文数椭圆

合集下载

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总椭圆,作为高考数学中的一个重要知识点,经常出现在考试中。

对于很多学生来说,椭圆可能会让人感到有些困惑和难以掌握。

因此,本文将对高考数学中的椭圆知识点进行汇总,以帮助大家更好地理解和应对考试。

一、基本概念椭圆是平面上到两个定点F1和F2的距离之和等于常数2a,且以两点连线的中点为中心的闭合曲线。

F1和F2称为椭圆的焦点,连线F1F2的长度称为椭圆的焦距,直线段连接两个焦点的中点和椭圆上一点的长度称为椭圆的半径。

二、标准方程椭圆的标准方程为:(x-x0)²/a² + (y-y0)²/b² = 1 或 (y-y0)²/a² + (x-x0)²/b² = 1,其中(x0, y0)为椭圆的中心坐标,a为长轴长度,b为短轴长度。

三、图形性质1. 在横轴上,椭圆的离心率为e=√(a²-b²)/a,范围为0<e<1。

当e→0时,椭圆变成一个圆。

2. 椭圆关于x、y轴对称,即对于任意(x, y)在椭圆上,则(-x, y)、(x, -y)、(-x, -y)也在椭圆上。

3. 椭圆的离心率小于1,因此离心率为1的图形为双曲线,离心率大于1的图形为抛物线。

四、焦点与半径1. 焦距等于2ae,其中e为焦距与长轴的比值。

2. 椭圆离焦点的距离之和等于椭圆上任意一点到两个焦点的距离之和。

3. 椭圆的半径r和焦距f的关系为r² = a² - b² = a²(1 - e²) = f² + b²。

五、直线与椭圆的关系1. 直线与椭圆相交于两个点,则这两个点关于椭圆的中心对称。

2. 直线与椭圆相切于一点,则这个点恰好位于椭圆的一个焦点上。

3. 直线既不与椭圆相交也不相切,则直线与椭圆没有交点。

六、椭圆的参数方程椭圆的参数方程为:x = x0 + a*cosθ,y = y0 + b*sinθ,其中θ为参数,0 ≤ θ ≤ 2π。

2020高考数学(文)刷题首选卷:椭圆(含解析)

2020高考数学(文)刷题首选卷:椭圆(含解析)

考点测试48 椭圆高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度考纲研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =ca⇒a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1,故选C .2.到点A (-4,0)与点B (4,0)的距离之和为10的点的轨迹方程为( )A .x 225+y 216=1B .x 225-y 216=1 C .x 225+y 29=1 D .x 225-y 29=1 答案 C解析 由椭圆的定义可知该点的轨迹为焦点在x 轴上的椭圆,而c =4,a =5,故b 2=a 2-c 2=9.故选C .3.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12 答案 C解析 依题意,记椭圆的另一个焦点为F ,则△ABC 的周长等于|AB |+|AC |+|BC |=|AB |+|AC |+|BF |+|CF |=(|AB |+|BF |)+(|AC |+|CF |)=43,故选C .4.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A .12 B .2 C .4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,m =14,故选D . 5.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D .6.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A .514 B .513 C .49 D .59 答案 B解析 由题意知a =3,b =5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B .7.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |,又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |,由椭圆定义知,动点P 的轨迹是椭圆.故选B .8.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =________.答案 4或8解析 对椭圆的焦点位置进行讨论.由椭圆的焦距为4得c =2,当2<a <6时,椭圆的焦点在x 轴上,则10-a -(a -2)=4,解得a =4;当6<a <10时,椭圆的焦点在y 轴上,则a -2-(10-a )=4,解得a =8.故a =4或a =8.二、高考小题9.(2018·全国卷Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22D .223 答案 C解析 根据题意,可知c =2,因为b 2=4,所以a 2=b 2+c 2=8,即a =22,所以椭圆C 的离心率为e =222=22.故选C . 10.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3 C .3-12D .3-1 答案 D解析 在△F 1PF 2中,∠F 1PF 2=90°,∠PF 2F 1=60°, 设|PF 2|=m ,则2c =|F 1F 2|=2m ,|PF 1|=3m , 又由椭圆定义可知2a =|PF 1|+|PF 2|=(3+1)m ,则离心率e =c a =2c 2a =2m(3+1)m=3-1.故选D .11.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,A 是C的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A .23B .12C .13D .14 答案 D解析 依题意易知|PF 2|=|F 1F 2|=2c ,且P 在第一象限内,由∠F 1F 2P =120°可得P 点的坐标为(2c ,3c ).又因为k AP =36,即3c 2c +a =36,所以a =4c ,e =14,故选D . 12.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A .63 B .33 C .23 D .13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a .又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a =13,∴e =c a =a 2-b 2a =1-⎝ ⎛⎭⎪⎫b a 2= 1-⎝ ⎛⎭⎪⎫132=63.故选A . 13.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.答案63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c ,0),∴BF →=c +32a ,-b 2,CF→=c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0, c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.三、模拟小题14.(2018·山东济南一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .x 236+y 232=1B .x 29+y 28=1 C .x 29+y 25=1 D .x 216+y 212=1 答案 B解析 椭圆长轴长为6,即2a =6,得a =3,∵两焦点恰好将长轴三等分,∴2c =13·2a=2,得c =1,因此,b 2=a 2-c 2=9-1=8,∴此椭圆的标准方程为x 29+y 28=1.故选B .15.(2018·河南六市一模)已知点A (-1,0)和B (1,0),动点P (x ,y )在直线l :y =x +3上移动,椭圆C 以A ,B 为焦点且经过点P ,则椭圆C 的离心率的最大值为( )A .55 B .105 C .255 D .2105答案 A解析 A (-1,0)关于直线l :y =x +3的对称点为A ′(-3,2),连接A ′B 交直线l 于点P ,则此时椭圆C 的长轴长最短,为|A ′B |=25,所以椭圆C 的离心率的最大值为15=55.故选A . 16.(2018·四川德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6 答案 C解析 ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a =14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C .17.(2018·安徽宣城二模)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( )A .32 B .2-12 C .3-12 D .5-12答案 D解析 由题意知,M (-a ,0),N (0,b ),F (c ,0),∴NM →=(-a ,-b ),NF →=(c ,-b ).∵NM →·NF →=0,∴-ac +b 2=0,即b 2=ac .又b 2=a 2-c 2,∴a 2-c 2=ac .∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去).∴椭圆的离心率为5-12,故选D . 18.(2018·湖南湘东五校联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A .3-12,1 B .3-12,12C .12,1D .0,12 答案 B解析 由题意可得,|PF 2|2=|F 1F 2|2+|PF 1|2-2|F 1F 2|·|PF 1|cos ∠PF 1F 2=4c 2+4c 2-2·2c ·2c ·cos∠PF 1F 2,即|PF 2|=22c ·1-cos ∠PF 1F 2,所以a =|PF 1|+|PF 2|2=c +2c ·1-cos ∠PF 1F 2,又60°<∠PF 1F 2<120°,∴-12<cos ∠PF 1F 2<12,所以2c <a <(3+1)c ,则13+1<c a <12,即3-12<e <12.故选B .一、高考大题1.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且F P →+F A →+F B →=0.证明:|FA →|,|FP →|,|FB→|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <1-14×3=32,且m >0,即0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P 1,-32,|F P →|=32.于是|F A →|=(x 1-1)2+y 21=(x 1-1)2+31-x 214=2-x 12.同理|F B →|=2-x 22.所以|F A →|+|F B →|=4-12(x 1+x 2)=3.故2|F P →|=|F A →|+|F B →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2. ② 将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.2.(2018·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解 (1)设椭圆的焦距为2c ,由已知得c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2),由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍, 可得|PM |=2|PQ |,从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2. 由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx消去y ,可得x 1=69k 2+4.由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0, 解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不符合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.3.(2017·北京高考)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,解得c =3,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:设M (m ,n ),则D (m ,0),N (m ,-n ), 由题设知m ≠±2,且n ≠0. 直线AM 的斜率k AM =nm +2,故直线DE 的斜率k DE =-m +2n, 所以直线DE 的方程为y =-m +2n(x -m ), 直线BN 的方程为y =n2-m(x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n2.由点M 在椭圆C 上,得4-m 2=4n 2,所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |,所以△BDE 与△BDN 的面积之比为4∶5. 二、模拟大题4.(2018·湖南衡阳一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,直线y =1与C 的两个交点间的距离为463.(1)求椭圆C 的方程;(2)分别过F 1,F 2作l 1,l 2满足l 1∥l 2,设l 1,l 2与C 的上半部分分别交于A ,B 两点,求四边形ABF 2F 1面积的最大值.解 (1)易知椭圆过点263,1, 所以83a 2+1b2=1,① 又c a =12,② a 2=b 2+c 2,③所以由①②③得a 2=4,b 2=3, 所以椭圆C 的方程为x 24+y 23=1. (2)设直线l 1的方程为x =my -1,它与C 的另一个交点为D .将直线l 1与椭圆C 的方程联立,消去x ,得(3m 2+4)y 2-6my -9=0, Δ=144(m 2+1)>0.|AD |=1+m 2·121+m 23m 2+4, 又F 2到l 1的距离d =21+m2, 所以S △ADF 2=121+m 23m 2+4.令t =1+m 2,t ≥1,则S △ADF 2=123t +1t, 当t =1时,S △ADF 2取得最大值,为3.又S 四边形ABF 2F 1=12·(|BF 2|+|AF 1|)·d =12(|AF 1|+|DF 1|)·d =12|AD |d =S △ADF 2, 所以四边形ABF 2F 1面积的最大值为3.5.(2018·河南六市三模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63,原点到过点A (0,-b )和B (a ,0)的直线的距离为32. (1)求椭圆的方程;(2)设F 1,F 2为椭圆的左、右焦点,过F 2作直线交椭圆于P ,Q 两点,求△PQF 1内切圆半径r 的最大值.解 (1)直线AB 的方程为x a +y -b=1, 即bx -ay -ab =0.原点到直线AB 的距离为|-ab |(-a )2+b 2=32, 即3a 2+3b 2=4a 2b 2,①由e =c a =63,得c 2=23a 2,② 又a 2=b 2+c 2,③所以联立①②③可得a 2=3,b 2=1,c 2=2.故椭圆的方程为x 23+y 2=1. (2)由(1)得F 1(-2,0),F 2(2,0),设P (x 1,y 1),Q (x 2,y 2).易知直线PQ 的斜率不为0,故设其方程为x =ky +2,联立直线与椭圆的方程得 ⎩⎪⎨⎪⎧x =ky +2,x 23+y 2=1,消去x 得(k 2+3)y 2+22ky -1=0. 故⎩⎪⎨⎪⎧ y 1+y 2=-22k k 2+3,y 1y 2=-1k 2+3.④而S △PQF 1=S △F 1F 2P +S △F 1F 2Q =12|F 1F 2||y 1-y 2| =2(y 1+y 2)2-4y 1y 2,⑤将④代入⑤,得 S △PQF 1=2-22k k 2+32+4k 2+3=2 6 k 2+1k 2+3. 又S △PQF 1=12(|PF 1|+|F 1Q |+|PQ |)·r =2a ·r =23r ,所以2 6 k 2+1k 2+3=23r , 故r = 2 k 2+1k 2+3=2k 2+1+2k 2+1≤12, 当且仅当k 2+1=2k 2+1,即k =±1时取等号.故△PQF 1内切圆半径r 的最大值为12. 6.(2018·山东济宁一模)已知椭圆C :x 2a 2+y 24=1(a >2),直线l :y =kx +1(k ≠0)与椭圆C 相交于A ,B 两点,点D 为AB 的中点.(1)若直线l 与直线OD (O 为坐标原点)的斜率之积为-12,求椭圆C 的方程; (2)在(1)的条件下,y 轴上是否存在定点M ,使得当k 变化时,总有∠AMO =∠BMO (O 为坐标原点)?若存在,求出定点M 的坐标;若不存在,请说明理由.解 (1)由⎩⎪⎨⎪⎧ x 2a 2+y 24=1,y =kx +1(k ≠0),得(4+a 2k 2)x 2+2a 2kx -3a 2=0,显然Δ>0, 设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0),则x 1+x 2=-2a 2k 4+a 2k 2,x 1x 2=-3a 24+a 2k 2, ∴x 0=-a 2k 4+a 2k 2,y 0=-a 2k 24+a 2k 2+1=44+a 2k 2, ∴k ·y 0x 0=k ·-4a 2k =-12, ∴a 2=8.∴椭圆C 的方程为x 28+y 24=1. (2)假设存在定点M 符合题意,且设M (0,m ), 由∠AMO =∠BMO 得k AM +k BM =0.∴y 1-m x 1+y 2-m x 2=0. 即y 1x 2+y 2x 1-m (x 1+x 2)=0,∴2kx 1x 2+x 1+x 2-m (x 1+x 2)=0.由(1)知x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2, ∴-12k 1+2k 2-4k 1+2k 2+4mk 1+2k 2=0, ∴-16k +4mk 1+2k 2=0,即4k (-4+m )1+2k 2=0, ∵k ≠0,∴-4+m =0,∴m =4.∴存在定点M (0,4),使得∠AMO =∠BMO .。

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

2020年高考数学(理)之解析几何高频考点04 椭圆及其性质附解析

解析几何04 椭圆及其性质一、具体目标:掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.能处理与椭圆有关的问题.二、知识概述:1. 椭圆方程的第一定义:一个动点到两个定点的距离为一个常数(大于两定点之间的距离)则动点的轨迹就是椭圆.几何表示:()121222PF PF a a F F +=>.当()121222PF PF a a F F +=<无轨迹;当()121222=PF PF a a F F +=,以12,F F 为端点的线段.⑴①椭圆的标准方程:中心在原点,焦点在x 轴上:()222210x y a b a b +=>>.中心在原点,焦点在轴上:()222210y x a b a b+=>>.②一般方程:()2210,0Ax By A B +=>>.③椭圆的标准参数方程:的参数方程为(一象限应是属于02πθ<<).⑵①顶点:或.②轴:对称轴:x 轴,轴;长轴长,短轴长. ③焦点:或.④焦距:.⑤准线:或.⑥离心率:()01c e e a=<<.⑦焦点半径:i. 设为椭圆()222210x y a b a b+=>>上的一点,为左、右焦点,则 y 12222=+b y a x ⎩⎨⎧==θθsin cos b y a x θ),0)(0,(b a ±±)0,)(,0(b a ±±y a 2b 2)0,)(0,(c c -),0)(,0(c c -2221,2b a c c F F -==c a x 2±=c a y 2±=),(00y x P 21,F F 【考点讲解】⇒-=+=0201,ex a PF ex a PF由椭圆方程的第二定义可以推出.ii.设为椭圆()222210x y a b b a+=>>上的一点,为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:()210000a PF e x a ex x c ⎛⎫=+=+< ⎪⎝⎭()220000a PF e x ex a x c ⎛⎫=-=-> ⎪⎝⎭归结起来为“左加右减”.注意:椭圆参数方程的推导:得方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:和⑶共离心率的椭圆系的方程:椭圆()222210x y a b a b+=>>的离心率是,方程是大于0的参数,0a b >>的离心率也是 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.(6)椭圆的标准方程和几何性质-a ≤x ≤a -b ≤x ≤b 对称轴:坐标轴 对称中心:原点 A (-a,0),A (a,0) A (0,-a ),A (0,a ) ),(00y x P 21,F F →)sin ,cos (θθb a N ),(2222a b c a b d -=),(2ab c )(22b a c a c e -==tt b y a x (2222=+ace =12222=+b y a x 21,F F θ=∠21PF F 21F PF ∆2tan2θb a PF PF 221=+2cot 2θ⋅b ⇒-=+=0201,ey a PF ey a PF1.【2019年高考全国Ⅰ卷】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【解析】本题考查椭圆标准方程及其简单性质.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n nn +-⋅⋅⋅=,解得2n =. 22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得【真题分析】223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【答案】B2.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =( )A .2B .3C .4D .8【解析】本题主要考查抛物线与椭圆的几何性质.因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y pp +=的一个焦点,所以23()2pp p -=,解得8p =,故选D . 【答案】D3.【2019年高考北京卷理数】已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b【解析】本题考查椭圆的标准方程与几何性质.椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B. 【答案】B4.【2018年高考全国Ⅰ卷文数】已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( )A .13 B .12 C .2 D .3【解析】本题主要考查椭圆的方程及离心率.由题可得2c =,因为24b =,所以2228a b c =+=,即a =所以椭圆C 的离心率2e ==,故选C . 【答案】C5.【2018年高考全国Ⅰ卷文数】已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F∠=︒,则C的离心率为()A.312-B.23-C.312-D.31-【解析】本题主要考查椭圆的定义和简单的几何性质.在12F PF△中,122190,60F PF PF F∠=∠=︒o,设2PF m=,则12122,c F F m PF===,又由椭圆定义可知1221)a PF PF m=+=,则212c cea a====,故选D.【答案】D6.【2018年高考全国Ⅱ理数】已知1F,2F是椭圆22221(0)x yC a ba b+=>>:的左、右焦点,A是C的左顶点,点P在过A且斜率为3的直线上,12PF F△为等腰三角形,12120F F P∠=︒,则C的离心率为()A.23B.12C.13D.14【解析】因为12PF F△为等腰三角形,12120F F P∠=︒,所以212||2||PF F F c==,由AP的斜率为6可得2tan6PAF∠=,所以2sin PAF∠=,2cos PAF∠=,由正弦定理得2222sinsinPF PAFAF APF∠=∠,所以2225sin()3ca c PAF==+-∠,所以4a c=,14e=,故选D.【答案】D7.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:2213x ym+=长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1][9,)+∞U B.[9,)+∞U C.(0,1][4,)+∞U D.[4,)+∞U【解析】本题考查的是以椭圆知识为背景的求参数范围的问题.解答问题时要利用条件确定ba,的关系,要借助题设条件ο120=∠AMB 转化为360tan =≥οba,简化求解过程. 当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60a b ≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,故选A . 【答案】A8.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用.方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍),又点P 在椭圆上且在x 轴的上方,求得32P ⎛- ⎝⎭,所以212PF k ==方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得3,22P ⎛- ⎝⎭,所以212PFk ==9.【2019年高考全国Ⅲ卷】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【解析】本题考查椭圆标准方程及其简单性质,解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y,22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【答案】(10.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】本题主要考查利用椭圆的性质来求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题, (1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF =,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,① 222x y c +=,② 22221x y a b+=,③由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥当4b =,a ≥存在满足条件的点P .所以4b =,a的取值范围为)+∞. 【答案】(11;(2)4b =,a的取值范围为)+∞.11.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =.所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c +=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-.代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t . 因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【答案】(1)12;(2)2211612x y +=.12.【2019年高考天津卷理数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率. 【解析】主要考查椭圆的标准方程和几何性质、直线方程等基础知识. (1)设椭圆的半焦距为c,依题意,24,5c b a ==,又222a b c =+,可得a =2,b =1c =. 所以,椭圆的方程为22154x y +=.(2)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222,1,54y kx x y =+⎧⎪⎨+=⎪⎩整理得()2245200k x kx ++=,可得22045P k x k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P py k x k -=-. 在2y kx =+中,令0y =,得2M x k=-. 由题意得()0,1N -,所以直线MN 的斜率为2k-.由OP MN ⊥,得2451102k k k -⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而5k =±.所以,直线PB的斜率为5或5-. 【答案】(1)22154x y +=;(2)230或230-. 13.【2019年高考全国Ⅱ卷理数】已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.【解析】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题.(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =. 记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.① 设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k =+.从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,221||uk k PG +=,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.1.【2017年高考浙江卷】椭圆22194x y +=的离心率是( )A B C .23 D .59【解析】椭圆22194x y +=的离心率e ==,故选B . 【答案】B2.【2017年高考全国Ⅲ】已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【解析】以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,【模拟考场】直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A . 【答案】A3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 【解析】 根据条件可知c a =33,且4a =43,∴a =3,c =1,b =2,椭圆的方程为x 23+y 22=1.【答案】 A4.【2018年高考浙江卷】已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP u u u u r =2PB u u u u r ,则当m =___________时,点B 横坐标的绝对值最大.【解析】设11(,)A x y ,22(,)B x y ,由2AP PB =u u u r u u u r得122x x -=,1212(1)y y -=-,所以1223y y -=-,因为A ,B 在椭圆上,所以22114x y m +=,22224x y m +=,所以22224(23)4x y m +-=, 所以224x +22324()m y -=,与22224x y m +=对应相减得234m y +=,2221(109)44x m m =--+≤, 当且仅当5m =时取最大值. 【答案】55.【2018年高考北京卷理数】已知椭圆2222:1(0)x y M a b a b +=>>,双曲线2222:1x y N m n-=.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________________;双曲线N 的离心率为________________.【解析】由正六边形性质得椭圆上一点到两焦点距离之和为c +,再根据椭圆定义得2c a +=,所以椭圆M的离心率为1c a ==.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,所以222πtan 33n m ==,所以222222234m n m m e m m ++===,所以2e =.1 26.【2016北京理】已知椭圆C :22221+=x y a b(0a b >>)的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,△OAB 的面积为1.(I )求椭圆C 的方程;(II )设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N . 求证:BM AN ⋅为定值.【分析】(I)根据离心率为2,即2=c a ,△OAB 的面积为1,即121=ab ,椭圆中222c b a +=列方程组进行求解;(II )根据已知条件分别求出BM AN ,的值,求其乘积为定值.【解析】(I )由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (II )由(I )知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M ,从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N ,从而12200-+=-=y x x AN N .所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN . 综上,BM AN ⋅为定值.7.已知点M 是圆心为E的圆(2216x y ++=上的动点,点)F,线段MF 的垂直平分线交EM于点P .(1)求动点P 的轨迹C 的方程;(2)矩形ABCD 的边所在直线与曲线C 均相切,设矩形ABCD 的面积为S ,求S 的取值范围.【分析】1)利用定义法求椭圆的轨迹方程;(2)设AB 的方程为1y k x m =+, CD 的方程为1y k x m =-,直线AB 与CD 间的距离为1d =,直线BC 与AD 间的距离为2d =,S =S 的范围.【解析】(1)依题PM PF =,所以4PE PF PE PM ME +=+== (为定值),EF =>所以点P 的轨迹是以,E F为焦点的椭圆,其中24,2a c ==所以P 点轨迹C 的方程是2214x y += (2)①当矩形的边与坐标轴垂直或平行时,易得8S =;②当矩形的边均不与坐标轴垂直或平行时,其四边所在直线的斜率存在且不为0,设AB 的方程为1y k x m =+, BC 的方程为2y k x n =+,则CD 的方程为1y k x m =-, AD 的方程为2y k x n =-,其中121k k ⋅=-,直线AB 与CD 间的距离为1d ==,同理直线BC 与AD 间的距离为2d ==()12*S d d =⋅=L2222211111{ 21044x y k x k mx m y k x m+=⎛⎫⇒+++-= ⎪⎝⎭=+,因为直线AB 与椭圆相切,所以221410k m ∆=+-=,所以2141m k =+,同理2241n k =+,所以 S ===44==212112k k +≥ (当且仅当11k =±时,不等式取等号),所以4S <≤810S <≤, 由①②可知, 810S ≤≤.【答案】(1) 2214x y +=;(2) 810S ≤≤.。

高考数学椭圆的知识点

高考数学椭圆的知识点

高考数学椭圆的知识点高考数学中,椭圆是一个重要的几何形状,涉及到的知识点相对较多。

在这篇文章中,我们将探讨椭圆的性质、方程、焦点等相关概念,并且通过一些实例帮助读者更好地理解椭圆的应用。

一、椭圆的性质椭圆是一个闭合的曲线,可以通过一个固定点(称为焦点)和离焦点的距离之和的大小来定义。

具体来说,对于一个给定的椭圆,离焦点的距离之和等于定值2a,其中a是椭圆的半长轴(长轴长度的一半)。

除了焦点和半长轴,椭圆还有一些其他重要的性质。

例如,椭圆的中点称为中心,位于中心的直线称为主轴。

椭圆的半短轴(短轴长度的一半)用b表示,它与椭圆的半长轴有一定的关系,即b^2 = a^2 -c^2,其中c是焦点到中心的距离。

二、椭圆的方程椭圆的方程可以通过两种形式来表示,一种是标准方程,另一种是一般方程。

标准方程是这样的:(x-h)^2/a^2 + (y-k)^2/b^2 = 1,其中(h, k)是椭圆的中心坐标。

一般方程则可以表达为Ax^2 + By^2 + Cx + Dy + E = 0,其中A、B、C、D、E是常数。

根据椭圆的方程,我们可以了解到椭圆的形状、大小以及位置等信息。

三、焦点与直角关系除了上述基本概念和性质,椭圆还与焦点和直角有一定的关系。

我们知道,对于一个椭圆来说,焦点和圆心确定的直角称为椭圆的焦点直角。

椭圆上的任意一点与焦点和圆心连成的三条线段构成一个直角。

这个直角关系在解决一些几何问题时非常有用,可以帮助我们确定和利用椭圆的性质,从而解决一些复杂的数学题目。

四、椭圆的应用举例椭圆的应用在生活和科学中是广泛存在的。

下面,我们通过一些例子来说明椭圆的实际应用。

1.卫星轨道:卫星绕地球运行的轨道往往是一个椭圆。

利用椭圆的性质,科学家可以计算出卫星的运行速度和轨道大小,从而更好地控制和管理卫星。

2.天体运动:行星、彗星等天体的运动轨迹也是椭圆。

通过研究椭圆轨道,天文学家可以了解天体的运动规律,从而预测天体的位置和行为。

高三数学椭圆讲解

高三数学椭圆讲解

高三数学椭圆讲解一、教学任务及对象1、教学任务本节课的教学任务是针对高三学生进行椭圆部分的数学知识讲解。

椭圆作为解析几何中的重要内容,不仅在数学领域有着广泛的应用,同时也与现实生活紧密相连。

通过本节课的学习,使学生能够掌握椭圆的定义、标准方程及其性质,并能运用相关知识解决实际问题。

2、教学对象本节课的教学对象为高三学生,他们在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。

此外,学生在学习椭圆之前,已经接触过圆、直线等基本几何图形,对于几何图形的解析方法有一定的了解,这为椭圆的学习奠定了基础。

然而,椭圆相较于其他几何图形具有一定的复杂性和抽象性,因此,在教学过程中,需要关注学生的接受程度,采用适当的教学策略,引导他们逐步理解和掌握椭圆的相关知识。

二、教学目标1、知识与技能(1)理解椭圆的定义,掌握椭圆的标准方程及其推导过程;(2)掌握椭圆的几何性质,如顶点、焦点、离心率等,并能运用性质解决相关问题;(3)能够运用椭圆知识解决实际应用问题,如椭圆轨道、椭圆截面等;(4)提高学生的逻辑思维能力和空间想象能力,培养他们将实际问题转化为数学问题的能力。

2、过程与方法(1)通过引导学生自主探究椭圆的定义,培养他们主动发现问题的能力;(2)采用问题驱动的教学方法,引导学生从特殊到一般、从具体到抽象的思考过程,培养他们的逻辑思维能力;(3)通过小组合作、讨论交流,培养学生合作解决问题的能力,激发他们的学习兴趣;(4)运用数形结合的方法,将椭圆的几何性质与代数表达式相结合,提高学生的空间想象能力;(5)设计丰富的例题和练习,使学生在实践中掌握椭圆知识,提高解题技巧。

3、情感,态度与价值观(1)培养学生对数学学科的兴趣和热情,激发他们主动学习的积极性;(2)通过椭圆的学习,让学生体会数学的优美和严谨,培养他们追求真理的精神;(3)引导学生认识到数学知识在实际生活中的广泛应用,增强他们的应用意识;(4)培养学生面对困难时勇于挑战、坚持不懈的精神,使他们具备克服挫折的能力;(5)通过小组合作学习,培养学生团结协作、互帮互助的品质,提高他们的人际沟通能力。

新高考数学椭圆知识点归纳总结

新高考数学椭圆知识点归纳总结

新高考数学椭圆知识点归纳总结椭圆作为数学中的一个重要概念和几何图形,在新高考数学中占据了重要的地位。

它不仅在几何图形的性质研究中起到了关键的作用,还在代数、微积分等数学分支中具有广泛的应用。

本文将对新高考数学中与椭圆相关的知识点进行归纳总结。

首先介绍椭圆的定义,然后探讨椭圆的性质,最后讨论椭圆的方程及其应用。

1. 椭圆的定义椭圆是平面上到两个给定点的距离之和等于常数的点的集合。

这两个点称为椭圆的焦点,常数称为椭圆的离心率。

2. 椭圆的性质(1)离心率:椭圆的离心率介于0和1之间,离心率为0时,椭圆变为一个点,离心率为1时,椭圆退化成线段。

离心率越接近于1,椭圆的形状越扁平。

(2)焦点及直径:椭圆的两个焦点之和等于椭圆的长轴长度。

椭圆的长轴是横穿过椭圆的最长线段,且通过椭圆中心。

椭圆的短轴是与长轴垂直的线段,且通过椭圆中心。

长轴的长度为离心率乘以短轴的长度。

(3)对称性:椭圆具有中心对称性,其中心为两个焦点的连线的中点。

(4)切线:通过椭圆上任意一点,可以作出两条切线,且与此点到两个焦点的距离之和等于焦点之间距离。

3. 椭圆的方程及其应用椭圆的标准方程为 x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴的长度。

根据椭圆的方程,可以绘制椭圆的图形,并求解相关的问题。

椭圆在现实生活中有很多应用。

例如,椭圆可以用来描述行星绕着太阳的运动轨迹;椭圆也可以用来描述卫星绕地球的运动轨迹。

此外,椭圆在电磁波的传播、天体运动的研究、建筑物的设计等领域也有广泛的应用。

总结:本文对新高考数学中的椭圆知识点进行了归纳总结,包括椭圆的定义、性质以及方程及其应用。

通过对椭圆的学习,我们可以更好地理解椭圆的性质和应用,为解决实际问题提供数学工具。

希望本文对读者能够有所帮助,更好地掌握新高考数学中与椭圆相关的知识点。

高考文科数学椭圆考点讲解

高考文科数学椭圆考点讲解

继续学习
高考复习讲义
考点全通关 7
椭圆
通关秘籍
2.速率是瞬时速度的大小,但平均速率不是平均速度 的大小,因为平均速率是路程与时间的比值,它与平 均速度的大小没有对应关系.
Your text
STEP 02
Click here to add your text or Copy Your text and paste it here
椭圆 考点二 椭圆的几何性质
1.椭圆的两种标准方程的比较
范围 对称性 焦点 几 何 性 质 顶点 轴 焦距 离心率 a,b,c 的关系
-a≤x≤a,-b≤y≤b
-b≤x≤b,-a≤y≤a
对称轴:x轴,y轴;对称中心:原点 F1(-c,0),F2(c,0) A1(-a,0),A2(a,0); B1(0,-b),B2(0,b) |F1F2|=2c 焦距与长轴长的比:e∈(0,1) c2=a2-b2 F1(0,-c),F2(00),B2(b,0)
线段A1A2,B1B2分别是椭圆的长轴和短轴;长轴长为2a,短轴长为2b
继续学习
高考复习讲义
考点全通关 6
椭圆 考点二 椭圆的几何性质
2.椭圆的几何性质分类
(1)与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;
(2)与坐标系有关的性质,如:顶点坐标、焦点坐标等.
在解题时要特别注意第二类性质,先根据椭圆方程的形式判断出椭圆的焦点在哪条 坐标轴上,再进行求解.
椭圆
考纲解读
考查内容
椭圆的定义和
考查频次
3 年4 考
考查题型
选择题、 填空题 选择题、
所占分值
4分或5分
命题规律
标准方程

高考文科椭圆知识点

高考文科椭圆知识点

高考文科椭圆知识点椭圆是高考文科数学中的一个重要知识点,其在平面几何和解析几何中都有广泛的应用。

椭圆的性质和公式是考试中常见的考点,下面我们将详细讲解椭圆的相关知识。

一、基本定义椭圆是指平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

定义中,F1和F2称为焦点,线段F1F2的长度为2c,2a为焦点到椭圆的任意点P的距离之和,a为椭圆的半长轴,c为椭圆的焦距。

二、标准方程椭圆的标准方程可以表示为(x-x0)²/a² + (y-y0)²/b² = 1,其中(x0,y0)为椭圆的中心坐标,a为椭圆的半长轴长度,b为椭圆的半短轴长度。

三、焦点及焦距的计算对于椭圆,焦点到椭圆上任意点P的距离之和等于2a。

根据焦点定义和距离公式,可以得到焦点F1的坐标为(x0-c,y0),焦点F2的坐标为(x0+c,y0),焦距等于2c。

四、离心率的计算离心率是一个衡量椭圆形状的参数,可以通过离心率e的计算公式e=c/a来求得。

离心率的范围是0到1,当e=0时,表示椭圆退化成一条线段;当e=1时,表示椭圆退化成一个抛物线。

五、常见性质1. 长轴和短轴:椭圆的长轴是通过焦点并且垂直于长轴的直线段,短轴是通过焦点并且垂直于短轴的直线段。

2. 对称性:椭圆具有两个重要的对称轴,分别是长轴和短轴,对称轴相交于椭圆的中心。

3. 离心率与形状:离心率越接近于0,椭圆的形状越扁平;离心率越接近于1,椭圆的形状越接近于圆形。

4. 弦长定理:椭圆上两点A、B之间的弦长等于焦半径之和。

5. 切线方程:椭圆上的切线方程可以通过代入标准方程和求导得到。

六、解析几何中的应用1. 椭圆的直径:椭圆上任意两点之间的线段称为椭圆的直径,直径的长度等于长轴的长度。

2. 焦点和直角:椭圆的焦点和椭圆上任意一点及其到直径的垂足构成的三角形是一个直角三角形。

3. 椭圆与直线的交点:椭圆与直线的交点可以通过将直线方程代入椭圆的方程组来求解。

高考数学真题专题(文数) 椭圆

高考数学真题专题(文数) 椭圆

专题九 解析几何第二十五讲 椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .3 B .3 C .23 D .595.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4A F B F +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1,)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =2k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为(Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)直线交椭圆于,P Q 两点,且PQ ⊥1PF .42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>,F 是椭圆E 的右焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C ab a b+=>>的离心率为2,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=?证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标.49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点P .12短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△B D M 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMN得面积为3时,求k 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。

椭圆-高考文科数学总复习

椭圆-高考文科数学总复习

A组基础对点练1.已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2B.3C.4 D.9解析:由4=25-m2(m>0)?m=3,故选 B.答案:B2.方程kx2+4y2=4k表示焦点在x轴上的椭圆,则实数k的取值范围是() A.k>4B.k=4C.k<4 D.0<k<4解析:方程kx2+4y2=4k表示焦点在x轴上的椭圆,即方程x24+y2k=1表示焦点在x轴上的椭圆,可得0<k<4,故选 D. 答案:D3.已知椭圆的中心在原点,离心率e=12,且它的一个焦点与抛物线y2=-4x的焦点重合,则此椭圆方程为()A.x24+y23=1 B.x28+y26=1C.x22+y2=1 D.x24+y2=1解析:依题意,可设椭圆的标准方程为x2a2+y2b2=1(a>b>0),由已知可得抛物线的焦点为(-1,0),所以c=1,又离心率e=ca=12,解得a=2,b2=a2-c2=3,所以椭圆方程为x24+y23=1,故选A.答案:A4.椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,左、右焦点分别为F1,F2,若|AF1|,|F1F2|,|F1B|成等差数列,则此椭圆的离心率为()A.12B.55C.14D.5-2解析:由题意可得2|F1F2|=|AF1|+|F1B|,即4c=a-c+a+c=2a,故e=ca=12.答案:A5.(2018·郑州模拟)如图,△P AB 所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,若tan ∠ADP +2tan ∠BCP =10,则点P 在平面α内的轨迹是()A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分解析:由题意可得|P A||AD |+2|PB||BC |=10,则|PA|+|PB |=40>|AB |=6,又因为P ,A ,B 三点不共线,故点P 的轨迹是以A ,B 为焦点的椭圆的一部分.答案:B6.若x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是________.解析:将椭圆的方程化为标准形式得y 22k+x 22=1,因为x 2+ky 2=2表示焦点在y 轴上的椭圆,所以2k >2,解得0<k<1.答案:(0,1) 7.若椭圆的方程为x 210-a +y2a -2=1,且此椭圆的焦距为4,则实数a =________.解析:由题可知c =2.①当焦点在x 轴上时,10-a -(a -2)=22,解得a =4.②当焦点在y 轴上时,a -2-(10-a)=22,解得a =8.故实数a =4或8. 答案:4或88.已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率等于13,其焦点分别为A ,B.C 为椭圆上异于长轴端点的任意一点,则在△ABC 中,sin A +sin Bsin C的值等于________.解析:在△ABC 中,由正弦定理得sin A +sin B sin C =|CB|+|CA||AB|,因为点C 在椭圆上,所以由椭圆定义知|CA|+|CB|=2a ,而|AB|=2c ,所以sin A +sin B sin C =2a 2c =1e =3.答案:39.已知椭圆C :x 2a 2+y2b 2=1(a>b>0)的左,右焦点分别为F 1(-c,0),F 2(c,0),过F 2作垂直于x轴的直线l 交椭圆C 于A ,B 两点,满足|AF 2|=36c.(1)求椭圆C 的离心率;(2)M ,N 是椭圆C 短轴的两个端点,设点P 是椭圆C 上一点(异于椭圆C 的顶点),直线MP ,NP 分别和x 轴相交于R ,Q 两点,O 为坐标原点.若|OR →|·|OQ →|=4,求椭圆C 的方程.解析:(1)∵点A 的横坐标为c ,代入椭圆,得c 2a 2+y2b 2=1.解得|y|=b 2a =|AF 2|,即b 2a =36c ,∴a 2-c 2=36ac.∴e 2+36e -1=0,解得e =32. (2)设M(0,b),N(0,-b),P(x 0,y 0),则直线MP 的方程为y =y 0-bx 0x +b.令y =0,得点R 的横坐标为bx 0b -y 0. 直线NP 的方程为y =y 0+bx 0x -b.令y =0,得点Q 的横坐标为bx 0b +y 0.∴|OR →|·|OQ →|=b 2x 20b 2-y 20=a 2b 2-a 2y 20b 2-y 20=a 2=4,∴c 2=3,b 2=1,∴椭圆C 的方程为x 24+y 2=1.10.(2018·沈阳模拟)椭圆C :x 2a 2+y 2b 2=1(a>b>0),其中e =12,焦距为2,过点M(4,0)的直线l 与椭圆C 交于点A ,B ,点B 在A ,M 之间.又线段AB 的中点的横坐标为47,且AM →=λMB →. (1)求椭圆C 的标准方程.(2)求实数λ的值.解析:(1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3,椭圆的标准方程为x 24+y23=1. (2)由题意可知A ,B ,M 三点共线,设点A(x 1,y 1),点B(x 2,y 2).若直线AB ⊥x 轴,则x 1=x 2=4,不合题意.则AB 所在直线l 的斜率存在,设为k ,则直线l 的方程为y =k(x -4).由y =k x -4,x 24+y 23=1,消去y 得(3+4k 2)x 2-32k 2x +64k 2-12=0.①由①的判别式Δ=322k 4-4(4k 2+3)·(64k 2-12)=144(1-4k 2)>0,解得k 2<14,且x 1+x 2=32k 24k 2+3,x 1x 2=64k 2-124k 2+3.由x 1+x 22=16k 23+4k 2=47,可得k 2=18,将k 2=18代入方程①,得7x 2-8x -8=0.则x 1=4-627,x 2=4+627.又因为AM →=(4-x 1,-y 1),MB →=(x 2-4,y 2),AM →=λMB →,所以λ=4-x 1x 2-4,所以λ=-9-427.B 组能力提升练1.若对任意k ∈R ,直线y -kx -1=0与椭圆x 22+y2m=1恒有公共点,则实数m 的取值范围是()A .(1,2]B .[1,2)C .[1,2)∪(2,+∞)D .[1,+∞)解析:联立直线与椭圆的方程,消去y 得(2k 2+m)x 2+4kx +2-2m =0,因为直线与椭圆恒有公共点,所以Δ=16k 2-4(2k 2+m)(2-2m)≥0,即2k 2+m -1≥0恒成立,因为k ∈R ,所以k 2≥0,则m -1≥0,所以m ≥1,又m ≠2,所以实数m 的取值范围是[1,2)∪(2,+∞).答案:C2.已知椭圆E :x 2a 2+y2b2=1(a>b>0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是()A.0,32 B.0,34C.32,1D.34,1解析:根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF|+|BF|)=8,所以a =2.又d =|3×0-4×b|32+-42≥45,所以1≤b<2,所以e =ca=1-b 2a2=1-b 24.因为1≤b<2,所以0<e ≤32.答案:A3.已知P(1,1)为椭圆x 24+y22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.解析:易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1),(x 2,y 2),则x 214+y 212=1,①x 224+y 222=1,②①-②得x 1+x 2x 1-x 24+y 1+y 2y 1-y 22=0,∵x 1+x 2=2,y 1+y 2=2,∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12.∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0. 答案:x +2y -3=04.已知椭圆C :x 29+y24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN|+|BN |=________. 解析:根据已知条件画出图形,如图.设MN 的中点为P ,F 1、F 2为椭圆C 的焦点,连接PF 1、PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴|AN|+|BN|=2|PF 1|+2|PF 2|=2(|PF 1|+|PF 2|)=2×6=12.答案:125.已知点A(0,-2),椭圆E :x 2a 2+y2b 2=1(a>b>0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程.(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△POQ 的面积最大时,求l 的方程.解析:(1)设F(c,0),由条件知,2c=233,得c= 3.又ca=32,所以a=2,b2=a2-c2=1.故E的方程为x24+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入x24+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>34时,x1,2=8k±24k2-34k2+1.从而|PQ|=k2+1|x1-x2|=4k2+1·4k2-34k2+1.又点O到直线PQ的距离d=2k2+1,所以△OPQ的面积S△OPQ=12d·|PQ|=44k2-34k2+1.设4k2-3=t,则t>0,S△OPQ=4tt2+4=4t+4t.因为t+4t≥4,当且仅当t=2,即k=±72时等号成立,且满足Δ>0.所以,当△OPQ的面积最大时,l的方程为y=72x-2或y=-72x-2.6.(2018·保定模拟)椭圆C:x2a2+y2b2=1(a>b>0)的离心率e=32,a+b=3.(1)求椭圆C的方程.(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值.解析:(1)因为e =32=c a ,所以a =23c ,b =13c.代入a +b =3得,c =3,a =2,b =1.故椭圆C 的方程为x 24+y 2=1.(2)因为B(2,0),P 不为椭圆顶点,则直线BP 的方程为y =k(x -2)k ≠0,k ≠±12,①把①代入x 24+y 2=1,解得P 8k 2-24k 2+1,-4k 4k 2+1. 直线AD 的方程为y =12x +1.②①与②联立解得M 4k +22k -1,4k2k -1. 由D (0,1),P 8k 2-24k 2+1,-4k4k2+1,N(x,0)三点共线知-4k 4k 2+1-18k 2-24k 2+1-0=0-1x -0,得N4k -22k +1,0. 所以MN 的斜率为m =4k2k -1-04k +22k -1-4k -22k +1=4k 2k +122k +12-22k -12=2k +14,则2m -k =2k +12-k =12(定值).。

文科数学椭圆知识点总结

文科数学椭圆知识点总结

文科数学椭圆知识点总结一、椭圆的基本概念1. 定义:椭圆是一个平面上点的集合,其到两个给定点的距离之和等于常数的情形。

这两个给定点称为焦点,这个常数称为椭圆的半径和。

椭圆是一种特殊的圆锥曲线。

2. 要素:椭圆包括两个焦点F1、F2和椭圆的半长轴a、半短轴b。

定义F1F2=2a,F1P+F2P=2a+b,其中P为椭圆上的任意一点。

二、椭圆的性质1. 关于对称性:椭圆具有关于x轴、y轴和原点的对称性。

对于椭圆上的任意一点P(x, y),都有P(-x, y)、P(x, -y)、P(-x, -y)在椭圆上。

2. 弧长和扇形面积:椭圆的弧长计算公式为L=4aE(e),其中E(e)是第二类椭圆积分,并且扇形的面积计算公式为A=πab。

3. 离心率和焦点:椭圆的离心率e是一个重要的参数,它决定了椭圆的形状。

e=c/a,其中c是焦点到中心的距离,a是半长轴的长。

4. 判别式:在解析几何中,一般地,椭圆方程Ax^2+By^2+Cx+Dy+E=0可以化为标准型x^2/a^2+y^2/b^2=1,其中a、b和离心率e=√(a^2-b^2)/a,可以通过判别式B^2-4AC来判别椭圆方程的类型。

5. 焦直线和其它性质:椭圆的焦直线可以表示为x=a/c或x=-a/c,其中c=√(a^2-b^2)。

椭圆上的任意一点P(x, y)到两个焦点的距离之和等于椭圆的长轴长度。

三、椭圆的方程1. 标准方程:椭圆的标准方程可以表示为 x^2/a^2+y^2/b^2=1,其中a>b>0。

当椭圆的中心位于原点时,方程为x^2/a^2+y^2/b^2=1;当椭圆的中心不位于原点时,方程为(x-h)^2/a^2+(y-k)^2/b^2=1。

2. 参数方程:椭圆的参数方程可以表示为x=a*cos(t),y=b*sin(t),其中t是参数,a、b分别表示椭圆的半长轴和半短轴。

3. 焦点方程和直角坐标方程:椭圆的焦点方程可以表示为x^2+y^2=a^2,e^2=a^2-b^2;椭圆的直角坐标方程可以表示为y=a*√(1-x^2/a^2)。

2022北师大版文科数学高考总复习教师用书:9-5椭圆 Word版含答案

2022北师大版文科数学高考总复习教师用书:9-5椭圆 Word版含答案

第5讲椭圆最新考纲 1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.把握椭圆的定义、几何图形、标准方程及简洁几何性质.知识梳理1.椭圆的定义我们把平面内到两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的集合叫作椭圆.这两个定点F1,F 2叫作椭圆的焦点,两个焦点F1,F2间的距离叫作焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a,b,c的关系c2=a2-b2诊断自测1.推断正误(在括号内打“√”或“×”)精彩PPT呈现(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆的离心率e越大,椭圆就越圆.()(3)椭圆既是轴对称图形,又是中心对称图形.()(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.()(5)x2a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相同.()解析(1)由椭圆的定义知,当该常数大于|F1F2|时,其轨迹才是椭圆,而常数等于|F1F2|时,其轨迹为线段F1F2,常数小于|F1F2|时,不存在这样的图形.(2)由于e=ca=a2-b2a=1-⎝⎛⎭⎪⎫ba2,所以e越大,则ba越小,椭圆就越扁.答案(1)×(2)×(3)√(4)√(5)√2.(2021·广东卷)已知椭圆x225+y2m2=1(m>0)的左焦点为F1(-4,0),则m=()A.2 B.3 C.4 D.9解析依题意有25-m2=16,∵m>0,∴m=3.选B.答案 B3.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为33,过F2的直线l 交C于A,B两点.若△AF1B的周长为43,则C的方程为()A.x23+y22=1 B.x23+y2=1C.x212+y28=1 D.x212+y24=1解析由椭圆的定义可知△AF1B的周长为4a,所以4a=43,故a=3,又由e=ca=33,得c=1,所以b2=a2-c2=2,则C的方程为x23+y22=1,故选A.答案 A4.(2022·全国Ⅰ卷)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的14,则该椭圆的离心率为()A.13 B.12C.23D.34解析 不妨设直线l 经过椭圆的一个顶点B (0,b )和一个焦点F (c,0),则直线l 的方程为x c +yb =1,即bx +cy -bc =0.由题意知|-bc |b 2+c 2=14×2b ,解得c a =12,即e =12,故选B.答案 B5.(教材改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________. 解析 设P (x ,y ),由题意知c 2=a 2-b 2=5-4=1,所以c =1,则F 1(-1,0),F 2(1,0),由题意可得点P 到x 轴的距离为1,所以y =±1,把y =±1代入x 25+y 24=1,得x =±152,又x >0,所以x =152,∴P 点坐标为⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1. 答案 ⎝ ⎛⎭⎪⎫152,1或⎝ ⎛⎭⎪⎫152,-1考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆(2)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且∠F 1PF 2=60°,S △PF 1F 2=33,则b =________. 解析 (1)连接QA . 由已知得|QA |=|QP |.所以|QO |+|QA |=|QO |+|QP |=|OP |=r .又由于点A 在圆内,所以|OA |<|OP |,依据椭圆的定义,点Q 的轨迹是以O ,A 为焦点,r 为长轴长的椭圆.故选A. (2)由题意得|PF 1|+|PF 2|=2a , 又∠F 1PF 2=60°,所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=|F 1F 2|2, 所以(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4c 2, 所以3|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=43b 2,所以S △PF 1F 2=12|PF 1||PF 2|sin 60°=12×43b 2×32= 33b 2=33,所以b =3. 答案 (1)A (2)3规律方法 (1)椭圆定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为椭圆;二是利用定义求焦点三角形的周长、面积、弦长、最值和离心率等. (2)椭圆的定义式必需满足2a >|F 1F 2|.【训练1】 (1)已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B .2 C .2 2 D. 3(2)(2021·南昌调研)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.解析 (1)由椭圆的方程可知a =2,c =2,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2,所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =22,所以有|PF 1|2=|PF 2|2+|F 1F 2|2,即△PF 1F 2为直角三角形,且∠PF 2F 为直角,所以S △PF 1F 2=12|F 1F 2||PF 2|=12×22×1= 2.(2)设动圆的半径为r ,圆心为P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r . 所以|PC 1|+|PC 2|=10>|C 1C 2|,即P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,得点P 的轨迹方程为x 225+y 216=1. 答案 (1)A (2)x 225+y 216=1 考点二 椭圆的标准方程【例2】 (1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点⎝ ⎛⎭⎪⎫-32,52,(3,5),则椭圆方程为________.(2)过点(3,-5),且与椭圆y 225+x 29=1有相同焦点的椭圆标准方程为________. 解析 (1)设椭圆方程为mx 2+ny 2=1(m ,n >0,m ≠n ). 由⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫-322m +⎝ ⎛⎭⎪⎫522n =1,3m +5n =1,解得m =16,n =110. ∴椭圆方程为y 210+x26=1.(2)法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =(3-0)2+(-5+4)2+(3-0)2+(-5-4)2,解得a =2 5. 由c 2=a 2-b 2可得b 2=4.所以所求椭圆的标准方程为y 220+x 24=1.法二 设所求椭圆方程为y 225-k +x 29-k =1(k <9),将点(3,-5)的坐标代入可得(-5)225-k +(3)29-k =1,解得k =5(k =21舍去),所以所求椭圆的标准方程为y 220+x 24=1. 答案 (1)y 210+x 26=1 (2)y 220+x 24=1规律方法 求椭圆方程的基本方法是待定系数法,先定形,再定量,即首先确定焦点所在位置,然后依据条件建立关于a ,b 的方程组,假如焦点位置不确定,可设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),求出m ,n 的值即可.【训练2】 (1)(2021·湖南省东部六校联考)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A.x 24+y 23=1 B.x 28+y 26=1 C.x 22+y 2=1 D.x 24+y 2=1(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为________.解析 (1)依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1,故选A.(2)依题意,设椭圆C :x 2a 2+y 2b 2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上,∴1a 2+94b 2=1.①又由c =1,得1+b 2=a 2.② 由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1. 答案 (1)A (2)x 24+y 23=1 考点三 椭圆的几何性质【例3】 (1)(2022·全国Ⅲ卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34(2)(2021·福建卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( ) A.⎝⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,1解析 (1)设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M 三点共线,所以m 2(a -c )=ma +c,所以a =3c ,所以e =13. (2)设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32. 答案 (1)A (2)A规律方法 (1)求椭圆离心率的方法①直接求出a ,c 的值,利用离心率公式直接求解.②列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的方程(或不等式)求解.(2)利用椭圆几何性质求值或范围的思路求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.【训练3】 (1)(2022·合肥模拟)已知椭圆:x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________. (2)已知椭圆x 2a 2+y 2b 2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F 2,过椭圆上一点P 作此圆的切线,切点为T ,且|PT |的最小值不小于32(a -c ),则椭圆的离心率e 的取值范围是________.解析 (1)由椭圆的方程可知a =2,由椭圆的定义可知,|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3,由椭圆的性质可知过椭圆焦点的弦中,通径最短,则2b 2a =3.所以b 2=3,即b = 3.(2)由于|PT |=|PF 2|2-(b -c )2(b >c ),而|PF 2|的最小值为a -c ,所以|PT |的最小值为(a -c )2-(b -c )2.依题意,有(a -c )2-(b -c )2≥32(a -c ),所以(a -c )2≥4(b -c )2,所以a -c ≥2(b -c ),所以a +c ≥2b ,所以(a +c )2≥4(a 2-c 2),所以5c 2+2ac -3a 2≥0,所以5e 2+2e -3≥0.① 又b >c ,所以b 2>c 2,所以a 2-c 2>c 2,所以2e 2<1.② 联立①②,得35≤e <22. 答案 (1)3 (2)⎣⎢⎡⎭⎪⎫35,22考点四 直线与椭圆的位置关系【例4】 (2022·全国Ⅰ卷)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. (1)证明 由于|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |, 故|EA |+|EB |=|EA |+|ED |=|AD |.又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4.由题设得A (-1,0),B (1,0),|AB |=2,由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0).(2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).规律方法 (1)解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题经常用“点差法”解决,往往会更简洁.(2)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 提示 利用公式计算直线被椭圆截得的弦长是在方程有解的状况下进行的,不要忽视判别式. 【训练4】 (2021·沈阳质量监测)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),e =12,其中F 是椭圆的右焦点,焦距为2,直线l 与椭圆C 交于点A ,B ,线段AB 的中点横坐标为14,且AF→=λFB →(其中λ>1).(1)求椭圆C 的标准方程; (2)求实数λ的值.解 (1)由条件可知,c =1,a =2,故b 2=a 2-c 2=3, ∴椭圆C 的标准方程是x 24+y 23=1.(2)由AF →=λFB →,可知A ,B ,F 三点共线,设点A (x 1,y 1),点B (x 2,y 2). 若直线AB ⊥x 轴,则x 1=x 2=1,不符合题意. 当AB 所在直线l 的斜率k 存在时, 设方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0.①由①的判别式Δ=64k 4-4(4k 2+3)(4k 2-12)=144(k 2+1)>0. ∵⎩⎪⎨⎪⎧x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴x 1+x 2=8k 24k 2+3=12,∴k 2=14.将k 2=14代入方程①,得4x 2-2x -11=0, 解得x =1±354.又AF →=(1-x 1,-y 1),FB →=(x 2-1,y 2),AF →=λFB →, λ=1-x 1x 2-1,又λ>1,∴λ=3+52.[思想方法]1.椭圆的定义揭示了椭圆的本质属性,正确理解、把握定义是关键,应留意定义中的常数大于|F 1F 2|,避开了动点轨迹是线段或不存在的状况.2.求椭圆的标准方程,常接受“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是依据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n ). [易错防范]1.推断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要留意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题经常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要留意应用这些不等关系.基础巩固题组(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( ) A .5 B .3 C .5或3 D .8解析 当m >4时,m -4=1,∴m =5;当0<m <4时,4-m =1,∴m =3. 答案 C2.“2<m <6”是“方程x 2m -2+y 26-m =1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 解析 若x 2m -2+y 26-m=1表示椭圆.则有⎩⎨⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m =1表示椭圆”的必要不充分条件.答案 B3.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ) A.36 B.13 C.12 D.33解析 在Rt △PF 2F 1中,令|PF 2|=1,由于∠PF 1F 2=30°,所以|PF 1|=2,|F 1F 2|= 3.故e =2c2a =|F 1F 2||PF 1|+|PF 2|=33.故选D.答案 D4.(2021·全国Ⅰ卷)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3 B .6 C .9 D .12解析 抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c =2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由于离心率e =c a =12,所以a =4,所以b 2=a 2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B. 答案 B5.(2022·江西师大附中模拟)椭圆ax 2+by 2=1(a >0,b >0)与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ba 的值为( ) A.32 B.233 C.932 D.2327解析 设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,ax 22+by 22=1,即ax 21-ax 22=-(by 21-by 22),by 21-by 22ax 21-ax 22=-1, b (y 1-y 2)(y 1+y 2)a (x 1-x 2)(x 1+x 2)=-1,∴b a ×(-1)×32=-1,∴b a =233,故选B. 答案 B 二、填空题6.焦距是8,离心率等于0.8的椭圆的标准方程为________. 解析 由题意知⎩⎪⎨⎪⎧2c =8,c a=0.8,解得⎩⎨⎧a =5,c =4,又b 2=a 2-c 2,∴b 2=9,∴b =3.当焦点在x 轴上时,椭圆方程为x 225+y 29=1, 当焦点在y 轴上时,椭圆方程为y 225+x29=1. 答案 x 225+y 29=1或y 225+x 29=17.(2021·南昌质检)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10.则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25. ∴点P 的坐标为(-3,0)或(3,0). 答案 (-3,0)或(3,0)8.(2021·乌鲁木齐调研)已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆上一点,且PF 1→·PF 2→=c 2,则此椭圆离心率的取值范围是________.解析 设P (x ,y ),则PF 1→·PF 2→=(-c -x ,-y )·(c -x ,-y )=x 2-c 2+y 2=c 2,① 将y 2=b 2-b 2a 2x 2代入①式解得x 2=(2c 2-b 2)a 2c 2=(3c 2-a 2)a 2c 2,又x 2∈[0,a 2],∴2c 2≤a 2≤3c 2,∴e =c a ∈⎣⎢⎡⎦⎥⎤33,22.答案 ⎣⎢⎡⎦⎥⎤33,22三、解答题9.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解 (1)依据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12. (2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .①由|MN |=5|F 1N |,得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则 ⎩⎨⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a =1.解得a =7,b 2=4a =28, 故a =7,b =2 7.10.(2021·宝鸡月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△P AB 的面积.解 (1)由已知得⎩⎪⎨⎪⎧6a 2+2b 2=1,ca =63,a 2=b 2+c 2,解得⎩⎨⎧a 2=12,b 2=4.故椭圆C 的方程为x 212+y 24=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2),AB 的中点为D (x 0,y 0). 由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1,消去y ,整理得4x 2+6mx +3m 2-12=0,则x 0=x 1+x 22=-34m ,y 0=x 0+m =14m ,即D ⎝ ⎛⎭⎪⎫-34m ,14m .由于AB 是等腰三角形P AB 的底边,所以PD ⊥AB ,即PD 的斜率k =2-m4-3+3m 4=-1,解得m =2. 此时x 1+x 2=-3,x 1x 2=0,则|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=32, 又点P 到直线l :x -y +2=0的距离为d =32,所以△P AB 的面积为S =12|AB |·d =92. 力量提升题组 (建议用时:25分钟)11.(2022·高安模拟)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( )A.12 B.3-12 C.32 D.3-1解析 设F (-c,0)关于直线3x +y =0的对称点A (m ,n ), 则⎩⎪⎨⎪⎧n m +c ·(-3)=-1,3·⎝ ⎛⎭⎪⎫m -c 2+n2=0,∴m =c 2,n =32c ,代入椭圆方程可得c 24a 2+34c2b 2=1,并把b 2=a 2-c 2代入,化简可得e 4-8e 2+4=0,解得e 2=4±23,又0<e <1,∴e =3-1,故选D.答案 D12.(2021·海沧试验中学模拟)已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,55 B.⎝ ⎛⎦⎥⎤0,255 C.⎝ ⎛⎦⎥⎤0,355 D.⎝ ⎛⎦⎥⎤0,455 解析 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455, 解得d 2≤165.又由于d =21+k 2,所以11+k 2≤45,解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,解得0<e ≤255.故选B. 答案 B13.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x24<0,即34x 2<2,∴x 2<83.解得-263<x <263,∴x ∈⎝ ⎛⎭⎪⎫-263,263. 答案 ⎝⎛⎭⎪⎫-263,263 14.(2021·西安质监)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值;(3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解 (1)由题意得c =3,依据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16. 所以椭圆的标准方程为x 225+y216=1.(2)法一 由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =24x ,得⎝ ⎛⎭⎪⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a2,由AB ,F 1F 2相互平分且共圆,易知,AF 2⊥BF 2,由于F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2),所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2=⎝ ⎛⎭⎪⎫1+18x 1x 2+9=0.即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8,结合b 2+9=a 2,解得a 2=12,∴e =32.法二 设A (x 1,y 1),又AB ,F 1F 2相互平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得⎩⎪⎨⎪⎧x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1,将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32.(3)由(2)的结论知,椭圆方程为x 212+y 23=1,由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21,又y 20-y 21x 20-x 21=3⎝ ⎛⎭⎪⎫1-x 2012-3⎝ ⎛⎭⎪⎫1-x 2112x 20-x 21=-14. 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 故直线PB 的斜率k 2的取值范围是⎝ ⎛⎭⎪⎫18,14.。

2020年高考文科数学总复习:椭圆(二)

2020年高考文科数学总复习:椭圆(二)

2020年高考文科数学总复习:椭圆(二)1.已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A ,B 两点,若AB 的中点为M(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 答案 D解析 k AB =0+13-1=12,k OM =-1,由k AB ·k OM =-b 2a 2,得b 2a 2=12,∴a 2=2b 2.∵c =3,∴a 2=18,b 2=9,椭圆E 的方程为x 218+y 29=1.2.(2018·南昌二模)已知椭圆:y 29+x 2=1,过点P(12,12)的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A .9x -y -4=0 B .9x +y -5=0 C .2x +y -2=0 D .x +y -5=0答案 B解析 设A(x 1,y 1),B(x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 129+x 12=1,y 229+x 22=1,两式相减得y 12-y 229+x 12-x 22=0,得(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P(12,12)平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式得y 1-y 29+x 1-x 2=0,得y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9,所以直线AB 的方程为y -12=-9(x -12),即9x +y -5=0.3.椭圆x 216+y 24=1上的点到直线x +2y -2=0的最大距离是( )A .3 B.11 C .2 2 D.10答案 D解析 设椭圆x 216+y 24=1上的点P(4cos θ,2sin θ),则点P 到直线x +2y -2=0的距离为d =|4cos θ+4sin θ-2|5=|42sin (θ+π4)-2|5,∴d max =|-42-2|5=10.4.(2018·广东梅州阶段测评)已知椭圆E :x 25+y 24=1的一个顶点C(0,-2),直线l 与椭圆E交于A ,B 两点,若E 的左焦点F 1为△ABC 的重心,则直线l 的方程为( ) A .6x -5y -14=0 B .6x -5y +14=0 C .6x +5y +14=0 D .6x +5y -14=0答案 B解析 由题意知F 1(-1,0),设A(x 1,y 1),B(x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2+0=-3,y 1+y 2-2=0,∴⎩⎪⎨⎪⎧x 1+x 2=-3,y 1+y 2=2.① 设M 为AB 的中点,则M(-32,1).由⎩⎨⎧x 125+y 124=1,x 225+y 224=1,作差得(x 1-x 2)(x 1+x 2)5+(y 1-y 2)(y 1+y 2)4=0,将①代入上式得y 1-y 2x 1-x 2=65.即k =65,由点斜式得,直线方程为y -1=65(x +32),即6x -5y +14=0.5.(2018·广西南宁、梧州摸底联考)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交椭圆于A ,B 两点,直线AF 2与椭圆的另一个交点为C ,若S △ABC =3S △BCF 2,则椭圆的离心率为()A.55B.33C.105D.3310答案 A解析 设椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0),将x =-c 代入椭圆方程得y =±b 2a .设A(-c ,b 2a ),C(x ,y),由S △ABC =3S △BCF 2,可得AF 2→=2F 2C →,即有(2c ,-b 2a )=2(x -c ,y),即2c =2x -2c ,-b 2a =2y ,可得x =2c ,y =-b 22a ,代入椭圆方程可得4c 2a 2+b 24a 2=1.由e=c a ,b 2=a 2-c 2,得4e 2+14-14e 2=1,解得e =55,故选A. 6.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,过右焦点F 且斜率为k(k>0)的直线与C相交于A ,B 两点.若向量AF →=3FB →,则k =( ) A .1 B. 2 C. 3 D .2答案 B解析 设点A(x 1,y 1),B(x 2,y 2).因为AF →=3FB →,故y 1=-3y 2.因为e =32,设a =2t ,c=3t ,b =t ,故x 2+4y 2-4t 2=0,直线AB 的方程为x =sy +3t.代入消去x ,所以(s 2+4)y 2+23sty -t 2=0,所以y 1+y 2=-23st s 2+4,y 1y 2=-t 2s 2+4,-2y 2=-23st s 2+4,-3y 22=-t 2s 2+4,解得s 2=12,又k =1s,则k = 2.故选B.7.已知直线l :y =k(x +22)与椭圆x 2+9y 2=9交于A ,B 两点,若|AB|=2,则k =________. 答案 ±33解析 椭圆x 2+9y 2=9即椭圆x 29+y 2=1,所以椭圆的焦点坐标为(±22,0).因为直线y =k(x +22),所以直线过椭圆的左焦点F(-22,0),设A(x 1,y 1),B(x 2,y 2),将直线y =k(x +22)代入椭圆x 2+9y 2=9,可得(1+9k 2)x 2+362k 2x +72k 2-9=0,所以x 1+x 2=-362k 21+9k 2,x 1x 2=72k 2-91+9k 2,所以|AB|=1+k 2·(x 1+x 2)2-4x 1x 2=6(1+k 2)1+9k 2,因为|AB|=2,所以6(1+k 2)1+9k2=2,所以k =±33. 8.直线m 与椭圆x 22+y 2=1交于P 1,P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为________. 答案 -12解析 由点差法可求出k 1=-12·x 中y 中,∴k 1·y 中x 中=-12,即k 1k 2=-12.9.(2018·河北唐山期末)设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB 是面积为43的等边三角形,则椭圆C 的方程为________. 答案 x 29+y 26=1解析 由△F 2AB 是面积为43的等边三角形知AB 垂直x 轴,得b 2a =33×2c ,12×2c ×2b 2a =43,a 2=b 2+c 2,解得a 2=9,b 2=6,c 2=3.所以的椭圆方程为x 29+y 26=1.10.椭圆Γ:x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1,F 2,焦距为2c.若直线y =3(x +c)与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________. 答案3-1解析 由直线y =3(x +c)知其倾斜角为60°,由题意知∠MF 1F 2=60°,则∠MF 2F 1=30°,∠F 1MF 2=90°. 故|MF 1|=c ,|MF 2|=3c.又|MF 1|+|MF 2|=2a ,∴(3+1)c =2a. 即e =23+1=3-1. 11.已知椭圆x 29+y 2m =1(0<m<9)的左、右焦点分别为F 1、F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为10,则m 的值为________. 答案 3解析 已知在椭圆x 29+y 2m =1(0<m<9)中,a 2=9,b 2=m.|AF 2|+|BF 2|=4×3-|AB|≤10,∴|AB|≥2,|AB|min =2b 23=2m3=2,解得m =3.12.(2018·衡水中学调研卷)过椭圆x 22+y 2=1的左焦点且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,则点G 的横坐标的取值范围为________. 答案 (-12,0)解析 设直线AB 的方程为y =k(x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,Δ=(4k 2)2-4(1+2k 2)×(2k 2-2)=k 2+1>0.设A(x 1,y 1),B(x 2,y 2),AB 的中点为N(x 0,y 0),则x 1+x 2=-4k 22k 2+1,y 1+y 2=2k2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k (x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2.∵k≠0,∴-12<x G <0,∴点G 的横坐标的取值范围为(-12,0).13.(2018·江苏泰州中学月考)已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a>b>0)相交于A ,B 两点,且OA ⊥OB(O 为坐标原点),若椭圆的离心率e ∈[12,32],则a 的最大值为________.答案102解析 设A(x 1,y 1),B(x 2,y 2),由⎩⎪⎨⎪⎧y =-x +1,x 2a 2+y 2b 2=1,得(a 2+b 2)x 2-2a 2x +a 2-a 2b 2=0,Δ=4a 4-4(a 2+b 2)(a 2-a 2b 2)>0,可得a 2+b 2>1且⎩⎪⎨⎪⎧x 1+x 2=2a 2a 2+b2,x 1x 2=a 2-a 2b 2a 2+b2,∵OA ⊥OB ,∴OA →·OB →=x 1x 2+y 1y 2=0,即2x 1x 2-(x 1+x 2)+1=0,∴2(a 2-a 2b 2)a 2+b 2-2a 2a 2+b 2+1=0,整理得a 2+b 2=2a 2b 2,a 2+a 2-c 2=2a 2(a 2-c 2), 2a 2-a 2e 2=2a 2(a 2-a 2e 2),2a 2=2-e 21-e 2=1+11-e 2, ∵e ∈[12,32],∴2a 2∈[73,5],即a max =52=102. 14.已知椭圆C :x 22+y 24=1,过椭圆C 上一点P(1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点,求直线AB 的斜率. 答案2解析 设A(x 1,y 1),B(x 2,y 2),同时设PA 的方程为y -2=k(x -1),代入椭圆方程化简得(k 2+2)x 2-2k(k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解.因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2,由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2,所以y 2-y 1x 2-x 1= 2.15.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB|,|BF 2|成等差数列. (1)求|AB|;(2)若直线l 的斜率为1,求实数b 的值. 答案 (1)43 (2)22解析 (1)由椭圆定义知|AF 2|+|AB|+|BF 2|=4, 又2|AB|=|AF 2|+|BF 2|,得|AB|=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A(x 1,y 1),B(x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y 2b 2=1.化简,得(1+b 2)x 2+2cx +1-2b 2=0. 则x 1+x 2=-2c 1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1,所以|AB|=2|x 2-x 1|. 即43=2|x 2-x 1|. 则89=(x 1+x 2)2-4x 1x 2=4(1-b 2)(1+b 2)2-4(1-2b 2)1+b 2=8b 4(1+b 2)2,解得b =22. 16.(2018·广东六校联盟二联)已知椭圆x 2a 2+y 2b 2=1(a>b>0)的左、右焦点分别为F 1(-3,0),F 2(3,0),直线y =kx 与椭圆交于A ,B 两点. (1)若△AF 1F 2的周长为43+6,求椭圆的标准方程; (2)若|k|>24,且以AB 为直径的圆过椭圆的右焦点,求椭圆离心率e 的取值范围. 答案 (1)x 212+y 23=1 (2)22<e<32解析 (1)由题意得⎩⎨⎧c =3,2a +2c =6+43,解得a =2 3.结合a 2=b 2+c 2,解得a 2=12,b 2=3. 所以椭圆的标准方程为x 212+y 23=1.(2)由⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx ,消去y ,得(b 2+a 2k 2)x 2-a 2b 2=0.设A(x 1,y 1),B(x 2,y 2),所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+a 2k 2,易知,AF 2⊥BF 2.因为F 2A →=(x 1-3,y 1),F 2B →=(x 2-3,y 2),所以F 2A →·F 2B →=(x 1-3)(x 2-3)+y 1y 2=(1+k 2)x 1x 2+9=0, 即-a 2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,将其整理为k 2=a 4-18a 2+81-a 4+18a 2=-1-81a 4-18a 2. 因为|k|>24,所以12<a 2<18,即23<a<3 2. 所以离心率22<e<32.17.(2018·杭州市二中模拟)已知椭圆E 的两个焦点分别为F 1(-1,0)和F 2(1,0),离心率为22. (1)求椭圆E 的方程;(2)设直线l :y =x +m(m ≠0)与椭圆E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T ,当m 变化时,求△TAB 面积的最大值. 答案 (1)x 22+y 2=1 (2)23解析 (1)根据题意得⎩⎪⎨⎪⎧c =1,c a =22,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =1.所以椭圆E 的方程为x 22+y 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =x +m ,化简得3x 2+4mx +2m 2-2=0.∵直线与椭圆有两个不同的交点, ∴Δ=(4m)2-12(2m 2-2)>0, 即-3<m<3且m ≠0.由根与系数的关系,得x 1+x 2=-4m 3,x 1x 2=2m 2-23.设AB 的中点为C ,x C =x 1+x 22=-2m 3,y C =x C +m =m3.∴线段AB 的垂直平分线的方程为y -m 3=-(x +2m3).∴点T 的坐标为(-m3,0).T 到直线AB 的距离d =|23m|2=23|m|,由弦长公式得|AB|=2(x 1+x 2)2-4x 1x 2=433-m 2.∴S △TAB =12×23|m|×433-m 2=229(3-m 2)m 2≤23,当m 2=32,即m =±62∈(-3,3)时等号成立.∴S △TAB max =23.1.由椭圆b 2x 2+a 2y 2=a 2b 2(a>b>0)的顶点B(0,-b)引一条弦BP ,当a ≥2b 时,|BP|的最大值为( ) A.b 2a 2-b 2B.a 2a 2-b 2C.a 2a 2+b 2D.b 2a 2+b2答案 B解析 设P(x ,y),因为x 2=a 2-a 2b 2y 2(-b<y ≤b),所以|BP|=x 2+(y +b )2=1b(b 2-a 2)y 2+2b 3y +b 2(a 2+b 2),因为a ≥2b ,所以当y =-b 3b 2-a2时,|BP|取得最大值,且|BP|max =a 2a 2-b 2.2.(2018·广西来宾高中模拟)已知椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是( ) A .[38,34]B .[12,34]C .[12,1]D .[34,2]答案 A解析 由题易知A 1(-2,0),A 2(2,0),设P(x ,y),直线PA 1,PA 2的斜率分别为k 1,k 2,则k 1k 2=y x +2·y x -2=y 2x 2-4=3-34x 2x 2-4=-34,所以k 1=-34×1k 2.因为k 2∈[-2,-1],所以k 1∈[38,34],故选A.3.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b 2=1(a>b>0),则椭圆在其上一点A(x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b 2=1(a>b>0),其焦距为2,且过点(1,22),点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( ) A.22B. 2C. 3 D .2答案 B解析 由题意可得2c =2,即c =1,a 2-b 2=1,将点(1,22)代入椭圆方程,可得1a 2+12b2=1,解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B(x 2,y 2),则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1,令x =0,得y D =1y 2,令y =0,可得x C =2x 2,所以S △OCD =12·1y 2·2x 2=1x 2y 2,又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1,即有1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2,即S △OCD ≥2,当且仅当x 222=y 22=12,即点B 的坐标为(1,22)时,△OCD 面积取得最小值2,故选B.4.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的一个顶点A(2,0),离心率为22,直线y =k(x -1)与椭圆C 交于不同的两点M ,N. (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求实数k 的值. 答案 (1)x 24+y 22=1 (2)k =±1解析 (1)∵a =2,e =c a =22,∴c =2,b = 2.椭圆C :x 24+y 22=1.(2)设M(x 1,y 1),N(x 2,y 2),则由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1,消y ,得(1+2k 2)x 2-4k 2x +2k 2-4=0.∵直线y =k(x -1)恒过椭圆内一点(1,0), ∴Δ>0恒成立.由根与系数的关系,得x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.S △AMN =12×1×|y 1-y 2|=12×|kx 1-kx 2|=|k|2(x 1+x 2)2-4x 1x 2=|k|216+24k 21+2k 2=103. 即7k 4-2k 2-5=0,解得k =±1.5.(2018·河北保定期末)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的右焦点为(1,0),离心率为12.(1)求椭圆C 的标准方程;(2)过点P(0,3)的直线m 与C 交于A ,B 两点,若A 是PB 的中点,求直线m 的方程. 答案 (1)x 24+y 23=1 (2)y =-32x +3或y =32x +3解析 (1)椭圆C :x 2a 2+y 2b 2=1(a>b>0)的焦点在x 轴上,右焦点为(1,0),则c =1,由椭圆的离心率e =c a =12,得b 2=a 2-c 2=3,∴椭圆C 的标准方程为x 24+y 23=1.(2)若直线m 的斜率不存在,可得点A 的坐标为(0,3),点B 的坐标为(0,-3),显然不满足条件,故此时方程不存在. 若直线m 的斜率存在,设其方程为y =kx +3,A(x 1,y 1),B(x 2,y 2), ∵A 是PB 的中点,∴x 1=x 22,①y 1=y 2+32,②x 124+y 123=1,③ x 224+y 223=1,④ 联立①②③④,解得⎩⎪⎨⎪⎧x 2=2,y 2=0或⎩⎪⎨⎪⎧x 2=-2,y 2=0,即点B 的坐标为(2,0)或(-2,0), ∴直线m 的斜率为-32或32,则直线m 的方程为y =-32x +3或y =32x +3.6.已知椭圆的中心在坐标原点,一个焦点是F 1(0,-1),离心率为33. (1)求椭圆的标准方程;(2)过F 1作直线交椭圆于A ,B 两点,F 2是椭圆的另一个焦点,求S △ABF 2的取值范围. 答案 (1)x 22+y 23=1 (2)(0,433]解析 (1)由条件可设椭圆方程为x 2b 2+y 2a 2=1(a>b>0),则有c =1,e =33,∴b =a 2-c 2=2,∴所求椭圆的方程是x 22+y 23=1.(2)由条件设直线AB 的方程为y +1=kx.将y =kx -1代入椭圆方程,得(2k 2+3)x 2-4kx -4=0.设A(x 1,y 1),B(x 2,y 2),Δ=16k 2+16(2k 2+3)=48(k 2+1)>0,x 1+x 2=4k 2k 2+3,x 1x 2=-42k 2+3. S △ABF 2=12|F 1F 2||x 1-x 2|=|x 1-x 2|. (x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16k 2(2k 2+3)2+162k 2+3=48(k 2+1)(2k 2+3)2. 令t =k 2+1,则t ≥1,设g(t)=(2t +1)2t =4t +1t +4. ∵g ′(t)=4-1t 2=4t 2-1t 2, 当t ≥1时,g ′(t)≥0,∴g(t)在[1,+∞)上单调递增,∴g(t)≥g(1)=9,∴0<48g (t )≤489=163,∴0<S △ABF 2≤433. 7.(2018·山东济宁期末)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,且离心率是12,过坐标原点O 的任一直线交椭圆C 于M ,N 两点,且|NF 2|+|MF 2|=4.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 交于不同的两点A ,B ,且与圆x 2+y 2=1相切. (ⅰ)求证:m 2=k 2+1;(ⅱ)求OA →·OB →的最小值. 答案 (1)x 24+y 23=1 (2)(ⅰ)略 (ⅱ)-53解析 (1)设M(x ,y)是椭圆上任一点,则N(-x ,-y),∵|NF 2|+|MF 2|=4,∴(x -c )2+y 2+(-x -c )2+(-y )2=4,即(x -c )2+y 2+(x +c )2+y 2=4,∴M(x ,y)到点(c ,0),(-c ,0)的距离和为4,∴2a =4,a =2.又∵椭圆C 的离心率是12,∴c =1,b =3, ∴椭圆C 的标准方程是x 24+y 23=1. (2)(ⅰ)证明:∵直线l :y =kx +m 与圆x 2+y 2=1相切,∴圆心(0,0)到直线l 的距离等于半径1,即|m|1+k2=1⇒m 2=k 2+1. (ⅱ)设A(x 1,y 1),B(x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,得(3+4k 2)x 2+8kmx +4m 2-12=0,x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2,y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+km(x 1+x 2)+m 2=3m 2-12k 23+4k 2. ∴OA →·OB →=x 1x 2+y 1y 2=4m 2-123+4k 2+3m 2-12k 23+4k 2=7m 2-12(k 2+1)3+4k 2. ∵m 2=k 2+1,∴OA →·OB →=x 1x 2+y 1y 2=-5(k 2+1)3+4k 2=-54(4k 2+3)+544k 2+3=-(54+544k 2+3). ∴当k 2=0时,OA →·OB →有最小值-53.。

2019年高考数学(文)热点题型和提分秘籍专题38椭圆(题型专练)含解析

2019年高考数学(文)热点题型和提分秘籍专题38椭圆(题型专练)含解析

2019年高考数学(文)热点题型和提分秘籍1.若椭圆C :x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆C 上,且|PF 1|=4,则∠F 1PF 2=( )A .30°B .60°C .120°D .150°【答案】C2.椭圆x 212+y 23=1的焦点为F 1,F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PF 2|是|PF 1|的( )A .7倍B .5倍C .4倍D .3倍【解析】设线段PF 2的中点为D , 则|OD |=12|PF 1|,OD ∥PF 1,OD ⊥x 轴,∴PF 1⊥x 轴。

∴|PF 1|=b 2a =323=32。

又∵|PF 1|+|PF 2|=43, ∴|PF 2|=43-32=732。

∴|PF 2|是|PF 1|的7倍。

【答案】A3.在同一平面直角坐标系中,方程ax 2+by 2=ab 与方程ax +by +ab =0表示的曲线可能是( )B C 【解析】直线方程变形为y =-abx -a ,在选项B 和C 中,⎩⎪⎨⎪⎧-a b >0-a >0,解得⎩⎪⎨⎪⎧b >0a <0,所以ax 2+by 2=ab 表示的曲线是焦点在x 轴上的双曲线,【答案】C6.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1、F 2,点P (a ,b )满足|F 1F 2|=|PF 2|,设直线PF 2与椭圆交于M 、N 两点,若|MN |=16,则椭圆的方程为( )A.x 2144+y 2108=1B.x 2100+y 275=1 C.x 236+y 227=1 D.x 216+y 212=1【答案】B7.设F 1,F 2分别为椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上,且|PF 1→+PF 2→|=23,则∠F 1PF 2等于( ) A.π6 B.π4 C.π3D.π2【答案】D【解析】因为PF 1→+PF 2→=2PO →,O 为坐标原点,|PF 1→+PF 2→|=23,所以|PO |=3,又|OF 1|=|OF 2|=3, 所以P ,F 1,F 2在以点O 为圆心的圆上,且F 1F 2为直径,所以∠F 1PF 2=π2.8.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15 【答案】D9.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A.35B.12C.23D.34【答案】A【解析】∵圆O 与直线BF 相切,∴圆O 的半径为bc a ,即|OC |=bca ,∵四边形F AMN 是平行四边形,∴点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,∴5e 2+2e -3=0,又0<e <1,∴e =35.故选A.10.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与圆C 2:x 2+y 2=b 2,若在椭圆C 1上存在点P ,使得由点P 所作的圆C 2的两条切线互相垂直,则椭圆C 1的离心率的取值范围是( )A.⎣⎡⎭⎫12,1B.⎣⎡⎦⎤22,32C.⎣⎡⎭⎫22,1 D.⎣⎡⎭⎫32,1 【答案】C【解析】从椭圆上长轴端点P ′向圆引两条切线P ′A ,P ′B ,则两切线形成的∠AP ′B 最小. 若椭圆C 1上存在点P ,所作圆C 2的两条切线互相垂直,则只需∠AP ′B ≤90°, 即α=∠AP ′O ≤45°,∴sin α=b a ≤sin 45°=22.又b 2=a 2-c 2,∴a 2≤2c 2,∴e 2≥12,即e ≥22.又0<e <1,∴22≤e <1,即e ∈⎣⎡⎭⎫22,1. 11.已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1 B .2- 3C.22 D.32【答案】A12.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A.⎝⎛⎭⎫22,1 B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫0,22 D.⎝⎛⎭⎫0,12 【答案】A【解析】设P (x 0,y 0),F 1(-c,0),F 2(c,0),由题易知|x 0|<a ,因为存在点P ,使∠F 1PF 2为钝角,所以PF 1→·PF 2→<0有解,即c 2>x 20+y 20有解,即c 2>(x 20+y 20)min ,又y 20=b 2-b 2a2x 20,b 2+c 2=a 2,x 20<a 2,故x 20+y 20=b 2+c 2a2x 20∈[b 2,a 2),所以(x 20+y 20)min =b 2,故c 2>b 2,所以e 2=c 2a 2>12,又0<e <1,所以22<e <1,故椭圆C 的离心率的取值范围是⎝⎛⎭⎫22,1,故选A. 13.正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )A.⎝ ⎛⎭⎪⎫5-12,1B.⎝ ⎛⎭⎪⎫0,5-12 C.⎝⎛⎭⎪⎫3-12,1 D.⎝⎛⎭⎪⎫0,3-12 【答案】B【解析】设正方形的边长为2m ,∵椭圆的焦点在正方形的内部,∴m >c ,又正方形ABCD 的四个顶点都在椭圆x 2a 2+y 2b 2=1上,∴m 2a 2+m 2b 2=1>c 2a 2+c 2b 2=e 2+e 21-e 2,即e 4-3e 2+1>0,e 2<3-52=⎝ ⎛⎭⎪⎫5-122,∴0<e <5-12,故选B. 19.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)相交于A ,B ,C ,D 四点,若椭圆C 1的一个焦点F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________.【答案】2220.设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.【答案】733【解析】由圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d = x 2+(y -1)2=-3y 2-2y +5 =-3⎝⎛⎭⎫y +132+163, ∵-1≤y ≤1,∴当y =-13时,d 取最大值433,∴P ,Q 两点间的最大距离为d max +3=733.21.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A 、B 两点,F 1B 与y轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于__________。

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结

高中文科数学椭圆知识点总结高中数学椭圆知识点1一、椭圆知识点总结1、椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆、这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集。

2、椭圆的标准方程和几何性质一条规律椭圆焦点位置与x2,y2系数间的`关系:两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程。

(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程。

三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c。

(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)。

(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴。

二、复习指导1、熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程。

2、掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等、体会解析几何的本质问题——用代数的方法解决几何问题。

高中数学椭圆知识点2正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0抛物线标准方程y2=2pxy2=-2px-x2=2pyx2=-2py直棱柱侧面积S=c.h斜棱柱侧面积S=c'.h正棱锥侧面积S=1/2c.h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi.r2圆柱侧面积S=c.h=2pi.h圆锥侧面积S=1/2.c.l=pi.r.l弧长公式l=a.ra是圆心角的弧度数r>0扇形面积公式s=1/2.l.r 锥体体积公式V=1/3.S.H圆锥体体积公式V=1/3.pi.r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s.h圆柱体V=p.r2h乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab +b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1.X2=c/a注:韦达定理判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学椭圆知识点3椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a^2—c^2=b^2推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)椭圆的对称性:不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。

高考数学椭圆知识点总结

高考数学椭圆知识点总结

高考数学椭圆知识点总结在高考数学中,椭圆是一个重要的几何图形,掌握椭圆的相关知识点对于解题非常有帮助。

下面将对高考数学中与椭圆相关的知识点进行总结。

一、椭圆的定义和性质椭圆是一个平面上的封闭曲线,其定义是到两个固定点(焦点)的距离之和等于常数的点所构成的集合。

椭圆具有以下性质:1. 焦点和准线:椭圆的两个焦点在椭圆的长轴上,准线则是连接两个焦点并且垂直于长轴的直线。

2. 焦距和半长轴:椭圆的两个焦点之间的距离称为焦距,焦距的一半称为半焦距。

椭圆的长轴是过焦点的直线,长轴的一半称为半长轴。

3. 直径:椭圆的直径是通过椭圆两个焦点的直线段,并且垂直于长轴的。

二、椭圆的标准方程椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴的长度。

三、椭圆的参数方程和焦点坐标椭圆的参数方程为x = h + a*cosθ,y = k + b*sinθ,其中θ是0到2π的参数。

椭圆的焦点坐标为(h+c, k)和(h-c, k),其中c是半焦距的长度。

四、椭圆的离心率和短焦距椭圆的离心率是一个描述椭圆形状的重要指标,计算公式为e = c/a,其中c是焦距的长度,a是半长轴的长度。

离心率小于1的椭圆被称为椭圆形,离心率等于1的椭圆被称为抛物线,离心率大于1的椭圆被称为双曲线。

椭圆的短焦距的长度可以通过短焦距的平方等于长焦距的平方减去椭圆的半长轴的平方来计算。

五、椭圆和直线的方程椭圆的方程和直线的方程可以相交、相切或者相离。

椭圆和直线相交时,可以通过联立椭圆的方程和直线的方程求解交点的坐标。

六、椭圆的面积和周长椭圆的面积可以通过公式A = πab来计算,其中a和b分别是椭圆的半长轴和半短轴的长度。

椭圆的周长近似于公式C ≈ 2π√(2a²+b²)/2。

综上所述,掌握高考数学中与椭圆相关的知识点对于解题至关重要。

高考文科数学练习题含解析椭圆

高考文科数学练习题含解析椭圆

课时跟踪检测(四十九) 椭圆[A 级 基础题——基稳才能楼高]1.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x 2-n +y 2-m =1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m -(-n )=n -m .2.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为2的椭圆的标准方程为( ) A.x 22+y 24=1 B .x 2+y 26=1 C.x 26+y 2=1 D.x 28+y 25=1 解析:选B 椭圆9x 2+4y 2=36可化为x 24+y 29=1,可知焦点在y 轴上,焦点坐标为(0,±5),故可设所求椭圆方程为y 2a 2+x 2b 2=1(a >b >0),则c = 5.又2b =2,即b =1,所以a 2=b 2+c 2=6, 则所求椭圆的标准方程为x 2+y 26=1. 3.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心,且|PF 1|+|PF 2|=10,从而|PM |+|PN |的最小值为|PF 1|+|PF 2|-1-2=7.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32B.22C.13D.12解析:选D ∵AP ―→=2PB ―→,∴|AP ―→|=2|PB ―→|.又∵PO ∥BF ,∴|PA ||AB |=|AO ||AF |=23,即a a +c =23,∴e =c a =12. 5.(2019·长沙一模)椭圆的焦点在x 轴上,中心在原点,其上、下顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( )A.x 22+y 22=1 B.x 22+y 2=1 C.x 24+y 22=1 D.y 24+x 22=1 解析:选C 由条件可知b =c =2,a =2,所以椭圆的标准方程为x 24+y 22=1.故选C.6.已知F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A.⎣⎡⎭⎫23,1B.⎣⎡⎦⎤13,22 C.⎣⎡⎭⎫13,1D.⎝⎛⎦⎤0,13 解析:选C 如图所示,∵线段PF 1的中垂线经过F 2,∴|PF 2|=|F 1F 2|=2c ,即椭圆上存在一点P ,使得|PF 2|=2c .∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎡⎭⎫13,1.[B 级 保分题——准做快做达标]1.(2019·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等解析:选D 曲线x 225+y 29=1表示焦点在x 轴上的椭圆,其长轴长为10,短轴长为6,焦距为8,离心率为45.曲线x 225-k +y 29-k =1(k <9)表示焦点在x 轴上的椭圆,其长轴长为225-k ,短轴长为29-k ,焦距为8,离心率为425-k.对照选项,知D 正确.故选D. 2.(2019·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A .24B .12C .8D .6解析:选C ∵P 为椭圆C :x 249+y 224=1上一点,|PF 1|∶|PF 2|=3∶4,|PF 1|+|PF 2|=2a=14,∴|PF 1|=6,|PF 2|=8,又∵|F 1F 2|=2c =249-24=10,∴易知△PF 1F 2是直角三角形,S △PF 1F 2=12|PF 1|·|PF 2|=24,∵△PF 1F 2的重心为点G ,∴S △PF 1F 2=3S △GPF 1,∴△GPF 1的面积为8,故选C.3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t , 由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0, 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2, 当t =0时,|AB |max =4105. 4.(2019·贵阳摸底)P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上的一点,A 为左顶点,F 为右焦点,PF ⊥x 轴,若tan ∠PAF =12,则椭圆的离心率e 为( )A.23B.22C.33D.12解析:选D 不妨设点P 在第一象限,因为PF ⊥x 轴,所以x P =c ,将x P =c 代入椭圆方程得y P =b 2a ,即|PF |=b 2a ,则tan ∠PAF =|PF ||AF |=b 2a a +c =12,结合b 2=a 2-c 2,整理得2c 2+ac -a 2=0,两边同时除以a 2得2e 2+e -1=0,解得e =12或e =-1(舍去).故选D.5.(2019·长郡中学选拔考试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与圆D :x 2+y 2-2ax +316a 2=0交于A ,B 两点,若四边形OADB (O 为原点)是菱形,则椭圆C 的离心率为( )A.13 B.12 C.32D.62解析:选B 由已知可得圆D :(x -a )2+y 2=1316a 2,圆心D (a ,0),则菱形OADB 对角线的交点的坐标为⎝⎛⎭⎫a 2,0,将x =a 2代入圆D 的方程得y =±3a4,不妨设点A 在x 轴上方,即A ⎝⎛⎭⎫a 2,3a 4,代入椭圆C 的方程可得14+9a 216b 2=1,所以34a 2=b 2=a 2-c 2,解得a =2c ,所以椭圆C 的离心率e =c a =12.6.(2019·沙市中学测试)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,双曲线x 2-y 2=1的渐近线与椭圆C 有4个交点,以这4个交点为顶点的四边形的面积为8,则椭圆C 的方程为( )A.x 28+y 22=1 B.x 212+y 26=1 C.x 26+y 23=1 D.x 220+y 25=1 解析:选C 由题意知双曲线x 2-y 2=1的渐近线方程为y =±x ,由椭圆的对称性可知以这4个交点为顶点的四边形是正方形,由四边形的面积为8,知正方形的边长为22,所以点(2,2)在椭圆上,所以2a 2+2b2=1.①又椭圆的离心率为22, 所以a 2-b 2a 2=12,所以a 2=2b 2.②由①②得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.故选C.7.(2019·安阳模拟)已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1―→·(OF 1―→+OP ―→)=0(O 为坐标原点),若|PF 1―→|=2|PF 2―→|,则椭圆的离心率为( )A.6- 3B.6-32 C.6- 5D.6-52解析:选A 以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则, 由PF 1―→·(OF 1―→+OP ―→)=0知,此平行四边形的对角线垂直,即此平行四边形为菱形,∴|OP ―→|=|OF 1―→|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则|PF 1|=2x ,结合椭圆的性质和三角形勾股定理可得⎩⎨⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴e =c a =32+1=6- 3.故选A.8.(2019·西宁复习检测)在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则|PA |+|PB |的最大值为( )A .5B .4C .3D .2解析:选A ∵椭圆的方程为y 24+x 23=1,∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,|PB |+|PC |=4,∴|PB |=4-|PC |,∴|PA |+|PB |=4+|PA |-|PC |≤4+|AC |=5.9.已知点P 是椭圆x 216+y 28=1(x ≠0,y ≠0)上的动点,F 1,F 2分别是椭圆的左、右焦点,O 是坐标原点,若M 是∠F 1PF 2的平分线上一点,且F 1M ―→·MP ―→=0,则|OM ―→|的取值范围是( )A .[0,3)B .(0,22)C .[22,3)D .(0,4]解析:选B 如图,延长F 1M 交PF 2的延长线于点G . ∵F 1M ―→·MP ―→=0,∴F 1M ―→⊥MP ―→. 又MP 为∠F 1PF 2的平分线, ∴|PF 1|=|PG |,且M 为F 1G 的中点. ∵O 为F 1F 2的中点,∴OM 綊12F 2G .∵|F 2G |=||PF 2|-|PG ||=||PF 1|-|PF 2||, ∴|OM ―→|=12|2a -2|PF 2||=|4-|PF 2||.∵4-22<|PF 2|<4或4<|PF 2|<4+22, ∴|OM ―→|∈(0,22).10.已知F 1(-c,0),F 2(c,0)为椭圆x 2a 2+y 2b 2=1的两个焦点,P 在椭圆上且满足PF 1―→·PF 2―→=c 2,则此椭圆离心率的取值范围是( )A.⎣⎡⎭⎫33,1 B.⎣⎡⎦⎤33,22C.⎣⎡⎦⎤13,12D.⎝⎛⎦⎤0,22 解析:选B 设P (x ,y ),则x 2a 2+y 2b 2=1,y 2=b 2-b 2a 2x 2,-a ≤x ≤a ,PF 1―→=(-c -x ,-y ),PF 2―→=(c -x ,-y ).所以PF 1―→·PF 2―→=x 2-c 2+y 2=⎝⎛⎭⎫1-b 2a 2x 2+b 2-c 2=c 2a 2x 2+b 2-c 2.因为-a ≤x ≤a ,所以b 2-c 2≤PF 1―→·PF 2―→≤b 2. 所以b 2-c 2≤c 2≤b 2. 所以2c 2≤a 2≤3c 2. 所以33≤c a ≤22.故选B. 11.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.解析:当k >4 时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365. 答案:209或36512.(2019·湖北稳派教育联考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e 的取值范围是________.解析:∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+c a <0,即2e 2+e -1<0,解得-1<e <12.又∵0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝⎛⎭⎫0,12.答案:⎝⎛⎭⎫0,12 13.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为______.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,解得e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝⎛⎭⎪⎫5-12,114.(2019·辽宁联考)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:在椭圆x 225+y 216=1中,a =5,b =4,c =3,所以焦点坐标分别为F 1(-3,0),F 2(3,0).根据椭圆的定义得|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).∵|PM |-|PF 2|≤|MF 2|,当且仅当P 在直线MF 2上时取等号, ∴当点P 与图中的点P 0重合时,有(|PM |-|PF 2|)max =(6-3)2+(4-0)2=5,此时得|PM |+|PF 1|的最大值,为10+5=15.答案:1515.(2019·武汉调研)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(a >1,a ∈R )上,过O 的直线交椭圆C 于A ,B 两点,F 为椭圆C 的左焦点.(1)若△FAB 的面积的最大值为1,求a 的值;(2)若直线MA ,MB 的斜率乘积等于-13,求椭圆C 的离心率.解:(1)S △FAB =12|OF |·|y A -y B |≤|OF |=a 2-1=1,所以a = 2.(2)由题意可设A (x 0,y 0),B (-x 0,-y 0),M (x ,y ),则x 2a 2+y 2=1,x 20a 2+y 20=1, k MA ·k MB =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20=1-x 2a 2-⎝⎛⎭⎫1-x 20a 2x 2-x 20=-1a 2(x 2-x 20)x 2-x 20=-1a 2=-13,所以a 2=3,所以a =3,所以c =a 2-b 2=2, 所以椭圆的离心率e =c a =23=63.16.(2019·广东七校联考)已知动点M 到定点F 1(-2,0)和F 2(2,0)的距离之和为4 2. (1)求动点M 的轨迹C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交C 于不同于N 的两点A ,B ,直线NA ,NB 的斜率分别为k 1,k 2,求k 1+k 2的值.解:(1)由椭圆的定义,可知点M 的轨迹是以F 1,F 2为焦点,42为长轴长的椭圆.由c =2,a =22,得b =2.故动点M 的轨迹C 的方程为x 28+y 24=1.(2)当直线l 的斜率存在时,设其方程为y +2=k (x +1),由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0.Δ=[4k (k -2)]2-4(1+2k 2)(2k 2-8k )>0,则k >0或k <-47.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)4k (k -2)2k 2-8k=4.当直线l 的斜率不存在时,得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142.所以k 1+k 2=4. 综上,恒有k 1+k 2=4.。

高考数学知识点椭圆

高考数学知识点椭圆

高考数学知识点椭圆近年来,高考数学的难度逐渐提高,考察的知识点也越来越复杂。

椭圆作为高考数学中的一个重要知识点,经常出现在高考试题中。

椭圆是一种在平面上的几何图形,它具有许多特殊的性质和应用。

本文将从椭圆的定义、常用公式、性质和应用等方面,深入探讨高考数学中的椭圆知识点。

首先,我们来了解椭圆的定义。

椭圆可以由一个动点与一个定点和一个定长的线段构成。

这个动点称为焦点,定点与焦点的连线称为半径。

根据焦点和半径之间的关系,可以得到椭圆的定义为:平面上到焦点和到半径的距离之和为定值的点的轨迹。

接下来,我们来介绍椭圆的常用公式。

椭圆的标准方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别为椭圆在x轴和y轴上的半轴长。

根据半轴长的关系,椭圆可以分为长轴和短轴。

椭圆的几何中心为原点(0,0),且椭圆对称于x轴和y 轴。

此外,还存在以原点为中心的椭圆方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

除了椭圆的标准方程外,还有其他与椭圆相关的常用公式。

例如,椭圆的离心率公式为:$e=\frac{c}{a}$,其中$c$为焦点到原点距离,$a$为长轴的长度。

离心率决定了椭圆的形状,当离心率小于1时,椭圆是完全闭合的,当离心率等于1时,椭圆变成抛物线。

接下来,我们来探讨椭圆的性质。

椭圆具有很多独特的性质,其中一些常见的性质包括:椭圆的离心率小于1;椭圆的焦点到准线的距离之和等于长轴的长度;椭圆上任意一点到两焦点的距离之和等于常数;椭圆的离心角等于其对应的圆的圆心角。

这些性质为解决椭圆相关问题提供了重要的数学基础。

最后,我们来探讨椭圆在实际生活中的应用。

椭圆作为一种重要的几何图形,广泛应用于工程、建筑、天文学等领域。

在工程中,椭圆可以用来描述车轮轮廓、聚光灯的反射镜形状等。

在建筑中,椭圆常被应用于拱形建筑物的设计。

在天文学中,椭圆被用来描述行星公转轨道。

2018课标版文数一轮(9)第九章-平面解析几何(含答案)5-第五节 椭圆

2018课标版文数一轮(9)第九章-平面解析几何(含答案)5-第五节 椭圆

∵PF∥y轴,∴ = = , = = ,
栏目索引
(2)由| AM |=1,A(3,0),知点M在以A(3,0)为圆心,1为半径的圆上运动,∵
PM · PM |= AM =0,∴PM⊥AM,即PM为☉A的切线,连接PA(如图),则|



| PA |


2
PA |min=5-3=2时, | AM | = | PA | 1 ,又∵P在椭圆上运动,∴当|
栏目索引
1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点, 把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于 点P,则点P的轨迹是 ( )
A.椭圆 B.双曲线 C.抛物线 D.圆
答案 A 由折叠过程可知点M与点F关于直线CD对称,故|PM|=|PF|,所
以|PO|+|PF|=|PO|+|PM|=|OM|=r>|OF|(r为圆O的半径).故由椭圆的定义 可知,点P的轨迹为椭圆.
栏目索引
1-1 一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2, 3 )是椭圆上一点,
且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的标准方程为 (
x2 y 2 A. + =1 8 6 x2 y 2 C. + =1 4 2 x2 y 2 B. + =1 16 6 x2 y 2 D. + =1 8 4


.
答案 (1)D (2)A (3)3
解析 (1)设圆M的半径为r,则|MC1|+|MC2|=(13-r)+(3+r)=16,又|C1C2|=8<
16,∴动圆圆心M的轨迹是以C1、C2为焦点的椭圆,且2a=16,2c=8,则a=8,c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆复习(文数)
1.以的顶点为焦点,长半轴长为4的椭圆方程为 ( )
A. B. C. D.
2.【2017浙江,2】椭圆22
194
x y +=的离心率是 ( )
A .3
B .3
C .23
D .59
3.已知焦点在x 轴上,中心在的椭圆上一点到两焦点的距离之和为6 方程是 ( )
4.已知椭圆C :22221(0)x y a b a b
+=>>的左右焦点为F 1,F 2,过F 2的直线l 交C 与A,B 两点,
若△AF 1B 的周长为C 的方程为 ( ) A. 22132x y += B. 2213x y += C. 221128x y += D. 22
1124
x y += 5.设P 是椭圆22
1255
x y +=上一点,12,F F 是椭圆的两个焦点,120,PF PF ⋅=12F PF ∆则面积是 ( ) A.5 B.10 C.8 D.9
6.已知点()11,P x y 是椭圆 1F , 2F 是焦点,若12F PF ∠取最大时,则12PF F ∆的 面积是 ( )
B. 12
C. 7.已知椭圆的一条弦所在的直线方程是,弦的中点坐标是,则椭圆的离心率是 ( )
A. B. C. D.
8.四个顶点构成的四边形的面积为12,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为 ( )
A .1 9.已知焦点在x 轴上的椭圆,则m = ( )
10.已知实数4,,9m 构成一个等比数列,则圆锥曲线 ( )
11.设点P 为有公共焦点1F ,2F 的椭圆和双曲线的一个交点,且,椭圆的离心率为1e ,双曲线的离心率为2e ,若122e e =,则1e =
( )
12.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14
,则该椭圆的离心率为 ( ) (A )13 (B )12 (C )23 (D )34
13.点在椭圆上,是椭圆的两个焦点,,且的三条边,,成等差数列,则此椭圆的离心率是 ( )
A. B. C. D.
14.【2017课标3,文11】已知椭圆C :22
221x y a b
+=,(a>b>0)的左、右顶点分别为A 1,A 2,且以线段
A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 ( )
A B C D .13
15.椭圆22
22:1x y C a b
+=(0)a b >>的左、右焦点为12,F F ,过1F 作直线l 交C 于A ,B 两点,若2ABF ∆是等腰直角三角形,且0290AF B ∠=,则椭圆C 的离心率为 ( )
A .2
B .1
C 1
D 16.过椭圆22
221(0)x y a b a b
+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率为 ( )
A . 12
B .2 C. 13
17.设点P 是椭圆)0(122
22>>=+b a b
y a x 上一点,21,F F 分别是椭圆的左、右焦点,I 为21F PF ∆的内心,若21212F IF IPF IPF S S S ∆∆∆=+,则该椭圆的离心率是 ( )
A .41
B .22
C .21
D .2
3 18.【2016高考新课标Ⅲ文数】已知O 为坐标原点,F 是椭圆C :22
221(0)x y a b a b
+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 ( )
(A )1
3
(B )12 (C )23 (D )34 19.已知是椭圆的左、右焦点,点在椭圆上,线段与圆相切于点,且点为线段的中点,则(其中为椭圆的离心率)的最小值为 ( )
A. B. C. D.
20.若直线:4l mx ny +=和圆22
:4O x y +=没有交点,则过点(),m n 的直线与椭圆个数为 ( )
A .0
B .至多有一个
C .1
D .2
21.设Q P ,分别为()262
2=-+y x 和椭圆11022
=+y x 上的点,则Q P ,两点间的最大距离是 ( ) A.25 B.246+ C.27+ D.26
22.【2017课标1,文12】设A 、B 是椭圆C :22
13x y m
+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是 ( )
B.A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞ D .[4,)+∞ 已知1F 、2F 是椭圆C :的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥.若12PF F ∆的面积为9,则b =____________.
24.已知△ABC 的顶点B 、C 在椭圆2
213
x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC △的周长是________.
25.求满足下列各条件的椭圆的标准方程:
(1)长轴是短轴的3倍且经过点()3,0A ;
(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3;
(3)求经过点两点的椭圆标准方程.
26.若曲线22
141x y k k
+=+-表示椭圆,则k 的取值范围是____________. 27.已知椭圆的两个焦点分别为,,为椭圆上一点,且
,则此椭圆离心率的取值范围是__________.
28.设椭圆()01:22
22>>=+b a b
y a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于 B A ,两点,B F 1与y 轴交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.。

相关文档
最新文档