在正整数k 使得 12k k b a b a +⋅-⋅>, 所以*12,n n ∃∈N ,使得112k k b a n n b a +⋅<<<⋅, 所以12()(1)f k n n f k <<≤+.又因为当x k <时,x k b a b a ⋅<⋅,所以()()f x f k ≤; 当1x k >+时,1x k b a b a +⋅>⋅,所以()(1)f x f k ≥+, 所以*x ∀∈N ,都有*{()|}n f x x ∉∈N ,所以函数()[]x f x b a =⋅都不是N 函数.------------------13分综上所述,对于任意实数,a b ,函数()[]x f x b a =⋅都不是N 函数.。
北京海淀区2011届高三数学期末考试题(文)
B1
F
D
O A
C B
18. (本小题满分 13 分) 已知函数 f ( x ) x 2 2 a 3 1, 其中 a 0 .
x
(I)若曲线 y f ( x) 在 (1, f (1)) 处的切线与直线 y 1 平行,求 a 的值; (II)求函数 f ( x) 在区间 [1, 2 ] 上的最小值. 19. (本小题满分 14 分)
15.(本小题满分 13 分)
设函数 f ( x ) 1 sin x 3 cos x , x R .
2
2
(I)求函数 f ( x ) 的周期和值域;
(II)记 ABC
的内角 A, B , C
的对边分别为 a , b , c ,若
f
( A)
3 ,
且a
3b,
2
2
求角 C 的值.
16. (本小题满分 13 分) 某学校三个社团的人员分布如下表(每名同学只参加一个社团)
17. (本小题满分 13 分)
如图,棱柱 ABCD— A1B1C1D1 的底面 A B C D 为菱形 , AC
为 DC1 的中点.
(I) 证明: O F // 平面 BC C1B1 ;
A1
(II)证明:平面 D BC1 平面 ACC1 A1 .
BD O ,侧棱 AA1 ⊥BD,点 F
D1
C1
7. 已知函数 f ( x ) sin x 1 x, x [0, π ] , 3
cos
x0
1 3
(
x0
[0, π ] ),那么下面结论正确的是
2 12俯视图Fra bibliotekA. f ( x ) 在 [0, x0 ] 上是减函数
北京市海淀区高三一学期期末数学文科试题纯word版含答案
海淀区高三年级第一学期期末练习数学(文科) 2013.1本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数21i-化简的结果为 A.1i + B.1i -+ C. 1i - D.1i -- 2.向量(1,1),(2,)t ==a b ,若⊥a b ,则实数t 的值为 A. 2- B.1- C. 1D. 23.在等边ABC ∆的边BC 上任取一点P ,则23ABP ABC S S ∆∆≤的概率是 A.13B. 12C. 23D. 564.点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为 A .2 B.3 C. 4 D.55.某程序的框图如图所示, 执行该程序,若输入的p 为24,则输出 的,n S 的值分别为A. 4,30n S == B. 4,45n S == C. 5,30n S == D. 5,45n S ==6.已知点(1,0),(cos ,sin )A B αα-, 且||AB =, 则直线AB 的方程为A.y =+y =y =+或y =C.1yx =+或1y x =-- D.y =或y =7.已知函数sin , sin cos ,()cos , sin cos ,x x x f x x x x ≥⎧=⎨<⎩则下面结论中正确的是A.()f x 是奇函数 B.()f x 的值域是[1,1]-C.()f x 是偶函数D.()f x 的值域是[2-8.如图,在棱长为1的正方体1111ABCD A B C D -中,点, E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1//A P 平面,AEF则线段1A P 长度的取值范围是 A.[1,2B. []42C. 2D. 二、填空题:本大题共6小题,每小题5分,共30分.9. tan225的值为________.10.双曲线22133x y -=的渐近线方程为_____;离心率为______.11.数列{}n a 是公差不为0的等差数列,且268a a a +=,则55_____.S a = 12.不等式组0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域为Ω,直线1y k x =-与区域Ω有公共点,则实数k 的取值范围为_________.13.三棱锥D ABC -及其三视图中的主视图和左视图如图所示,则棱BD 的长为______.14. 任給实数,,a b 定义, 0,, 0.a b a b a b a a b b⨯⨯≥⎧⎪⊕=⎨⨯<⎪⎩设函数()ln f x x x =⊕,则1(2)()2f f +=______;若{}n a 是公比大于0的等比数列,且51a =,123781()()()()(=,f a f a f a f a f a a +++++)则1___.a =三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程. 15. (本小题满分13分)已知函数21()sin cos cos 2f x x x x =-+,ABC ∆三个内角,,A B C 的对边分别为,,,a b c 且()1f A =.(I )求角A 的大小;(Ⅱ)若7a =,5b =,求c 的值.DABCB 1C 1D 1A 1F E BC DA16. (本小题满分13分)某汽车租赁公司为了调查A ,B 两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:(I ) 试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);(Ⅱ)现从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,试估计这辆汽 车是A 型车的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.17. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,1AB AC AA ==,且E 是BC 中点.(I )求证:1//A B 平面1AEC ; (Ⅱ)求证:1B C ⊥平面1AEC .18.(本小题满分13分)已知函数211()22f x x =-与函数()ln g x a x =在点(1,0)处有公共的切线,设 ()()()F x f x mg x =-(0)m ≠.(I )求a 的值;(Ⅱ)求()F x 在区间[1,e]上的最小值. .EC 1B 1A 1CBA19. (本小题满分14分)已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.20. (本小题满分13分)已知函数()f x 的定义域为(0,)+∞,若()f x y x=在(0,)+∞上为增函数,则称()f x 为 “一阶比增函数”.(Ⅰ) 若2()f x ax ax =+是“一阶比增函数”,求实数a 的取值范围;(Ⅱ) 若()f x 是“一阶比增函数”,求证:12,(0,)x x ∀∈+∞,1212()()()f x f x f x x +<+; (Ⅲ)若()f x 是“一阶比增函数”,且()f x 有零点,求证:()2013f x >有解.海淀区高三年级第一学期期末练习数 学 (文)参考答案及评分规范2013.1说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(I )因为 21()cos cos 2f x x x x =-+12cos222x x =- πsin(2)6x =-………………6分又π()sin(2)16f A A =-=,(0,)A π∈,………………7分所以ππ7π2(,)666A -∈-, πππ2,623A A -==………………9分(Ⅱ)由余弦定理2222cos a b c bc A =+-得到2π492525cos 3c c =+-⨯,所以25240c c --=………………11分解得3c =-(舍)或 8c =………………13分 所以8c =16.(本小题满分13分) 解:(I )由数据的离散程度可以看出,B 型车在本星期内出租天数的方差较大………………3分(Ⅱ)这辆汽车是A 类型车的概率约为3A 333A,B 10313==+出租天数为天的型车辆数出租天数为天的型车辆数总和这辆汽车是A 类型车的概率为313………………7分 (Ⅲ)50辆A 类型车出租的天数的平均数为3343051567754.6250A x ⨯+⨯+⨯+⨯+⨯==………………9分50辆B 类型车出租的天数的平均数为310410515610754.850B x ⨯+⨯+⨯+⨯+⨯==………………11分答案一:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为4.8,选择B 类型的出租车的利润较大,应该购买B 型车………………13分答案二:一辆A 类型的出租车一个星期出租天数的平均值为4.62,B 类车型一个星期出租天数的平均值为 4.8,而B 型车出租天数的方差较大,所以选择A 型车 ………………13分 17.(本小题满分14分)解:(I) 连接A C 1交AC 1于点O ,连接EO 因为1ACC A 1为正方形,所以O 为A C 1中点 又E 为CB 中点,所以EO 为1A BC ∆的中位线, 所以1//EO A B ………………3分 又EO ⊂平面1AEC ,1A B ⊄平面1AEC 所以1//A B 平面1AEC ………………6分(Ⅱ)因为AB AC =,又E 为CB 中点,所以AE BC ⊥………………8分 又因为在直三棱柱111ABC A B C -中,1BB ⊥底面ABC , 又AE ⊂底面ABC , 所以1AE BB ⊥, 又因为1BB BC B =,所以AE ⊥平面11BCC B ,又1B C ⊂平面11BCC B ,所以AE ⊥1B C ………………10分在矩形11BCC B 中, 111tan tan CB C EC C ∠=∠=,所以111CB C EC C ∠=∠, 所以11190CB C EC B ∠+∠=,即11B C EC ⊥………………12分又1AEEC E =,所以1B C ⊥平面11BCC B ………………14分18.(本小题满分13分) 解:(I )因为(1)(1)0,f g ==所以(1,0)在函数(),()f x g x 的图象上又'(),'()af x xg x x==,所以'(1)1,'(1)f g a == 所以1a =………………3分 (Ⅱ)因为211()ln 22F x x m x =--,其定义域为{|0}x x > 2'()m x mF x x x x-=-=………………5分 当0m <时,2'()0m x mF x x x x-=-=>,所以()F x 在(0,)+∞上单调递增,所以()F x 在[1,e]上最小值为(1)0F =………………7分当0m >时,令2'()0m x mF x x x x-=-==,得到120,0x x =>=< (舍)1时,即01m <≤时,'()0F x >对(1,e)恒成立,所以()F x 在[1,e]上单调递增,其最小值为(1)0F =………………9分e ≥时,即2e m ≥时,'()0F x <对(1,e)成立,所以()F x 在[1,e]上单调递减, 其最小值为211(e)e 22F m =--………………11分当1e <,即21e m <<时,'()0F x <对成立,'()0F x >对成立所以()F x 在单调递减,在上单调递增其最小值为1111ln 22222mF m m m m =--=--………13分 综上,当1m ≤时, ()F x 在[1,e]上的最小值为(1)0F =当21e m <<时,()F x 在[1,e]上的最小值为11ln 222mF m m =-- 当2e m ≥时, ()F x 在[1,e]上的最小值为211(e)e 22F m =--.19.(本小题满分14分)解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y +=………………3分(Ⅱ)因为直线的倾斜角为45,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-=………………5分 所以121288288,,77x x x x ∆=+=-=所以1224|||7CD x x =-=………………7分 (Ⅲ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---, ,A B DA B C ∆∆面积相等,12||0S S -=………………8分 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-= 显然0∆>,方程有根,且221212228412,3434k k x x x x k k-+=-=++………………10分 此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k=++=+………………12分 因为0k ≠,上式1234||||k k =≤==+,(k =所以12||S S -………………14分20.(本小题满分13分)解:(I )由题2()f x ax axy ax a x x+===+在(0,)+∞是增函数,由一次函数性质知当0a >时,y ax a =+在(0,)+∞上是增函数, 所以0a >………………3分(Ⅱ)因为()f x 是“一阶比增函数”,即()f x x在(0,)+∞上是增函数, 又12,(0,)x x ∀∈+∞,有112x x x <+,212x x x <+所以112112()()f x f x x x x x +<+, 212212()()f x f x x x x x +<+………………5分 所以112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+所以11221212121212()()()()()x f x x x f x x f x f x f x x x x x x +++<+=+++所以1212()()()f x f x f x x +<+………………8分 (Ⅲ)设0()0f x =,其中00x >.因为()f x 是“一阶比增函数”,所以当0x x >时,00()()0f x f x x x >= 法一:取(0,)t ∈+∞,满足()0f t >,记()f t m =由(Ⅱ)知(2)2f t m >,同理(4)2(2)4f t f t m >>,(8)2(4)8f t f t m >> 所以一定存在*n ∈N ,使得(2)22013n n f t m >⋅>,所以()2013f x > 一定有解 ………………13分法二:取(0,)t ∈+∞,满足()0f t >,记()f t k t= 因为当x t >时,()()f x f t k x t>=,所以()f x kx >对x t >成立 只要 2013x k>,则有()2013f x kx >>, 所以()2013f x > 一定有解 ………………13分。
北京海淀高三文科数学第一学期期末试题及答案
海淀区高三年级第一学期期末练习数学(文)参考答案及评分标准2013.1说明:合理答案均可酌情给分,但不得超过原题分数.一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8答案 A A C B C B D B二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)9.1 10. 11.12. 13. 14.0;三、解答题(本大题共6小题,共80分)15.(本小题满分13分)解:(I)因为………………6分又,,………………7分所以,………………9分(Ⅱ)由余弦定理得到,所以………………11分解得(舍)或………………13分所以16. (本小题满分13分)解:(I)由数据的离散程度可以看出,B型车在本星期内出租天数的方差较大………………3分(Ⅱ)这辆汽车是A类型车的概率约为这辆汽车是A类型车的概率为………………7分(Ⅲ)50辆A类型车出租的天数的平均数为………………9分50辆B类型车出租的天数的平均数为………………11分答案一:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为4.8,选择B类型的出租车的利润较大,应该购买B型车………………13分答案二:一辆A类型的出租车一个星期出租天数的平均值为4.62,B类车型一个星期出租天数的平均值为 4.8,而B型车出租天数的方差较大,所以选择A型车………………13分17. (本小题满分14分)解:(I) 连接交于点,连接因为为正方形,所以为中点又为中点,所以为的中位线,所以………………3分又平面,平面所以平面………………6分(Ⅱ)因为,又为中点,所以………………8分又因为在直三棱柱中,底面,又底面, 所以,又因为,所以平面,又平面,所以………………10分在矩形中, ,所以,所以,即………………12分又,所以平面………………14分18. (本小题满分13分)解:(I)因为所以在函数的图象上又,所以所以………………3分(Ⅱ)因为,其定义域为………………5分当时,,所以在上单调递增,所以在上最小值为………………7分当时,令,得到(舍)当时,即时,对恒成立,所以在上单调递增,其最小值为………………9分当时,即时, 对成立,所以在上单调递减,其最小值为………………11分当,即时, 对成立, 对成立所以在单调递减,在上单调递增其最小值为………13分综上,当时,在上的最小值为当时,在上的最小值为当时, 在上的最小值为.19. (本小题满分14分)解:(I)因为为椭圆的焦点,所以又所以所以椭圆方程为………………3分(Ⅱ)因为直线的倾斜角为,所以直线的斜率为1,所以直线方程为,和椭圆方程联立得到,消掉,得到………………5分所以所以………………7分(Ⅲ)当直线无斜率时,直线方程为,此时, 面积相等,………………8分当直线斜率存在(显然)时,设直线方程为,设和椭圆方程联立得到,消掉得显然,方程有根,且………………10分此时………………12分因为,上式,(时等号成立)所以的最大值为………………14分20. (本小题满分13分)解:(I)由题在是增函数,由一次函数性质知当时,在上是增函数,所以………………3分(Ⅱ)因为是“一阶比增函数”,即在上是增函数,又,有,所以,………………5分所以,所以所以………………8分(Ⅲ)设,其中.因为是“一阶比增函数”,所以当时,法一:取,满足,记由(Ⅱ)知,同理,所以一定存在,使得,所以一定有解………………13分法二:取,满足,记因为当时,,所以对成立只要,则有,所以一定有解………………13分。
北京市海淀区高三上学期期末考试 文科数学 Word版含答案
海淀区高三年级第一学期期末练习数学(文科) 2014.01本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.复数i(i 1)+等于A. 1i +B.1i -+C. 1i -D.1i --2.已知直线1:210l x y +-=与直线2:0l mx y -=平行,则实数m 的取值为 A. 12- B.12C. 2D.2- 3.为了估计某水池中鱼的尾数,先从水池中捕出2000尾鱼,并给每尾鱼做上标记(不影响存活),然后放回水池,经过适当的时间,再从水池中捕出500尾鱼,其中有标记的鱼为40尾,根据上述数据估计该水池中鱼的尾数为 A .10000B .20000 C .25000D .300004.阅读右边的程序框图,运行相应的程序,输出的S 值为 A.15B.14 C. 7D.65.已知2log 3a =,4log 6b =,4log 9c =,则 A .a b c =<B .a b c << C .a c b =>D .a c b >>6.已知函数22,2,()3,2,x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有三个不等的实根,则实数k 的取值范围是 A.(3,1)- B. (0,1)C. (2,2)- D. (0,)+∞7.在ABC ∆中,若2a b =,面积记作S ,则下列结论中一定..成立的是 A .30B >B .2A B =C .c b <D .2S b ≤ 8.如图所示,正方体1111ABCD A B C D -的棱长为1,BDAC O =,M 是线段1D O 上的动点,过点M 做平面1ACD 的垂线交平面11111A B C D 于点N ,则点N 到点A 距离的最小值为ABC.1 二、填空题:本大题共6小题,每小题5分,共30分。
北京市海淀区届高上学期期末数学试卷(文科)Word版含解析
北京市海淀区2015届高三上学期期末数学试卷(文科)一、选择题共8小题,每题5分,共40分.在每题列出的四个选项中,选出切合题目要求的一项.1.(5分)已知全集U={x∈R|x>0},会合A={x∈R|x≥2},则CUA=()A.{x∈R|x<2}B.{x∈R|0<x<2}C.{x∈R|x≤2}D.{x∈R|0<x≤2}2.(5分)以下图,在复平面内,点A对应的复数为z,则z=()A.1﹣2iB.1+2i C.﹣2﹣iD.﹣2+i3.(5分)已知直线A.0或﹣3l1:ax+(a+2)y+1=0,l2:ax﹣y+2=0.若B.2或﹣1C.0l1∥l2,则实数D.﹣3a的值是()4.(5分)当向量= =(﹣1,1),=(1,0)时,履行以下图的程序框图,输出的i值为()A.5B.4C.3D.25.(5分)为认识某年级女生五十米短跑状况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)以下图.由此可预计该年级女生五十米跑成绩及格(及格成绩为秒)的概率为()A.B.C.D.-1-/18北京市海淀区届高上学期期末数学试卷(文科)Word版含解析6.(5分)已知函数f(x)=log2(x+a)+log2(x﹣a)(a∈R).命题p:?a∈R,函数f(x)是偶函数;命题q:?a∈R,函数f(x)在定义域内是增函数.那么以下命题为真命题的是()A.?q B.p∧q C.(?p)∧q D.p∧(?q)7.(5分)某堆雪在消融过程中,其体积3t(单位:h)近似知足函V(单位:m)与消融时间数关系:(H为常数),其图象以下图.记此堆雪从消融开始到结束的均匀消融速度为.那么刹时消融速度等于的时辰是图中的()A.t1B.t2C.t3D.t48.(5分)在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E点位于()A.点A处B.线段AD的中点处C.线段AB的中点处D.点D处二、填空题共6小题,每题5分,共30分.29.(5分)抛物线y=﹣2x的焦点坐标为.10.(5分)若双曲线的一条渐近线的倾斜角为60°,则m=.11.(5分)某三棱锥的三视图以下图,该三棱锥的体积为.-2-/1812.(5分)设不等式组表示的平面地区为 D .则地区D 上的点到坐标原点的距离的最小值是.13.(5分)在等比数列 {a n }中,若a 1=﹣24,a 4=﹣ ,则公比 q=;当n=时,{a n }的前n 项积最大.14.(5分)已知⊙O :x 2+y 2=1.若直线y=kx+2上总存在点P ,使得过点P 的⊙O 的两条切线相互垂直,则实数k 的取值范围是.三、解答题共 6小题,共 80分.解答应写出文字说明、演算步骤或证明过程.15.(13分)函数 f (x )=cos (πx+φ)(0<φ< )的部分图象以下图.(Ⅰ)写出 φ及图中x 0的值;(Ⅱ)求 f (x )在区间上的最大值和最小值.16.(13分)某中学在 2014-2015学年高二年级开设大学先修课程《线性代数》 ,共有50名同学选修,此中男同学 30名,女同学 20名.为了对这门课程的教课成效进行评估,学校按性别采纳分层抽样的方法抽取 5人进行查核.(Ⅰ)求抽取的 5人中男、女同学的人数;-3-/18(Ⅱ)查核前,评估小组打算从选出的5人中随机选出2名同学进行访谈,求选出的两名同学中恰有一名女同学的概率;(Ⅲ)查核分辩论和笔试两项.5位同学的笔试成绩分别为115,122,105,111,109;联合答辩状况,他们的查核成绩分别为125,132,115,121,119.这5位同学笔试成绩与查核成绩的方差分别记为s12,s22,试比较s12与s22的大小.(只要写出结论)17.(14分)以下图,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C是菱形,平面AA1B1B⊥平面BB1C1C.(Ⅰ)求证:BC∥平面AB1C1;(Ⅱ)求证:B1C⊥AC1;(Ⅲ)设点E,F,H,G分别是B1C,AA1,A1B1,B1C1的中点,试判断E,F,H,G四点能否共面,并说明原因.2218.(13分)已知椭圆M:x+2y=2.(Ⅰ)求M的离心率及长轴长;(Ⅱ)设过椭圆M的上极点A的直线l与椭圆M的另一个交点为B,线段AB的垂直均分线交椭圆M于C,D两点.问:能否存在直线l使得C,O,D三点共线(O为坐标原点)?若存在,求出全部知足条件的直线l的方程;若不存在,说明原因.19.(13分)已知函数f(x)=.(Ⅰ)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax﹣y=0,求x0的值;(Ⅱ)当x>0时,求证:f(x)>x;(Ⅲ)问会合{x∈R|f(x)﹣bx=0}(b∈R且为常数)的元素有多少个?(只要写出结论)20.(14分)数列{a n}的前n项和为S n,且知足a1=1,2a n+1=2a n+p(p为常数,n=1,2,3,).(Ⅰ)若S3=12,求S n;(Ⅱ)若数列{a n}是等比数列,务实数p的值.(Ⅲ)能否存在实数p,使得数列{}知足:能够从中拿出无穷多项并按本来的先后序次排成一个等差数列?若存在,求出全部知足条件的p的值;若不存在,说明原因.北京市海淀区2015届高三上学期期末数学试卷(文科)-4-/18参照答案与试题分析一、选择题共8小题,每题5分,共40分.在每题列出的四个选项中,选出切合题目要求的一项.1.(5分)已知全集U={x∈R|x>0},会合A={x∈R|x≥2},则C U A=()A.{x∈R|x<2}B.{x∈R|0<x<2}C.{x∈R|x≤2}D.{x∈R|0<x≤2}考点:补集及其运算.专题:会合.剖析:欲求补集,利用补集的定义求解解答:解:∵全集U={x∈R|x>0},会合A={x∈R|x≥2},C U A={x∈R|0<x<2}应选:B评论:此题主要观察了会合交,并,补的混淆运算,较为简单.2.(5分)以下图,在复平面内,点A对应的复数为z,则z=()A.1﹣2i B.1+2i C.﹣2﹣i D.﹣2+i考点:复数的基本观点.专题:数系的扩大和复数.剖析:利用复数的几何意义即可得出.解答:解:由图可知:z=﹣2+i.应选:D.评论:此题观察了复数的几何意义,属于基础题.3.(5分)已知直线l1:ax+(a+2)y+1=0,l2:ax﹣y+2=0.若l1∥l2,则实数a的值是()A.0或﹣3B.2或﹣1C.0D.﹣3考点:直线的一般式方程与直线的平行关系.专题:直线与圆.剖析:对a分类议论,利用两条直线相互平行与斜率之间的关系即可得出.解答:解:当a=﹣2时,两条直线分别化为﹣2x+1=0,﹣2x﹣y+2=0,此时两条直线不平行,舍去.当a≠﹣2时,两条直线分别化为:,y=ax+2.∵l1∥l2,∴,.解得a=0,a=﹣3.-5-/18综上可得:a=0或﹣3.应选:A.评论:此题观察了两条直线相互平行与斜率之间的关系、分类议论思想方法,观察了推理能力与计算能力,属于基础题.4.(5分)当向量= =(﹣1,1),=(1,0)时,履行以下图的程序框图,输出的i值为()A.5B.4C.3D.2考点:专题:程序框图.图表型;算法和程序框图.剖析:模拟程序运转,挨次写出每次循环获得的的值,当=(1,1),知足条件a?c=0,退出循环,输出i的值为2.解答:解:模拟程序运转,有i=1时,=(0,1),不知足条件a?c=0i=2时,=(1,1),知足条件a?c=0退出循环,输出i的值为2.应选:D.评论:此题主要观察了程序框图和算法,正确理解循环结构的功能是解题的重点,属于基本知识的观察.5.(5分)为认识某年级女生五十米短跑状况,从该年级中随机抽取8名女生进行五十跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)以下图.由此可预计该年级女生五十米跑成绩及格(及格成绩为秒)的概率为()A.B.C.D.-6-/18考点:茎叶图.专题:概率与统计.剖析:由已知茎叶图获得该年级女生五十米跑成绩及格的人数,而后由古典概型的概率求解.解答:解:由已知获得该年级女生五十米跑成绩及格的有:,,,,共有6人,由古典概型概率公式得P=;应选B.评论:此题观察了由茎叶图找到检查数据的信息以及由此计算概率,属于基础题.6.(5分)已知函数f(x)=log2(x+a)+log2(x﹣a)(a∈R).命题p:?a∈R,函数f(x)是偶函数;命题q:?a∈R,函数f(x)在定义域内是增函数.那么以下命题为真命题的是()A.?q B.p∧q C.(?p)∧q D.p∧(?q)考点:复合命题的真假.专题:简略逻辑.剖析:先求f(x)的定义域(|a|,+∞),依据偶函数的定义域特色及对数函数的单一性知命题p是假命题,命题q是真命题,因此即可判断(¬p)∧q是真命题.解答:解:函数f(x)的定义域为(|a|,+∞);定义域不对于原点对称;f(x)是非奇非偶函数;∴命题p是假命题;依据对数函数的单一性知f(x)在定义域内是增函数;∴命题q是真命题;∴¬p是真命题,(¬p)∧q为真命题.应选C.评论:观察偶函数定义域的特色,以及对数函数的单一性,对于F(x)=f(x)+g(x),若f(x),g(x)在F(x)的定义域内都是增函数,则F(x)是增函数,以及¬p,p∧q的真假和p,q真假的关系.7.(5分)某堆雪在消融过程中,其体积3t(单位:h)近似知足函V(单位:m)与消融时间数关系:(H为常数),其图象以下图.记此堆雪从消融开始到结束的均匀消融速度为.那么刹时消融速度等于的时辰是图中的()-7-/18A.t1B.t2C.t3D.t4考点:函数的图象.专题:函数的性质及应用.剖析:依据题意可知,均匀消融速度为=,反应的是V(t)图象与坐标轴交点连线的斜率,经过察看某一时辰处刹时速度(即切线的斜率),即可获得答案解答:解:均匀消融速度为=,反应的是V(t)图象与坐标轴交点连线的斜率,察看可知t3处刹时速度(即切线的斜率)为均匀速速一致,应选:C评论:此题观察了图象的辨别,重点理解均匀速度表示的几何意义(即斜率),属于基础题8.(5分)在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E点位于()A.点A处B.线段AD的中点处C.线段AB的中点处D.点D处考点:棱柱的结构特色.专题:空间地点关系与距离.剖析:由题意画出图形,数形联合获得使三棱锥B﹣D1EC的三个动面面积最大的点E得答案.-8-/18解答:解:如图,E为底面ABCD上的动点,连结BE,CE,D1E,对三棱锥B﹣D1EC,不论E在底面ABCD上的何地点,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,E点位于点A处时,三棱锥B﹣D1EC的表面积最大.应选:A.评论:此题观察了空间几何体的表面积,观察了数形联合的解题思想方法,是基础题.二、填空题共6小题,每题5分,共30分.9.(5分)抛物线2的焦点坐标为.y=﹣2x考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.剖析:依据抛物线的方程的标准方程,求出p值,确立张口方向,进而写出焦点坐标.解答:解:抛物线y 2=﹣2x,张口向左,p=1,故焦点坐标为(﹣,0),故答案为:(﹣,0).评论:此题观察抛物线的标准方程,以及简单性质的应用,属于简单题.10.(5分)若双曲线的一条渐近线的倾斜角为60°,则m=3.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.剖析:求出双曲线的渐近线方程,由题意可得,tan60°=,计算即可获得m.解答:解:双曲线(m>0)的渐近线方程为y=x,-9-/18则有tan60°=,即有=,即为m=3.故答案为:3.评论:此题观察双曲线的方程和性质,观察渐近线方程的运用,观察运算能力,属于基础题.11.(5分)某三棱锥的三视图以下图,该三棱锥的体积为8.考点:由三视图求面积、体积.专题:计算题;空间地点关系与距离.剖析:由三视图及题设条件知,此几何体为一个三棱锥,其高为3,底面是直角边长为3,的直角三角形,故先求出底面积,再由体积公式求解其体积即可.解答:解:由题设条件,此几何几何体为一个三棱锥,其高为3,底面是直角边长为3,4的直角三角形,故其体积是=8,故答案为:8评论:此题考点是由三视图求几何体的面积、体积,观察对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据复原出实物图的数据,再依据有关的公式求表面积与体积.12.(5分)设不等式组表示的平面地区为D.则地区D上的点到坐标原点的距离的最小值是.考点:简单线性规划.专题:不等式的解法及应用.剖析:作出不等式组对应的平面地区,利用数形联合即可获得结论.解答:解:作出不等式组对应的平面地区如图:由图象可知,当OQ垂直直线x+y﹣1=0时,此时地区D上的点到坐标原点的距离的最小,-10-/18最小值为圆心到直线x+y﹣1=0的距离d=,故答案为:.评论:此题主要观察两点间距离的应用,利用数形联合以及点到直线的距离公式是解决此题的重点.13.(5分)在等比数列{a n}中,若a1=﹣24,a4=﹣,则公比q=;当n=4时,{a n}的前n项积最大.考点:等比数列的前n项和.专题:等差数列与等比数列.剖析:直接由已知及等比数列的通项公式求得公比;写出等比数列的通项公式,获得前n项积,而后依据奇数项积为负值,剖析偶数项乘积得答案.解答:解:在等比数列 {a n}中,由a1=﹣24,a4=﹣,得,q=;∴.则{a n}的前n项积:=.当n为奇数时T n<0,∴当n为偶数时T n有最大值.又,且当n为大于等于4的偶数时,T n+2<T n,∴当n=4时,{a n}的前n项积最大.-11-/18故答案为:;4.评论:此题观察了等比数列的通项公式,观察了等比数列的性质,是中档题.2 214.(5分)已知⊙O:x+y=1.若直线y=kx+2上总存在点P,使得过点P的⊙O的两条切线相互垂直,则实数k的取值范围是(﹣∞,﹣1]∪故答案为:(﹣∞,﹣1]∪上的最大值和最小值.考点:余弦函数的图象;余弦函数的定义域和值域.专题:三角函数的求值;三角函数的图像与性质.剖析:(Ⅰ)由图察看可知,函数的图象过点(0,),有=cosφ可解得φ的值是.由图察看可知,函数的图象过点(x0,),有π×x0+=2,可解得x0的值.(Ⅱ)由(Ⅰ)可知:.依据余弦函数的单一性即可求f(x)在区间上的最大值和最小值.解答:解:(Ⅰ)∵由图察看可知,函数的图象过点(0,),=cosφ,∵0<φ<,∴可解得φ的值是.∵由图察看可知,函数的图象过点(x0,),=cos(π×x0+)π×x0+=2∴可解得x0的值是.(Ⅱ)由(Ⅰ)可知:.-12-/18由于,因此.因此当,即时f(x)获得最大值1;当,即时f(x)获得最小值.评论:此题主要观察了三角函数分析式的求法,余弦函数的定义域和值域,余弦函数的图象和性质,属于基础题.16.(13分)某中学在2014-2015学年高二年级开设大学先修课程《线性代数》,共有50名同学选修,此中男同学30名,女同学20名.为了对这门课程的教课成效进行评估,学校按性别采纳分层抽样的方法抽取5人进行查核.(Ⅰ)求抽取的5人中男、女同学的人数;(Ⅱ)查核前,评估小组打算从选出的5人中随机选出2名同学进行访谈,求选出的两名同学中恰有一名女同学的概率;(Ⅲ)查核分辩论和笔试两项.5位同学的笔试成绩分别为115,122,105,111,109;联合答辩状况,他们的查核成绩分别为125,132,115,121,119.这5位同学笔试成绩与查核成绩的方差分别记为s12,s22,试比较s12与s22的大小.(只要写出结论)考点:极差、方差与标准差;分层抽样方法.专题:概率与统计.剖析:(Ⅰ)依据分层抽样的方法:各层被抽到的比率同样解答;(Ⅱ)利用列举法分别明确从选出的5人中随机选出2名同学进行访谈和选出的两名同学中恰有一名女同学的因此可能,利用古典概率公式解答;(Ⅲ)依据方差的计算公式解答.解答:解:(Ⅰ)抽取的5人中男同学的人数为人,女同学的人数为人.(4分)(Ⅱ)记3名男同学为A1,A2,A3,2名女同学为B1,B2.从5人中随机选出2名同学,全部可能的结果有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2,共10个.(6分)用C表示:“选出的两名同学中恰有一名女同学”这一事件,则C中的结果有6个,它们是A1B1,1B2,A2B1,A2B2.A3B1,A3B2(8分)因此选出的两名同学中恰有一名女同学的概率.(10分)(Ⅲ).(13分)评论:此题观察了统计与概率的问题,属于基础题.-13-/1817.(14分)以下图,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C是菱形,平面AA1B1B⊥平面BB1C1C.(Ⅰ)求证:BC∥平面AB1C1;(Ⅱ)求证:B1C⊥AC1;(Ⅲ)设点E,F,H,G分别是B1C,AA1,A1B1,B1C1的中点,试判断E,F,H,G四点能否共面,并说明原因.考点:平面与平面平行的性质;直线与平面平行的判断.专题:证明题;空间地点关系与距离.剖析:(Ⅰ)由BC∥B1C1,证明BC∥平面AB1C1;(Ⅱ)先证明AB⊥平面BB1C1C,得AB⊥B1C,再证明B1C⊥平面ABC1,得出B1C⊥AC1;(Ⅲ)E,F,H,G四点不共面,经过证明点F?平面EHG,即F∈平面AA1C1C,且平面AA1C1C∥平面EFH即可.解答:证明:(Ⅰ)在菱形BB1C1C中,BC∥B1C1,由于BC?平面AB1C1,B1C1?平面AB1C1,因此BC∥平面AB1C1;(3分)(Ⅱ)连结BC1,在正方形ABB1A1中,AB⊥BB1,由于平面AA1B1B⊥平面BB1C1C,平面AA1B1B∩平面BB1C1C=BB1,AB?平面ABB1A1,因此AB⊥平面BB1C1C;(5分)又由于B1C?平面BB1C1C,因此AB⊥B1C;(6分)在菱形BB1C1C中,BC1⊥B1C;由于BC1?平面ABC1,AB?平面ABC1,且BC1∩AB=B,因此B1C⊥平面ABC1;(8分)由于AC1?平面ABC1,因此B1C⊥AC1;(10分)(Ⅲ)E,F,H,G四点不共面,原因以下;(11分)由于E,G分别是B1C,B1C1的中点,因此GE∥CC1,同理可证:GH∥C1A1;由于GE?平面EHG,GH?平面EHG,GE∩GH=G,CC1?平面AA1C1C,A1C1?平面AA1C1C,因此平面EHG∥平面AA1C1C;-14-/18又由于F∈平面AA1C1C,因此F?平面EHG,即E,F,H,G四点不共面.(14分)评论:此题观察了空间中的平行与垂直的判断与直线的应用问题,也观察了判断空间中的四点能否共面问题,是综合性题目.2218.(13分)已知椭圆M:x+2y=2.(Ⅰ)求M的离心率及长轴长;(Ⅱ)设过椭圆M的上极点A的直线l与椭圆M的另一个交点为B,线段AB的垂直均分线交椭圆M于C,D两点.问:能否存在直线l使得C,O,D三点共线(O为坐标原点)?若存在,求出全部知足条件的直线l的方程;若不存在,说明原因.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.剖析:(Ⅰ)由题意可知椭圆M的标准方程为:,可知:,b=1.c=,即可得出离心率与长轴长.(II)若C,O,D三点共线,CD是线段AB的垂直均分线,可得|OA|=|OB|.由(I)可得:A(0,1),设B(x0,y0),=1.与=2,联立解出即可得出.解答:解:(Ⅰ)由题意可知椭圆M的标准方程为:,可知:,b=1.∴c==1.∴=,2a=2.(II)若C,O,D三点共线,CD是线段AB的垂直均分线,可得|OA|=|OB|.由(I)可得:A(0,1),设B(x0,y0),∴=1.又=2,联立,解得,或(舍去).当取点B(0,﹣1)时,直线l的方程为x=0,知足条件.∴存在直线l使得C,O,D三点共线(O为坐标原点),直线l的方程为:x=0.评论:此题观察了椭圆的标准方程及其性质、线段的垂直均分线的性质,观察了推理能力与计算能力,属于中档题.-15-/1819.(13分)已知函数f(x)=.(Ⅰ)若曲线y=f(x)在点(x0,f(x0))处的切线方程为ax﹣y=0,求x0的值;(Ⅱ)当x>0时,求证:f(x)>x;(Ⅲ)问会合{x∈R|f(x)﹣bx=0}(b∈R且为常数)的元素有多少个?(只要写出结论)考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.剖析:(Ⅰ)求函数的导数,依据函数的切线方程进行求解即可求x0的值;(Ⅱ)结构函数g(x)=,求函数的导数,利用导数证明不等式f(x)>x;(Ⅲ)依据函数和方程之间的关系直接求解即可.解答:(Ⅰ)解:,由于切线ax﹣y=0过原点(0,0),因此,解得x0=2(Ⅱ)证明:设,则.令,解得x=2,当x在(0,+∞)上变化时,g(x),g′(x)的变化状况以下表x(0,2)2(2,+∞)g′(x)﹣0+g(x)↘↗因此当x=2时,g(x)获得最小值,因此当时x>0时,即f(x)>x.(Ⅲ)解:当b≤0时,会合{x∈R|f(x)﹣bx=0}的元素个数为0;当时,会合{x∈R|f(x)﹣bx=0}的元素个数为1;当时,会合{x∈R|f(x)﹣bx=0}的元素个数为2;当时,会合{x∈R|f(x)﹣bx=0}的元素个数为3.评论:此题主要观察导数的综合应用,以及导数的几何意义,观察学生的运算能力.-16-/1820.(14分)数列{a n}的前n项和为S n,且知足a1=1,2a n+1=2a n+p(p为常数,n=1,2,3,).(Ⅰ)若S3=12,求S n;(Ⅱ)若数列{a n}是等比数列,务实数p的值.(Ⅲ)能否存在实数p,使得数列{}知足:能够从中拿出无穷多项并按本来的先后序次排成一个等差数列?若存在,求出全部知足条件的p的值;若不存在,说明原因.考点:等差数列的性质;数列递推式.专题:综合题;等差数列与等比数列.剖析:(Ⅰ)利用a1n+1n233=1,2a=2a+p,求出2a=2+p,2a=2+2p,利用S=12,求出p,即可求S n;2(Ⅱ)若数列{a n213,求出实数p的值,再考证;}是等比数列,则a=aa(Ⅲ)利用反证法进行证明即可得出结论.解答:解:(Ⅰ)∵a1=1,2a n+1=2a n+p,2a2=2+p,2a3=2+2p,S3=12,2+2+p+2+2p=6+3p=24,p=6,a n+1﹣a n=3,∴数列{a n}是以1为首项,3为公差的等差数列,∴S n=n+=;(Ⅱ)若数列{a n}是等比数列,则2a2=a1a3,∴(1+)2=1×(1+p),p=0,a n+1=a n,此时,数列{a n}是以1为首项,1为公比的等比数列;(Ⅲ)p=0时,a n=1,数列{}是等差数列,知足题意;p≠0时,a n+1﹣a n=,∴数列{a n}是以1为首项,为公差的等差数列,∴a n=n+1﹣.假定存在p0≠0,知足题意,数列记为{b n}.①p0>0,a n>0,数列{b n}是各项均为正数的递减数列,∴d<0.∵b n=b1+(n﹣1)d,∴n<1﹣时,b n=b1+(n﹣1)d<b1+(1﹣﹣1)d=0,与b n>0矛盾;-17-/18②p0>0,令<0,∴n>1﹣,a n<0,数列{b n}是各项均为负数的递加数列,∴d>0.∵b n=b1+(n﹣1)d,∴n>1﹣时,b n=b1+(n﹣1)d>b1+(1﹣﹣1)d=0,与b n<0矛盾,综上所述,p=0是独一知足条件的p的值.评论:此题观察数列的通项与乞降,观察反证法,观察学生剖析解决问题的能力,有难度.-18-/18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)第II 卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 共30分.有两空的题目,第一空3分,第二空2分)9.240x y +-= 10. 19 11.(3,0) 212y x = 12.25π13. 2 14. 4 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I ) x x x f cos 23sin 21)(+=)3sin(π+=x , ............................... 3分)(x f ∴的周期为π2 (或答:0,,2≠∈k Z k k π). ................................4分 因为x R ∈,所以3x R π+∈,所以)(x f 值域为]1,1[- . ...............................5分(II )由(I )可知,)3sin()(π+=A A f , ...............................6分23)3s i n (=+∴πA , ...............................7分 π<<A 0 , 3433πππ<+<∴A , ..................................8分 2,33A ππ∴+=得到3A π= . ...............................9分 ,23b a =且B b A a sin sin = , ....................................10分s i n b B =, ∴1sin =B , ....................................11分π<<B 0 , 2π=∴B . ....................................12分6ππ=--=∴B A C . ....................................13分16. (共13分)解:(I )围棋社共有60人, ...................................1分 由150301260=⨯可知三个社团一共有150人. ...................................3分 (II )设初中的两名同学为21,a a ,高中的3名同学为321,,b b b , ...................................5分 随机选出2人参加书法展示所有可能的结果:1211121321{,},{,},{,},{,},{,},a a a b a b a b a b 222312132{,}, {,},{,},{,},{,}a b a bb b b b b b ,共10个基本事件. ..................................8分 设事件A 表示“书法展示的同学中初、高中学生都有”, ..................................9分 则事件A 共有111213212223{,},{,},{,},{,},{,},{,}a b a b a b a b a b a b 6个基本事件. ...................................11分 ∴53106)(==A P . 故参加书法展示的2人中初、高中学生都有的概率为35. ................................13分 17. (共13分)解:(I ) 四边形ABCD 为菱形且AC BD O = ,O ∴是BD 的中点 . ...................................2分 又点F 为1DC 的中点,∴在1DBC ∆中,1//BC OF , ...................................4分 ⊄OF 平面11BCC B ,⊂1BC 平面11BCC B ,∴//OF 平面11BCC B . ...................................6分 (II ) 四边形ABCD 为菱形,AC BD ⊥∴, ...................................8分 又⊥BD 1AA ,1,AA AC A = 且1,AA AC ⊂平面11ACC A ,.................................10分 ⊥∴BD 平面11ACC A , ................................11分 ⊂BD 平面1DBC ,∴平面1DBC ⊥平面11ACC A . ................................13分 18. (共13分)解:3332222()()2a x a f x x x x -'=-=,0x ≠. .........................................2分(I )由题意可得3(1)2(1)0f a '=-=,解得1a =, ........................................3分此时(1)4f =,在点(1,(1))f 处的切线为4y =,与直线1y =平行.故所求a 值为1. ........................................4分 (II )由()0f x '=可得x a =,0a >, ........................................ 5分 ①当01a <≤时,()0f x '>在(1,2]上恒成立 ,所以()y f x =在[1,2]上递增, .....................................6分 所以()f x 在[1,2]上的最小值为3(1)22f a =+ . ........................................7分 ②当12a <<时,....................................10分由上表可得()y f x =在[1,2]上的最小值为2()31f a a =+ . ......................................11分 ③当2a ≥时,()0f x '<在[1,2)上恒成立,所以()y f x =在[1,2]上递减 . ......................................12分 所以()f x 在[1,2]上的最小值为3(2)5f a =+ . .....................................13分 综上讨论,可知:当01a <≤时, ()y f x =在[1,2]上的最小值为3(1)22f a =+; 当12a <<时,()y f x =在[1,2]上的最小值为2()31f a a =+; 当2a ≥时,()y f x =在[1,2]上的最小值为3(2)5f a =+. 19. (共14分)解:根据题意,设(4,)P t . (I)设两切点为,C D ,则,OC PC OD PD ⊥⊥,由题意可知222||||||,PO OC PC =+即222242t +=+ , ............................................2分 解得0t =,所以点P 坐标为(4,0). ...........................................3分 在Rt POC ∆中,易得60POC ∠= ,所以120DOC ∠= . ............................................4分 所以两切线所夹劣弧长为24233ππ⨯=. ...........................................5分 (II )设1122(,),(,)M x y N x y ,(1,0)Q , 依题意,直线PA 经过点(2,0),(4,)A P t -,可以设:(2)6tAP y x =+, ............................................6分和圆224x y +=联立,得到22(2)64t y x x y ⎧=+⎪⎨⎪+=⎩ , 代入消元得到,2222(36)441440t x t x t +++-= , ......................................7分 因为直线AP 经过点11(2,0),(,)A M x y -,所以12,x -是方程的两个根,所以有2124144236t x t --=+, 21272236t x t -=+ , ..................................... 8分代入直线方程(2)6t y x =+得,212272224(2)63636t t ty t t -=+=++. ..................................9分 同理,设:(2)2tBP y x =-,联立方程有 22(2)24t y x x y ⎧=-⎪⎨⎪+=⎩, 代入消元得到2222(4)44160t x t x t +-+-=,因为直线BP 经过点22(2,0),(,)B N x y ,所以22,x 是方程的两个根,22241624t x t -=+, 222284t x t -=+ , 代入(2)2t y x =-得到2222288(2)244t t ty t t --=-=++ . .....................11分 若11x =,则212t =,此时2222814t x t -==+显然,,M Q N 三点在直线1x =上,即直线MN 经过定点Q (1,0)............................12分 若11x ≠,则212t ≠,21x ≠,所以有212212240836722112136MQt y t t k t x t t -+===----+, 22222280842811214NQt y t t k t x t t ---+===----+................13分 所以MQ NQ k k =, 所以,,M N Q 三点共线,即直线MN 经过定点Q (1,0).综上所述,直线MN 经过定点Q (1,0). .......................................14分20. (共14分)解:(Ⅰ)当10n =时,集合{}1,2,3,,19,20A = ,{}{}910,11,12,,19,20B x A x =∈>= 不具有性质P . ...................................1分因为对任意不大于10的正整数m ,都可以找到集合B 中两个元素110b =与210b m =+,使得12b b m -=成立 . ...................................3分 集合{}*31,C x A x k k N =∈=-∈具有性质P . ....................................4分因为可取110m =<,对于该集合中任意一对元素112231,31c k c k =-=-,*12,k k N ∈ 都有121231c c k k -=-≠ . ............................................6分 (Ⅱ)若集合S 具有性质P ,那么集合{}(21)T n x x S =+-∈一定具有性质P . ..........7分 首先因为{}(21)T n x x S =+-∈,任取0(21),t n x T =+-∈ 其中0x S ∈, 因为S A ⊆,所以0{1,2,3,...,2}x n ∈,从而01(21)2n x n ≤+-≤,即,t A ∈所以T A ⊆ ...........................8分 由S 具有性质P ,可知存在不大于n 的正整数m ,使得对S 中的任意一对元素12,s s ,都有 12s s m -≠, ..................................9分 对上述取定的不大于n 的正整数m ,从集合{}(21)T n x x S =+-∈中任取元素112221,21t n x t n x =+-=+-, 其中12,x x S ∈, 都有1212t t x x -=- ; 因为12,x x S ∈,所以有12x x m -≠,即 12t t m -≠ 所以集合{}(21)T n x x S =+-∈具有性质P . .............................14分。