工程材料力学性能 东北大学

合集下载

东北大学材料科学与工程学院

东北大学材料科学与工程学院

现பைடு நூலகம்领导
(表格资料来源: )
谢谢观看
截止到2021年6月,学院现设有材料科学与工程和功能材料(隶属材料学二级学科)、材料成型及控制工程 (隶属材料加工工程二级学科)、材料物理(隶属材料物理与化学二级学科)、材料科学与工程(中外合作办学) 5个本科生专业,属于材料科学与工程一级学科的材料工程及分别属于相应二级学科的材料学、材料加工工程、材 料物理与化学4个硕士和博士研究生专业以及材料科学与工程博士后流动站。现有在校学生3294人,其中本科生 1603人,硕士研究生1255人,博士研究生436人。
办学历史
1950年,东北工学院物理冶金专业及金属压力加工专业创建,这两个专业分别是材料科学与工程专业及材料 成型及控制工程专业的前身 。
1958年,材料物理专业创办 。 2012年,功能材料专业创办 。 1996年10月,由东北大学原钢铁冶金系、有色金属冶金系、材料科学与工程系、热能工程系、金属压力加工 系合并组建东北大学材料与冶金学院。 2015年12月15日,东北大学材料与冶金学院拆分为东北大学冶金学院级东北大学材料科学与工程学院 。
截至2017年3月,学院拥有国家级特色专业2个,省级精品课程2门 。 国家级特色专业:材料科学与工程专业、材料成型及控制工程专业 省级精品课程:材料成形金属学、材料的力学性能 表格数据截至2017年3月 (表格资料来源: )
文化传统
院训:厚德为料,铸智成材
院风:求真拓新,明辨笃行
学院院徽:
院徽设计创意:1、整体颜色用冷色调,显示科学与技术研究的谨性;2、中间四面体设计,一方面表达新材 料的研发是从成分-结构-工艺-性能四个方面开展,也是材料发展的核心,其中顶点是性能(或功能 performance),是最终最为重要部分;另一方面也表示晶体结构,这是材料科学研究的核心内容之一:MSE是材 料科学与工程的缩写;3、中间的齿轮代表工程,也凸显出路甬祥院士对材料未来发展提出的“料成材,材成器” 理念。也意味着材料必要走向实用化,才能显示出新材料的意义。这也与东北大学王国栋院士提出的材料发展思 路一致;4、外圈中东北大学英文表达国际化,汉字“东北大学”用张学良先生的题字表达对学校历史的传承 。 学院院徽

工程材料力学性能

工程材料力学性能

工程材料力学性能引言工程材料的力学性能是指材料在受力作用下的力学行为和性质。

工程材料力学性能的研究对于工程设计、材料选择和结构安全等方面具有重要意义。

本文将对工程材料的力学性能进行详细阐述。

工程材料的力学性能指标弹性模量弹性模量是衡量材料抵抗变形的能力的一个重要指标。

它是在材料受压缩或拉伸力作用下,材料内部原子和分子之间的相对位移产生时所产生的应力与应变之比。

弹性模量越大,材料的刚度就越大,抵抗变形的能力越强。

屈服强度屈服强度是指材料在受力作用下开始变形的临界点。

当应力达到一定值时,材料开始发生塑性变形,无法恢复到原来的形状。

屈服强度常用于材料的强度设计和材料性能的比较。

抗拉强度抗拉强度是指材料在受拉力作用下的最大承载能力。

抗拉强度可以反映材料的抵抗拉断能力,是工程结构的安全性能的重要指标。

断裂韧性是指材料在断裂前能吸收的总能量。

它是衡量材料抵抗断裂能力的重要指标。

材料的断裂韧性越高,代表其在受外力作用下具有较好的耐久性和抗冲击性。

硬度硬度是指材料的抵抗划痕、穿刺和压入等形变的能力。

硬度可以反映材料的抗划痕和抗磨损能力。

常用的硬度测试方法包括洛氏硬度、布氏硬度和维氏硬度等。

蠕变性能蠕变性能是指材料在常温和高温下长期受持续载荷作用时的变形行为。

材料的蠕变性能对于结构的稳定性和耐久性具有重要影响。

工程材料力学性能的实验测试方法为了评估材料的力学性能,常常需要进行实验测试。

以下是几种常见的工程材料力学性能测试方法:拉伸测试拉伸测试是评估材料抗拉性能的常用方法。

通过施加恒定的拉力,测量材料的应变和应力,从而得到材料的拉伸强度、屈服强度和延伸率等力学性能参数。

压缩测试是评估材料抗压性能的常用方法。

通过施加恒定的压力,测量材料的应变和应力,从而得到材料的压缩强度和压缩模量等力学性能参数。

弯曲测试弯曲测试是评估材料耐弯曲性能的常用方法。

通过施加力矩,使材料发生弯曲变形,测量材料的应变和应力,从而得到材料的弯曲强度和弯曲模量等力学性能参数。

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

工程力学--材料力学(北京科大、东北大学版)第4版第五章习题答案

⼯程⼒学--材料⼒学(北京科⼤、东北⼤学版)第4版第五章习题答案第五章习题5-1⼀矩形截⾯梁如图所⽰,试计算I-I截⾯A、B、C、D各点的正应⼒,并指明是拉应⼒还是压应⼒。

5-2⼀外伸梁如图所⽰,梁为16a号槽刚所⽀撑,试求梁的最⼤拉应⼒和最⼤压应⼒,并指明其所作⽤的界⾯和位置。

5-3⼀矩形截⾯梁如图所⽰,已知P=2KN,横截⾯的⾼宽⽐h/b=3;材料为松⽊,其许⽤应⼒为。

试选择横截⾯的尺⼨。

5-4⼀圆轴如图所⽰,其外伸部分为空⼼管状,试做弯矩图,并求轴内的最⼤正应⼒。

5-5 ⼀矿车车轴如图所⽰。

已知 a=0.6cm,p=5KN,材料的许⽤应⼒,试选择车轴轴径。

5-6 ⼀受均布载荷的外伸刚梁,已知q=12KN/m,材料的许⽤⽤⼒。

试选择此量的⼯字钢的号码.5-7 图⽰的空⽓泵的操纵杆右端受⼒为8.5KN,截⾯I-I和II-II位矩形,其⾼宽⽐为h/b=3,材料的许⽤应⼒。

试求此⼆截⾯的尺⼨。

5-8 图⽰为以铸造⽤的钢⽔包。

试按其⽿轴的正应⼒强度确定充满钢⽔所允许的总重量,已知材料的许⽤应⼒,d=200mm.5-9 求以下各图形对形⼼轴的z的惯性矩。

5-10 横梁受⼒如图所试。

已知P=97KN,许⽤应⼒。

校核其强度。

5-11 铸铁抽承架尺⼨如图所⽰,受⼒P=16KN。

材料的许⽤拉应⼒。

许⽤压应⼒。

校核截⾯A-A的强度,并化出其正应⼒分布图。

5-12 铸铁T形截⾯如图所⽰。

设材料的许⽤应⼒与许⽤压应⼒之⽐为,试确定翼缘的合理跨度b.5-13 试求题5-1中截⾯I-I上A、B、C、D各点处的切应⼒。

5-14 制动装置的杠杆,在B处⽤直径d=30mm的销钉⽀承。

若杠杆的许⽤应⼒,销钉的,试求许可载荷和。

5-15 有⼯字钢制成的外伸梁如图所⽰。

设材料的弯曲许⽤应⼒,许⽤且应⼒,试选择⼯字钢的型号。

5-16 ⼀单梁吊车由40a号⼯字钢制成,在梁中段的上下翼缘上各加焊⼀块的盖板,如图所⽰。

已知梁跨长=8m,=5.2m,材料的弯曲许⽤应⼒,许⽤且应⼒。

工程材料力学性能

工程材料力学性能

工程材料力学性能1. 引言工程材料力学性能是指材料在外力作用下的力学行为和性能特征。

能够准确评估材料的力学性能对于工程设计和材料选择具有重要意义。

本文将介绍一些常见的工程材料力学性能参数及其测试方法。

2. 抗拉强度抗拉强度是衡量材料抗拉能力的指标,通常用Mpa(兆帕)表示。

该值表示材料能够承受的最大拉伸力。

一般情况下,抗拉强度越高,材料的抗拉性能越好。

抗拉强度的测试可以通过拉伸试验来完成。

在拉伸试验中,标准试样会受到均匀的拉力,直到发生材料破裂。

通过测量试样的最大载荷和横截面积,可以计算出抗拉强度。

3. 弹性模量弹性模量是衡量材料刚性和变形能力的指标,通常用Gpa (千兆帕)表示。

弹性模量越大,材料的刚性越好,变形能力越小,即材料在外力作用下不容易发生变形。

弹性模量的测试可以通过弹性试验来完成。

在弹性试验中,标准试样会受到一定的载荷,然后释放。

通过测量载荷-变形关系的斜率,即应力-应变的比值,可以计算出弹性模量。

4. 屈服强度屈服强度是材料在拉伸过程中突破弹性极限后的抗拉能力,通常用Mpa表示。

屈服强度代表了材料的韧性和延展性。

材料的屈服强度越高,其抗变形性能越好。

屈服强度的测试可以通过拉伸试验或压缩试验来完成。

在拉伸试验中,标准试样会受到逐渐增加的拉力,直到发生塑性变形。

通过测量试样的屈服点和横截面积,可以计算出屈服强度。

5. 硬度硬度是衡量材料抗外界划痕和压痕能力的指标。

常见的硬度测试方法包括布氏硬度(HB)、维氏硬度(HV)、洛氏硬度(HRC)等。

硬度测试方法根据材料的硬度特性进行选择。

例如,布氏硬度适用于较软的金属材料,而维氏硬度适用于硬度较高的金属材料。

硬度的测试结果通常以单位压力下形成的压痕直径或者硬度值表示。

6. 断裂韧性断裂韧性是衡量材料抵抗破裂扩展的能力以及吸收塑性能力的指标。

常用的断裂韧性测试包括冲击试验和拉伸试验。

冲击试验通常用于低温下材料的断裂韧性测试。

在冲击试验中,冲击试样受到快速施加的冲击载荷,通过测量试样的断裂能量和断口形貌,可以评估材料的断裂韧性。

工程材料的力学性能

工程材料的力学性能

工程材料的力学性能
目录
contents
引言 弹性性能 塑性性能 强度性能 韧性性能 工程材料的实际应用
01
引言
力学性能是指材料在受到外力作用时表现出来的性质,包括强度、硬度、塑性、韧性等。
定义
工程材料的力学性能是决定其承载能力和耐久性的关键因素,对于工程安全和经济效益具有重要意义。
重要性

定义与重要性
提高材料的疲劳强度可以通过优化材料成分、改变加工工艺、强化表面处理等方法实现。
06
工程材料的实际应用
机械制造
钢铁材料是机械制造行业的基础材料,用于制造各种机械设备、交通工具和零部件,其耐磨、耐压、耐腐蚀的特性保证了设备的稳定性和可靠性。
建筑结构
钢铁材料广泛应用于桥梁、高层建筑、工业厂房等建筑结构中,以其高强度、高韧性、可塑性强的特点满足各种建筑需求。
韧性性能
冲击韧性是指材料在受到冲击载荷时抵抗破坏的能力。
材料的冲击韧性与其内部结构、温度、杂质等因素有关。
冲击韧性通常用冲击功、冲击强度等参数来衡量。
冲击韧性对于材料的抗冲击性能和安全使用具有重要的意义。
冲击韧性
断裂韧性是指材料抵抗裂纹扩展的能力,是评价材料抵抗脆性断裂的重要指标。
材料的断裂韧性与其内部结构、温度、加载速率等因素有关。
详细描述
剪切模量是指在剪切应力作用下,材料抵抗剪切变形的能力。它是材料剪切刚度的度量。剪切模量越大,材料抵抗剪切变形的能力越强。
应用场景
在工程设计中,剪切模量是重要的设计参数,用于计算结构件的剪切强度和稳定性,以及预测材料在受力条件下的变形行为。
03
塑性性能
总结词
屈服强度是工程材料在受到外力作用时,开始发生屈服现象的应力极限。

东北大学材料怎么样

东北大学材料怎么样

东北大学材料怎么样东北大学是一所具有悠久历史和深厚文化底蕴的知名高校,其材料科学与工程专业一直备受关注。

那么,东北大学的材料科学与工程专业到底怎么样呢?接下来,我们将从师资力量、课程设置、科研实力和就业情况等方面进行介绍。

首先,东北大学的材料科学与工程专业拥有一支高水平的师资队伍。

这些教师大多具有海内外知名高校的学习和工作经历,他们在材料科学领域拥有丰富的教学和科研经验,能够为学生提供全方位的指导和帮助。

在课堂上,他们注重理论与实践相结合,注重培养学生的动手能力和创新意识,因此备受学生喜爱。

其次,东北大学的材料科学与工程专业课程设置合理,内容丰富。

学生在学习过程中,不仅可以系统地学习材料科学的基础知识,还可以接触到最新的科研成果和技术应用。

同时,学校还鼓励学生参与科研项目和实践活动,为他们提供了广阔的发展空间。

此外,东北大学在材料科学与工程领域拥有雄厚的科研实力。

学校设有多个材料科学研究所和实验室,拥有先进的科研设备和技术平台。

教师和学生们在这里开展着各种前沿科研项目,取得了不少重要成果,为学科的发展做出了积极贡献。

最后,东北大学的材料科学与工程专业毕业生就业情况良好。

由于专业素质过硬,毕业生在材料、化工、电子、航空航天等行业都有着广阔的就业前景。

不少毕业生还选择继续深造,攻读硕士、博士学位,为未来的发展打下坚实的基础。

综上所述,东北大学的材料科学与工程专业无论是师资力量、课程设置、科研实力还是就业情况都表现出色,是学习材料科学的优质选择。

希望有志于从事材料科学与工程的同学们,能够对东北大学这个学府有更深入的了解,为自己的未来规划做出明智的选择。

北京科技东北大学工程力学材料力学全部答案精品文档

北京科技东北大学工程力学材料力学全部答案精品文档
2.17 d≥19.95mm,可取d=20mm
与 2.18【计算题】一冶炼厂使用的高压泵安全
挤 阀如图所示,要求当活塞下高压液体的压
强达到p=3.4 Mpa时,使安全销沿1-1和2-2
压 两截面剪断,从而使高压液体流出,以保
证泵的安全。已知活塞直径D=5.2cm,安全
的 销 采 用 15 号 钢 , 其 剪 切 强 度 极 限 τb=320 实 MPa,试确定安全销的直径d。
3.9 圆轴,线弹性范围 3.10 A 3.11 B

3.12【思考题】两根圆轴的直径相同,长度相同,一根为钢, 另一根为铜,问在相同扭矩作用下,两根轴的最大切应力是否 相同?强度是否一样?扭转角是否相同?刚度是否一样?
相同;一样;不同;不同

㈣ 3.13【思考题】有两根长度及重量都相同,且由同一材料制成
向 1.66 1=-100MPa, 2=-33MPa, 3=25MPa 。
1.67 Δl=0.075mm。
拉 1.68 略。
伸 1.69 [P]=43.7kN。
1.70 =73.92MPa<[] 。注意查角钢型钢表

1.71 =119.4MPa<[], [P]=33.5kN,d≥24.4mm。

1.72 b=116.4mm ,h=163mm。
作用,试确定截面尺寸b。已知载荷F=10kN,q=5N/mm,许
用应力[]=160MPa。
弯 R A3 .7k5,N R C 1.2 1k5N
RA
M ma x3.7k 5N m
3.75kN
C
RC
5kN

剪力图
W Mz [],6bM h2 []
弯矩图

工程材料力学性能

工程材料力学性能

工程材料力学性能引言工程材料的力学性能是指材料在外力作用下的响应和变形能力的表现。

这些性能包括材料的强度、刚度、韧性、硬度以及疲劳和蠕变等。

强度强度是一个材料抵抗外力破坏的能力。

在工程中,强度常被用来评估材料在受力状态下是否能够承受所需的应力水平。

强度可以分为静力学强度和动力学强度两种。

静力学强度静力学强度是指材料在静态载荷下的最大承载能力。

常见的静态强度指标包括抗拉强度、屈服强度、压缩强度和剪切强度等。

•抗拉强度:材料在拉伸载荷下发生破坏前所能承受的最大应力。

•屈服强度:材料开始发生塑性变形时所能承受的最大应力。

•压缩强度:材料在受到压缩载荷时所能承受的最大应力。

•剪切强度:材料在受到剪切力时所能承受的最大应力。

动力学强度动力学强度是指材料在动态载荷下的最大承载能力。

由于动态载荷的应变速率较高,会对材料的力学性能产生影响,因此需要进行动态强度测试。

刚度刚度是指材料对外力的抵抗程度,即材料的变形程度对应的受力程度。

刚度描述了材料的弹性特性,常表示为杨氏模量。

•杨氏模量:材料在线性弹性阶段的比例系数,表示材料在受力时的刚度。

刚度越大,材料的变形越小。

韧性韧性是指材料能够吸收外界能量时的能力,是材料抵抗断裂的能力。

韧性常用弯曲、拉伸和冲击等试验来进行评估。

硬度硬度是材料抵抗本质穿透的能力,反映了材料的抗刮、抗压和抗磨损的能力。

硬度测试可以根据不同材料的特性选择不同的测量方法,常用的有洛氏硬度、维氏硬度和布氏硬度等。

疲劳和蠕变疲劳是指材料在循环载荷下逐渐失效的现象。

循环载荷会导致材料内部微观缺陷的扩展和蠕变。

蠕变是指材料在长期持续受力下发生的时间依赖性变形。

这种变形是渐进性的,会导致材料的强度和刚度下降。

结论工程材料力学性能是评估材料在工程应用中是否安全可靠的重要指标。

通过对材料的强度、刚度、韧性、硬度以及疲劳和蠕变等性能进行评估,可以选择合适的材料,确保工程的可靠性和耐久性。

工程力学--材料力学(北京科大、东北大学版)第4版4-6习题答案资料讲解

工程力学--材料力学(北京科大、东北大学版)第4版4-6习题答案资料讲解

第四章习题4-1 求下列各梁指定截面上的剪力Q和弯矩M。

各截面无限趋近于梁上A、B、C等各点。

4-2 试列出下列各梁的剪力方程和弯矩方程,作剪力图和弯矩图,并求和。

4-3 用叠加法作以下各梁的弯矩图。

并求出。

4-4 用剪力、弯矩和分布载荷集度之间的微分关系校核前面已画的剪力图和弯矩图是否正确。

4-5 不列剪力方程和弯矩方程,作以下各梁的剪力图和弯矩图,并求出和。

4-6 用合适的方法作下列各梁的剪力图和弯矩图。

4-7 试根据载荷、剪力图和弯矩图之间的关系,检查下列各梁的剪力图和弯矩图是否正确,并对错误之处加以改正。

4-8 作下列构件的内力图。

4-9 在梁上行走的小车二轮的轮压均为P ,如图所示。

问小车行至何位置时梁内的弯矩最大?最大弯矩值是多少?设小车的轮距为c,大梁的跨度为。

参考答案4-1 解:题(b)(1)求支反力(见图)由,l-P l=0 =由,(2)剪力按计算剪力的规则(3)弯矩按计算弯矩的规则其它各题的答案:(a)(c)(d)(e)(f)4-2 解:题c(1)剪力和弯矩方程以左端A为原点,任一截面距左端的距离为x(图)\剪力方程:弯矩方程:(2 )剪力图与弯矩图按上述剪力方程和弯矩方程绘剪力图和弯矩图(3)与值由及得=200N =950题(f)(1)求支反力(见图)由,600-1004040=0=由,q4020-60=0=校核:+=2667+1333=4000N=q40=10040 所以支反力计算正确(2)剪力和弯矩方程以左端为原点,任一截面距左端的距离为x,则得剪力方程:弯矩方程(2)剪力图和弯矩图按上述剪力及弯矩方程绘出图及所示的剪力图和弯矩图所示剪力图和弯矩图.图中最大弯矩的截面位置可由,即剪力的条件求得Q(x)=3333-100x=0x=33.3cm(4)及由及得=2667N ,=355其他各题的答案:(a)=ql =(b)(d)(e)(g)(h)(i)(j)4-3 解:题c分别作、q单独作用时的弯矩图(图、),然后将此二图叠加得总的弯矩图。

材料学必看书单

材料学必看书单

书单一、材料科学基础学习要点:金属材料内容为主,高分子和无机非金属材料最好也涉猎一些,材料间一脉相通,知识多多益善。

推荐书籍:《材料科学基础》(上海交大胡庚祥、蔡珣版)或(北科大余永宁版)。

要求读懂晶体结构、晶体缺陷、扩散、相变、形变、回复、再结晶、相图。

二、材料物理学学习要点:金属物理学,很难,但领悟后终身受益。

推荐书籍:《金属物理学第一卷~第三卷》(南大冯端)、《材料物理性能》(北航田莳)、《工程材料力学性能》(合工大束德林)。

要求读懂材料的表面与界面、电性能、热性能、弹性变形、塑性变形、断裂、压缩、弯曲、扭转、冲击、强度、硬度、韧性、脆性、疲劳、应力腐蚀、摩擦磨损、蠕变,以上性能的测试方法与仪器。

三、材料热力学学习要点:金属材料热力学。

推荐书籍:《物理化学》(天大版、浅显易懂)或《材料热力学》(上海交大徐祖耀版、有理论深度)、《合金相与相变》(北科大肖纪美)。

要求读懂热力学三大定律、自由能、比热容、相平衡、固溶体、亚稳相、平衡相、相变(凝固、脱溶、调幅分解、有序无序转变)、氧化。

四、材料加工学习要点:掌握有色金属材料的主要加工和热处理方法,有精力可以涉猎钢铁材料加工热处理内容,此部分内容十分庞大且复杂,只要泛泛理解基本原理即可。

推荐书籍:《金属材料及热处理》(中南大学崔振铎)、《有色金属锭坯生产技术》(东北大学马宏声)、《材料成形基础》(郑州大学关绍康)、《金属塑性加工原理》(中南大学张新明)。

要求读懂熔炼(真空熔炼、非真空熔炼、感应熔炼(高频、中频、工频)、电弧熔炼、气体(除气、脱氧)、夹杂(净化)、覆盖剂)、铸造(铸锭、半连续铸造、连续铸造、压力铸造、连铸连轧、连续铸轧或铸挤、快速凝固、定向凝固)、锻造、冲压、挤压(热挤压、连续挤压、静液挤压)、拉拔、轧制(热轧、冷轧、孔型轧制)、半固态成形、焊接、切削(金属工艺学)、热处理(固溶、时效、退火、形变热处理)。

五、材料分析方法学习要点:初步了解材料成分、组织、性能的表征方法和原理。

材料科学基础(东北大学)第六章

材料科学基础(东北大学)第六章

Al2O3 A
LiTaO3
0.2m
LiTaO3颗粒内裂纹发生大角度偏转的TEM照片
Domain Crack
LiTaO3 Particle
如:铁电/压电性畴转变增韧机制,在压电陶瓷材料中,利用使产生裂纹
的外应力转变为电能,从而达到增韧的目的。
ZrO2 颗粒弥散在其他陶瓷 ( 包括 ZrO2 本身 ) 基体中,由于两者具有不同
的热膨胀系数,烧结完成后,在冷却过程中,ZrO2颗粒周围则有不同的
受力情况,当它受到压抑,四方相ZrO2(t-ZrO2)的相变也将受到压抑。 使得瓷体中部分t- ZrO2 在烧成冷却过程中以亚稳态保存下来。 在室温时, ZrO2 颗粒仍以四方相存在, 它有一种力图膨胀而变成单斜相 的自发倾向; 当外力作用时, 陶瓷的内应力可使四方相的ZrO2粒子解除约束,发生四方 相ZrO2( t- ZrO2) 转变成单斜相( m- ZrO2) 的马氏体相变, 引起体积膨胀。
1/ 2
式中E1为主裂纹尖端含有微裂纹材料的弹性模量,fs为显微裂纹密 度,W为过程区宽度的一半,为显微裂纹引起的膨胀应变。
微裂纹增韧同样对温度和粒子尺寸很敏感,合适的颗粒尺寸是大于应力诱 发相变的临界尺寸而小于自发产生危险裂纹的临界尺寸,并且应减小 基质与粒子间的热失配,使其产生最大的相变张应力。 微裂纹的密度大到一定程度后,就会使裂纹相互连接,形成大裂纹,反而 使韧性下降。
替代式溶质原子在基体晶格中造成的畸变大都是球 面对称的,因而强化效果要比填隙式原子小
6.1.2 形变强化(加工硬化)
定义 强化机理
金属在塑性变形过程中位错密度不断增加,使弹性应 力场不断增大,位错间的交互作用不断增强,因而位
错的运动越来越困难—位错强化

工程材料力学性能

工程材料力学性能

工程材料力学性能工程材料力学性能是指材料在外部力作用下的表现和性质。

材料的力学性能直接影响着工程结构的安全性、稳定性和使用寿命。

因此,对工程材料力学性能的研究和了解至关重要。

首先,工程材料的力学性能包括抗拉强度、抗压强度、弹性模量、屈服强度等指标。

抗拉强度是指材料在拉伸状态下所能承受的最大拉力,抗压强度则是指材料在受到压缩力时所能承受的最大压力。

而弹性模量则是衡量材料在受力时的变形程度,屈服强度则是材料开始产生塑性变形的临界点。

这些指标直接反映了材料在外部力作用下的表现,是评价材料力学性能的重要依据。

其次,工程材料的力学性能还包括疲劳性能、冲击性能、塑性性能等。

疲劳性能是指材料在长期交变载荷下所表现出的抗疲劳能力,冲击性能则是材料在受到瞬间冲击载荷时的抗冲击能力。

而塑性性能则是衡量材料在受力时的塑性变形能力。

这些指标在工程实践中同样具有重要的意义,特别是在复杂的工程环境下,材料的疲劳性能和冲击性能往往是决定工程结构安全性的关键。

此外,工程材料的力学性能还受到温度、湿度、环境腐蚀等因素的影响。

在不同的环境条件下,材料的力学性能可能会发生变化,因此在工程设计和使用中需要考虑这些因素对材料性能的影响。

同时,对于一些特殊工程要求,如航空航天、核工程等,对材料力学性能的要求更加严格,需要材料具有更高的耐高温、耐腐蚀等特殊性能。

综上所述,工程材料力学性能是工程实践中不可忽视的重要内容。

通过对材料力学性能的研究和了解,可以更好地选择合适的材料,设计合理的工程结构,确保工程的安全可靠性。

因此,对于工程材料力学性能的研究和评价,需要全面、准确地了解材料的各项力学性能指标,以及其在不同环境条件下的表现,为工程实践提供可靠的材料支撑。

东北大学材料成型力学.

东北大学材料成型力学.

Px N x Tx 0
面元ds摩擦力 面元ds摩擦力在轴线上分力
单元体摩擦力在轴线上分力
dx dD
2 tan
dT
e
dx
c os
D d
2
dTx e
dx
c os
D d cos
2


edx
D 2
d
Tx
2 kdx D d
0
2
kDdx
Tx


2
kDdD 1
zh
zn
5) 混合分布的单位压力分布方程
f k
f f z
2 f (Rr)
zh se h
rb
R
zn

s

2 s
3h
(R r)
r rb
f

f zb
k, zb

s
3f
zn
s
3f

2 s
3h
(rb

r)
区常 区常 摩
摩 摩擦
p A
d
P
r
z r
z B
T C
za ra s
在A 区与B 区的分界面上
ra rb
rb zb s
h
T
p A
d
P
T
BC
在C 区与B 区的分界面上

zb


4
(D2

d
2
)

1
2
s
(D

d)

h
由于h d,
zb

工程力学材料力学北京科大东北大学版习题答案

工程力学材料力学北京科大东北大学版习题答案

第七章习题7-1 直径d=2cm的拉伸试件,当与杆轴成斜截面上的切应力时,杆表面上将出现滑移线。

求此时试件的拉力P。

7-2在拉杆的某一斜截面上,正应力为,切应力为。

试求最大正应力和最大切应力。

7-3 已知应力状态如图a、b、c所示,求指定斜截面ab上的应力,并画在单元体上。

7-4已知应力状态如图a、b、c所示,求指定斜截面ab上的应力,并画在单元体上。

7-5求图示各单元体的三个主应力,最大切应力和它们的作用面方位,并画在单元体图上。

7-6 已知一点为平面应力状态,过该点两平面上的应力如图所示,求及主应力、主方向和最大切应力。

7-7 一圆轴受力如图所示,已知固定端横截面上的最大弯曲应力为40MPa,最大扭转切应力为30 Mpa,因剪力而引起的最大切应力为6kPa.(1)用单元体画出在A、B、C、D各点处的应力状态;(2)求A点的主应力和最大切应力以及它们的作用面的方位。

7-8 求图示各应力状态的主应力、最大切应力以及它们的作用面的方位。

7-9 设地层为石灰岩,波松比,单位体积重。

试计算离地面400m深处的压应力。

7-10 图示一钢制圆截面轴,直径d=60mm,材料的弹性模量E=210Gpa。

波松比,用电测法测得A点与水平面成方向的线应变,求轴受的外力偶矩m。

7-11 列车通过钢桥时,在大梁侧表面某点测得x和y向的线应变,材料的弹性模量E=200Gpa,波松比,求该点x、y面的正应力和。

7-12 铸铁薄壁管如图所示,管的外直径D=200mm,壁厚t=15mm,内压p=4MPa,轴向压力P=200Kn,许用应力,波松比,试用第二强度理论校核该管的强度。

7-13 薄壁锅炉的平均直径为1250mm,最大内压为23个大气压(1大气压0.1MPa),在高温下工作,屈服点。

若安全系数为1.8,试按第三、第四强度理论设计锅炉的壁厚。

参考答案7-2解已知:解:7-3 (a)解已知:=0(b) 解已知:=0解(c) 解已知:解:7-4(a) 解已知:解:(b) 解已知:(c) 解已知:解:7-57-6 已知一点为平面应力状态,过该点两平面上的应力如图所示,求及主应力、主方向和最大切应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后答案第一章一、解释下列名词材料单向静拉伸载荷下的力学性能滞弹性:在外加载荷作用下,应变落后于应力现象。

静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。

弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。

比例极限:应力—应变曲线上符合线性关系的最高应力。

包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限(ζP)或屈服强度(ζS)增加;反向加载时弹性极限(ζP)或屈服强度(ζS)降低的现象。

解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。

晶体学平面--解理面,一般是低指数,表面能低的晶面。

解理面:在解理断裂中具有低指数,表面能低的晶体学平面。

韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变微穿晶断裂,断口特征由纤维状转变为结晶状)。

静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。

是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。

二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能?答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。

改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。

三、什么是包辛格效应,如何解释,它有什么实际意义?答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。

特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

包辛格效应可以用位错理论解释。

第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。

背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。

因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。

这一般被认为是产生包辛格效应的主要原因。

其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。

实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。

其次,包辛格效应大的材料,内应力较大。

另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。

可以从河流花样的反“河流”方向去寻找裂纹源。

解理断裂是典型的脆性断裂的代表,微孔聚集断裂是典型的塑性断裂。

5.影响屈服强度的因素与以下三个方面相联系的因素都会影响到屈服强度位错增值和运动晶粒、晶界、第二相等外界影响位错运动的因素主要从内因和外因两个方面考虑(一)影响屈服强度的内因素1.金属本性和晶格类型(结合键、晶体结构)单晶的屈服强度从理论上说是使位错开始运动的临界切应力,其值与位错运动所受到的阻力(晶格阻力--派拉力、位错运动交互作用产生的阻力)决定。

派拉力:位错交互作用力(a 是与晶体本性、位错结构分布相关的比例系数,L 是位错间距。

)2.2.晶粒大小和亚结构晶粒小→晶界多(阻碍位错运动)→位错塞积→提供应力→位错开动→产生宏观塑性变形。

晶粒减小将增加位错运动阻碍的数目,减小晶粒内位错塞积群的长度,使屈服强度降低(细晶强化)。

屈服强度与晶粒大小的关系:霍尔-派奇(Hall-Petch)3.溶质元素加入溶质原子→(间隙或置换型)固溶体→(溶质原子与溶剂原子半径不一样)产生晶格畸变→产生畸变应力场→与位错应力场交互运动→使位错受阻→提高屈服强度(固溶强化)。

4.第二相(弥散强化,沉淀强化)不可变形第二相提高位错线张力→绕过第二相→留下位错环→两质点间距变小→流变应力增大。

不可变形第二相位错切过(产生界面能),使之与机体一起产生变形,提高了屈服强度。

ζs= ζi+kyd-1/2 弥散强化:第二相质点弥散分布在基体中起到的强化作用。

沉淀强化:第二相质点经过固溶后沉淀析出起到的强化作用。

(二)影响屈服强度的外因素1.温度一般的规律是温度升高,屈服强度降低。

原因:派拉力属于短程力,对温度十分敏感。

2.应变速率应变速率大,强度增加。

ζε,t= C1(ε)m 3.应力状态切应力分量越大,越有利于塑性变形,屈服强度越低。

缺口效应:试样中“缺口”的存在,使得试样的应力状态发生变化,从而影响材料的力学性能的现象。

细晶强化能强化金属又不降低塑性。

韧性断裂与脆性断裂的区别。

为什么脆性断裂更加危险?韧性断裂:是断裂前产生明显宏观塑性变形的断裂特征:断裂面一般平行于最大切应力与主应力成45 度角。

断口成纤维状(塑变中微裂纹扩展和连接),灰暗色(反光能力弱)。

断口三要素:纤维区、放射区、剪切唇这三个区域的比例关系与材料韧断性能有关。

塑性好,放射线粗大塑性差,放射线变细乃至消失。

脆性断裂:断裂前基本不发生塑性变形的,突发的断裂。

特征:断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。

注意:脆性断裂也产生微量塑性变形。

断面收缩率小于5%为脆性断裂,大于5%为韧性断裂。

断裂发生的必要和充分条件之间的联系和区别。

格雷菲斯裂纹理论是根据热力学原理,用能量平衡(弹性能的降低与表面能的增加相平衡)的方法推到出了裂纹失稳扩展的临界条件。

该条件是是断裂发生的必要条件,但并不意味着一定会断裂。

该断裂判据为:ζ = ( 2 Eγ s )1/ 2 c πa0 裂纹扩展的充分条件是其尖端应力要大于等于理论断裂强度。

(是通过力学方法推到的断裂判据)Eγ s ρ 1 / 2 该应力断裂判据为:ζ c = ( 4aa ) 0 对比这两个判据可知:当ρ=3a0 时,必要条件和充分条件相当ρ<3a0 时,满足必要条件就可行(同时也满足充分条件)ρ> 3a0 时,满足充分条件就可行(同时也满足必要条件)材料成分:rs—有效表面能,主要是塑性变形功,与有效滑移系数目和可动位错有关具有fcc 结构的金属有效滑移系和可动位错的数目都比较多,易于塑性变形,不易脆断。

凡加入合金元素引起滑移系减少、孪生、位错钉扎的都增加脆性;若合金中形成粗大第二相也使脆性增加。

杂质:聚集在晶界上的杂质会降低材料的塑性,发生脆断。

温度:ζi---位错运动摩擦阻力。

其值高,材料易于脆断。

bcc 金属具有低温脆断现象,因为ζi 随着温度的减低而急剧增加,同时在低ζ温下,塑性变形一孪生为主,也易于产生裂纹。

故低温脆性大。

晶粒大小:d 值小位错塞积的数目少,而且晶界多。

故裂纹不易产生,也不易扩展。

所以细晶组织有抗脆断性能。

应力状态:减小切应力与正应力比值的应力状态都将增加金属的脆性加载速度加载速度大,金属会发生韧脆转变。

第二章一、解释下列名词:金属在其他静载荷下的力学性能(1)应力状态软性系数—材料最大切应力与最大正应力的比值,记为α。

(2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。

(3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。

(4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。

(5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。

(6)维氏硬度——以两相对面夹角为136。

的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。

(7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。

(8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。

(9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

二、说明下列力学性能指标的意义(1)ζbc——材料的抗压强度(2)ζbb——材料的抗弯强度(3)ηs——材料的扭转屈服点(4)ηb——材料的抗扭强度(5)ζbn——材料的抗拉强度(6)NSR——材料的缺口敏感度(7)HBS——压头为淬火钢球的材料的布氏硬度(8)HBW——压头为硬质合金球的材料的布氏硬度(9)HRA——材料的洛氏硬度(10)HRB——材料的洛氏硬度(11)HRC——材料的洛氏硬度(12)HV——材料的维氏硬度(13)HK——材料的努氏硬度(14)HS——材料的肖氏硬度(15)HL——材料的里氏硬度三、缺口冲击韧性试验能评定那些材料的低温脆性?那些材料不能用此方法检验和评定?答案:缺口冲击韧性试验能评定的材料是低、中强度的体心立方金属以及Bb,Zn,这些材料的冲击韧性对温度是很敏感的。

对高强度钢、铝合金和钛合金以及面心立方金属、陶瓷材料等不能用此方法检验和评定。

四、在评定材料的缺口敏感应时,什么情况下宜选用缺口静拉伸试验?什么情况下宜选用缺口偏斜拉伸?什么情况下则选用缺口静弯试验?答案:缺口静拉伸试验主要用于比较淬火低中温回火的各种高强度钢,各种高强度钢在屈服强度小于1200MPa 时,其缺口强度均随着材料屈服强度的提高而升高;但在屈服强度超过1200MPa 以上时,则表现出不同的特性,有的开始降低,有的还呈上升趋势。

缺口偏斜拉伸试验就是在更苛刻的应力状态和试验条件下,来检验与对比不同材料或不同工艺所表现出的性能差异。

缺口试样的静弯试验则用来评定或比较结构钢的缺口敏感度和裂纹敏感度。

说明布氏硬度、洛氏硬度与维氏硬度的实验原理和优缺点。

1、氏硬度试验的基本原理在直径D 的钢珠(淬火钢或硬质合金球)上,加一定负荷F,压入被试金属的表面,保持规定时间卸除压力,根据金属表面压痕的陷凹面积计算出应力值,以此值作为硬度值大小的计量指标。

优点:代表性全面,因为其压痕面积较大,能反映金属表面较大体积范围内各组成相综合平均的性能数据,故特别适宜于测定灰铸铁、轴承合金等具有粗大晶粒或粗大组成相的金属材料。

试验数据稳定。

试验数据从小到大都可以统一起来。

缺点:钢球本身变形问题。

对HB>450 以上的太硬材料,因钢球变形已很显著,影响所测数据的正确性,因此不能使用。

由于压痕较大,不宜于某些表面不允许有较大压痕的成品检验,也不宜于薄件试验。

不同材料需更换压头直径和改变试验力,压痕直径的测量也较麻烦。

2、洛氏硬度的测量原理洛氏硬度是以压痕陷凹深度作为计量硬度值的指标。

洛氏硬度试验的优缺点洛氏硬度试验避免了布氏硬度试验所存在的缺点。

它的优点是:1)因有硬质、软质两种压头,故适于各种不同硬质材料的检验,不存在压头变形问题;2)压痕小,不伤工件,适用于成品检验;3)操作迅速,立即得出数据,测试效率高。

相关文档
最新文档