基于51单片机的电压表的设计

合集下载

基于51单片机的直流数字电压表设计

基于51单片机的直流数字电压表设计

基于51单片机的直流数字电压表设计概述:直流数字电压表是一种用于测量直流电压的仪器,它通过将电压信号转换为数字形式,并显示在数码管上,实现对电压的准确测量。

本文将介绍基于51单片机的直流数字电压表的设计原理和实现方法。

一、设计原理:1.1 电压信号采集:直流数字电压表的第一步是采集待测电压信号。

常用的采集方法是使用一个分压电路将待测电压降低到合适的范围,再通过运算放大器将其放大到合适的电平。

51单片机的模拟输入引脚可以接受0-5V的模拟电压信号,因此可以直接将放大后的信号接入单片机进行采集。

1.2 模数转换:采集到的模拟电压信号需要经过模数转换(A/D转换)才能被单片机读取和处理。

51单片机内部集成了一个10位的A/D转换器,可以将输入的模拟电压转换为相应的数字量。

通过设置不同的参考电压和采样精度,可以实现对不同电压范围的准确测量。

1.3 数码管显示:经过模数转换后,得到的数字量需要通过数码管进行显示。

51单片机的IO口可以通过控制段选和位选的方式,将数字量转换为相应的数码管显示。

可以根据需要选择常用的七段数码管或者液晶显示屏进行显示。

二、设计实现:2.1 硬件设计:硬件设计包括电路原理图设计和PCB布局设计两个部分。

电路原理图设计主要包括电压采集电路、运算放大器、A/D转换器和数码管驱动电路等部分。

PCB布局设计需要考虑信号的走线和电源的分布,以保证电压信号的准确采集和显示。

在设计过程中,需要注意地线和信号线的分离,以减少干扰。

2.2 软件设计:软件设计主要包括单片机的程序编写和调试。

首先需要编写采集模拟电压信号和进行A/D转换的程序,将转换后的数字量存储在单片机的内部存储器中。

然后编写数码管驱动程序,将存储的数字量转换为相应的数码管显示。

最后,通过按键或者旋转编码器等方式,可以实现对量程和精度的选择。

三、设计优化:3.1 精度优化:为了提高直流数字电压表的测量精度,可以采用更高精度的A/D转换器,增加参考电压的精度,或者通过校准电路对测量误差进行校正。

51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真(原创版)目录一、引言二、51 单片机的数字电压表设计原理1.主要硬件2.电路设计3.编程方法三、设计优点1.电路简单2.成本低3.性能稳定四、设计局限性五、总结正文一、引言在电子技术领域,数字电压表是一种重要的测量工具,它可以将模拟信号转化为数字信号,并显示在数码管上。

随着单片机技术的不断发展,基于单片机的数字电压表设计越来越受到关注。

本文将以 51 单片机为例,介绍一种数字电压表的设计方法,该方法不需要仿真。

二、51 单片机的数字电压表设计原理1.主要硬件本设计采用 AT89C51 单片机、AD 转换器 ADC0808 和共阳极数码管为主要硬件。

AT89C51 是一款 8 位单片机,具有较高的执行速度和稳定性;ADC0808 是一款 12 位 A/D 转换器,可以将模拟信号转换为数字信号;共阳极数码管用于显示数字信号。

2.电路设计电路设计主要包括输入电阻分压、ADC0808 的连接和数码管的动态扫描显示。

在输入端,采用电阻分压方式降低输入电压,使其适合 ADC0808 的输入范围。

ADC0808 的输出端连接到单片机的数据总线,单片机根据输出的数字信号进行数据处理。

数码管采用动态扫描显示方式,通过单片机控制数码管的点亮时间,实现数字信号的显示。

3.编程方法编程主要分为两部分:一是数据采集,即将模拟信号转换为数字信号;二是数据处理和显示,即将采集到的数字信号进行处理并在数码管上显示。

在数据采集部分,程序需要发送 ADC0808 的启动信号,并读取转换后的数字信号。

在数据处理和显示部分,程序需要根据数码管的显示要求,控制数码管的点亮时间。

三、设计优点1.电路简单:本设计采用较少的硬件,电路连接简单,易于实现。

2.成本低:主要硬件都是常见的单片机和元器件,成本较低。

3.性能稳定:采用成熟的单片机技术,性能稳定可靠。

四、设计局限性虽然本设计具有较多的优点,但仍然存在一定的局限性。

基于51单片机的数字电压表设计

基于51单片机的数字电压表设计

目录摘要 (I)1 绪论 (1)1.1数字电压表介绍 (1)1.2仿真软件介绍 (1)1.3 本次设计要求 (2)2 单片机和AD相关知识 (3)2.1 51单片机相关知识 (3)2.2 AD转换器相关知识 (4)3 数字电压表系统设计 (5)3.1系统设计框图 (5)3.2 单片机电路 (5)3.3 ADC采样电路 (6)3.4显示电路 (6)3.5供电电路和参考电压 (7)3.6 数字电压表系统电路原理图 (7)4 软件设计 (8)4.1 系统总流程图 (8)4.2 程序代码 (8)5 数字电压表电路仿真 (15)5.1 仿真总图 (15)5.2 仿真结果显示 (15)6 系统优缺点分析 (16)7 心得体会 (17)参考文献 (18)1 绪论1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。

而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。

因此AD转换是此次设计的核心元件。

输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。

本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。

通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。

其实也为建立节约成本的意识有些帮助。

本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。

1.2仿真软件介绍Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。

它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:(1)现了单片机仿真和SPICE电路仿真相结合。

(完整版)基于51单片机数字电压表的毕业设计论文

(完整版)基于51单片机数字电压表的毕业设计论文

甘肃畜牧工程职业技术学院毕业设计题目:基于51单片机的简易数字电压表的设计系部:电子信息工程系专业:信息工程技术班级:学生姓名:学号:指导老师:日期:目录毕业设计任务书 (1)开题报告 (2)摘要 (6)关键词 (7)引言 (8)第一章AD转换器 (9)1.1AD转换原理 (9)1.2 ADC性能参数 (11)1.2.1 转换精度 (11)1.2.2. 转换时间 (12)1.3 常用ADC芯片概述 (13)第二章8OC51单片机引脚 (14)第三章ADC0809 (16)3.1 ADC0809引脚功能 (16)3.2 ADC0809内部结构 (18)3.3ADC0809与80C51的接口 (19)3.4 ADC0809的应用指导 (20)3.4.1 ADC0809应用说明 (20)3.4.2 ADC0809转换结束的判断方法 (20)3.4.3 ADC0809编程方法 (21)第四章硬件设计分析 (22)4.1电源设计 (22)4.2 关于74LS02,74LS04 (22)4.3 74LS373概述 (23)4.3.1 引脚图 (23)4.3.2工作原理 (23)4.4简易数字电压表的硬件设计 (24)结论 (25)参考文献 (26)附录 (27)致谢 (29)毕业设计任务书开题报告摘要随着我国现代化技术建设的发展,电子检测技术日新月异,本此设计基于80C51单片机的一种8路输入电压测量电路,该电路采用ADC0809 A D转换元件,实现数字电压表的硬件电路与软件设计。

该系统的数字电压表电路简单, 可以测量0~5V的电压值,并在四位LED数码管上轮流显示或单路选择显示。

所用的元件较少,成本低,调节工作可实现自动化。

还可以方便地进行8路AD转换量的测量,远程测量结果传送等功能。

With the construction of modern technology, electronic detection technology advances, the 80C51 microcontroller for this design is based on an 8-input voltage measurement circuit that uses ADC0809 A D conversion components, digital voltage meter . The system's digital voltmeter circuit is simple, can measure the voltage 0 ~ 5V, and the four turns on the LED digital display or a single select Show. Fewer components used in low cost, regulation work can be automated. You can also easily 8 A D conversion volume measurement, remote measurement transferfunctions.数字电压表单片机 AD转换 AT80C51Digital voltmeter microcontroller A D conversion AT80C51数字电压表简称DVM,它是采用了数字化测量技术,把连续模拟量(直流输入电压)转换成不连续,离散的数字形式加以现实的仪表。

51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真
摘要:
1.51单片机数字电压表设计简介
2.硬件电路组成及原理
3.软件程序设计要点
4.系统性能与应用
正文:
一、51单片机数字电压表设计简介
51单片机数字电压表设计是一种基于嵌入式技术的电子测量工具,具有体积小、精度高、操作简便等优点。

本设计以51单片机为核心,结合A/D转换器、显示模块等硬件,实现对输入模拟电压信号的采集、处理和显示。

二、硬件电路组成及原理
1.核心控制器:51单片机
2.A/D转换器:将模拟电压信号转换为数字信号
3.显示模块:采用共阳极数码管,实现数字电压值的显示
4.模拟量输入:电阻分压电路,可测量0-5V范围内的电压信号
三、软件程序设计要点
1.初始化:配置单片机的工作模式、时钟频率等参数
2.A/D转换:设置A/D转换器的工作模式,进行电压信号的采样和转换
3.数据处理:对A/D转换后的数字信号进行处理,如数据调整、滤波等
4.显示更新:根据处理后的数据,通过动态扫描显示技术更新数码管的显
示内容
5.循环检测:持续监测输入电压信号,实时更新显示
四、系统性能与应用
本设计的51单片机数字电压表具有以下特点:
1.测量范围:0-5V
2.精度:±1%
3.响应速度:≤100ms
4.电源:直流5V
广泛应用于工业生产、实验室测量、电子产品研发等领域,为工程师提供了一种高效、准确的电压测量解决方案。

通过以上介绍,我们可以了解到51单片机数字电压表的设计原理、硬件组成和软件程序设计方法。

在实际应用中,根据具体需求可以对电路和程序进行优化调整,提高系统的性能和稳定性。

基于51单片机的数字电压表的设计

基于51单片机的数字电压表的设计

摘要随着电子技术的发展,电子测量技术对测量的精度和功能的要求也越来越高,而数字电压表作为实验室的基本测量设备,它可以很好的满足测量精度和功能的要求。

本设计利用AT89S51单片机技术结合A/D转换(采用ADC0809)构建了一个直流数字电压表。

经过对数字电压表基本原理的分析,本文设计了一个以51单片机为核心的数字电压表系统,给出了直流数字电压表的设计流程,设计了电压测量子系统和电流测量子系统,给出了硬件电路的框图、电气原理图和软件流程图。

系统设置了3个键的键盘,用于设定电压、电流切换的功能键、系统复位键以及清零键。

关键词:数字电压表;AT89S51单片机;A/D转换;ADC0809;AbstractAs electronic science and technology development, electronic measurement technology on the accuracy of measurement and functional requirements are increasingly high, and digital voltmeter measurement equipment as the basic laboratory, it can well meet the measuring precision and function requirements. A dc digital voltmeter is built by using AT89S51 with the A/D convertor (ADC0809)in the paper.This paper first introduces the main method and design voltmeter SCM system advantage; Then introduces the design process of dc digital voltmeter, and hardware system and the design of software system, and gives the hardware circuit design system diagram and software system design flow diagram.Keywords: Digital voltmeter; AT89S51MCS; A/D conversion; ADC0809.目录1 绪论 (1)1.1前言 (1)1.2数字电压表的介绍 (1)1.2.1数字电压表的发展概况 (1)1.2.2数字电压表在各领域中的应用 (2)1.2.3数字电压表的优点 (2)1.3单片机的介绍 (3)1.3.1单片机简介 (3)1.3.2单片机的发展概况 (3)1.3.3单片机的应用 (4)1.3.4单片机的特点 (6)1.4课题背景,国内外研究现状 (6)1.5本文主要研究内容 (8)2 数字电压表的工作原理 (9)2.1数字电压表的基本结构 (9)2.2数字电压表的工作原理 (9)2.2.1模数(A/D)转换与数字显示电路 (10)2.2.2多量程数字电压表分压原理 (10)2.2.3多量程数字电压表分流原理 (11)3 硬件系统各模块具体设计及实现 (14)3.1单片机的选择 (14)3.1.1AT89S51的引脚框图 (15)3.1.2AT89S51的内部结构图 (17)3.2A/D转换器的选择 (18)3.2.1ADC0809的引脚结构 (19)3.2.2ADC0809的内部逻辑结构 (21)3.3显示器的选择 (21)3.4键盘的选择 (23)3.5表笔探针设计 (23)4 系统总体方案研究 (25)4.1总体方案确定 (25)4.2系统框图及阐述 (25)4.3ADC0809与AT89S51的连接 (26)4.4键盘与单片机的连接 (27)4.5多量程数字电压表档位切换原理 (28)4.5.1多量程电压的测量 (28)4.5.2多量程电流的测量 (30)5 系统的软件设计 (31)5.1系统软件设计的总体思想 (31)5.2系统单片机的软件设计 (31)5.2.1键盘的处理 (31)5.2.2显示的处理 (31)5.2.3档位切换的处理 (32)6 系统软件流程图 (33)6.1主程序流程图 (33)6.2A/D转换流程图 (34)7 设计总结 (35)参考文献 (36)致谢 (37)附录 (38)1 绪论1.1前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

基于51单片机的数字电压表的设计

基于51单片机的数字电压表的设计

目录目录1 课程设计 (1)1.1课程设计目的1.1.1熟悉51单片机功能 (1)1.1.2提高编程,排错,仪器设备知识 (1)1.1.3熟悉元件工作原理 (1)1.2 设计要求 (1)1.2.1显示 (1)1.2.2编程 (1)1.2.3仿真 (1)2 主要元件介绍 (1)2.1模数转换芯片ADC0808 (1)2.1.1简介 (2)2.1.2引脚功能 (2)2.2控制芯片AT89C51 (3)2.2.1概述 (3)2.2.2管脚说明 (4)2.3LED数码管 (6)3 电压表原理系统硬件电路设计与实现 (6)3.1系统设计原理说明 (6)3.2系统功能阐述 (7)4 课程设计心得 (7)参考文献: (8)附录 (9)附录1整体程序 (9)附录2系统电路图 (12)1 课程设计1.1 课程设计目的1.1.1 熟悉51单片机功能熟悉51单片机的功能,积累一定的单片机开发经验。

1.1.2 提高编程,排错,仪器设备知识锻炼和提高在软件编程、排错调试、相关仪器设备的使用技能等方面的知识。

1.1.3 熟悉元件工作原理熟悉数字电压表和A/D转换器,液晶显示屏的工作原理。

1.1.4加深知识进一步加深对电子电路、电子元器件、印制电路板等方面知识的认识,为今后能够独立进行某些单片机应用系统的开发设计工作打下一定的基础。

1.2 设计要求1.2.1显示可以测量0-5V范围内的输入电压值1.2.2将采集到的电压值显示在4位数码管上。

1.2.2编程采用汇编或C语言编程;1.2.3仿真采用Proteus、KeilC等软件实现系统的仿真调试2 主要元件介绍2.1 模数转换芯片ADC0808图2.1 ADC08082.1.1 简介ADC0808是采样分辨率为8位的、以逐次逼近原理进行模/数转换的器件。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D转换。

ADC0808是ADC0809的简化版本,功能基本相同。

基于51单片机电压表设计

基于51单片机电压表设计

课程设计名称:基于51单片机电压表设计目次1引言 (2)1.1背景 (2)1.2课程设计的目的及意义 (2)1.3课程设计课题 (2)2总体方案设计 (3)2.1课程设计器材 (3)2.2实验原理图 (4)2.3系统框图 (4)3硬件设计 (5)3.1 AT89S51单片机系统 (5)3.2模数转换模块 (8)3.2.1主要特性 (9)3.2.2内部结构 (9)3.2.3外部特性 (9)3.3 三路可调电压模块 (10)3.4各模块直接引脚连接方法 (11)4软件设计 (11)4.1根据系统硬件图编写系统调试程序 (11)4.2软件仿真 (13)5总结 (14)参考文献 (14)附录 (15)1引言1.1背景近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。

在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。

并且应该学会利用单片机AT89S51设计一个数字电压表,能够精确测量0-5V之间的直流电压值,并用四位数码显示电压值。

“单片机原理及应用课程设计”是电类专业的学科基础课,它是继“汇编语言程序设计”、“微机原理与接口技术”等课程之后开出的实践环节课程。

1.2课程设计的目的及意义目的:通过本次课程设计,巩固和加深“单片机原理与应用”中的理论知识,了解和应用仿真软件,结合软硬件,基本掌握单片机的应用的一般设计方法,提高电子电路的设计和实验能力,并且提高自身查找和运用资料能力意义:通过本次课程设计,使得理论知识系统化,从中或得一些实战工作经验,提高个人与团体指挥的作用。

1.3课程设计课题:利用单片机AT89S51设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。

2总体方案设计2.1课程设计器材:Design: C:\Users\lwzwj\Desktop\单片机课程设计\新建文件夹\数字电压表\VOLTMETER.DSNDoc. no.: <NONE>Revision: <NONE>Author: <NONE>Created: 09/06/15Modified: 09/06/18QTY PART-REFS VALUE--- --------- -----Resistors---------1 R1 10kCapacitors----------2 C1,C2 30uF1 C3 10uFIntegrated Circuits-------------------1 U1 AT89C511 U2 ADC08081 U3 74LS74Miscellaneous-------------1 RV1 1k1 X1 CRYSTAL2.2实验原理图(见下页)2.3系统框图软件产生CLK 信号电压变化 LED84S四位数码显示AT89S51单片机系统 三路可模数模拟信号3硬件设计(各模块详细介绍)3.1 AT89S51单片机系统AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准 MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。

基于51单片机的数字电压表设计

基于51单片机的数字电压表设计

内容摘要:进入二十一世纪以来,在现代化检测技术运用过程中,往往需要通过具有高精细度以及科学化的数字电压表完成相应的现场检测工作。

通过将世纪检测得到的数据通过传输功能送入计算机计算中心,从而完成相应的存储、计算以及控制、实时显示等各项功能。

而在本文中,笔者所的数值电压表为51式单片机(AT89c51),而A/D转换装置采用的是TLC2543型号硬件,从而实现整个数值电压表软件以及硬件电路的设计。

在本系统中,具有电路简单,元件使用数量少、设计成本低等优点,并且整个调节过程完全自动化。

除此以外,本数字电压表可以进行八路的转化量(A/D)测量以及测量结果远程传送等多项功能。

本设计数值电压表能够对0V~5V电压的8路电压值进行准确的测量,同时在外部数码管上进行单路或者轮流模式的显示。

关键词:模拟信号数字电压表单片机 A/D转换The design of digital voltage meter based on 51 single chipmicrocomputerAbstract:the twenty-first century, in the process of applying modern detection techniques , often need to complete the appropriate field testing work by having a high finesse and scientific digital voltmeter . Century detected by the data transfer function obtained by computing center into the computer , thus completing the appropriate storage , computing and control , real-time display and other functions . In this article, the author numerical voltmeter 51 type microcontroller (AT89c51), while the A / D converter TLC2543 model is used in hardware , enabling the entire value voltmeter software and hardware design . In this system , with a simple circuit using a small number of components , design and low cost , and the whole adjustment process is fully automated. In addition, the eight digital voltmeter can be converted amount (A / D) measurement and remote transmission of measurement results and many other features . The design values voltmeter capable of 0V ~ 5V voltage 8 accurately measure voltage , single or simultaneous display mode turns on an external digital control .Keywords: Analog signal Digital voltmeter SCM A/D converter;目录前言 (1)1 概述 (1)1.1 选题背景 (1)1.2 研究意义 (1)2 设计方案分析 (2)2.1 A/D转化装置 (2)2.2 电源 (2)3 硬件部分设计分析 (3)3.1 单片机 (3)3.1.1 对单片机芯片进行选择 (3)3.2 外围电路与AT89C51接口设计分析 (6)3.2.1 TLC2543 (7)3.2.2 TLC2543的特点 (7)3.2.3 TLC2453接口时序 (7)3.2.4 TLC2543 A/D芯片与89C51单片机的接口 (7)4 软件部分设计分析 (10)4.1 程序初始化 (11)4.2 A/D转换装置子程序 (12)4.3 显示子程序 (12)5 结论 (13)参考文献: (14)附录: (15)基于51单片机的数字电压表设计前言随着时代的进步,科技不断发展,电压表也在更新换代,由以前的表面指针电压表更替为以数码管或者液晶显示面板显示的电压表。

51单片机的数字电压表设计

51单片机的数字电压表设计

51单片机的数字电压表设计随着科技的快速发展,单片机在许多领域得到了广泛应用。

51单片机作为一种常见的单片机,具有功能强大、易于编程等优点,因此在数字电压表设计中具有独特优势。

本文将介绍如何利用51单片机设计数字电压表。

数字电压表的电源电路通常采用直流电源,可以通过变压器将交流电转换为直流电,再经过滤波和稳压电路,将电压稳定在单片机所需的电压范围内。

数字电压表的信号采集电路可以采用电阻分压的方式,将待测电压分压后送入单片机进行测量。

为了提高测量精度,可以采用差分放大器对信号进行放大和差分输出。

51单片机内置ADC模块,可以将模拟信号转换为数字信号。

在数字电压表中,可以使用ADC模块对放大后的模拟信号进行转换,得到数字信号后进行处理和显示。

数字电压表的显示电路可以采用液晶显示屏或LED数码管,将测量结果以数字形式显示出来。

液晶显示屏具有显示清晰、亮度高、视角广等优点,但价格较高;LED数码管价格便宜、亮度高、寿命长,但显示内容有限。

数字电压表的主程序主要完成电压的采集、A/D转换和显示等功能。

主程序首先进行系统初始化,包括设置ADC模块参数、初始化显示等;然后不断循环采集电压信号,将采集到的模拟信号转换为数字信号后进行处理和显示。

51单片机的ADC模块可以通过特殊功能寄存器进行配置和控制。

在数字电压表的软件设计中,需要编写ADC模块驱动程序,以控制ADC 模块完成模拟信号到数字信号的转换。

具体实现可以参考51单片机的ADC模块寄存器定义和操作指南。

数字电压表的显示程序需要根据显示硬件选择合适的显示库或驱动程序。

在编写显示程序时,需要将采集到的数字信号转换为合适的数值,并将其显示在显示屏上。

具体实现可以参考所选显示库或驱动程序的文档说明。

精度问题:数字电压表的精度直接影响到测量结果的质量。

为了提高测量精度,可以采用高精度的ADC模块和合适的信号处理技术。

同时,需要注意信号采集电路中电阻的精度和稳定性。

基于51单片机的数字电压表

基于51单片机的数字电压表

课程设计题目数字电压表学生姓名张玉龙学号20081341056学院信息与控制学院专业测控技术与仪器指导教师葛化敏二O一一年六月三十日基于51单片机的数字电压表一、设计内容:先在proteus 上进行软件仿真设计,在仿真实现的基础上,要求完成部分硬件模块的制作和系统联调,实验内容为设计一个数字电压表,实现从模拟信号输入到数字信号输出的基本功能。

二、设计要求:采用51系列单片机和ADC 设计一个数字电压表电路,通过调节滑动变阻器改变电压,在LCD 液晶屏上显示其相应的电压值,要求电压精确到小数点后第四位,显示格式为,LCD 第一行前一段为“20081341056”(班级同学张玉龙的学号),后一段则为“V :”(电压单位);第二行的前一段为“Class 2”(班级2班),后一段则显示电压值,单位为“V ”。

三、设计原理:通过在Keil 软件对单片机AT89C52进行编程,硬件电路中单片机与ADC0804及LCD 显示屏连接。

P0与ADC0804相连接,P1与LCD 连接。

通过start()子程序启动ADC0804,通过init ()子程序初始化LCD 。

模拟信号通过ADC0804的VIN+引脚输入到ADC0804中转换为数字信号,P0获得此数字量后,经过处理得到每位的数据后,通过P1口写数据到LCD上图为基本的原理图 四、实验电路图及仿真结果:51系列 单片机电压输入五、程序代码:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit lcdrs=P3^0;sbit lcden=P3^1;sbit wrad=P3^6;sbit rdad=P3^7;uint temp,a1,a2,a3,a4,a5,num;uchar code table[]="0123456789.";//显示数字uchar code table1[]="20081341056 V:"; uchar code table2[]="Class 2";void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=100;y>0;y--);}void start()//启动AD{wrad=1;wrad=0;wrad=1;}void write_command(uchar com)//写命令{lcdrs=0;P1=com;delay(2);lcden=1;delay(2);lcden=0;}void write_data(uchar date)//写数据{lcdrs=1;P1=date;delay(5);lcden=1;delay(5);lcden=0;}void init()//lcd初始化{lcden=0;write_command(0x38);//设置16x2显示write_command(0x0c);//设置光标write_command(0x06);//写字符指针加1,光标加1write_command(0x01);//清屏}void main(){init();//LCD初始化write_command(0x80);//LCD写地址for(num=0;num<15;num++){write_data(table1[num]);delay(5);}while(1){start();//启动ADdelay(50);rdad=0; //rd低脉冲读数据delay(50);temp=P0;a1=(temp*50000/255)/10000;//区分位数,最高位 255*50000/255/10000=5.0000V a2=(temp*50000/255)%10000/1000;a3=(temp*50000/255)%1000/100;a4=(temp*50000/255)%100/10;a5=(temp*50000/255)%10;write_command(0x80+0x40);for(num=0;num<7;num++){write_data(table2[num]);delay(5);}write_command(0x80+0x49);//LCD写地址write_data(table[a1]);delay(1);write_data(table[10]);delay(1);write_data(table[a2]);delay(1);write_data(table[a3]);delay(1);write_data(table[a4]);delay(1);write_data(table[a5]);delay(1);write_data('V');delay(1);}}六、心得体会:课程设计中不得不遇到一些问题,但只要自己有恒心有毅力,终究会克服一切困难;在设计中我们要学会运用keil软件及protues软件对我们设计的电路不断地进行仿真、调试和修正,遇到程序问题时我们应该学会一段一段地去排查,最终解决所有问题;另外,还应熟练掌握每个芯片及器件如51单片机及ADC0804和LM016L每个引脚的作用和接法及各种状态的判断。

基于51单片机的简易数字电压表的设计

基于51单片机的简易数字电压表的设计

五邑大学单片机课程设计报告基于51单片机的简易数字电压表的设计学院:信息工程学院专业:交通工程(交通控制与管理)班姓名学号指导老师:完成日期:2015年01月05日目录1 引言 (1)2 设计方案 (1)3 元器件 (3)4 实际电路 (8)5 单片机程序 (10)6 电路板制作 (15)7总结 (16)8附录 (16)9参考文献 (17)数字电压表设计1引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。

传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。

采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。

数字电压表是诸多数字化仪表的核心与基础。

以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。

目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。

目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面。

本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。

其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号2 设计方案2.1设计要求以单片机为核心,设计一个数字电压表。

基于51单片机的数字电压表的设计

基于51单片机的数字电压表的设计

数字电压表的设计目录绪论 (1)第1章系统总体方案选择与说明 (1)1.1 项目分析及其设计 (1)1.1.1 通道转换方案设计 (1)1.1.2 显示部分方案设计 (1)第2章系统总体结构与系统功能 (2)2.1 系统结构框图 (2)2.2 系统功能 (2)第3章硬件设计说明及计算方法 (2)3.1 单片机的选择及时钟电路 (2)3.2 驱动模块 (3)3.3 LED显示电路设计与器件选择 (4)3.4 A/D转换模块及转化电路设计 (6)第4章软件设计与说明 (7)4.1 数字电压表系统软件设计方案确定 (7)4.2 数字电压表应用程序设计 (9)第5章调试结果及其说明 (9)5.1 调试结果及其说明 (9)参考文献 (10)附录A 系统原理图 (11)附录B 系统源程序 (12)绪论本设计采用了以单片机为开发平台,控制系采用AT89C52单片机,A/D 转换采用ADC0809。

系统除能确保实现要求的功能外,还可以方便进行8路其它A/D转换量的测量、远程测量结果传送等扩展功能。

简易数字电压测量电路由A/D转换、数据处理、显示控制等组成。

关键词: 单片机 AT89C52 A/D转换 ADC0808 数据处理课程设计要求:利用八位A/D转换器实现分辨率位八位二进制数的电压表,测量结果用四位数码管显示。

第一章系统总体方案与选择实现数字电压表的方案很多,目前广泛采用的时基于74系列逻辑器件,本设计将介绍基于单片机实现的方案。

1.1 项目分析及其设计方案设计此设计包含两个模块,通道转换和显示部分方案。

1.1.1通道转换方案设计方案一:考虑到ADC0808的8路模拟量输入本质上也是模拟开关,因此可以利用其8个模拟通道中的3个作为通道转换器,即根据通道对应的电压测量范围确定对应的电压方法倍数设计对应的放大电路。

方案二:利用手动开关实现通道转换。

该方案可简化控制程序,消减系统开销。

缩短反应时间,不足之处在于操作麻烦。

基于51单片机的电压表的设计

基于51单片机的电压表的设计

引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。

传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。

采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。

数字电压表是诸多数字化仪表的核心与基础[2]。

以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。

目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。

最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[3]。

数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC化),另一方面,精度也从0.01%-0.005%。

目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[4]。

本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。

其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[5]。

1 设计总体方案1.1设计要求:完成系统的硬件电路设计与软件设计; 采用汇编或C 语言编程;采用Proteus 、KeilC 等软件实现系统的仿真调试。

基于51单片机的数字电压表

基于51单片机的数字电压表

电子报/2008年/4月/20日/第014版智能电子基于51单片机的数字电压表山东曹彦平马庆勇本文介绍的数字电压表,利用A/D转换原理将被测模拟量转换成数字量,并通过控制系统用数字方式显示测量结果。

本设计采用AT89C51单片机,ADC0809进行模/数转换,能够测量8路0~5V的输入电压值,可用四位LED数码管轮流或单路显示测量结果。

其最小分辨率约为0.019V,测量误差小于0.02V。

一、系统简介本系统分为主控电路、显示电路、A/D转换电路、键盘控制电路、电源电路及复位电路等,系统框图如图1所示。

二、硬件电路设计本系统采用AT89C51单片机作为控制核心,对8路模拟电压信号经8位A/D转换芯片ADC0809转换成数字信号后,送单片机进行处理,然后通过数码管显示其电压值。

电路原理见图2。

ADC0809有8路模拟输入口IN0~IN7,通过地址线(23)~(25)脚选择其中一路进行A/D转换。

(22)脚为地址锁存控制,高电平有效。

⑥脚为测试控制,当输入一个2μs正脉冲时,启动A/D转换。

⑦脚为A/D转换结束标志,当A/D转换结束时,⑦脚输出高电平。

⑨脚为A/D转换数据输出允许控制端,当⑨脚为高电平时,A/D转换数据从MSB2-1~MSB2-8输出。

⑩脚为时钟输入端,利用单片机ALE脚的六分频再通过74LS74构成的四分频得到500kHz时钟。

AT89C51的P2、P0.4~P0.7口作为数码管显示控制,采用动态显示方式显示测量的数字电压值和通道号。

P0.0口用作单路显示/循环显示转换按钮,P0.1口用作单路显示时通道选择按钮。

P1口作A/D转换数据输入,P3.0-P3.6口用作ADC0809的控制。

三、系统软件设计本系统软件由显示控制子程序、显示数据处理子程序、8路电压采集子程序、键盘处理子程序等组成,采用汇编语言编程。

1.主程序流程如图3所示。

2.显示控制子程序测量的A/D转换数据放在RAM70H~77H中,测量数据转换成的BCD码放在7AH~7DH中。

基于51单片机的数字电压表设计

基于51单片机的数字电压表设计

1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。

而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。

因此AD转换是此次设计的核心元件。

输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。

本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。

通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。

其实也为建立节约成本的意识有些帮助。

本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。

1.3 本次设计要求本次设计的作品要求制作数字电压表的量程为0到10v,由于用到的模数转换芯片是ADC0809,设计系统给的供电电压为+5v,所以能够测量的电压范围为-0.25v到5.25v之间,但是一般测量的直流电压范围都在这之上,所以采用电阻分压网络,设计的电压测量范围是0到25v之间,满足设计要求的最大量程5v的要求。

同时设计的精度为小数点后三位,满足要求的两位小数的精度,在不考虑AD芯片的量化误差的前提下,此次设计的精度能够满足一般测量的要求。

2单片机和AD相关知识2.1 51单片机相关知识51单片机是对目前所有兼容intel 8031指令系统的单片机的统称。

该系列单片机的始祖是intel的8031单片机,后来随着技术的发展,成为目前广泛应用的8为单片机之一。

单片机是在一块芯片内集成了CPU、RAM、ROM、定时器/计数器和多功能I/O口等计算机所需要的基本功能部件的大规模集成电路,又称为MCU。

51系列单片机内包含以下几个部件:一个8位CPU;一个片内振荡器及时钟电路;4KB的ROM程序存储器;一个128B的RAM数据存储器;寻址64KB外部数据存储器和64KB外部程序存储空间的控制电路;32条可编程的I/O口线;两个16位定时/计数器;一个可编程全双工串行口;5个中断源、两个优先级嵌套中断结构。

基于51单片机的PCF8591芯片电压表设计

基于51单片机的PCF8591芯片电压表设计
4
摘要
数字电压表简称 DVM,它是采用数字化测量技术设计的电压表。从 性能来看:数字电压表的发展从一九五二年美国 NLS 公司由四位电 子管数字电压表精度千分之一到现在已经出现 8 位数字电压表。参数 可测量直流电压、交流电压、电流、阻抗等。测量自动化程度不断提 高,可以和计算机配合显示、计算结果、然后打印出来。从发展过程 来看:数字电压表自 1952 年问世以来,已有 50 年多年的发展史,大 致经历了五代产品。第一代产品是 20 世纪 50 年代问世的电子管数字 电压表,第二代产品属于 20 世纪 60 年代出现的晶体管数字电压表, 第三带产品为 20 世纪 70 年代研制的中、小规模集成电路的数字电压 表。今年来,国内外相继推出有大规模集成电路(LSI)或超大规模 集成电路(VLSI)构成的数字电压表、智能数字电压表,分别属于 第四代、第五代产品。它们不仅开创了电子测量的先河,更以高准确 度、高可靠性、高分辨力、高性价比等优良特性而受到人民的青睐。
1.2 软件总体设计............................................................................. 10 第二章 硬件系统设计............................................................................. 11
2.1 硬件电路分析和设计报告......................................................... 11 2.1.1 单片机最小系统电路..................................................... 11 2.1.2 键盘电路......................................................................... 16 2.1.3 数码管显示电路............................................................. 16 2.1.4 外部电压采集部分电路.................................................17 2.1.5 PCF8591 芯片 AD 转换部分..........................................18
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。

传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。

采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。

数字电压表是诸多数字化仪表的核心与基础[2]。

以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。

目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。

最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[3]。

数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC化),另一方面,精度也从0.01%-0.005%。

目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[4]。

本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。

其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[5]。

1 设计总体方案1.1设计要求:完成系统的硬件电路设计与软件设计; 采用汇编或C 语言编程;采用Proteus 、KeilC 等软件实现系统的仿真调试。

1.2设计思路根据设计要求,选择AT89C51单片机为核心控制器件。

A/D 转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。

电压显示采用4位一体的LED 数码管。

LED 数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

1.3 设计方案主要设计如图1.1:图1.1 设计方案1.3.1主控芯片选用单片机AT89C51和A/D 转换芯片ADC0808实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。

1.3.2显示部分选用一个四联的共阴极数码管。

1.4电路设计原理根据模块的划分原则,将该程序划分初始化模块,A/D转换子程序和显示子程序,这三个程序模块构成了整个系统软件的主程序,如图2.1所示。

图2.1 数字式直流电压表主程序框图2.2 系统子程序设计2.2.1 初始化程序所谓初始化,是对将要用到的MCS_51系列单片机内部部件或扩展芯片进行初始工作状态设定,初始化子程序的主要工作是设置定时器的工作模式,初值预置,开中断和打开定时器等。

2.2.2 A/D转换子程序A/D转换子程序用来控制对输入的模块电压信号的采集测量,并将对应的数值存入相应的内存单元,其转换流程图如图2.2所示。

图2.2 A/D转换流程图2.2.3 显示子程序显示子程序采用动态扫描实现四位数码管的数值显示,在采用动态扫描显示方式时,要使得LED显示的比较均匀,又有足够的亮度,需要设置适当的扫描频率,当扫描频率在70HZ左右时,能够产生比较好的显示效果,一般可以采用间隔10ms对LED进行动态扫描一次,每一位LED的显示时间为1ms。

在本设计中,为了简化硬件设计,主要采用软件定时的方式,即用定时器0溢出中断功能实现11μs定时,通过软件延时程序来实现5ms的延时。

3 硬件电路设计3.1数字芯片A/D转换技术电路原理图如图3.1所示,三个地址位ADDA,ADDB,ADDC均接地,因而所需测量的外部电压可由ADC0808的IN0端口输入。

图3.1 A/D 转换原理图在A/D 转换开始之前,逐次逼近寄存器的SAR 的内容为0,在A/D 转换过程中,SAR 存放“试探”数字量,在转换完毕后,它的内容即为A/D 转换的结果数字量。

3.1.1 ADC0808模数转换芯片简介ADC0808模数转换芯片如图3.2。

图3.2 ADC0808模数转换芯片ADC0808是采样分辨率为8位的、以逐次逼近原理进行模/数转换的器件。

其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D 转换。

ADC0808是ADC0809的简化版本,功能基本相同。

一般在硬件仿真时采用ADC0808进行A/D 转换,实际使用时采用ADC0809进行A/D 转换。

3.1.2引脚功能(外部特性)ADC0808芯片有28条引脚,采用双列直插式封装,如右图所示。

各引脚功能如下: 1~5和26~28(IN0~IN7):8路模拟量输入端。

8、14、15和17~21:8位数字量输出端。

22(ALE ):地址锁存允许信号,输入,高电平有效。

6(START ): A /D 转换启动脉冲输入端,输入一个正脉冲(至少100ns 宽)使其启动(脉冲上升沿使0809复位,下降沿启动A/D 转换)。

7(EOC ): A /D 转换结束信号,输出,当A /D 转换结束时,此端输出一个高电平51系列单片机数字显示A/D 转换 输入电压(转换期间一直为低电平)。

9(OE):数据输出允许信号,输入,高电平有效。

当A/D转换结束时,此端输入一个高电平,才能打开输出三态门,输出数字量。

10(CLK):时钟脉冲输入端。

要求时钟频率不高于640KHZ。

12(VREF(+))和16(VREF(-)):参考电压输入端11(Vcc):主电源输入端。

13(GND):地。

23~25(ADDA、ADDB、ADDC):3位地址输入线,用于选通8路模拟输入中的一路。

3.2 单片机的数据处理技术A/D转换完毕后,单片机的P1.6口接收到一高电平,立马通过P3将OE置1,ADC0808的三态输出锁存器被打开,转换完的数字信号经过与D0~D7相连的P0口进入AT89C51。

AT89C51根据公式将数字信号转换为模拟量,然后利用程序获取模拟量的每一位,分别通过P2口输出到LED上。

与此同时,AT89C51会通过P2.0~P2.3口选择用哪一段LED显示所传出的数据。

例如,当P2.0~P2.3=1110,则LED接收到的数据会在第四段LED上显示。

另外,AT89C51一旦获得了数据后便会将ST置0,即模数转换器停止转换,知道LED 获得新的数据并显示出来,ST才会重新置1。

由于AT89C51转换速率很快(微妙量级),所以不会影响其接收新的数据。

3.2.1 AT89C51单片机简介AT89C51单片机如图3.3。

图3.3 AT89C51单片机AT89C51是51系列单片机的一个型号,它是ATMEL公司生产的。

AT89C52是一个低电压、高性能CMOS 8为单片机。

将通用的微处理器和Flash存储器结合在一起,可反复擦写的Flash存储器可有效地降低开发成本。

AT89C51有PDIP、PQFP/TQFP及PLCC 等三种封装形式,以适应不同产品的需求。

3.2.2主要功能特性:低功耗空闲和掉电模式,软件设置睡眠和唤醒功能。

兼容MCS51指令系统,8K可反复擦写(>1000次)Flash ROM。

3个16位可编程定时/计数器中断,时钟频率0-24MHz。

32个双向I/O口,256B内部RAM。

2个串行中断,可编程UART串行通道。

2个外部中断源,共6个中断源。

2个读写中断口线,3级加密位。

3.3单片机控制的数码管显示技术3.3.1 LED基本结构LED是发光二极管显示器的缩写。

LED由于结构简单、价格便宜、与单片机接口方便等优点而得到广泛应用。

LED显示器是由若干个发光二极管组成显示字段的显示器件。

在单片机中使用最多的是七段数码显示器。

LED七段数码显示器由8个发光二极管组成显示字段,其中7个长条形的发光二极管排列成“日”字形,另一个圆点形的发光二极管在显示器的右下角作为显示小数点用,其通过不同的组合可用来显示各种数字。

LED引脚排列如下图3.4所示:图3.4 LED引脚排列3.3.2 LED显示器的选择在应用系统中,设计要求不同,使用的LED显示器的位数也不同,因此就生产了位数,尺寸,型号不同的LED显示器供选择,数码管有两种:一种共阴极、另一种为共阳极,本次课程设计用的是共阴极。

在本设计中,选择4位一体的数码型LED显示器。

本系统中前一位显示电压的整数位,即个位,后两位显示电压的小数位。

如图3.5所示,是一个共阴极接法的4位LED数码显示管,其中a,b,c,d,e,f,g为4位LED各段的公共输出端,1、2、3、4分别是每一位的位数选端,dp是小数点引出端,4位一体LED数码显示管的内部结构是由4个单独的LED组成,每个LED的段输出引脚在内部都并联后,引出到器件的外部。

图3.5 共阴极4位一体LED数码显示管3.3.3 LED译码方式译码方式是指由显示字符转换得到对应的字段码的方式,对于LED数码管显示器,通常的译码方式有硬件译码和软件译码方式两种。

硬件译码是指利用专门的硬件电路来实现显示字符码的转换。

软件译码就是编写软件译码程序,通过译码程序来得到要显示的字符的字段码,译码程序通常为查表程序。

本设计采用的是共阴极LED,其对应的字符和字段码如下表3.6所示。

表3.6 共阴极字段码表显示字符共阴极字段码0 3FH1 06H2 5BH3 4FH4 66H5 6DH6 7DH7 07H8 7FH9 6FH4 硬件连接4.1 模拟输入电路模拟输入电路如图4.1所示图4.1模拟输入电路通过可变电阻一端接电源+5V,一端接地GND,在并联一个标准电压表,通过改变电阻的阻值,从而改变所测电压值,实现电压的模拟信号输入。

4.2 ADC0808芯片与单片机接口电路ADC0808芯片与单片机接口电路如图4.2图4.2ADC0808芯片与单片机接口电路ADC0808的输出接到P1口,OUT1对应的是最高位,START与ALE可以接在一起。

在这里,START接P3.0,OE接P3.1,EOC接P3.2,ClOCK接P3.4。

相关文档
最新文档