《幂的运算》竞赛题专项训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《幂的运算》竞赛题专项训练
例题解析
【例1】如果一个多项式的各项次数都相同,则称该多项式为齐次多项式.例如:32322x xy xyx y +++是3次齐次多项式.若22323m x
y xy z ++是齐次多项式,则m 等于( ).
A. 1
B. 2
C. 3
D. 4
【解析】根据题意,得22132m ++=++,所以2m =.
【答案】B.
【例2】若36m =,92n =,则2413
m n -+= . 【解析】229(3)3n n n ==,241222223
(3)(3)362327m n m n -+=÷⨯=÷⨯= 【答案】27.
竞赛试题
1. 设33332
A -=,22223
B -=,11115
C -=,则A 、B 、C 的大小关系是 . 2. 若32(2)(2)(2)x x
-=-÷-,求x 的值.
3. 计算2
222000199920001998200020002
+-.
4. 计算2345678910
2222222222--------+.
5. 观察下列等式133=,
239=,3327=,4381=,53243=,63729=,732187=…… 求234201633333
++++…+的末尾数字.
6. 观察下列运算过程
23201513333S =++++…+①,
① 3⨯,得232015201633333
3S =+++…++,② ② — ①,得2016231S =-,2016312
S -=. 通过上面计算方法计算:
2320142015155555+++++…+
参考答案
1. C A B >>
2. 由题意,得32(2)(2)
x x --=-
32x x ∴=-
解得1x =.
3. 设20001999a =,则200019981a =-,200020001a =+. 原式222221(1)(1)222
a a a a a ===-++- 4. 原式109872
(22)2222=-----+… 98762(22)2222=-----+…
87652(22)2222=-----+…
…
322222226=-+=+=
5. 1
2016514-