数学思想方法及意义
数学常用名词定义
数学思想与方法,经常用到的数学名词有以下三十五个,现给出解释,供参考。
1、数学思想:是对数学知识的本质认识,是对数学规律的理性认识,是从某些数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想,例如:化归思想;分类思想;模型思想;极限思想;最优化思想)等。
2、数学方法:是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等,其中包括变换数学形式。
数学思想和数学方法是紧密联系的,一般来说,强调指导思想时,称数学思想,强调操作过程时称数学方法。
3、化归目标简单性原则:是指化归应朝着目标简单的方向进行,即复杂的待解决问题应向简单的较易解决的问题化归。
和谐统一性原则:是指化归应朝着是待解决问题在表现形式上和谐,在量、形、关系方面趋于统一的方向进行,是问题的条件与结论表现得更匀称和恰当。
具体化原则:是指化归的方向一般应由抽象到具体,即分析问题和解决问题时,应着力将问题向具体的问题转化,以使其中的数量关系更易把握。
标准形式化原则:将待解决的问题在形式上向该类问题的标准形式化归。
低层次化原则:解决数学问题时,应尽量将高维空间的问题化归成低维空间的问题,高次数的问题化归成低次数的问题,多元问题化归成少原问题。
4、解析法:将平面几何问题转化解析几何问题的化归方法,具体步骤:(1)建立坐标系,(2)设定点的座标与曲线方程,化几何元素为解析式,(3)进行运算与推理,即在上述两步的基础上利用解析几何的知识进行具体的解答,(4)返回几何结论,断言论题的解。
5、复数法:将坐标平面变成复平面,几何问题化归为复数问题的化归方法。
6、一般化策略:将待解、代征问题看成特殊问题,通过对它的一般形式问题的解决而得到原问题的划归策略就是一般化策略。
7、特殊化策略:对于待解待证问题,先解决它的特殊情况,然后把解决特殊情况的方法或结果应用到一般情况,使原问题获解的策略。
数学思想方法介绍
◆数学方法具有三个基本特征:
(1)高度的抽象性和概括性; (2)精确性,即逻辑的严密性及结论的确定性; (3)应用的普遍性和可操作性。
◆数学方法在科学技术研究中具有举足轻重的地位和作用:
(1)提供简洁精确的形式化语言; (2)提供数量分析及计算的方法; (3)提供逻辑推理的工具。
二. 中学数学中常用的数学方法
一种方法,数学中许多方法都属于RMI方法,例如,分割法、
函数法、坐标法、换元法、复数法、向量法、参数法等。
☆RMI方法不仅是数学中应用广泛的方法,而且可以拓展到人
文社会科学中去。例如,哲学家处理现实问题的思想方法,就 可以看作RMI方法的拓展 (客观物质世界---哲学家的思维---哲
学理论体系---解决客观世界的现实问题)。
3)同态与同构 4)数的概念的扩充 5)多项式理论与整数理论的类比 整数
+、- 、×
带余除法 算术基本定理
多项式
+、- 、× 带余除法 代数基本定理
3. 归纳法(逻辑学中的方法)
与数学归纳法(数学中的一般方法)
☆归纳就是从特殊的、具体的认识推进到一般的认识的 一种思维方法。归纳法是实验科学最基本的方法。 归纳法的特点:1)立足于观察和实验;2)结论具有猜 测的性质;3)结论超越了前提所包含的内容。 归纳法用于猜测和推断。 例子:1) Fermat数(1640年,Fn=22 +1, Fermat素数:3,5, 17,257,65537); 2)Goldbach猜想(1742年)。
《数学思想与数学文化》
数学思想方法介绍
内 容
一.前言
二.中学数学中常用的数学方法
三.几类常用的数学思想方法介绍
1.演绎法或公理化方法 2.类比法 3.归纳法与数学归纳法 4.数学构造法
四年级下册教材中的数学思想和方法
化成规则 的图形 , 让 学生体会 在 图形 的运
动过程 中, 图形的形状变 了, 面积不变 。 三、 类 比 法
给 出三 角 形 中的两 条 边分 别 是 3 e m 猜 测 的方法 外 , 还 运用 了假设 法 , 就 是先
和 4c m, 根据“ 三角 形任 意两 边 的和 大于 假 设笼子里 都是鸡或兔 , 然后根 据相差 的
六、 假 设 法
多边形 的内角和 的求 法 , 可 以与四边 化 的方法能够进行 图形形状 的变化 。
二、 变 中 有 不 变 思 想
1 . 第4 单元 小 数 的意 义 和性质 , 从本 单 元所学 习 的有 限小数来 看 , 小数部分 与
1 . 第6 6 页第 7 题。
实 际 上 是 在利 用 原 命 题 “ 三角 形 任 方 法 。 1 . 第 l O 页例 5 , 教 材采取 了先假设 都
第三边 ” 进 行推理 , 假设 第三边长 是 0 c m, 腿 数算 出鸡 或兔 的只数。
必 须有 3 + 4 > a , a + 3 > 4 , 即必有 a > l 且0 < 7 ห้องสมุดไป่ตู้ ( 责任 编辑 贾振东 )
1 . 第2 8 页第 1 1 题。
本题 属于运算 定律 的扩展 , 可 以与相 所 以另 一条边 在大 于 1 e m小于 7 e m这个 关 的已学 的定 律类 比 , 发 现规律 的扩展 性 范 围。
分母是 1 0 、 1 0 0、 1 0 0 0 、 … … 的 分 数 虽 然 形 意两 边 的和大 于第 三边 ” 的逆命 题 “ 如果
式不 同 , 但 本质 上是 相 同的 , 让 学 生体会 三条 线段 中任 意两 条线 段 的和 大于第 三
数学思想方法在学生思维发展中的意义
数学思想方法在学生思维发展中的意义
数学思想方法在学生思维发展中具有重要意义,它可以帮助学生培养良好的数学思维习惯和解决问题的能力。
具体来说,数学思想方法的应用有以下几个方面的意义:
1. 培养逻辑思维能力:数学思想方法要求学生按照一定的逻辑顺序进行推理和演绎,培养学生的逻辑思维能力,提高学生的分析问题和解决问题的能力。
2. 培养抽象思维能力:数学思想方法常常要求学生进行抽象思考和概括总结,帮助学生理解和应用抽象概念,培养学生的抽象思维能力,提高学生的抽象问题的能力。
3. 培养创造性思维能力:数学思想方法鼓励学生尝试多种解题方法和角度,激发学生的创造性思维,培养学生的探索性和创造性解决问题的能力。
4. 培养综合运用能力:数学思想方法常常要求学生综合运用多种知识和技巧解决问题,培养学生的综合运用能力,提高学生对数学知识的理解和应用能力。
数学思想方法在学生思维发展中的意义是培养学生的逻辑思维、抽象思维、创造性思维和综合运用能力,提高学生解决问题的能力,促进学生全面发展。
数学思想方法的意义
数学思想方法的意义数学是一门基础学科,它以推理、抽象和逻辑思维为核心,以建立和研究数学系统为目标。
而数学思想方法则是数学学科中的核心思维方式和解题方法,对于培养学生的逻辑思维能力、问题解决能力和创新能力具有重要意义。
本文将从数学思想方法的定义、重要性以及在数学学习和实际应用中的意义等方面展开论述。
首先,数学思想方法是指在数学学习和问题解决过程中所运用的数学思维方式和解题方法。
它侧重于培养学生的逻辑思维能力,帮助学生建立清晰的思维框架,从而更好地理解和应用数学知识。
数学思想方法包括归纳法、演绎法、逆向思维、分类思维等,通过运用这些方法,学生能够更加深入地理解数学理论,解决复杂问题,提高自己的数学素养。
其次,数学思想方法在数学学习中起着重要的指导作用。
数学学科具有抽象性、严密性和符号性等特点,因此,学生在学习数学知识时需要通过数学思想方法进行思考和运用。
比如,通过归纳法,可以从具体实例中归纳出一般规律;通过演绎法,可以从已知前提推导出新结论。
这些方法能够帮助学生理清思路,快速解决问题,提高学习效率。
同时,数学思想方法也能够帮助学生培养逻辑思维能力和批判性思维能力,使其能够独立思考和解决实际问题。
此外,数学思想方法还对学生的综合素质提供了重要的锻炼机会。
数学思想方法强调的是通过抽象、逻辑和系统性的思维方法解决问题,这样的思维方式不仅在数学学科中有用,也有助于学生在其他学科和实际生活中应用。
比如,逆向思维能够帮助学生分析问题的根本原因;分类思维能够帮助学生整理和归纳信息。
这些思维方法不仅有助于解决数学问题,也有助于学生解决其他学科和实际问题。
另外,数学思想方法还对学生的创新能力和问题解决能力的培养具有重要的意义。
数学学科在发展过程中,往往需要推翻传统的观念和思维方式,提出新的理论和方法。
例如,从几何学到非欧几何学的发展,从传统逻辑到模糊逻辑的发展,这些都需要数学家具备创新思维和解决问题的能力。
因此,培养学生运用数学思想方法解决问题的能力,可以激发学生的创新潜力,为其未来的学科发展做出贡献。
数学思想方法及意义
数学思想方法及意义美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义.1.数学思想方法教学的心理学意义第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容.第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.”第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力.第四,强调结构和原理的学习,“能够缩挟高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线.2.中学数学教学内容的层次中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法.表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识.深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质.3.中学数学中的主要数学思想和方法数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是:(1)这三个思想几乎包摄了全部中学数学内容;(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;(4)掌握这些思想可以为进一步学习高等数学打下较好的基础.此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透.数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.4.数学思想方法的教学模式数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式:操作——掌握——领悟对此模式作如下说明:(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;(2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础;(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提;(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些.。
小学数学常用的16种解题思想方法
数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。
数学思想与数学思维方法的关系
数学思想与数学思维方法的关系数学,究竟由什么组成的?以往,我们通常把概念、性质、法则、公式、数量关系以及解题方法等作为数学的组成部分。
当然,没有这些组成部分,数学就不存在了。
但是,只有这些组成部分,也不是本质意义上的数学,数学至少还包含由这些内容所反映出来的思想方法。
什么是中学数学思想方法?所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。
所谓的数学方法,就是解决数学问题的方法,即解决数学具体问题时所采用的方式、途径和手段,也可以说是解决数学问题的策略。
数学思想是宏观的,它更具有普遍的指导意义。
而数学方法是微观的,它是解决数学问题的直接具体的手段。
一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。
但由于中学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。
如常用的分类思想和分类方法,集合思想和交集方法,在本质上都是相通的,所以中学数学通常把数学思想和方法看成一个整体概念,即中学数学思想方法。
数学思想方法有哪些重要意义?首先,从数学任务看,中学数学的主要任务是不仅使学生掌握好基础知识和基本技能,而且要发展学生的智力、挖掘学生的潜能,也要重视非智力因素的培养、思想品德教育的开展。
从根本上讲是要全面提高思维素质,而数学思想方法就是增强学生数学数学观念、形成良好思维素质的关键。
如果将学生的思维素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学方法就是纵轴上的内容。
忽视数学思想和方法,就失去了认知网络的纵横交错,也就不可能完善认知结构,更谈不上全面提高思维素质了。
因此,加强数学思想方法的研究,就等于找到了数学教学中进行素质教育的突破口。
其次,从教材体系看,整个中学教材贯穿着两条红线,一条是数学知识(明线),另一条是数学思想(暗线),前者可以看作是战术性红线,后者可以看作是战略性红线,围绕战略性红线教学,才是数学教学取得成功的基本保证。
数学思想方法及其意义
数学思想是指人类对数学对象及其研究的本质及规律性认识。
它是在数学活动中解决问题的基本观点和根本想法,是从某 些具体的数学内容和对数学的认识过程中提炼上升的数学观 点,并在认识活动中被反复运用,带有普遍的指导意义,是 建立在数学和运用数学工具解决问题的指导思想。
数学思想方法及其分类
数学思想按其对认识的研究范围来划分,可分为宏观数学思想和
数学思想方法与数学知识的关系
数学知识是陈述性知识与程序性知识的统一体,它是客观的、普
遍的,是以数学语言表达的概念、公里、定力、法则等机器相互 关系的裸机演绎体系,是明确的、显性的,是看得见摸得着的。
数学思想方法是由数学内容来反映的,它蕴涵于数学概念、规律
等基础知识之中。除基本的数学方法之外,其他思想方法都是隐 性的,渗透在学习知识和运用知识的过程中,它是对数学对象的 本质认识,是对数学知识的进一步提炼、概括。
数学思想方法及其意义
数学思想方法及其分类
数学思想方法与数学知识的关系 数学思想方法的主要特点 数学思想方法的意义
数学思想方法是数学知识的精髓、灵魂,它是对数学本质的
理解和认识,是数学学习的根本目的。在数学教学中注重思 想方法的渗透,重视数学思想方法的教学,是提高个体思维 品质和数学素养、发展智力的关键所在,也是现代社会对人 才培养的基本要求。
数学知识是数学思想方法的载体,数学思想方法隶属于数学知识。
数学思想方法是数学基础知识的重要组成部分,它蕴涵于数学知 识中,又超脱于我们所学的数学知识。数学知识与数学思想方法 是相辅相成的。数学概念、原理是肉体而数序思想方法是灵魂, 它们共同组成了数学的知识体系。
数学思想方法的主要特点
概括性
隶属性
数学思想和数学方法
数学思想和数学方法数学思想方法的含义数学思想是指从某些具体的数学认识过程中提升的正确观点, 在后继认识活动中被反复运用和证实, 带有普遍意义和相对稳定的特征.也就是说, 数学思想是对数学概念、方法和理论的本质认识. 正因为如此, 数学思想是建立数学理论和解决数学问题(包括内部问题和实际应用问题)的指导思想. 任何数学知识的理解, 数学概念的掌握, 数学方法的应用, 数学理论的建立, 无一不是数学思想在应用中的体现.数学思想不同于数学思维.“数学思维是指人脑和数学对象交互作用”的过程, 是人们按照一般思维规律认识数学内容的内在理性活动, 包括应用数学工具解决各种实际(理论或应用)问题的思考过程. 其中, 理性活动的本质是逻辑推演. 数学思想的产生必须经过数学思维, 但是数学思维的结果未必产生数学思想.数学方法是处理数学问题过程中所采用的各种手段、途径和方式. 因此数学思想不同于数学方法. 尽管人们常把数学思想与数学方法合为一体, 称之为“数学思想方法” , 这只不过是因为二者关系密切, 有时不易区别开来. 事实上, 方法是实现思想的手段, 任何方法的实施, 无不体现多种数学思想; 而数学思想往往是通过数学方法的实施才得以体现.严格说来,思想是理论性的; 方法是实践性的, 是理论用于实践的中介, 方法是思想的依据, 在思想理论的指导下实施. 例如, 伽罗瓦将方程问题转化为群论问题来解决, 创立了群论方法, 可以说是一种伟大的创造. 在这过程中除了运用转换思想, 其实也运用了群论的思想. 更确切说, 是他用群论的观点来看待方程的根的整体结构, 因而得以把方程问题转换为群的问题而不是转化成别的问题. 因此, 如果问: 是群论的方法, 还是群论的思想起作用呢? 应该说, 是在群论的思想指导下, 用群论的方法导出结果, 所以两者都起作用.一般来说, 讲数学方法时, 若强调的是指导思想, 则指数学思想; 强调的是操作过程,指数学方法; 当二者兼得、难于区分时就不作区分, 统称为“数学思想方法” . 事实上, 通常谈及思想时也蕴含着相应的方法, 谈及方法时也同时指对该方法起指导作用的思想, 比如, 讲到公理化思想或公理化方法时就是如此.。
数学思想方法及意义
数学思想方法及意义数学是一门独特的学科,以其独特的思维方式和方法论而闻名。
数学思想方法是数学家处理数学问题的策略和方法,不仅在数学领域有重要意义,也对其他学科和日常生活有深远的影响。
首先,数学思想方法注重逻辑和严谨性。
数学是一个非常严密的学科,数学家通过逻辑推理和严密的证明来解决问题。
数学家在解决问题的过程中,通常会定义符号、变量和公理,然后通过演绎推理、归谬法和反证法等方法进行证明。
这种推理和证明的方法使数学成为一门可靠和严谨的学科,确保了数学结论的准确性。
其次,数学思想方法注重抽象和建模。
数学家经常通过抽象的方式将问题简化,将其转化为数学概念和模型。
通过抽象,数学家可以更好地理解和分析问题的本质。
数学中的抽象有时可能超出了日常直觉的范畴,但正是这种抽象思维和模型化的方法,使数学能够解决各种各样的实际问题,包括物理、工程、经济和生物等领域中的问题。
另外,数学思想方法注重探索和发现。
数学家经常在未知中寻找规律和模式,在不同的领域进行推理和发现。
相较于其他学科,数学的知识不仅是基于经验和观察的,更多地依赖于推理和证明的结果。
数学家通过推导和试验发现新的数学结论,从而推动数学的发展和进步。
此外,数学思想方法注重交流和合作。
数学在解决复杂问题时,常常需要不同数学家之间的合作。
数学家们会相互交流、分享思想和方法,互相启发和批判,从而推动数学的进展。
数学这一学科的发展,也离不开数学家和其他学科的合作,例如应用数学在物理学、工程学和计算机科学中的应用。
首先,数学思想方法培养了人们的逻辑思维和分析能力。
数学的推理和证明过程要求人们具备较高的逻辑思维能力和分析问题的能力。
这种能力不仅对解决数学问题有帮助,更能够应用于其他学科和日常生活中,帮助人们提高解决问题的能力和思维素质。
其次,数学思想方法培养了人们的抽象和模型化能力。
数学中的抽象和模型化方法可以帮助人们将复杂的问题转化为简化的数学概念和模型,使问题的本质更加清晰。
数学的思想意义和方法
数学的思想意义和方法数学的思想意义和方法数学基础打得好,对将来的升学也有较大帮助。
但是数学的比较抽象,生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。
下面就是店铺整理的数学的思想意义和方法,一起来看一下吧。
1.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。
如直线上的点(数轴)与表示具体的数是一一对应。
2.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。
假设思想是一种有意义的思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。
在教学分数应用题中,教师要善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。
如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。
如定律、公式、等。
5.类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的.一类数学对象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。
类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。
6.转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。
如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7.分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。
浅谈数学思想方法对于小学数学教学的意义
浅谈数学思想方法对于小学数学教学的意义数学是一门抽象而精确的学科,数学思想方法对于小学数学教学具有重要的意义。
本文将从数学思想方法的定义和特点入手,探讨其在小学数学教学中的应用,以及对学生数学学习能力的提升和创造力培养的影响。
一、数学思想方法的定义和特点数学思想方法是指数学家在数学探究和解决问题过程中产生的对于数学现象的认识、思考和表达方式。
数学思想方法具有以下几个特点:1. 抽象性:数学思想方法注重从具体事物中抽离出一般规律和普遍性原理,通过符号和符号化的形式表达。
2. 逻辑性:数学思想方法强调严谨的逻辑推理和演绎,追求准确性和完备性。
3. 统一性:数学思想方法追求寻求不同数学分支之间联系的统一性,以整体观念来把握和认识数学。
4. 创造性:数学思想方法强调创新和发散思维,鼓励学生提出独立的见解和解决问题的新方法。
二、数学思想方法在小学数学教学中的应用1. 培养逻辑思维能力:通过引导学生进行逻辑推理和演绎,promote 学生的逻辑思维能力,提高他们的问题分析和解决能力。
2. 培养抽象思维能力:通过提供丰富的具体问题和适当的引导,帮助学生从具体事物中抽象出数学规律和普遍性原理。
3. 培养创新意识和解决问题的能力:通过给予学生开放、探究性的学习环境,激发学生创新思维,培养他们解决问题的能力。
4. 强调数学与现实生活的联系:利用数学思想方法的抽象特点,引导学生将数学与生活相结合,认识到数学在日常生活中的应用。
三、数学思想方法对学生数学学习能力的提升和创造力培养的影响1. 提高学生的数学学习兴趣:数学思想方法注重培养学生的思维能力和解决问题的方法,从而激发学生的学习兴趣。
2. 培养学生的批判性思维:数学思想方法要求学生进行推理和证明,培养了学生的批判性思维和分析问题的能力。
3. 发展学生的创新思维:数学思想方法鼓励学生提出新的见解和方法,培养了学生的创新思维和创造力。
4. 增强学生的问题解决能力:通过运用数学思想方法,学生能够有效地解决各种复杂的数学问题,提升了他们的问题解决能力。
浅谈对初中数学常用思想方法及重要性的认识
浅谈对初中数学常用思想方法及重要性的认识作者:江美青来源:《读与写·教育教学版》2011年第11期数学思想、方法作为数学学科的“一般原理”,“数学的内容、思想、方法和语言已广泛渗入到自然学科和社会学科,成为现代文化的重要组成部分”,数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,在我们解决问题、进行数学思维时,也总是自觉或不自觉地运用数学思想方法。
下面笔者主要从两个方面谈谈对初中数学中常用思想方法及重要性的认识:1 初中数学中常用的数学思想方法及其渗透1.1数形结合思想数学研究的主要对象是数与形,华罗庚先生说:“数缺形时少直观,形缺数时难入微”,初一数学中有许多用到数形结合思想来解决的问题,解题时由数联想到形,又由形联想到数,“数”可以准确澄清“形”的模糊,“形”能在直观中启迪“数”的计算。
对于数形结合思想,初一新教材中大量出现,如在讲数轴时,一定要让学生分清“数轴上的点”和“点所表示的数”是两个截然不同的概念,前者是形后者是数,有了数轴这个数形结合的工具就可以相互表示。
再结合以后讲的“相反数”、“绝对值”在数轴上的几何意义进行教学,不仅能让学生知道数轴的重要性,而且还能让学生弄清“相反数”、“绝对值”这两个容易混淆的概念的意义;另外,利用数轴还可以直观的比较两个数的大小,这在以后学生学习解不等式中有着很重要的作用。
在学习整式乘法法则时,通过构造它的直观模型,即长方形面积的求法,以“数”与“形”的对比来说明法则的正确性。
数形结合思想的另一方面,即用代数方法解决几何问题。
在几何中经常遇到计算问题,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较,角的比较,利用方程来解决满足互补或互余等特定关系的角的度数等,初一学生刚刚接触几何时,往往与代数联系不上,将这两门课截然分开,这种思维方式是学数学的大忌,必须尽早、尽快扭转,因此在初一几何教学中,凡是能用到代数的地方都要引导学生找出来,使学生意识到代数与几何的关系是那样密不可分,对形的研究离不开数,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,如解应用题时习惯画示意图,常常会给问题解决带来新思路。
《数学思想方法》课程教学大纲
《数学思想方法》课程教学大纲第一部分大纲说明一、课程的地位、性质与任务《数学思想方法》是研究数学思想方法及其教学的一门课程。
随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。
鉴于数学思想方法在素质教育中的重要作用,《数学思想方法》被列为中央广播电视大学小学教育专业的一门重要的必修课。
通过本课程的学习,使学员比较系统地获得对数学思想方法的认识,掌握实施数学思想方法教学的特点,并能运用这些理论指导小学数学教学实践。
通过各个教学环节,逐步培养学员实施数学思想方法教学的能力和综合运用所学知识分析问题、解决有关实际问题的能力,为成为适应新世纪需要的高素质的小学教师打下坚实基础。
二、课程主要内容及要求本课程的主要内容包括:数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、演绎与化归、抽象与概括、猜想与反驳、计算与算法、应用与建模、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。
通过本课程的学习,关键在于使学员建构起关于数学思想方法的认知结构,认识数学思想方法的重要性,增强数学思想方法教学的自觉性,提高实施数学思想方法教学的水平和能力。
通过“数学思想方法的发展”部分学习,帮助学员了解数学思想方法的源头、几次重要突破和现代数学的发展趋势,并能正确理解数学的真理性,确立动态的、拟经验主义的数学观。
通过“数学思想方法例解"部分学习,使学员掌握数学教学中常用的数学思想方法及其应用。
通过“数学思想方法教学"部分学习,使学员掌握数学思想方法教学的特点,并能将所学数学思想方法初步应用于小学数学教学。
三、教学媒体1.文字教材:文字教材是学生学习课程的主要用书,是学生获得知识和能力的重要媒体,是教和学的根本依据。
文字教材名称:《数学思想与方法》(顾泠沅主编,中央电大出版社出版)。
2.音像教材:《数学思想与方法》录像教材共18讲,由首都师范大学副教授姚芳主讲。
小学常用数学思想
⼩学常⽤数学思想按:在⽇常数学教育中,我们⼀般把数学思想与数学⽅法看成⼀个整体概念,即数学思想⽅法。
为了更好地理解⼆者之间的关系,我们分别对此做⼀详细探讨。
⼀、⼩学数学思想⽅法的重要性1.掌握数学思想⽅法是⼩学数学教学的新要求《数学课程标准》(修订稿)在“基本理念”、“总体⽬标”以及“实施建议”中都涉及有关数学思想⽅法的内容,对数学思想⽅法的教学提出了新的要求。
总体⽬标的第⼀条就明确提出:“让学⽣获得适应未来社会⽣活和进⼀步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想⽅法和必要的应⽤技能。
”如在“基本理念”中指出:“……帮助学⽣在⾃主探索与合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想与⽅法,获得⼴泛的数学活动经验。
”这⾥,实际上是在原有“双基”的基础上提出了“四基”,即基础知识、基本技能、基本思想和基本活动经验。
其中,数学思想⽅法⾸次被明确地列⼊学⽣的培养⽬标中。
2. 数学思想和⽅法是数学的灵魂知识和技能是数学学习的基础(双基),⽽数学的思想⽅法则是数学的灵魂和精髓。
掌握科学的数学思想⽅法对提升学⽣的思维品质,对数学学科的后继学习,对其它学科的学习,乃⾄对学⽣的终⾝发展都具有⼗分重要的意义。
数学思想⽅法是蕴含在数学知识形成、发展和应⽤的过程中,学⽣只有积极参与教学过程及独⽴思考,才能逐步感悟数学思想⽅法。
学⽣学习数学的最终⽬的,是要运⽤所学到的数学知识去解决⼀些实际问题,要解决问题就要有⼀定的⽅式、⽅法、途径和⼿段,这就是策略。
这种策略⽆不受到数学思想的影响和⽀配。
⽽学⽣⼀旦掌握了解决问题的⽅式⽅法,⼜可以促进数学思想的进⼀步形成和完善。
可见,两者是既有联系⼜有区别的辩证统⼀体,数学思想指导着数学⽅法,数学⽅法是数学思想的具体表现,⼆者是相互依存、相互促进的。
可以说,数学思想和⽅法是数学的灵魂,是创造能⼒的源泉;良好的数学思想和⽅法,可使学⽣终⽣受益。
GBS196.数学思想方法有哪些 在实践活动中感受数学思想方法的魅力
数学思想方法有哪些在实践活动中感受数学思想方法的魅力【设计理念】数学学习的过程其实就是一个不断解决数学问题的过程。
但是学生面对的问题有可能是一个简单的问题,也有可能是一个复杂的问题,表面积的变化就是一个复杂的问题——引起表面积变化的因素很多。
遇到复杂的问题应该怎么办?我希望通过这节课的学习能给学生带来有益的启发。
著名数学家波利亚曾经说过:“如果你不能解决所提出的问题,环视一下四周,找一个适宜的有关问题,辅助问题可能提供方法论的帮助。
它可能提示解的方法、解的轮廓,或是提示我们应从哪一个方向着手工作。
”在这节实践活动中,学生开场即遇到一个困难的题目,通过自主互助,相互启发,感受到这样的复杂问题可以合理转化为一个简单的问题,由此开始了实践探究,之后得到了解决问题的规律或者方法,再运用到解决复杂的问题过程中,最后攻克难关,解决难题。
这其中渗透了重要的数学思想方法——转化,也运用到科学研究的方法——不完全归纳,在学习过程中学生接受了一次数学思想的洗礼。
如果知识的学习是一个载体,那么方法的习得则为其提供了无穷的动力,可以让小小的数学之舟航行得更远。
围绕着“表面积的变化”这一主题,学生通过三次主题操作(拼正方体——拼长方体——拼火柴盒),找出了影响表面积变化的因素,每次操作活动有明确的指向性,重在解决一个问题。
在新课程标准的修订稿中,将“双基”变为了“四基”,增加了基本数学思想和基本活动经验,在本次实践活动中,特别关注到学生的科学研究方法的指导,让学生感受到遇到一个复杂问题,循着这一基本方法来解决问题,让学生感受到科学研究方法的魅力,积累解决复杂问题的经验。
【教学目标】【教学过程与意图】一、明确概念,创设困境,激发问题意识1.出示1个棱长是1的小正方体,思考:表面积和体积分别是多少?2.出示10个这样的正方体排成一排,思考:这个长方体和原来的10个小正方体相比,什么没变?什么变了?3.思考:如果20个、30个……小正方体排成一排,体积和原来相比是否改变?表面积是否改变?4.揭示课题:表面积的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思想方法及意义
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义.
1.数学思想方法教学的心理学意义
第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容.
第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.”
第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生
认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力.
第四,强调结构和原理的学习,“能够缩挟高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线.
2.中学数学教学内容的层次
中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法.
表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识.
深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.
那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质.
3.中学数学中的主要数学思想和方法
数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是:(1)这三个思想几乎包摄了全部中学数学内容;(2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握;(3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多;(4)掌握这些思想可以为进一步学习高等数学打下较好的基础.
此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透.
数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.
4.数学思想方法的教学模式
数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式:
操作——掌握——领悟
对此模式作如下说明:(1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的;(2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础;(3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提;(4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;(5)数学思想、方法教学是循环往复、螺旋上升的过程,往往是几种数学思想、方法交织在一起,在教学过程中依据具体情况在一段时间内突出渗透与明确一种数学思想或方法,效果可能更好些.。