2012届高考数学第一轮复习考试题24-坐标系与参数方程
专题13:2012-2020年高考数学真题分类汇编《坐标系与参数方程》(学生版)
《坐标系与参数方程》1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t ty t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.3.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ++=.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.7.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=.(1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))在直角坐标系xOy 中,曲线C 的参数方程为24x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为12x tcos y tsin αα=+⎧⎨=+⎩(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为()1,2,求l 的斜率.9.(2018年全国卷Ⅲ文数高考试题) 在平面直角坐标系xOy 中,O 的参数方程为cos sin x y ,θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求ABO ∆面积的最大值. 12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3:cos sin 0l ρθθ+-=,M 为l 3与C 的交点,求M 的极径.13.(2016年全国普通高等学校招生统一考试)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为cos {1sin x a ty a t==+(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅱ)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .14.(2016年全国普通高等学校招生统一考试)在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于,A B 两点,||AB =,求l 的斜率.15.(2016年全国普通高等学校招生统一考试文科数学(全国3卷))在直角坐标系xOy中,曲线1C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+=.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标. 16.(2015年全国普通高等学校招生统一考试)在直角坐标系xOy 中,直线1;2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求1C ,2C 的极坐标方程; (2)若直线3C 的极坐标方程为()4R πθρ=∈,设23,C C 的交点为,M N ,求2C MN∆的面积.17.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1cos ,:{sin ,x t C y t αα== (t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:.C C ρθρθ==(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A,1C 与3C 相交于点B,求AB 最大值.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数)写出曲线C 的参数方程,直线l 的普通方程;过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.19.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2π⎡⎤θ∈⎢⎥⎣⎦.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—4:坐标系与参数方程已知曲线C 1的参数方程为45cos {55sin x t y t=+=+(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ.(Ⅰ)把C 1的参数方程化为极坐标方程; (Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷) 已知动点,P Q 都在曲线2cos :{2sin x t C y t==(t 为参数)上,对应参数分别为t α=与()202t ααπ=<<,M为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 22.(2012年全国普通高等学校招生统一考试理科数学(课标卷))已知曲线的参数方程是,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线的坐标系方程是,正方形ABCD 的顶点都在上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π(1)求点,,,A B C D 的直角坐标; (2)设P 为上任意一点,求2222PA PB PC PD +++的取值范围.。
2012年高考数学按章节分类汇编(人教A选修4-4)第一、二章坐标系与参数方程
在极轴上 , 所以 C1 与 x 轴交点横坐标与 a 值相等 , 由 y 0, x
2 ,知a=
2
.
2
2
【点评】本题考查直线的极坐标方程、圆的极坐标方程
, 直线与圆的位置关系 , 考查转化
的思想、方程的思想 , 考查运算能力 ; 题型年年有 , 难度适中 . 把曲线 C1 与曲线 C2 的极坐
标方程都转化为直角坐标方程 , 求出与 x 轴交点 , 即得 . 3. 解析 : 2,1 . 法 1: 曲线 C1 的普通方程是 x2 y2 5( x 0 , y 0 ), 曲线 C2 的普通方程是
x2
x1
x y 1 0 , 联立解得
( 舍去
y1
y
), 所以交点坐标为 2,1 . 2
法 2: 联 立
5 cos 5 si n
2 1t
2 , 消 去参数 2t 2
可得 1
2
2t 2
2
2t 2
5,解得
t1 2 2 ( 舍去 ), t2
x2
2 , 于是
, 所以交点坐标为 2,1 .
y1
4.
[ 解 析 ] M (2, 0) 的 直 角 坐 标 也 是 (2,0), 斜 率 k
2cos 相交的
弦长为 ___________.
x t 1,
6.( 2012 年高考(湖南理) )在直角坐标系
xOy 中 , 已知曲线 C1 :
y
(t
1 2t
为参数 ) 与
x a sin ,
曲线 C2 :
( 为参数 , a 0 ) 有一个公共点在 X 轴上 , 则 a __ . y 3cos
7.( 2012 年高考(湖北理) ) ( 选修 4-4: 坐标系与参数方程 ) 在直角坐标系 xOy中 , 以原点 O
极坐标系与参数方程一轮复习
极坐标系与参数方程♦知识梳理 、极坐标在象限确定.二、常见曲线的极坐标方程 1、圆的极坐标方程(1) 圆心在极点,半径为r 的圆的极坐标方程是 _____ ;(2) ______________________________________________________________ 圆心在极轴上的点(a,0)处,且过极点0的圆的极坐标方程是 _________________________ (3)圆心在点(a,处且过极点的圆0的极坐标方程是 ___________ 。
2、直线的极坐标方程(1) 过极点且倾斜角为 的直线的极坐标方程是 __________ ;(2) _______________________________________________________ 过点(a,0),且垂直于极轴的直线的极坐标方程是 ___________________________________ 三、常见曲线的参数方程1、极坐标定义:M 是平面上一点,表示0M 的长度,是MOx ,则有序实数实数对(,),叫极径,叫极角;一般地,2、极坐标和直角坐标互化公式:COS2 2 x 2y sin或t tany (x 0)的象限由点(x, y )所[0,2 ), 0x y第一节 平面直角坐标系中的伸缩、平移变换知识点】点P(x,y)的对应点为P'(x',y')。
称 为平面直角坐标系中的伸缩变换 定义 2: 在平面内,将图形 F 上所有点按照同一个方向,移动同样长度,称为图形F 的平移。
若以向量a 表示移动的方向和长度,我们也称图形 F 按向量a 平移. F 上任意一点P 的坐标为(x, y),向量a (h, k),平移后因为平移变换仅改变图形的位置,不改变它的形状和大小.所以,在 平移变换作用下,曲线上任意两点间的距离保持不变。
【典例1】(2014年高考辽宁卷(文))将圆x 2 + /= 1上每一点的横坐标保持不变,纵坐 标变为原来的 2 倍,得曲线 C. (I) 写出 C 的参数方程;(II )设直线1: 2x + y - 2二0与C 的交点为P i ,P 2,以坐标原点为极点,x 轴正半轴为极 轴建立极坐标系,求过线段 P i P 2的中点且与I 垂直的直线的极坐标方程.练习:定义 1:设 P(x, y) 是平面直角坐标系中的任意一点,在变换x' x( y' y(00))的作用下,在平面直角坐标系中,设图形 的对应点为P(x, y )则有:即有:x x h, y y k在平面直角坐标系中,由 (x,y) (h,k) (x,y)xh x h 所确定的变换是一个平移变换。
高三理科数学一轮总复习第十七章 坐标系与参数方程
第十七章坐标系与参数方程高考导航2.(如过极点的直线、过极点或圆心参数方程和极坐知识网络17.1 坐标系典例精析题型一 极坐标的有关概念【例1】已知△ABC 的三个顶点的极坐标分别为A (5,π6),B (5,π2),C (-43,π3),试判断△ABC 的形状,并求出它的面积. 【解析】在极坐标系中,设极点为O ,由已知得∠AOB =π3,∠BOC =5π6,∠AOC =5π6.又|OA |=|OB |=5,|OC |=43,由余弦定理得|AC |2=|OA |2+|OC |2-2|OA |·|OC |·cos ∠AOC =52+(43)2-2×5×43·cos 5π6=133,所以|AC |=133.同理,|BC |=133. 所以|AC |=|BC |,所以△ABC 为等腰三角形. 又|AB |=|OA |=|OB |=5, 所以AB 边上的高h =|AC |2-(12|AB |)2=1332,所以S △ABC =12×1332×5=6534.【点拨】判断△ABC 的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,所以先计算边长.【变式训练1】(1)点A (5,π3)在条件:①ρ>0,θ∈(-2π,0)下极坐标为 ,②ρ<0,θ∈(2π,4π)下极坐标为 ;(2)点P (-12,4π3)与曲线C :ρ=cos θ2的位置关系是 .【解析】(1)(5,-5π3);(-5,10π3).(2)点P 在曲线C 上.题型二 直角坐标与极坐标的互化【例2】⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ. (1)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (2)求经过⊙O 1和⊙O 2交点的直线的直角坐标方程.【解析】(1)以极点为原点,极轴为x 轴正半轴,建立直角坐标系,且两坐标系取相同单位长. 因为x =ρcos θ,y =ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ, 所以x 2+y 2=4x ,即x 2+y 2-4x =0为⊙O 1的直角坐标方程. 同理,x 2+y 2+4y =0为⊙O 2的直角坐标方程.(2) 由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==0,011y x 或⎩⎨⎧-==.2,222y x即⊙O 1,⊙O 2的交点为(0,0)和(2,-2)两点, 故过交点的直线的直角坐标方程为x +y =0.【点拨】 互化的前提条件:原点对应着极点,x 轴正向对应着极轴.将互化公式代入,整理可以得到. 【变式训练2】在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sin θ)=2的距离为d ,求d 的最大值.【解析】将极坐标方程ρ=3化为普通方程x 2+y 2=9, ρ(cos θ+3sin θ)=2可化为x +3y =2. 在x 2+y 2=9上任取一点A (3cos α,3sin α), 则点A 到直线的距离为d =|3cos α+33sin α-2|2=|6sin(α+30°)-2|2,它的最大值为4.题型三 极坐标的应用【例3】过原点的一动直线交圆x 2+(y -1)2=1于点Q ,在直线OQ 上取一点P ,使P 到直线y =2的距离等于|PQ |,用极坐标法求动直线绕原点一周时点P 的轨迹方程.【解析】以O 为极点,Ox 为极轴,建立极坐标系,如右图所示,过P 作PR 垂直于直线y =2,则有|PQ |=|PR |.设P (ρ,θ),Q (ρ0,θ),则有ρ0=2sin θ.因为|PR |=|PQ |,所以|2-ρsin θ|=|ρ-2sin θ|,所以ρ=±2或sin θ=±1,即为点P 的轨迹的极坐标方程,化为直角坐标方程为x 2+y 2=4或x =0.【点拨】用极坐标法可使几何中的一些问题得到很直接、简单的解法,但在解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.【变式训练3】如图,点A 在直线x =5上移动,等腰△OP A 的顶角∠OP A 为120°(O ,P ,A 按顺时针方向排列),求点P 的轨迹方程.【解析】取O 为极点,x 正半轴为极轴,建立极坐标系, 则直线x =5的极坐标方程为ρcos θ=5. 设A (ρ0,θ0),P (ρ,θ),因为点A 在直线ρcos θ=5上,所以ρ0cos θ0=5.①因为△OP A 为等腰三角形,且∠OP A =120°,而|OP |=ρ,|OA |=ρ0以及∠POA =30°, 所以ρ0=3ρ,且θ0=θ-30°.②把②代入①,得点P 的轨迹的极坐标方程为3ρcos(θ-30°)=5.题型四 平面直角坐标系中坐标的伸缩变换【例4】定义变换T :⎩⎨⎧'=-'=+∙∙∙∙, cos sin , sin cos y y x x y x θθθθ可把平面直角坐标系上的点P (x ,y )变换成点P ′(x ′,y ′).特别地,若曲线M 上一点P 经变换公式T 变换后得到的点P ′与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为2.求椭圆C 的标准方程,并求出当tan θ=34时,其两个焦点F 1、F 2经变换公式T 变换后得到的点F 1′和F 2′的坐标;(2)当tan θ=34时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标.【解析】(1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),由椭圆定义知焦距2c =22⇒c =2,即a 2-b 2=2.① 又由已知得a 2+b 2=4,② 故由①、②可解得a 2=3,b 2=1. 即椭圆C 的标准方程为x 23+y 2=1,且椭圆C 两个焦点的坐标分别为F 1(-2,0)和F 2(2,0).对于变换T :⎩⎨⎧'=-'=+∙∙∙∙, cos sin , sin cos y y x x y x θθθθ当tan θ=43时,可得⎪⎪⎩⎪⎪⎨⎧'=-'=+.5453,5354y y x x y x设F 1′(x 1,y 1)和F 2′(x 2,y 2)分别是由F 1(-2,0)和F 2(2,0)的坐标经变换公式T 变换得到.于是⎪⎪⎩⎪⎪⎨⎧-=⨯--⨯=-=⨯+-⨯=,523054)2(53,524053)2(5411y x 即F 1′的坐标为(-425,-325);又⎪⎪⎩⎪⎪⎨⎧=⨯-⨯==⨯+⨯=,523054253,52405325422y x即F 2′的坐标为(425,325).(2)设P (x ,y )是椭圆C 在变换T 下的不动点,则当tan θ=34时,有⎪⎪⎩⎪⎪⎨⎧=-=+yy x x y x 5453,5354⇒x =3y ,由点P (x ,y )∈C ,即P (3y ,y )∈C ,得(3y )23+y 2=1⇒⎪⎪⎩⎪⎪⎨⎧±=±=,23,21x y 因而椭圆C 的不动点共有两个,分别为(32,12)和(-32,-12).【变式训练4】在直角坐标系中,直线x -2y =2经过伸缩变换 后变成直线2x ′-y ′=4.【解析】⎩⎨⎧='='.4,y y x x总结提高1.平面内一个点的极坐标有无数种表示方法.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;反之也成立. 2.熟练掌握几种常用的极坐标方程,特别是直线和圆的极坐标方程.17.2 参数方程典例精析题型一 参数方程与普通方程互化 【例1】 把下列参数方程化成普通方程: (1) ⎩⎨⎧+=-=θθθθ sin cos 2,sin 4 cos y x (θ为参数);(2)⎪⎪⎩⎪⎪⎨⎧-=+=--2)e e (,2)e e (tt t t b y a x (t 为参数,a ,b >0).【解析】(1),1)94()92(94 cos ,92 sin sin cos 2, sin 4 cos 22=++-⇒⎪⎪⎩⎪⎪⎨⎧+=-=⇒⎩⎨⎧+=-=y x x y y x x y y x θθθθθθ所以5x 2+4x y +17y 2-81=0. (2)由题意可得⎪⎪⎩⎪⎪⎨⎧-=+=--②.e e 2,①e e 2t t tt by ax所以①2-②2得4x 2a 2-4y 2b 2=4,所以x 2a 2-y 2b2=1,其中x >0.【变式训练1】把下列参数方程化为普通方程,并指出曲线所表示的图形.(1)⎩⎨⎧=+=; cos sin , cos sin θθθθy x (2)⎪⎩⎪⎨⎧+==;1,1t t y x (3)⎪⎪⎩⎪⎪⎨⎧+=+=;13,13222t t y t t x (4) ⎩⎨⎧-=+= 3. tan 5, sec 46θθy x 【解析】(1)x 2=2(y +12),-2≤x ≤2,图形为一段抛物线弧.(2)x =1,y ≤-2或y ≥2,图形为两条射线.(3)x 2+y 2-3y =0(y ≠3),图形是一个圆,但是除去点(0,3). (4)(x -6)216-(y +3)225=1,图形是双曲线.题型二 根据直线的参数方程求弦长【例2】已知直线l 的参数方程为⎪⎩⎪⎨⎧=+=t y t x 3,2(t 为参数),曲线C 的极坐标方程为ρ2cos 2θ=1.(1)求曲线C 的普通方程; (2)求直线l 被曲线C 截得的弦长.【解析】(1)由曲线C :ρ2cos 2θ=ρ2(cos 2θ-sin 2θ)=1, 化成普通方程为x 2-y 2=1.①(2)方法一:把直线参数方程化为标准参数方程⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23,212(t 为参数).②把②代入①得(2+t 2)2-(32t )2=1,整理得t 2-4t -6=0.设其两根为t 1,t 2,则t 1+t 2=4,t 1t 2=-6.从而弦长为|t 1-t 2|=(t 1+t 2)2-4t 1t 2=42-4(-6)=40=210.方法二:把直线的参数方程化为普通方程为y =3(x -2), 代入x 2-y 2=1,得2x 2-12x +13=0.设l 与C 交于A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6,x 1x 2=132, 所以|AB |=1+3·(x 1+x 2)2-4x 1x 2=262-26=210.【变式训练2】在直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧--=+=ty t x 531,541(t 为参数),若以O 为极点,x轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos(θ+π4),求直线l 被曲线C 所截的弦长.【解析】将方程⎪⎪⎩⎪⎪⎨⎧--=+=ty t x 531,541(t 为参数)化为普通方程为3x +4y +1=0.将方程ρ=2cos(θ+π4)化为普通方程为x 2+y 2-x +y =0.表示圆心为(12,-12),半径为r =22的圆,则圆心到直线的距离d =110,弦长=2r 2-d 2=212-1100=75. 题型三 参数方程综合运用【例3】(2009海南、宁夏)已知曲线C 1:⎩⎨⎧+=+-=t y t x sin 3, cos 4 (t 为参数),C 2:⎩⎨⎧==θθ sin 3,cos 8y x (θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎨⎧+-=+=t y t x 2,23(t 为参数)距离的最小值.【解析】(1)C 1:(x +4)2+(y -3)2=1,C 2:x 264+y 29=1.C 1是以(-4,3)为圆心,1为半径的圆;C 2是以坐标原点为中心,焦点在x 轴,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M (-2+4cos θ,2+32sin θ).C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|, 从而cos θ=45,sin θ=-35时,d 取最小值855.【变式训练3】在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==θθ sin 2,cos 4y x (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,得曲线C 2的极坐标方程为ρ=2cos θ-4sin θ(ρ>0).(1)化曲线C 1、C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)设曲线C 1与x 轴的一个交点的坐标为P (m,0)(m >0),经过点P 作曲线C 2的切线l ,求切线l 的方程. 【解析】(1)曲线C 1:x 216+y 24=1;曲线C 2:(x -1)2+(y +2)2=5.曲线C 1为中心是坐标原点,焦点在x 轴上,长半轴长是4,短半轴长是2的椭圆;曲线C 2为圆心为(1,-2),半径为5的圆.(2)曲线C 1:x 216+y 24=1与x 轴的交点坐标为(-4,0)和(4,0),因为m >0,所以点P 的坐标为(4,0).显然切线l 的斜率存在,设为k ,则切线l 的方程为y =k (x -4).由曲线C 2为圆心为(1,-2),半径为5的圆得|k +2-4k |k 2+1=5,解得k =3±102,所以切线l 的方程为y =3±102(x -4).总结提高1.在参数方程与普通方程互化的过程中,要保持化简过程的同解变形,避免改变变量x ,y 的取值范围而造成错误.2.消除参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.3.参数的方法在求曲线的方程等方面有着广泛的应用,要注意合理选参、巧妙消参.。
高考数学(理)一轮复习课件:坐标系与参数方程-2参数方程
π
当α= 4 时,射线l与C1交点A1的横坐标为x=
2 2
,与
C2交点B1的横坐标为x′=3
10 10 .
π
当α=- 4 时,射线l与C1,C2的两个交点A2,B2分别
与A1,B1关于x轴对称,因此四边形A1A2B2B1为梯形. 故四边形A1A2B2B1的面积为 (2x′+2x)2 (x′-x)=25.
(2)由(1)知xy==t12+2t
① ②
由①得t=x-2 1,代入②得y=(x-2 1)2,∴(x-1)2-4y=0.
[答案] (1)1 (2)(x-1)2-4y=0
[规律总结] 化参数方程为普通方程,关键是消去参
数建立关于x,y的二元方程F(x,y)=0,常用方法有代入
消元法,加减消元法,恒等式法,方法的选取是由方程
=0.
由题意可得圆心C(-1,0),则圆心到直线x+y+3=
0的距离即为圆的半径,故r=
2= 2
2 ,所以圆的方程为
(x+1)2+y2=2.
高考测点典例研习
参数方程与普通方程的互化
例1 [教材改编]已知某曲线C的参数方程为
x=1+2t y=at2
(其中t是参数,a∈R),点M(5,4)在该曲线
点.当α=0时,这两个交点间的距离为2,当α=
π 2
时,这
两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当α=
π 4
时,l与C1,C2的交点分别为A1,B1.当α
=-
π 4
时,l与C1
,C2的交点分别为A2,B2求四边形
A1A2B2B1的面积.
[思路点拨] (1)将参数方程化成普通方程; (2)求出A1B1A2B2点的坐标结合图形求四边形的面 积.
高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)
第1课时坐标系考情考向分析极坐标方程与直角坐标方程互化是重点,主要与参数方程相结合进行考查,以解答题的形式考查,属于低档题.1.平面直角坐标系在平面上,取两条互相垂直的直线的交点为原点,并确定一个长度单位和这两条直线的方向,就建立了平面直角坐标系.它使平面上任意一点P都可以由唯一的有序实数对(x,y)确定,(x,y)称为点P的坐标.2.极坐标系(1)极坐标与极坐标系的概念一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.点O称为极点,射线Ox称为极轴.平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M的极坐标.ρ称为点M 的极径,θ称为点M的极角.一般认为ρθ的取值X围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们约定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M为平面内的任一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0),这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎪⎫-π2≤θ<π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R )或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( √ )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.[P11例5]在直角坐标系中,若点P 的坐标为(-2,-6),则点P 的极坐标为________.答案 ⎝⎛⎭⎪⎫22,4π3 解析 ρ=(-2)2+(-6)2=22,tan θ=-6-2=3,又点P 在第三象限,得θ=4π3,即P ⎝⎛⎭⎪⎫22,4π3. 3.[P32习题T4]若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为________________________.答案 ρ=1cos θ+sin θ⎝⎛⎭⎪⎫0≤θ≤π2解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.4.[P32习题T5]在极坐标系中,圆ρ=-2sin θ(ρ≥0,0≤θ<2π)的圆心的极坐标是________.答案 ⎝⎛⎭⎪⎫1,3π2解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎪⎫1,3π2.题组三 易错自纠5.在极坐标系中,已知点P ⎝⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是________.答案 ρsin θ=1解析 先将极坐标化成直角坐标,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y=ρsin θ=2sin π6=1,即P (3,1),过点P (3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.6.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为____________. 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.7.在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝ ⎛⎭⎪⎫4,2π3,求以⎝ ⎛⎭⎪⎫ρ2,θ2为坐标的不同的点的极坐标.解 ∵⎝⎛⎭⎪⎫4,2π3为点P (ρ,θ)的一个极坐标.∴ρ=4或ρ=-4.当ρ=4时,θ=2k π+2π3(k ∈Z ),∴ρ2=2,θ2=k π+π3(k ∈Z ). 当ρ=-4时,θ=2k π+5π3(k ∈Z ), ∴ρ2=-2,θ2=k π+5π6(k ∈Z ). ∴⎝⎛⎭⎪⎫ρ2,θ2有四个不同的点:P 1⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ),P 2⎝ ⎛⎭⎪⎫2,2k π+4π3(k ∈Z ),P 3⎝⎛⎭⎪⎫-2,2k π+5π6(k ∈Z ),P 4⎝⎛⎭⎪⎫-2,2k π+11π6(k ∈Z ).题型一 极坐标与直角坐标的互化1.(2018·某某模拟)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,圆心C 为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3与极轴的交点,求圆C 的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立平面直角坐标系, 则直线方程为y =3x -23,点P 的直角坐标为(1,3), 令y =0,得x =2,所以C (2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, 所以圆C 的极坐标方程为ρ=4cos θ.2.(2019·某某省某某一中月考)在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝⎛⎭⎪⎫θ-π6=a 截得的弦长为23,某某数a 的值.解 因为圆C 的直角坐标方程为(x -2)2+y 2=4, 直线l 的直角坐标方程为x -3y +2a =0, 所以圆心C 到直线l 的距离d =|2+2a |2=|1+a |,因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3. 即4-(1+a )2=3,解得a =0或a =-2.3.(2018·某某期中)已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2(θ为参数,r >0).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0.(1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值X 围.解 (1)由C :⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2,得(x -2)2+(y -2)2=r 2,∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为⎝⎛⎭⎪⎫22,π4.(2)由直线l :2ρsin ⎝ ⎛⎭⎪⎫θ+π4+1=0, 得直线l 的直角坐标方程为x +y +1=0,从而圆心(2,2)到直线l 的距离d =|2+2+1|2=522.∵圆C 与直线l 有公共点,∴d ≤r ,即r ≥522.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程例1将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的任一点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练1已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎪⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,OP =22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,∴点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,OQ =122+22=22,∴点Q 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,故线段PQ 的长为322.题型三 极坐标方程的应用例2在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足OM ·OP =16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知OP =ρ,OM =ρ1=4cos θ.由OM ·OP =16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题意,知OA =2,ρB =4cos α,于是△OAB 的面积S =12·OA ·ρB ·sin∠AOB=4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 思维升华极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系. 跟踪训练2在极坐标系中,求直线ρsin ⎝⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.解 由ρsin ⎝⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3.1.(2018·某某省某某师X 大学附属中学模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长.解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0, 即(x -2)2+y 2=2,直线l :θ=π4(ρ∈R )的直角坐标方程为y =x ,圆心C 到直线l 的距离d =|2-0|2=1, 所以AB =2(2)2-1=2.2.在极坐标系中,圆C 的极坐标方程为ρ2-8ρsin ⎝⎛⎭⎪⎫θ-π3+13=0,已知A ⎝⎛⎭⎪⎫1,3π2,B ⎝⎛⎭⎪⎫3,3π2,P 为圆C 上一点,求△PAB 面积的最小值. 解 圆C 的直角坐标方程为x 2+y 2+43x -4y +13=0, 即(x +23)2+(y -2)2=3,由题意,得A (0,-1),B (0,-3),所以AB =2.P 到直线AB 距离的最小值为23-3=3,所以△PAB 面积的最小值为12×2×3= 3.3.(2018·某某省姜堰、某某、前黄中学联考)圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4,与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解 圆C :ρ2=2ρcos ⎝ ⎛⎭⎪⎫θ-π4=2ρcos θ+2ρsin θ,所以x 2+y 2-2x -2y =0, 所以圆心C ⎝⎛⎭⎪⎫22,22,与极轴交于A (2,0). 直线CA 的直角坐标方程为x +y =2, 即直线CA 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=1.4.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若OP =3OQ ,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意知21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,求PQ 的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化, ∵ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6,∴ρ2=12ρ⎝⎛⎭⎪⎫cos θcosπ6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴PQ max =6+6+(33)2+32=18.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.7.(2018·某某江阴中学调研)在极坐标系中,设圆C :ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解 以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则由题意,得圆C 的直角坐标方程为x 2+y 2-4x =0,直线l 的直角坐标方程为y =x .由⎩⎪⎨⎪⎧ x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2,所以交点的坐标分别为(0,0),(2,2).所以以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2,即x 2+y 2=2x +2y , 将其化为极坐标方程为ρ2=2ρ(cos θ+sin θ),即ρ=2(cos θ+sin θ).8.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin ⎝⎛⎭⎪⎫θ-2π3=-3,⊙C 的极坐标方程为ρ=4cos θ+2sin θ.(1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长.解 (1)直线l :ρsin ⎝⎛⎭⎪⎫θ-2π3=-3, ∴ρ⎝⎛⎭⎪⎫sin θcos 2π3-cos θsin 2π3=-3, ∴y ·⎝ ⎛⎭⎪⎫-12-x ·32=-3,即y =-3x +2 3. ⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ,∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.∴圆心C (2,1),半径R =5,∴⊙C 的圆心C 到直线l 的距离 d =|1+23-23|(3)2+12=12, ∴AB =2R 2-d 2=25-⎝ ⎛⎭⎪⎫122=19. ∴弦AB 的长为19.9.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解 (1)∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1, 点R 的直角坐标为R (2,2).(2)设P (3cos θ,sin θ),根据题意,设PQ =2-3cos θ,QR =2-sin θ,∴PQ +QR =4-2sin ⎝⎛⎭⎪⎫θ+π3, 当θ=π6时,PQ +QR 取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 10.(2018·某某)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为 ρsin ⎝ ⎛⎭⎪⎫π6-θ=2, 则直线l 过点A (4,0),且倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.如图,连结OB .因为OA 为直径,从而∠OBA =π2, 所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.11.已知曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程; (2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长. 解 (1)曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ.(2)∵l 的直角坐标方程为x +y -1=0,∴圆心C (2,1)到直线l 的距离d =22=2, ∴弦长为25-2=2 3.12.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求OA +OB 的最大值. 解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2,∴曲线C 是以(a,0)为圆心,以a 为半径的圆.由l :ρcos ⎝⎛⎭⎪⎫θ-π3=32, 展开为12ρcos θ+32ρsin θ=32, ∴l 的直角坐标方程为x +3y -3=0.由题意,知直线l 与圆C 相切,即|a -3|2=a , 又a >0,∴a =1.(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+π3, 则OA +OB =2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6, 当θ=11π6时,OA +OB 取得最大值2 3.。
高中数学一轮总复习文科基础复习题及解析(二)
高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。
2012年高考数学坐标系与参数方程练习题及答案
2012年高考数学二轮复习同步练习:专题10 选考内容 第2讲 坐标系与参数方程一、选择题1.(2011·安徽理,5)在极坐标系中点⎝⎛⎭⎫2,π3到圆ρ=2cos θ的圆心的距离为( ) A .2 B.4+π29C.1+π29D. 3[答案] D[解析] 极坐标⎝⎛⎭⎫2,π3化为直角坐标为2cos π3,2sin π3,即(1,3),圆的极坐标方程ρ=2cos θ可化为ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,所以圆心坐标为(1,0),则由两点间距离公式d =(1-1)2+(3-0)2=3,故选D.2.(2011·北京理,3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A .(1,π2)B .(1,-π2)C .(1,0)D .(1,π)[答案] B[解析] 由ρ=-2sin θ得:ρ2=-2ρsin θ, ∴x 2+y 2=-2y ,即x 2+(y +1)2=1,∴圆心直角坐标为(0,-1),极坐标为(1,-π2),选B.3.(2010·湖南卷)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-ty =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线[答案] A[解析] 将题中两个方程分别化为直角坐标方程为x 2+y 2=x,3x +y +1=0,它们分别表示圆和直线.4.(2010·北京卷)极坐标方程为(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线[答案] C[解析] 由(ρ-1)(θ-π)=0得ρ=1或者θ=π, 又ρ≥0,故该方程表示的图形是一个圆和一条射线. 二、填空题5.(2011·上海理,5)在极坐标系中,直线ρ(2cos θ+sin θ)=2与直线ρcos θ=1的夹角大小为________.(结果用反三角函数值表示)[答案] arctan 12[解析] 极坐标方程化普通方程时要注意等价性.∵ρ(2cos θ+sin θ)=2,由x =ρcos θ,y =ρsin θ可得一般方程为2x +y =2. ρcos θ=1的一般方程为x =1.直线2x +y =2的倾斜角的补角为arctan2,设两直线夹角为α,则tan α=tan(π2-arctan2)=cot(arctan2)=1tan (arctan2)=12,∴α=arctan 12.6.(2011·陕西理,15)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θy =4+sin θ(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.[答案] 3[解析] C 1为圆(x -3)2+(y -4)2=1,C 2为圆x 2+y 2=1.∴|AB |min =32+42-1-1=3.7.(2011·天津理,11)已知抛物线C 的参数方程为⎩⎪⎨⎪⎧x =8t 2,y =8t ,(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆(x -4)2+y 2=r 2(r >0)相切,则r =________.[答案]2[解析] 根据抛物线C 的参数方程⎩⎪⎨⎪⎧x =8t2y =8t,得出y 2=8x ,得出抛物线焦点坐标为(2,0),所以直线方程:y =x -2,利用圆心到直线距离等于半径,得出r =22= 2. 8.(2011·广东理,14)已知两曲线参数方程分别为⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2y =t(t∈R ),它们的交点坐标为________.[答案] ⎝⎛⎭⎫1,255[解析] ⎩⎪⎨⎪⎧x =5cos θy =sin θ(0≤θ≤π) 化为普通方程为x 25+y 2=1(0≤y ≤1),而⎩⎪⎨⎪⎧x =54t 2y =t 化为普通方程为x =54y 2,由⎩⎨⎧ x 25+y 2=1(0≤y ≤1)x =54y2得⎩⎪⎨⎪⎧x =1y =255,即交点坐标为⎝⎛⎭⎫1,255.三、解答题9.(2011·福建理,21)在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).(1)已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,π2),判断点P 与直线l 的位置关系;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. [解析] (1)把极坐标系的点P (4,π2)化为直角坐标,得P (0,4),因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线 l 上. (2)因为点Q 在曲线C 上,故可设点Q 的坐标为 (3cos α,sin α), 从而点Q 到直线l 的距离d =|3cos α-sin α+4|2=2cos (α+π6)+42=2cos(α+π6)+22,由此得,当cos(α+π6)=-1时,d 取得最小值,且最小值为 2.10.(2011·新课标理,23)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.[解析] (1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y 2.由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.(α为参数)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.11.已知参数C 1:⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数),曲线C 2:⎩⎨⎧x =22t -2,y =22t(t 为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′,C 2′.写出C 1′,C 2′的参数方程.C 1′与C 2′公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.[解析] (1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1,圆心C 1(0,0),半径r =1. C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1,所以C 2与C 1只有一个公共点. (2)压缩后的参数方程分别为C 1′:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C 2′:⎩⎨⎧x =22t -2,y =24t(t 为参数).化为普通方程为C 1′:x 2+4y 2=1,C 2′:y =12x +22,联立消元得2x 2+22x +1=0, 其判别式△=(22)2-4×2×1=0,所以压缩后的直线C 2′与椭圆C 1′仍然只有一个公共点,和C 1与C 2公共点个数相同.12.(2010·辽宁理,23)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数,0≤θ≤π)上的点,点A的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.[解析] (1)由已知,M 点的极角为π3,且M 点的极径等于π3,故点M 的极坐标为⎝⎛⎭⎫π3,π3.(2)M 点的直角坐标为⎝⎛⎭⎫π6,3π6,A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+⎝⎛⎭⎫π6-1t ,y =3π6t ,(t 为参数).。
选修4-4坐标系与参数方程(2012-2021)高考数学真题分项详解(全国通用)(解析版)
x = 4 cos2 ,
2.(2020
年全国统一高考数学试卷(文科)(新课标Ⅱ))已知曲线
C1,C2
的参数方程分别为
C1:
y
=
4
sin
2
(θ
为参数),C2:
x y
= =
t t
+ −
1, t 1
(t
为参数).
t
(1)将 C1,C2 的参数方程化为普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设 C1,C2 的交点为 P,求圆心在极轴上,且经过
(2)设 C 上点的坐标为: (cos , 2sin )
则C
上的点到直线 l
的距离
d
=
2 cos + 2
3 sin
+11
=
4
sin
+
6
+ 11
7
7
当 sin
+
6
=
−1 时,
d
取最小值
则 dmin = 7
5.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))在极坐标系中,O 为极点,点 M (0 ,0 )(0 0) 在
C1
表示以坐标原点为圆心,半径为
1
的圆;(2)
(
1 4
,
1 4
)
.
x = cos t
【分析】(1)当
k
= 1 时,曲线 C1
的参数方程为
y
=
sin
t
(t
为参数),
两式平方相加得 x2 + y2 = 1 ,
所以曲线 C1 表示以坐标原点为圆心,半径为 1 的圆;
2012年高考数学试题分项版解析专题19 选修系列:坐标系与参数方程(学生版) 理
2012年高考试题分项版解析数学(理科)专题19 选修系列:坐标系与参数方程(学生版)一、填空题:1. (2012年高考广东卷理科14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为1:x t C t y =⎧⎪⎨=⎪⎩为参数)和2:(x C y θθθ⎧=⎪⎨=⎪⎩为参数),则曲线C 1与C 2的交点坐标为______.2.(2012年高考北京卷理科9)直线t t y t x (12⎩⎨⎧--=+=为参数)与曲线ααα(sin 3cos 3⎩⎨⎧==y x 为参数)的交点个数为______。
4. (2012年高考湖南卷理科9)在直角坐标系xOy 中,已知曲线1C :1,12x t y t=+⎧⎨=-⎩ (t 为参数)与曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩(θ为参数,0a >) 有一个公共点在X 轴上,则__a =. 5.(2012年高考天津卷理科12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p.7. (2012年高考江西卷理科15)(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________。
8.(2012年高考安徽卷理科13)在极坐标系中,圆4sin ρθ=的圆心到直线()6R πθρ=∈的距离是_____9.(2012年高考陕西卷理科15)C .(坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .二、解答题:3.(2012年高考辽宁卷理科23) (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
2012届高考数学第一轮专题复习测试卷 第一讲 坐标系 2含答案
第一讲 坐标系一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内。
)1。
点M 的直角坐标为(—1,—,则它的球坐标为( ) 5.2,,.2,,444453.2,,.2,,4444A B C D ππππππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭解析:2,1,tan 0,tan 02,x 0.411,,15.4r y x ϕϕθϕθπθππθ======<-=-=<==由≤≤得又≤所以 答案:B2.在平面直角坐标系中,以(1,1)角坐标系的原点为极点,以Ox 为极轴的极坐标系中对应的极坐标方程为( )()B..C.os(1)D.4in 14A ρθρθππρθρθ⎛⎫=- ⎪⎝⎭⎛⎫- ⎪⎝=-=⎭=-解析:由题意知圆的直角坐标方程为(x-1)2+(y —1)2=2.化为极坐标方程为(ρcosθ-1)2+(ρsinθ-1)2=2。
∴0.42042,04044 ..cos ρρθρθρρππππθρθρπθ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦⎛⎫-= ⎪⎝⎭⎡⎤⎛-∴-∴⎫--= ⎪⎢⎥⎝⎭⎣⎦⎛⎫-= ⎪⎝⎭⎛⎫- ⎪⎝⎭=也过极点与等价对应的极坐标方程为答案:A3.在极坐标系中,点(ρ,θ)与(—ρ,π—θ)的位置关系为( )A.关于极轴所在直线对称B 。
关于极点对称C 。
重合D.关于直线θ=2π (ρ∈R)对称 解析:点(ρ,θ)也可以表示为(—ρ,π+θ),而(-ρ,π+θ)与(—ρ,π—θ)关于极轴所在直线对称,故选A 。
答案:A4.在柱坐标系中,两点24,,04,,333M N ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭与的距离为( ) A.3 B.4C 。
5D 。
8解析:解法一:由柱坐标可知M 在Oxy 平面上,N 在Oxy 平面上的射影坐标为N |MN |4,24,,0MN 5.3.,C π'∴'==⎛⎫ ⎪⎝⎭再由勾股定理得故选解法二:可将M 、N 化为直角坐标,N(MN 5..C =-∴=故选答案:C5.两直线θ=α和ρcos(θ—α)=a 的位置关系是( )A.平行 B 。
2012高考数学文一轮复习(北师大)精品学案2坐标系与参数方程
4
x2 sin2θ
-
4
y2 cos2θ
=是1 双曲线.
当θ=kπ(k∈Z)时,x=0,它表示y轴.
当θ=kπ+ (π k∈Z)时,y=0,x=±( t +),1 它表示x
2
t
轴上以(-2,0)和(2,0)为端点的向左和向右的两条射线.
返回目录
参数方程化普通方程要注意参数的范围. 返回目录
设抛物线的轴与准线l交于A点,过点A作割线ABC交抛 物线于B,C两点,又过焦点作割线QFR与直线ABC平行, 且交抛物线于Q,R两点,求证:|AB|·|AC|=|QF|·|FR|.
∵α∈[0,π),∴tanα= - 4 + 7
6
∴弦AB所在直线方程为y-1= - 4 + 7(x-2).
6
返回目录
考查直线的参数方程应用. 返回目录
已知点P(3,2)平分抛物线y2=4x的一条弦,求弦AB的长.
x=3+tcosα
{ 设弦AB所在直线参数方程为
(t为参数),
y=2+tsinα
代入方程y2=4x,整理得t2sin2α+4(sinα-cosα)·t-8=0.①
∵点P(3,2)是弦AB的中点,由参数t的几何意义可知,方程①的
两个实根t1,t2满足关系t1+t2=0,
即sinα-cosα=0.∵0≤α<π,∴α= . π
4
∴|AB|=|t1-t2|=
(t1 + t2 )2 - 4t1t2 =
8
4· sin2
π
=8
4
返回目录
1.极坐标(ρ,θ)与(ρ,2kπ+θ)(k∈Z)表示同一个点.平 面内一个点的极坐标有无数种表示.
2012年高考试题(文科)分项专题18 选修系列:坐标系与参数方程
实用文档2012年高考试题(文科)分项专题18 选修系列:坐标系与参数方程一、填空题1、(2012年高考陕西卷文科15)C (坐标系与参数方程)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为32、(2012年高考湖南卷文科10)在极坐标系中,曲线1C :(2cos sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.3、(2012年高考广东卷文科14)(坐标系与参数方程选做题)在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为5cos 5sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和21222x t y t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数),则曲线C 1与C 2的交点坐标为_______。
二、解答题4、(2012年高考辽宁卷文科23)在直角坐标xOy 中,圆221:4C x y +=,圆222:(2)4C x y -+=。
(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆12,C C 的极坐标方程,并求出圆12,C C 的交点坐标(用极坐标表示);实用文档(Ⅱ)求圆12C C 与的公共弦的参数方程。
5、(2012年高考江苏卷21)在极坐标中,已知圆C 经过点()24P π,,圆心为直线()3sin 32ρθπ-=-与极轴的交点,求圆C 的极坐标方程.6、(2012年高考新课标全国卷文科23)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧ x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、D 以逆时针次序排列,点A 的极坐标为(2,π3) (Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC | 2+ |PD|2的取值范围.以下是答案一、填空题1、 3.实用文档【解析】化极坐标为直角坐标得直线2213,(1)1,2= 3.2x x y =-+=⨯圆由勾股定理可得相交弦长为 【考点定位】本题主要考察极坐标系与极坐标方程,先化为普通方程后求解.2、3、二、解答题4、实用文档【考点定位】本题主要考查点的极坐标表示、圆的极坐标方程、参数方程的表示及参数方程与一般方程的转换、解方程组的知识,难度较小。
2012版高考数学一轮精品复习学案:选修系列(第1部分:坐标系与参数方程)
2012版数学一轮精品复习学案:选修系列第一部分:坐标系与参数方程【高考目标定位】一、坐标系1.考纲点击(1)理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;(2)了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置。
能进行极坐标和直角坐标的互化;(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程。
2.热点提示(1)根据具体问题选择适当坐标系,简捷解决问题;(2)极坐标系的应用;(3)直角坐标与极坐标的互化。
二、参数方程1.考纲点击(1)了解参数方程,了解参数的意义;(2)能选择适当的参数写出直线、圆和椭圆的参数方程。
2.热点提示(1)参数方程和普通方程互化;(2)会利用直线参数方程中参数的几何意义解决有关线段问题;(3)会利用圆、椭圆的参数方程,解决有关的最值问题。
【考纲知识梳理】1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx x ρθ=+=≠在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
2012届高考数学一轮精品27.1坐标系与坐标变换(学生版A、B卷)(答案+解析)
2012届高考数学一轮精品:27.1 坐标系与坐标变换(学生版A 、B 卷)(答案+解析)27.1 坐标系与坐标变换1.在直角坐标系中,点A的坐标为(-,则在相应的极坐标系中它的极坐标可以是(C ) A.5(2,)6π B .5(2,)3π C .5(2,)3π- D .11(2,)6π- 2.设点M的直角坐标为,则在相应的球坐标系中,点M 的坐标为 (D ) A.(2,,)43ππ B .(2,,)44ππ C.,)43ππ D.,)44ππ提示:由球坐标到直角坐标的坐标变换公式为:cos sin sin sin cos x y z ρθϕρθϕρϕ=⎧⎪=⎨⎪=⎩, 所以由直角坐标到球坐标的坐标变换公式为:2222cos tan x y z z y x ρϕρθ⎧⎪=++⎪⎪=⎨⎪⎪=⎪⎩. 3. 将直角坐标系按向量(,)am n =平移,新坐标系中的点B 与原坐标系中的点(1,2)A 有相同 的坐标,且||5AB =,则必有 (D )A.3,4m n == B.1,mn == C .225m n += D . 2225m n +=提示:设点B 在原坐标系中的坐标为(,)x y ,则有1,2x m y n -=-=,∴点B 在原坐标系中的坐标为(1,2)m n ++, ∴222[(1)1][(2)2]5m n +-++-=, 即2225m n +=.(注意坐标系不变,点按向量平移与坐标系按向量平移的区别)4. 点M 的极坐标为5(5,)6π,则它的直角坐标为. 5()25. 直线2310x y +-=经过变换可以化为10mx ny +-=,则坐标变换公式是 . 提示:设直线2310x y +-=上任一点的坐标为(,)x y ,直线6610x y +-=上任一点的坐标为(,)x y '',坐标变换公式为x kx y hy '=⎧⎨'=⎩,即11x x k y y h ⎧'=⎪⎪⎨⎪'=⎪⎩,将其代入直线方程2310x y +-=, 得2310x y k h ''+-=,将其与6610x y +-=比较,得11,32k h ==. 6.在极坐标系中,求点5(4,)12M π关于直线3πθ=的对称点的坐标. 解:设点5(4,)12M π关于直线3πθ=的对称点为(,)M ρθ',线段MM '交直线3πθ=于点 A ,则512312M OA MOA πππ'∠=∠=-=, ∴点M '的极角θ=3124πππ-=,又点,M M ' 的极半径相等, ∴4ρ=, ∴点M '的极坐标为(4,)4π. 7.(1)在极坐标系中,求点(6,)4M π绕极点按顺时针方向旋转6π后的坐标; (2)在直角坐标系中,求点(6,A 绕原点按逆时针方向旋转3π后的坐标. 解:(1)点(6,)4M π绕极点按顺时针方向旋转6π后,极半径不变,极角变为4612πππ-=, ∴旋转后点M 的对应点的坐标为(6,)12π 8. 将圆224x y +=按向量(1,2)a =-平移后再按坐标变换公式1213x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩进行伸缩变换, 求所得图形的中心坐标、焦点坐标及准线方程.解:圆224x y +=按向量(1,2)a =-平移后所得的方程为22(1)(2)4x y ++-=.设圆22(1)(2)4x y ++-=上任意一点的坐标为(,)x y ,伸缩变换后对应点的坐标为(,)x y '', ∵坐标变换公式为1213x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩①, ∴23x x y y '=⎧⎨'=⎩ ②, 将②代入方程22(1)(2)4x y ++-=,得22(21)(32)4x y ''++-=,化简得,222()13()1429yx'-'++=,即222()13()1429yx-++=.此方程中,451,,99a b c===,295ac=.方程表示的曲线为椭圆,中心为12(,)23-;焦点坐标为192(,)183-和12(,)183;准线方程为2310x=-和1310x=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-4 坐标系与参数方程
1.已知极坐标平面内的点P ⎝ ⎛
⎭⎪⎫2,-5π3,则P 关于极点的对称点的极坐标与直角坐标分
别
为
( )
(1,(- (2 2 解析:
圆ρ=4cos θ的圆心C (2,0),如图,|OC |=2,在Rt △COD 中,
∠ODC =π
2,
∠COD =π
4,∴|CD |= 2.
即圆ρ=4cos θ的圆心到直线tan θ=1的距离为 2. 答案:B
l 系是 ( )
A .相切
B .相离
C .直线过圆心
D .相交但不过圆心 解析:圆的普通方程为x 2+y 2=4,∴圆心坐标为(0,0),半径
r =2,点(0,0)到直线3x
-4y -9=0的距离为d =|-9|32+4
2=9
5<2,∴直线与圆相交,
而(0,0)点不在直线上,
故选D. 答案:D
5.已知极坐标系中,极点为O,0≤θ<2π,M ⎛⎪⎫3,π,在直线OM
,∠xOM =π
3,在直线Q ,
4,
|6.已知极坐标系中,极点为O ,将点A ⎝
⎛
⎭
⎪⎫4,π6绕极点逆时针旋转
π
4得到点B ,且|OA |=|OB |,
则点B 的直角坐标为________.
解析:依题意,点B 的极坐标为⎝ ⎛⎭
⎪⎫4,5π12, ∵cos 5π12=cos ⎝ ⎛⎭
⎪⎫π4+π6=cos π4cos π6-sin π4sin π
6 =22·32-22·1
2=6-24,
sin 5π
=sin ⎛⎪⎫π+π=sin πcos π+cos πsin π
. 8.点M (x ,y )在椭圆x 212+y 2
4=1上,则点M 到直线x +y -4=0的距离的最大值为
________,此时点M 的坐标是________.
解析:椭圆的参数方程为⎩⎪⎨⎪⎧
x =23cos θ
y =2sin θ
(θ为参数),
则点M (23cos θ,2sin θ)到直线x +y -4=0的距离 d =|23cos θ+2sin θ-4|
2
=
|4sin ⎝ ⎛⎭
⎪⎫θ+π3-4|2
.
当联立方程组⎩
⎪⎨⎪⎧
y =3(x -1),
x 2+y 2=1,
解得C 1与C 2的交点为(1,0),⎝ ⎛⎭⎪⎫
12
,-32.
(2)C 1的普通方程为x sin α-y cos α-sin α=0. A 点坐标为(sin 2α,-cos αsin α),
故当α变化时,P 点轨迹的参数方程为 ⎩⎪⎨⎪⎧
x =12sin 2
α,y =-12sin αcos α,
(α为参数).
P 点轨迹的普通方程为⎝ ⎛
⎭
⎪⎫x -142+y 2=116.
||OQ |∶|QP |=3∶2,所
以点Q 的坐标为⎝ ⎛⎭
⎪⎫35ρ,θ,由于点Q 在圆上,所以3
5ρ=6cos ⎝ ⎛
⎭
⎪⎫θ-π6. 故点P 的轨迹方程为ρ=10cos ⎝ ⎛
⎭
⎪⎫θ-π6.。