2019-2020学年九年级数学下册3.1圆教案1新版北师大版 .doc

合集下载

北师大版九年级数学下册3.1圆 课件(共32张PPT)

北师大版九年级数学下册3.1圆 课件(共32张PPT)

根据圆的定义,“圆”指 的是“ 圆周 ”,而不 是“圆面”。
O
A
确定一个圆的要素:
一是圆心, 二是半径, 圆心确定其位置, 半径确定其大小.
O
A
如图,连接圆上任意两点的线段 叫做弦,如AB; 经过圆心弦叫做直径, 如直径CD. 我们知道,圆上任意 两点的部分叫做圆弧, 简称弧. 圆的任意一条直径的两个 端点分圆成两条弧,每一 弧都叫做半圆. 弧包括优弧和劣弧,大于半圆的弧叫做优弧,小于 半圆的弧叫做劣弧. 如图中,以A,D为端点的弧有两条:优弧ACD(记 作ACD),劣弧ABD(记作AD或ABD).
B
C
已知圆P的半径为3,点Q在圆P外,点R在圆P上,点 H在圆P内,则PQ___3 = < > ,PR____3,PH_____3. 如图, △ ABC中,∠C=90°,BC=3,AC=6, CD
3 5 为中线,以C为圆心,以 2 为半径作圆,则点A、
B 、 D 与圆 C 的关系如何? 点A在圆外,点B在圆内, 点D在圆上.
解(1)过点A作AD⊥BC,垂足为D, 在Rt△ABC中,∠ABC=30°,AB=220, ∴AD=110(km),110÷20=5.5,12-5.5=6.5>4, ∴A城市受这次台风影响; A (2)在BD及BD的延长线上分别取E,F D 两点,使AE=AF=160千米.由于当A点距 台风中心不超过160千米时,将会受到 台风的影响.所以当台风中心从E点移到 B F点时,该城市都会到这次台风的影响. 在Rt△ADE中,由勾股定理,得DE= 30 15 所以EF=2DE=60 15 (3)当台风中心位于D处时,A市所受这次台风的 风力最大,其最大风马牛不相及力为12110/20=6.5级
(1)分别以点A、点B为圆心,以2cm的长为半径 画圆,两圆的交点即为所求。 P

北师大版九年级数学下册:3.1《圆》说课稿

北师大版九年级数学下册:3.1《圆》说课稿

北师大版九年级数学下册:3.1《圆》说课稿一. 教材分析《圆》这一节内容是北师大版九年级数学下册的重点和难点部分,主要介绍圆的定义、性质、画法以及圆的方程。

通过这一节的学习,使学生能够理解圆的概念,掌握圆的性质和画法,为进一步学习圆的相关知识打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。

但是,对于圆这一概念的理解和应用还需要进一步的引导和培养。

此外,学生的学习兴趣和学习动机也是影响教学效果的重要因素,因此,在教学过程中,需要注重激发学生的学习兴趣,提高学生的学习积极性。

三. 说教学目标1.知识与技能目标:理解圆的定义,掌握圆的性质和画法,能够应用圆的知识解决实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队合作意识和创新精神。

四. 说教学重难点1.教学重点:圆的定义、性质和画法。

2.教学难点:圆的方程的推导和应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究,培养学生的独立思考能力和团队合作意识。

2.教学手段:利用多媒体课件、圆规、直尺等教具,以及黑板、粉笔等传统教学工具,辅助教学。

六. 说教学过程1.导入:通过展示生活中的圆形物体,引导学生思考圆的特点和性质,激发学生的学习兴趣。

2.新课导入:介绍圆的定义和性质,引导学生通过观察和操作,理解圆的概念。

3.圆的画法:讲解圆的画法,引导学生动手实践,掌握圆的画法。

4.圆的方程:推导圆的方程,引导学生理解圆的方程的含义和应用。

5.巩固练习:布置一些有关圆的练习题,让学生巩固所学知识。

6.课堂小结:对本节课的主要内容进行总结,帮助学生梳理知识点。

七. 说板书设计板书设计要简洁明了,能够突出本节课的主要知识点。

可以设计成如下形式:圆的定义:平面上一动点以一定点为圆心,一定长为距离运动一周的轨迹。

初中数学_北师大数学九年级下册3.1圆教学设计学情分析教材分析课后反思

初中数学_北师大数学九年级下册3.1圆教学设计学情分析教材分析课后反思
鼓励学生自主表达,精准数学语言
组内交流,选代表回答
4、请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?
讨论
培养学生思维的灵活,从而达到巩固双基,举一反三的目的。此处留给学生充分的时间去思考、讨论.并培养学生对某个问题作出正确判断、合理决策的能力.使学生完整地经历“表象—本质;粗放—准确”的活动过程,培养学生抓关键条件的能力和缜密描述的能力.
集体纠正答案(培养孩子的表达能力)
回答
对本节课进行测评及问题分析
作 业
1.A书 习题3.1 1, 2题
B新课堂61—62
2.预习3.2 圆的对称性 P96
板 书
设 计
3.1 圆
1.圆的定义:
2.点和圆的位置关系
点在圆外 d﹥r
点在圆上 d﹦r
点在圆内 d﹤r
学情分析
本班的学生学习基础参差不齐,学习习惯差别很大,不少学生学习上缺少主动性、自觉性和目的性;学习时不注重方法,不讲求逻辑联系,分析问题思路杂乱表达东拼西凑,数学思维简单。但学生在小学已经对圆有初步的感性认识,在此基础上继续研究了圆的基本性质,并解决了一些实际问题。因此,在学习本节内容时,学生很容易理解、掌握。
(1)若PO=5.5,则点P在;
(2)若PO=4,则点P在;
(3)若PO=,则点P在圆上.
纠正
计算
让学生多层次,多角度认识问题,多种策略考虑问题。
2、正方形ABCD的边长为3cm,以A为圆心,3cm长为半径作⊙A,
则点A在⊙A,点B在⊙A,点C在⊙A,点D在⊙A。
3、已知⊙O的半径是5cm,A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系:
课堂教学效果分析

3.1圆(1)教案

3.1圆(1)教案

3.1圆(1)教案课题 3.1圆(1)单元第二单元学科数学年级九年级(上)学习目标1.掌握圆的定义,了解弦、直径、弧、半圆等与圆有关概念;2.掌握点与圆的位置关系;3.了解圆中的有关计算.重点弦和弧的概念、弧的表示方法和点与圆的位置关系.难点点和圆的位置关系及判定.教学过程教学环节教师活动学生活动设计意图导入新课一、创设情景,引出课题一些学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?通过前面的例子请你说说什么是圆?合作学习:圆的概念演示圆的形成,然后总结出概念在同一平面内,线段OP绕它固定的一个端点O旋转一周,另一端点P所经过的封闭曲线叫做圆.然后说出圆心,半径以及圆的表示方法定点O叫做圆心线段OP叫做圆的半径思考自议从生活中圆的形象加强对圆的定义的理解;点和圆的位置关系应抓住点到圆的距离与半径的大小关系.表示:以O 为圆心的圆,记做“⊙O ”,读做“圆O ”. 圆的有关概念 弦与直径连结圆上任意两点的线段叫做弦,如图AB . 经过圆心的弦是直径,图中的AC 。

直径等于半径的2倍. 弧1、直径将圆分成两部分,每一部分都叫做半圆(如弧ABC).2、圆上任意两点间的部分叫做圆弧,简称弧. 弧用符号“⌒”表示.小于半圆的弧叫做劣弧,如记作⌒AB (用两个字母). 大于半圆的弧叫做优弧,如记作⌒ACB (用三个字母). 请同学们将你画的圆和同桌比较,看看是否可以重合?想一想,什么情况下可以重合? 等圆与等弧半径相等的两个圆叫做等圆。

在同圆或等圆中,能够互相重合的弧叫等弧注意:等圆:圆心不同,半径相等;同心圆:圆心相同,半径不等练一练:如图所示,你看到哪几条弦?哪几段弧?各如何表示?解:有弦AB,弦BC,弦AC;有弧AB,弧BC,弧AC,弧ACB,弧BAC思考:已知⊙O的半径为r =3m。

那么A,B,C 三点与半径是什么关系呢?OA=3m,OB<3m,OC>3m设⊙O的半径为r,点到圆心的距离为d,怎样表示r与d的关系?二、提炼概念若点在圆上 d=r若点在圆内 d<r若点在圆外 d>r反过来也成立点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系可以确定该点到圆的位置关系.讲授新课三、典例精讲例1 如图,在A地正北80m的B处有一幢民房,正西100m的C处有一变电设施,在BC的中点D 处是一古建筑.因施工需要,必须在A处进行一次爆破.为使民房、变电设施、古建筑都不遭到破坏,问爆破影响面的半径应控制在什么范围内?变式:若BC是一条马路,且马路上有行人和车辆,在爆破时也不能影响到马路上的行人和车辆,其它对与圆有关概念的理解,是解决相关问题的关键;让学生学以致用,并联系以前的知识,对知识有更深的了解和掌握,引导学生探索新知识的能力。

2022-2023学年北师大版九年级数学下册第三章圆《3-1—3-5》综合测试题(附答案)

2022-2023学年北师大版九年级数学下册第三章圆《3-1—3-5》综合测试题(附答案)

2022-2023学年北师大版九年级数学下册第三章圆《3.1—3.5》综合测试题(附答案)一.选择题(共8小题,满分40分)1.如图,AB是⊙O的直径,点D,C在⊙O上,∠DOC=90°,AD=,BC=1,则⊙O 的半径为()A.B.C.D.2.如图,AB为⊙O的直径,C为半圆的中点,E为上一点,CE=,AB=,则EB的长为()A.B.2C.D.3.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AD=DC,分别延长BA、CD,交点为E,作BF⊥EC,并与EC的延长线交于点F.若AE=AO,BC=6,则CF的长为()A.B.C.D.4.如图,AB是半⊙O的直径,点C是半圆弧的中点,点D是弧BC的中点,下列结论中:①∠CBD=∠DAB;②CG=CH;③AH=2BD;④BD2+GD2=AG2;⑤AG=DG.其中正确的结论有()A.2个B.3个C.4个D.5个5.如图,在半径为5的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=8,垂足为E.则tan∠OEA的值是()A.1B.C.D.6.如图,⊙O的直径AB与弦CD相交于点P,且∠APC=45°,若PC2+PD2=8,则⊙O 的半径为()A.B.2C.2D.47.如图,点C是半圆O的中点,AB是直径,CF⊥弦AD于点E,交AB于点F,若CE=1,EF=,则BF的长为()A.B.1C.D.8.如图,半径为R的⊙O的弦AC=BD,且AC⊥BD于E,连接AB、AD,若AD=,则半径R的长为()A.1B.C.D.二.填空题(共8小题,满分40分)9.如图,AB为⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E,若∠C=23°,则∠EOB的度数为.10.如图,在四边形ABCD中,∠BAD=∠CDA=90°,AB=1,CD=2,过A,B,D三点的⊙O分别交BC,CD于点E,M,下列结论:①DM=CM;②;③⊙O的直径为2;④AE=AD.其中正确的结论有(填序号).11.如图,在⊙O中,弦BC,DE交于点P,延长BD,EC交于点A,BC=10,BP=2CP,若=,则DP的长为.12.如图,AB,CD是⊙O的两条弦,它们相交于点P,连接AD、BD,已知AD=BD=4,PC=6,那么CD的长是.13.如图,已知A、B、C是⊙O上的三个点,且AB=15cm,AC=3cm,∠BOC=60度.如果D是线段BC上的点,且点D到直线AC的距离为2cm,那么BD=cm.14.如图,在△ABC中,tan∠BAC•tan∠ABC=1,⊙O经过A、B两点,分别交AC、BC 于D、E两点,若DE=10,AB=24,则⊙O的半径为.15.如图,已知在Rt△ABC中,∠ACB=90°,cos B=,BC=3,P是射线AB上的一个动点,以P为圆心,P A为半径的⊙P与射线AC的另一个交点为D,直线PD交直线BC 于点E.设线段BE的中点为Q,射线PQ与⊙P相交于点F,点P在运动过程中,当PE ∥CF时,则AP的长为.16.如图,在平行四边形ABCD中,以对角线AC为直径的圆O分别交BC,CD于点E,F.若AB=13,BC=14,CE=9,则线段EF的长为.三.解答题(共4小题,满分40分)17.如图,⊙O的直径MN⊥弦AB于C,点P是AB上的一点,且PB=PM,延长MP交⊙O 于D,连接AD.(1)求证:AD∥BM;(2)若MB=6,⊙O的直径为10,求sin∠ADP的值.18.如图,在△ABC中,AB=AC,∠BAC=90°,以AB为直径的⊙O交BC于点F,连接OC,过点B作BD∥OC交⊙O于点D.连接AD交OC于点E(1)求证:BD=AE.(2)若OE=1,求DF的值.19.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.20.如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:P A•PB=PC•PD;(2)设BC的中点为F,连接FP并延长交AD于E,求证:EF⊥AD;(3)若AB=8,CD=6,求OP的长.参考答案一.选择题(共8小题,满分40分)1.解:如图延长DO交⊙O于E,作EF⊥CB交CB的延长线于F,连接BE、EC.∵∠AOD=∠BOE,∴=,∴AD=BE=,∵∠DOC=∠COE=90°,OC=OB=OE,∴∠OCB=∠OBC,∠OBE=∠OEB,∴∠CBE=(360°﹣90°)=135°,∴∠EBF=45°,∴△EBF是等腰直角三角形,∴EF=BF=1,在Rt△ECF中,EC===,∵△OCE是等腰直角三角形,∴OC==.故选:C.2.解:连接AC、BC,延长BE,过C作CH⊥BE的延长线于H,∵AB为⊙O的直径,C为半圆的中点,∴∠ACB=90°,AC=BC,∴∠CAB=45°,∴∠2=135°,∴∠1=45°,∵CH⊥BE,∴∠CHE=90°,∴∠HCE=45°,∴CH=HE,∵CE=,∴CH=HE=1,∵AB=,∴BC=,∴BH==3,∴EB=3﹣1=2,故选:B.3.解:如图,连接AC,BD,OD,∵AB是⊙O的直径,∴∠BCA=∠BDA=90°.∵BF⊥EC,∴∠BFC=90°,∵四边形ABCD是⊙O的内接四边形,∴∠BCF=∠BAD,∴Rt△BCF∽Rt△BAD,∴=,即=,∵OD是⊙O的半径,AD=CD,∴OD垂直平分AC,∴OD∥BC,∴=,∴△EOD∽△EBC,∴==,=,而AE=AO,即OE=2OB,BE=3OB,BC=6∴===,=2,∴OD=4,CE=DE,又∵∠EDA=∠EBC,∠E公共角,∴△AED∽△CEB,∴DE•EC=AE•BE,∴DE•DE=4×12,∴DE=4,∴CD=2,则AD=2,∴=,∴CF=.故选:A.4.解:连接BG,延长BD交AC的延长线于T.∵AB是直径,∴∠ACB=90°,∵=,∴AC=CB,OC⊥AB,∴∠ACO=∠BCO=45°,∠CAB=∠CBA=45°,∵=,∴∠CBD=∠DAB=∠CAD,故①正确,∵∠CGH=∠ACG+∠CAG=45°+∠CAG,∠CHG=∠CBO+∠DAB=45°+∠DAB,∴∠CGH=∠CHG,∴CG=CH,故②正确,∵∠ACH=∠BCT=90°,AC=CB,∠CAH=∠CBT,∴△ACH≌△BCT(ASA),∴AH=BT,∵AB是直径,∴∠ADB=∠ADT=90°,∴∠DAB+∠ABD=90°,∠CAD+∠T=90°,∴∠T=∠ABD,∴AT=AB,∵AD⊥BT,∴BD=DT,∴AH=2BD,∵OC⊥AB,OA=OB,∴GA=GB,∵∠GDB=90°,∴BD2+DG2=BG2=AG2,故④正确,∵GA=GB,∴∠GAB=∠GBA,∵∠CAB=45°,∠CAD=∠DAB=∠CBD,∴∠GAO=∠GAB=∠CBD=22.5°,∵∠CBA=45°,∴∠CBG=22.5°,∴∠DBG=45°,∴△DBG是等腰直角三角形,∴BG=AG=DG,故⑤正确,故选:D.5.解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理得:BM=AM=AB=4,DN=CN=CD=4,由勾股定理得:OM===3,同理:ON=3,∵弦AB、CD互相垂直,OM⊥AB,ON⊥CD,∴∠MEN=∠OME=∠ONE=90°,∴四边形MONE是矩形,∴ME=ON=3,∴tan∠OEA==1,故选:A.6.解:作CM⊥AB于M,DN⊥AB于N,连接OC,OD,∴∠NDP=∠MCP=∠APC=45°又∵OC=OD,∴∠ODP=∠OCP,∵∠COM=45°+∠OCD,∠ODN=45°+∠ODC,∴∠NDO=∠COM,在Rt△ODN与Rt△COM中,,∴Rt△ODN≌Rt△COM,∴ON=CM=PM,OM=ND=PN又∵OC2=CM2+OM2,OD2=DN2+ON2∴OC2=CM2+PN2,OD2=DN2+PM2∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2=8∴OC2=4,∴OC=2,故选:B.7.解:如图,连接AC,BC,OC,过点B作BH⊥CF交CF的延长线于H,设OC交AD 于J.∵=,∴AC=BC,OC⊥AB,∵AB是直径,∴ACB=90°,∴∠ACJ=∠CBF=45°,∵CF⊥AD,∴∠ACF+∠CAJ=90°,∠ACF+∠BCF=90°,∴∠CAJ=∠BCF,∴△CAJ≌△BCF(ASA),∴CJ=BF,AJ=CF=1+=,∵OC=OB,∴OJ=OF,设BF=CJ=x.OJ=OF=y,∵∠AEC=∠H=90°,∠CAE=∠BCH,CA=CB,∴△ACE≌△CBH(AAS),∴EC=BH=1,∵∠ECJ=∠FCO,∠CEJ=∠COF=90°,∴△CEJ∽△COF,∴==,∴==,∴EJ=,∵BF=CJ,∠H=∠CEJ,∠CJE=∠BFH,∴△BHF≌△CEJ(AAS),∴FH=EJ=,∵AE∥BH,∴=,∴=,整理得,10x2+7xy﹣6y2=0,解得x=y或x=﹣y(舍弃),∴y=2x,∴=,解得x=或﹣(舍弃).∴BF=,故选:A.8.解:∵弦AC=BD,∴,∴,∴∠ABD=∠BAC,∴AE=BE;如图,连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R,∵AD=,∴R=1,故选:A.二.填空题(共8小题,满分40分)9.解:∵CD=OA,OA=OD,∴CD=OD,∵∠C=23°,∴∠DOC=∠C=23°,∴∠EDO=∠C+∠DOC=46°,∵OD=OE,∴∠E=∠EDO=46°,∴∠DOE=180°﹣∠E﹣∠EDO=88°,∵∠DOC=23°,∴∠EOB=180°﹣∠DOC﹣∠DOE=180°﹣23°﹣88°=69°,故答案为:69°.10.解:如下图,连接AM,连接MB,∵∠BAD=∠CDA=90°,∴AM过圆心O,而A、D、M、B四点共圆,∴四边形ADMB为矩形,而AB=1,CD=2,∴CM=2﹣1=1=AB=DM,即:①DM=CM,正确;又AB∥CD,∴四边形ABMC为平行四边形,∴∠AEB=∠MAE,=,故②正确;∵四边形ADMB为矩形,∴AB=DM,∴=,∴∠DAM=∠AMB,过点O作OG⊥AD于G,OH⊥AE于H,∴OG=OH,∴AD=AE,∴④正确;由题设条件求不出直径的大小,故③⊙O的直径为2,错误;故答案为①②④.11.解:如图,作CH∥DE交AB于H.设DP=2a.∵PD∥CH,∴===,∴CH=3a,∵BD:AD=2:3,∴BD:AD=BD:BH,∴AD=BH,∴BD=AH,∴AH:AD=2:3,∴CH∥DE,∴==,∴DE=a,∴PE=a﹣2a=a,∵BC=10,BP:PC=2:1,∴PB=,PC=,∵PB•PC=PD•PE,∴5a2=,∴a=(负根已经舍弃),∴PD=2a=.故答案为.12.解:连接AC,由圆周角定理知,∠C=∠B,∵AD=BD∴∠B=∠DAB,∴∠DAP=∠C∴△DAP∽△DCA,∴AD:CD=DP:AD,得AD2=DP•CD=CD•(CD﹣PC),把AD=4,PC=6代入得,CD=8.13.解:作DE⊥AC于E,BF⊥AC于F∵∠BOC=60°,∴∠A=30°在Rt△ABF中,AB=15cm∴BF=cm,AF=cm∴CF=AF﹣AC=cm在Rt△BCF中,BC==3cm ∵DE∥BF∴=设BD=x,则=解得x=,即BD=cm.14.解:如图,延长AO交⊙O于H,连接AE,BH.∵tan∠BAC•tan∠ABC=1,∴∠BAC+∠ABC=90°,∴∠C=90°,∴∠CAE+∠AEC=90°,∵∠AEC+∠AEB=180°,∠AEB+∠H=180°,∴∠AEC=∠H,∵∠H+∠BAH=90°,∴∠CAE=∠BAH,∴=,∴DE=BH=10,∵AH是直径,∴∠ABH=90°,∴AH===26,∴OA=OH=AH=13,故答案为13.15.解:如图,连接CF,过点P作PG⊥AC于G,设P A=x.在Rt∠ACB中,∵ACB=90°,BC=3,cos B==,∴AB=5,AC===4,∵PG⊥AD,∴AG=DG=P A•cos∠BAC=x,∴AD=x,CD=4﹣x,∵∠ABC+∠A=90°,∠PEC+∠CDE=90°,∵∠A=∠PDA,∴∠ABC=∠PEC,∵∠ABC=∠EBP,∴∠PEC=∠EBP,∴PB=PE,∵点Q为线段BE的中点,∴PQ⊥BC,∴PQ∥AC∴当PE∥CF时,四边形PDCF是平行四边形,∴PF=CD,当点P在边AB的上时,x=4﹣x,x=,当点P在边AB的延长线上时,x=x﹣4,x=,综上所述,当PE∥CF时,AP的长为或.16.解:如图,连接AE,AF.∵BC=14,CE=9,∴BE=BC﹣EC=14﹣9=5,∵AC是直径,∴∠AEC=∠AEB=90°,∴AE===12,∴AC===15,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=13,∴∠DAC=∠ACB,∵∠AFE=∠ACB,∴∠AFE=∠DAC,∵∠AEF=∠ACD,∴△AFE∽△DAC,∴=,∴=,∴EF=,故答案为.三.解答题(共4小题,满分40分)17.(1)证明:∵PB=PM,∴∠PMB=∠PBM,∵∠PBM=∠D,∴∠PMB=∠D,∴AD∥BM.(2)解:连接OB,设OC=x,BC=y,∵MN⊥AB,∴∠BCO=∠BCM=90°,则有,解得x=,∴MC=5﹣=,由(1)可知,∠ADP=∠ABM,∴sin∠ADP=sin∠ABM===.解法二:设MC=x,在直角三角形MCB和OCB中,利用勾股定理可以得到x的值,从而求出角D的正弦值.18.(1)证明:∵AB是直径,∴∠ADB=90°,∵BD∥OC,∴∠AEO=∠ADB=90°,∵∠OAC=90°,∴∠OAE+∠AOC=90°,∠AOC+∠ACO=90°,∴∠BAD=∠ACE,∵AB=AC,∠ADB=∠AEC=90°,∴△ADB≌△CEA(AAS),∴AE=BD.(2)∵OE∥BD,AO=OB,∴AE=ED,∴BD=2OE=2,∴AE=BD=DE=2,∴AB==2,∵△ADB≌△CEA,∴EC=AD=4,设AD交BC于K.∵EC∥BD,∴==2,∴DK=,∴BK==,∵∠ABK=∠FDK,∠AKB=∠FKD,∴△AKB∽△FKD,∴=,∴=,∴DF=.19.解:(1)∵∠ADC=∠BCD=90°,∴AC、BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)连接DO,延长交圆O于F,连接CF、BF.∵DF是直径,∴∠DCF=∠DBF=90°,∴FB⊥DB,又∵AC⊥BD,∴BF∥AC,∠BDC+∠ACD=90°,∵∠FCA+∠ACD=90°∴∠BDC=∠FCA=∠BAC∴四边形ACFB是等腰梯形,∴CF=AB.根据勾股定理,得CF2+DC2=AB2+DC2=DF2=20,∴DF=,∴OD=,即⊙O的半径为.20.(1)证明:∵∠A、∠C所对的圆弧相同,∴∠A=∠C,∴Rt△APD∽Rt△CPB,∴,∴P A•PB=PC•PD;(2)证明:∵F为BC的中点,△BPC为直角三角形,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°,∴EF⊥AD;(3)解:作OM⊥AB于M,ON⊥CD于N,连接PO,∴OM2=(2)2﹣42=4,ON2=(2)2﹣32=11,易证四边形MONP是矩形,∴OP=.。

新版北师大版数学九年级下册教案(全)

新版北师大版数学九年级下册教案(全)

第一章 直角三角形的边角关系第1课时§1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

➢ 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、 想一想(比值不变)☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数 (1) 明确各边的名称 (2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB ABCAB C∠A 的对边∠A 的邻边斜边ABC= ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; b 、 如图,在△ACB 中,tanA = 。

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计

北师大版数学九年级下册3.1《圆》教学设计一. 教材分析北师大版数学九年级下册3.1《圆》是本册教材中的重要内容,主要介绍了圆的定义、圆的性质、圆的方程等基础知识。

本节课的内容是学生对圆的基本认识,为后续学习圆的运算、圆与圆的位置关系等知识打下基础。

教材通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征,从而培养学生的空间想象能力和抽象思维能力。

二. 学情分析九年级的学生已经掌握了初中阶段的基础数学知识,对图形的认识有了初步的了解。

但是,对于圆的概念和性质,部分学生可能还比较模糊。

因此,在教学过程中,教师需要关注学生的认知水平,针对学生的实际情况进行针对性的教学。

同时,由于圆的知识在实际生活中的应用非常广泛,学生对圆的兴趣和认知程度也会影响他们的学习效果。

三. 教学目标1.知识与技能:让学生掌握圆的定义、性质和方程,能够运用圆的知识解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和抽象思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的重要性。

四. 教学重难点1.重点:圆的定义、性质和方程。

2.难点:圆的性质的理解和应用。

五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生主动探究圆的特征。

2.问题驱动法:教师提出问题,引导学生思考,培养学生解决问题的能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作精神。

六. 教学准备1.教具:圆的模型、图片、PPT等。

2.学具:学生分组准备,每组一份圆的模型、图纸等。

七. 教学过程1.导入(5分钟)教师通过展示生活中的圆形物体,如硬币、轮子等,引导学生关注圆的特征。

然后提出问题:“你们对圆有什么认识?圆有哪些性质?”让学生回忆和思考圆的基本知识。

2.呈现(10分钟)教师通过PPT展示圆的定义和性质,引导学生观察和理解圆的特征。

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案

北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。

本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。

但是,圆的概念比较抽象,学生可能难以理解。

因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。

同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。

三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。

2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.圆的定义和性质。

2.圆的周长和面积的计算。

五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。

六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。

2.准备圆的模型或图片,用于讲解圆的性质。

3.准备圆的周长和面积的计算公式,用于讲解和练习。

七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。

展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。

3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。

通过实际操作,让学生加深对圆的概念的理解。

4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。

英德市第五中学九年级数学下册第三章圆4圆周角和圆心角的关系第1课时圆周角定理教案新版北师大版8

英德市第五中学九年级数学下册第三章圆4圆周角和圆心角的关系第1课时圆周角定理教案新版北师大版8

4 圆周角和圆心角的关系第1课时 圆周角定理1.理解圆周角的定义,掌握圆周角定理. 2.会熟练运用圆周角定理解决问题.重点圆周角定理及其应用. 难点圆周角定理证明过程中的“分类讨论”思想的渗透.一、复习导入1.圆心角的定义是什么?2.如图,圆心角∠AOB 的度数和它所对的AB ︵的度数有何关系?3.在同圆或等圆中,如果两个圆心角、两条________、两条________中有一组量相等,那么它们所对应的其余各组量都分别相等.二、探究新知 1.圆周角的定义引导学生自学教材第78页的相关内容,思考如下问题:(1)我们已经知道,顶点在圆心的角叫圆心角,那当角顶点发生变化时,我们得到几种情况?(2)图③中的∠BAC 的顶点在什么位置? (3)角的两边有什么特点?圆周角的定义:顶点在圆上,并且两边分别与圆还有另一个交点的角叫圆周角. 2.圆周角定理课件出示教材第78页图3-14,提出问题:当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC,∠ADC ,∠AEC.(1)在图中,AC ︵所对的圆周角有几个?(2) AC ︵所对的圆心角和所对的圆周角之间有什么关系?(3)你是通过什么方法得到的?圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半. 三、举例分析例1 如图,∠AOB =80°.(1)你能画出几个 AB ︵所对的圆周角吗? (2)圆周角和圆心角有几种不同的位置关系?(3)这些圆周角与圆心角∠AOB 的大小有什么关系? (4)这几个圆周角的大小有什么关系?(5)改变∠AOB 的度数,上面的结论还成立吗? (6)你能选择其中之一进行证明吗?(7)大家通过合作探究还能解决其他两种情况吗?解:如图①,∠ACB = 12∠AOB . 理由:∵ ∠AOB 是△ACO 的外角, ∴∠AOB =∠ACO+∠CAO. ∵OA =OC ,∴∠ACO =∠CAO. ∴∠AOB =2∠ACO. 即∠ACB= 12∠AOB.例2 问题回顾:当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC,∠ADC ,∠AEC.这三个角的大小有什么关系?解:∠ABC=∠ADC=∠AEC.理由:连接AO ,CO. ∵∠ABC =12∠AOC,∠ADC =12∠AOC,∠AEC = 12∠AOC.∴∠ABC =∠ADC=∠AEC.圆周角定理推论:同弧或等弧所对的圆周角相等.四、练习巩固1.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( )A.20°B.40°C.50°D.80°第1题图第2题图2.如图,在⊙O中,∠BOC=50°,则∠BAC=________°.五、课堂小结1.易错点:(1)一条弦所对的圆周角有两种情况:优弧、劣弧分别对着不同的圆周角;(2)圆上一条弧所对的圆周角能作出无数个;(3)圆周角和圆心有三种位置关系.2.归纳小结:(1)圆周角的定义:顶点在圆上,并且两边分别与圆还有另一个交点的角叫做圆周角;(2)圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半;(3)圆周角定理的推论:同弧或等弧所对的圆周角相等.3.方法规律:(1)圆周角和圆心的位置关系只有三种:圆心在圆周角的一边上,圆心在圆周角的内部,圆心在圆周角的外部;(2)圆周角的度数等于它所对弧上的圆心角度数的一半;(3)同弧或等弧所对的圆周角相等.六、课外作业1.教材第80页“随堂练习”第1、2题.2.教材第80~81页习题3.4第1、2、4题.这节课的教学主线非常清晰,重点明确,就是让学生经历观察、操作、猜想、证明等一系列探索活动.从提出猜想到证明猜想的过程中,教师始终将探索发现的空间留给学生,所设计的问题由浅入深、循序渐进,学习任务从易到难,挑战性问题在逐步提高,这是一种能激发学生学习兴趣的设计.本节课不足之处在于定理的证明根据圆心与圆周角的位置关系分三种情况,虽然借助了几何画板动态演示了这一过程,但是为何要分类,教学中似乎显得有些生涩.◆基础练习1. 下列函数中,不是二次函数的是( )A、21y = B 、22(1)4y x =+-C 、1(1)(4)2y x x =-+ D 、22(2)1y x x =--+ 2.在半径为4的圆中,挖去一个边长为xcm 的正方形,剩下部分面积为2ycm ,则关于y 与x 之间函数关系式为( )A 、24y x π=- B 、216y x π=- C 、216y x =- D 、24y x π=- 3.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为 . 4.边长为2的正方形,如果边长增加x ,则面积S 与x 之间的函数关系是 . 5.已知221(3)2a a y a x --=--是二次函数,则a = .◆能力拓展6.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长和宽相等,高比长多0.5 m.如果长方体的长和宽用x(m)表示, 油漆每平方米所需费用是5元,油漆每个长方体所需费用为y 元.求y 与x 之间函数关系式.7.如图,矩形ABCD 中,AB=10cm,BC=5cm,点M 以1cm /s 的速度从点B 向点C 运动,同时,点N 以2cm /s 的速度从点C 向点D 运动.设运动开始第t 秒钟时,五边形ABMND 的面积为2Scm ,求出S 与t 的函数关系式,并指出自变量t 的取值范围.NDCB A◆创新学习8.已知函数2y ax bx c =++是二次函数,函数y ax b =+是一次函数且其图象不经过第一象限.请你给出符合上述条件的a 、b 的值.参考答案1.D 2.B 3. 0 4.244S x x =++ 5.1a =- 6.23010y x x =+ 7.由题意得BM= t ,CN =2 t ,所以MC =5t -,得MCN ABCD S S S ∆=-矩形 11055)22t t =⨯-⨯-⨯(, 即2550S t t -+=,自变量的取值范围是0<t <5. 8.当1,1a b =-=-时,2y x x c =--+是二次函数,1y x =--的图形不经过第一象限(答案不唯一).22.3 实践与探索使学生利用一元二次方程的知识解决实际问题,学会将实际问题转化为数学模型来建立一元二次方程.重点列一元二次方程解决实际问题.难点寻找实际问题中的等量关系.一、情境引入问题1 学校生物小组有一块长32 m,宽20 m的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横各开辟一条等宽的小道,要使种植面积为540 m2,小道的宽应是多少?问题2 某药品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率.二、探究新知教师引导学生分析解决问题,并让学生一题多解,同时要注意检验所解得的结果是否符合实际意义.问题 1 【分析】问题中的等量关系很明显,即抓住种植面积为540 m2来列方程,设小道的宽为x m,如何来表示种植面积?方法一:如图,由题意得32×20-32x-20x+x2=540.方法二:如图,采用平移的方法更简便.由题意可得(20-x)(32-x)=540,解得x1=50,x2=2,由题意可得x<20,∴x=2.问题2 【分析】这是增长率问题,问题中的数量关系很明了,即原价56元经过两次降价降为31.5元,设每次降价的百分率为x,由题意得56(1-x)2=31.5,解得x1=0.25,x2=1.75(舍去).三、练习巩固1.青山村种的水稻前年平均每公顷产量为7200 kg,今年平均每公顷产量为8450 kg,求水稻每公顷产量的年平均增长率.2.用一根长40 cm的铁丝围成一个长方形,要求长方形的面积为75 cm2.(1)求此长方形的宽;(2)能围成一个面积为101 cm2的长方形吗?如能,说明围法;(3)若设围成一个长方形的面积为S(cm2),长方形的宽为x(cm),求S与x的函数关系式,并求出当x为何值时,S的值最大,最大面积为多少?四、小结与作业小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际意义.2.用一元二次方程解决特殊图形问题时,通常要先画出图形,利用图形的面积找相等关系列方程.3.若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有a(1±x)n=b(常见n=2).布置作业从教材相应练习和“习题22.3”中选取.本课时从创设情境入手,让学生体会数学建模思想,学会分析问题并利用一元二次方程解决实际问题,举一反三,培养学生的创新意识和实践能力,同时通过合作交流培养学生参与合作的意识.。

2023九年级数学下册第三章圆6直线和圆的位置关系第2课时切线的判定定理教案(新版)北师大版

2023九年级数学下册第三章圆6直线和圆的位置关系第2课时切线的判定定理教案(新版)北师大版
(2)讨论法:组织学生进行小组讨论,分析典型例题,培养学生的合作意识和解决问题的能力。
(3)情境教学法:创设生活情境,让学生在实际问题中感受切线判定定理的应用,提高学生的几何直观能力。
2.教学手段:
(1)多媒体演示:利用多媒体设备展示动态的几何图形,帮助学生直观理解切线的性质和判定定理。
(2)教学软件辅助:运用数学软件进行几何作图和计算,提高学生对几何问题的解决效率。
2023九年级数学下册第三章圆6直线和圆的位置关系第2课时切线的判定定理教案(新版)北师大版
学校
授课教师
课时
授课班级
授课地点
教具
课程基本信息
1.课程名称:九年级数学下册第三章圆6《直线和圆的位置关系》第2课时-切线的判定定理
2.教学年级和班级:九年级
3.授课时间:第2课时
4.教学时数:45分钟
本节课将围绕北师大版教材,深入探讨直线和圆的位置关系中切线的判定定理。通过讲解与实例分析,使学生掌握切线的定义及判定定理,并能应用于解决实际问题。课程将结合课本中的例题和练习,确保教学内容与教材紧密关联,符合教学实际需求。
同时,回顾上一节课学习的点与圆的位置关系,为新课的学习做好铺垫。
2.讲授新课(20分钟)
(1)切线的定义(5分钟)
通过多媒体展示切线的概念,引导学生观察并总结切线与圆的接触点的特点。讲解切线的定义,强调切线与圆只有一个交点。
(2)切线的判定定理(10分钟)
以几何图形为例,引导学生观察和思考,探讨如何判断一条直线是否为圆的切线。通过讲解和推理,得出切线的判定定理:经过半径的外端且垂直于半径的直线是圆的切线。
学习者分析
1.学生已掌握了圆的基本概念、圆的方程以及点与圆的位置关系等知识。在此基础上,学生对圆的性质和方程有了较为深入的理解,为学习直线和圆的位置关系奠定了基础。

北师大版九年级数学下册《确定圆的条件》评课稿

北师大版九年级数学下册《确定圆的条件》评课稿

北师大版九年级数学下册《确定圆的条件》评课稿1. 引言本文评价的是北师大版九年级数学下册《确定圆的条件》这节课。

本节课主要围绕确定圆的条件展开,通过引入圆的四个基本要素,并利用这些要素确定圆的几何关系,帮助学生掌握圆的特性,从而解题。

2. 教学目标本节课的教学目标主要包括: - 理解圆的定义和基本要素;- 掌握确定圆的条件; - 运用所学知识解决实际问题。

3. 教学内容3.1 圆的定义和基本要素教师首先给出了圆的定义:在平面上,以一定点为圆心、以一定线段为半径的点的集合,称为圆。

然后,教师引入了圆的四个基本要素: 1. 圆心:圆的中心点; 2. 圆周:由圆心和半径确定的圆上的点的集合; 3. 弦:连接圆上两点的线段; 4. 弧:在圆上,有一点开始,通过另一点终止的一段圆周。

3.2 确定圆的条件接下来,教师介绍了确定圆的条件,主要包括: 1. 圆心和半径:给出圆心和半径后,即可确定一个圆; 2. 圆心和圆上一点:给出圆心和圆上的一点后,即可确定一个圆; 3. 圆上三点:给出圆上的三个点后,即可确定一个圆。

教师通过相关图示和示例,一步步演示了以上三种确定圆的条件,并鼓励学生积极思考、参与讨论。

3.3 实际问题的解决在掌握了确定圆的条件后,教师引导学生运用所学知识解决一些实际问题。

例如,给出一个场地的平面图,要求学生确定能将该场地完全围起来的一条栅栏线的最短长度。

教师先与学生一起分析问题,然后引导学生找出圆的特性与该问题的关联,最后通过确定圆的条件来解决问题。

4. 教学过程4.1 导入与热身教师通过提问等方式,引发学生对圆的认识和理解,营造课堂氛围,激发学生的兴趣。

4.2 圆的定义和基本要素的讲解教师简洁明了地讲解了圆的定义和基本要素,辅以图形示例加深学生的理解。

4.3 确定圆的条件的讲解与讨论教师结合课堂互动,逐一讲解确定圆的条件。

在讲解过程中,鼓励学生提问与思考,促进课堂参与。

4.4 实际问题的解决教师适当出示一些实际问题,引导学生通过确定圆的条件来解决问题。

九年级上册圆的基本性质教案

九年级上册圆的基本性质教案
然后把此结论归纳成命题的形式:
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.
垂径定理的几何语言
∵CD为直径,CD⊥AB(OC⊥AB)
∴EA=EB,AC=BC,ADB,如图,用直尺和圆规求作这条弧的中点.(先介绍弧中点概念)
作法:
⒈连结AB.
⒉作AB的垂直平分线CD, 交弧AB于点E.
②分别作AB、AC的垂直平分线,并交于一点O,O为圆心;
③连结OA,以OA为半径画圆即可.
2.精心的判一判
(1)过两点可以作无数个圆()
(2)经过三点一定可以做一个圆()
(3)顶点都在圆上的三角形叫做圆的外接三角形()
(4)任意一个三角形一定有一个外接圆,并且只有一个外接圆()
(5)任意一个圆一定有一个内接三角形,并且只有一个内接三角形()
注:弦长、半径、弦心距三个量中已知两个,就可以求出第三个.
五、目标训练,及时反馈
1.已知⊙0的半径为13,一条弦的AB的弦心距为5,则这条弦的弦长等于.
答案:24
2.如图,AB是⊙0的中直径,CD为弦,CD⊥AB于E,则下列结论中不一定成立的是()
A.∠COE=∠DOEB.CE=DEC.OE=BED.BD=BC
③半径相等的两个圆能够完全重合,我们把半径相等的两个圆叫做
等圆.例如,图中的⊙O1和⊙O2是等圆.
圆心相同,半径不相等的圆叫做同心圆.(学生画同心圆)
完成课本第58页的做一做.
三、 点和圆的位置关系
同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击10发子弹在靶上留下的痕迹.你知道这个运动员的成绩吗?请同学们算一算.(击中最里面的圆的成绩为10环,依次为9、8、…、1环).这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径.

北师大版 九年级数学下册 第3章 圆 单元精品教案合集

北师大版 九年级数学下册 第3章 圆 单元精品教案合集

3.1圆一、教学目标1.知道圆的有关定义及表示方法.2.掌握点和圆的位置关系.3.会根据要求画出图形.二、课时安排1课时三、教学重点点和圆的位置关系.四、教学难点点和圆的位置关系.五、教学过程(一)导入新课生活中关于圆的图形展示,引导学生认识圆并谈谈对圆的理解:(二)讲授新课活动1:小组合作观察车轮,你发现了什么?车轮为什么做成圆形?车轮做成三角形、正方形可以吗?探究1; (1)如图,A,B表示车轮边缘上的两点,点O表示车轮的轴心,A,O之间的距离与B,O之间的距离有什么关系?O BAC(2)C表示车轮边缘上的任意一点,要使车轮能够平稳地滚动,C,O之间的距离与A,O之间的距离应满足什么关系?明确:车轮边缘上任意两点到轴心的距离都相等, 任意一点到轴心的距离是一个定值.圆上的点到圆心的距离是一个定值.探究2:投圈游戏一些学生正在做投圈游戏,他们呈“一”字排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?为了使投圈游戏公平,现在有一条3米长的绳子, 你准备怎么办?定义平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点称为圆心,定长称为半径.O注意:1.从圆的定义可知:圆是指圆周而不是圆面.2.确定圆的要素是:圆心、半径.圆心确定圆的位置,半径确定圆的大小,确定一个圆,两者缺一不可.以点O为圆心的圆记作:⊙O,读作:“圆O”.探究3:圆的有关性质战国时期的《墨经》一书中记载:“圜,一中同长也”.古代的圜(huán)即圆,这句话是圆的定义,它的意思是:圆是从中心到周界各点有相同长度的图形.提问: 如果一个点到圆心距离小于半径, 那么这个点在哪里呢?大于圆的半径呢?反过来呢?试根据圆的定义填空:1.圆上各点到________________的距离都等于___________________.2.到定点的距离等于定长的点都在_________.探究4:点与圆的位置关系如图,设⊙O的半径为r,A点在圆内,B点在圆上,C点在圆外,那么OA<r, OB=r,OC>r.结论:点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系也可以确定该点与圆的位置关系.1.画图:已知Rt△ABC,AB<BC,∠B=90°,试以点B为圆心,BA为半径画圆.2.根据图形回答下列问题:(1)看图想一想,Rt△ABC 的各个顶点与⊙B 在位置上有什么关系? 答:点A 在圆上.点B 在圆内.点C 在圆外(2)在以上三种关系中,点到圆心的距离与圆的半径在数量上有什么关系? 活动2:探究归纳点在圆外,这个点到圆心的距离大于半径. 点在圆上,这个点到圆心的距离等于半径. 点在圆内,这个点到圆心的距离小于半径. (三)重难点精讲例1.已知⊙O 的半径r=2cm, 当OP 时,点P 在⊙O 上; 当OA=1cm 时,点A 在 ; 当OB=4cm 时,点B 在 . 答案:=2cm; ⊙O 内; ⊙O 外例2.已知:如图,矩形ABCD 的对角线相交于点O ,试猜想:矩形的四个顶点能在同一个圆上吗?OCDBA答:在矩形ABCD 中,有OA=OB=OC=OD ,四个顶点在同一个圆上,故矩形四个顶点能在同一个圆上.(四)归纳小结通过本课时的学习,需要我们掌握:1.从运动和集合的观点理解圆的定义.2.点与圆的位置关系.3.证明几个点在同一个圆上的方法.(五)随堂检测1.(上海·中考)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A.点B,C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B,C均在圆P内2.(新疆建设兵团·中考)如图,王大爷家屋后有一块长12m,宽8m的矩形空地,他在以BC为直径的半圆内种菜,他家养的一只羊平时拴在A处,为了不让羊吃到菜,拴羊的绳子可以选用()A.3mB.5mC.7mD.9m3.(泉州·中考)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是________.(写出符合的一种情况即可)【答案】1. 【解析】选C.由题意知,PB=6,PA=2,PD=7, PC=9,所以点B在圆P内、点C在圆P外.2. 答案:A3. 【解析】∵圆心的位置不确定,∴交点个数共有5种情况即0、1、2、3、4.故答案为0或1或2或3、4.答案:2(符合答案即可)六.板书设计3.1圆1.判断点与圆的位置关系的方法:设⊙O的半径为r,则点P与⊙O的位置关系有(1)点P在⊙O上 OP=r(2)点P在⊙O内 OP<r(3)点P在⊙O外 OP>r2.要证明几个点在同一个圆上,只要证明这几个点到同一个定点的距离相等.七、作业布置课本P66练习练习册相关练习八、教学反思3.2圆的对称性一、教学目标1.掌握圆的轴对称性和中心对称性2.掌握圆心角的概念.3.掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.二、课时安排1课时三、教学重点掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.四、教学难点掌握在同圆或等圆中,圆心角、弦、弧中有一个量相等就可以推出其他的两个量对应相等,以及它们在解题中的应用.五、教学过程(一)导入新课1、举例说明什么是弧、弦及圆心角。

北师大版九年级数学圆教案

北师大版九年级数学圆教案

北师大版九年级数学《圆》教案教学活动学生活动教学评价环节一:情景引入1、揭示概念产生的背景(多媒体辅助)环节二:探索一:圆的定义2、展示概念的形成过程活动一:通过从手推车,自行车,摩托车,小汽车等轮子的观察,我们发现各种车的轮子都是以圆形为结构。

从而引发学生思考车轮为什么是圆的?车轮可以是正方形、椭圆形、三角形结构的吗?(1)欣赏科普动画视频,车轮为什么是圆的?(2)试着用准备好的圆形、正方形、三角形、椭圆形模具动手操作说明车轮为什么是圆的而不是其它形状的。

问题1:车轮在滚动过程中圆上各点有什么特点?问题2:车轮在滚动过程中什么没有改变?3 抽象概括,形成概念:活动二:议一议:一些学生在做投圈游戏,他们呈“一”字排开。

这样的对形对每个人都公平吗?你认为应排成什么样的队形?为什么?抽象概括,形成概念:试一试:用自己的语言描述圆的概念。

用多媒体演示圆定义:圆可以看成是到定点的距离等于定长的所有点组成的图形。

其中定点就是圆心,定长就是半径,以点0为圆心的圆记做⊙0,读做“圆0”。

环节三:认识圆中的相关概念情景问题:奥运五环、一石激起千层浪观察这些图片中的圆有什么相同和不同环节一:欣赏画面中的和谐美,举出生活中其他的例子。

环节二:观看动画,感受圆形车轮转动起来最平稳。

观察车轮边缘任意一点与轴心的距离,用各种方法作出判断。

将这些点推广到一般情况,使学生认识到圆上任意一点到圆心的距离是一个定值。

讨论应排成什么样的队形可以使游戏公平,并通过画圆解决活动二,并体会圆是怎样形成的。

通过这些精美的画面的展示,让学生切身感受到生活离不开圆,也激发学生思考为什么离不开圆。

引出下一个活动:以车轮为背景来研究圆,认识圆。

在学生动手操作后,追问两个问题,一方面加强学生对车轮为什么做成圆形更稳定原因的思考。

另一方面也在帮助学生从另一个角度(集合)认识圆。

通过设计游戏方案,使学生抛开车轮背景,在自己设计的游戏方案中再一次体会圆的形成过程,抽象概括出圆的定义。

九年级数学下册第3章圆3.1圆3.1.3过不在同一直线上的三点作圆课件湘教版

九年级数学下册第3章圆3.1圆3.1.3过不在同一直线上的三点作圆课件湘教版

AC AP 3AP. tan 30
【互动探究】若AP=1,则⊙O的面积为多少? 提示:∵∠PAC=90°, ∴弦PC为⊙O的直径, ∴PC2=12+( 3 )2=4,∴PC=2, ∴S⊙O=π×12=π.
【总结提升】三角形外接圆圆心的“三种”位置 1.锐角三角形的外心在三角形内部,如图1; 2.直角三角形的外心是斜边的中点,如图2; 3.钝角三角形的外心在三角形外部,如图3.
4.已知 A B ,请找出 A B 所在圆的圆心, 并将圆的其他部分作出来.
【解析】作法:(1)在 A 上B 任取一点C(点C与A,B两点不重合). (2)连结AC,BC. (3)分别作AC,BC的垂直平分线,它们的交点O就是A B 所在圆 的圆心.
(4)以O为圆心,以OA为半径作出⊙O,如图所示.
设半径OB=R,则OD=4-R,由R2=32+(4-R)2,解得R=3.125.
3.△ABC的边长AB=1 cm, A C 2cm ,B C 3cm ,则其外接圆的 半径是________.
【解析】因为AB2+AC2=12+2=3=BC2.
所以△ABC为直角三角形,所以其外接圆的半径为△ABC斜边的 一半,即 r 3 .
3.1.3 过内确定一个圆的条件.(重点) 2.理解“不在同一直线上的三个点确定一个圆”,并能经过不 在同一直线上的三个点作圆.(重点) 3.了解三角形的外接圆及外心.(难点)
确定圆的条件 (1)确定一个圆需要确定_圆__心__和__半__径__. (2)经过一点A可以作_无__数__个圆. (3)经过两点A,B可以作_无__数__个圆,这些圆的圆心都在线段AB 的_垂__直__平__分__线__上.
题组二:与圆内接三角形有关的运算 1.(2013·漳州中考)如图,☉O是△ABC的外接圆,连结OB,OC,若 OB=BC,则∠BAC等于 ( )

北师大版九年级下册数学《圆》说课教学课件

北师大版九年级下册数学《圆》说课教学课件

半径为3 m的圆,你能帮他想 想办法吗?
解:将绳子的一端A固定,然后拉紧绳子的另一端B,并绕
A点在地上旋转一周,则B点经过的路线就是一个半径
为3 m的圆.
知1-练
2
下列关于圆的叙述中正确的是( B )
A.圆是由圆心唯一确定的
B.圆是一条封闭的曲线
C.平面上到定点的距离小于或等于定长的所有点组
成圆
3
C.当a<1时,点B在⊙A外
D.当a>5时,点B在⊙A外
课堂练习
3.一点和⊙O上的最近点距离为4cm,最远的距离为
圆(圆周)
圆心
半径
D
rO
r
C
r
r
r
A
E
总结
1.从圆的定义可知:圆是指圆周而不是圆面.
2.确定圆的要素是:圆心、半径.
3.圆心确定圆的位置,半径确定圆的大小,确定一个圆,两者缺
一不可.
O
A
新知讲解
概念:连接圆上任意两点的线段(如图中的AC)叫做弦.
O
B
C
r
A
经过圆心的弦(如图中的AB)叫做直径.
图中_________是弦,_________是直径.
6
以其中两个点为端点的弧共有_____条,
3
弦共有____条.
导引:由弧的概念知以A,B,C中任意两个点为端点的弧有,
AB , BC ,CA, ACB , BAC , ABC
共6条;由弦的概念知以A,
B,C中任意两个点为端点的弦有AB,BC,AC,共3条.
知2-讲
总 结
圆上的任意两点分圆为两条弧:一条优弧、一条劣
4〜5m,5〜6m,6〜7m,7m以 外.

北师大版圆的周长教案

北师大版圆的周长教案

北师大版圆的周长教案第一章:圆的认识1.1 圆的定义引导学生通过观察生活中的圆形物体,如硬币、轮子等,初步理解圆的概念。

讲解圆的特性:圆心、半径、直径等。

1.2 圆的周长介绍圆的周长的概念,引导学生理解周长是圆的边界。

利用实物或模型演示圆的周长,让学生感受周长的存在。

引导学生通过测量圆形物体的周长,初步理解圆的周长与直径的关系。

第二章:圆的周长计算2.1 圆的周长公式讲解圆的周长公式:C = 2πr 或C = πd,其中C表示周长,r表示半径,d表示直径,π表示圆周率。

引导学生通过数学推导理解圆的周长公式的由来。

2.2 圆的周长计算方法讲解如何利用圆的周长公式计算圆的周长。

引导学生进行实际操作,计算不同半径或直径的圆的周长。

第三章:圆的周长应用3.1 圆的周长与直径的关系引导学生通过实验或数学推导,探究圆的周长与直径的关系,得出周长与直径的比值是圆周率π。

3.2 圆的周长在实际生活中的应用引导学生思考圆的周长在生活中的应用,如自行车轮胎的周长与骑行速度的关系等。

让学生通过实际测量和计算,解决与圆的周长相关的生活问题。

第四章:圆的周长扩展4.1 圆的周长与面积的关系引导学生了解圆的面积公式:A = πr²,其中A表示面积,r表示半径。

讲解圆的周长与面积的关系,引导学生理解周长与面积的关联性。

4.2 圆的周长的进一步探究引导学生思考圆的周长的其他性质和规律,如圆的周长与半径或直径的比例关系等。

引导学生进行深入研究,提出自己的猜想和假设,并进行验证。

第五章:圆的周长综合练习5.1 圆的周长计算练习给出不同半径或直径的圆的周长计算题目,让学生进行计算练习。

引导学生运用圆的周长公式解决实际问题,如计算自行车轮胎的周长等。

5.2 圆的周长应用练习给出与圆的周长相关的实际问题,让学生进行计算和解决。

引导学生运用圆的周长知识解决生活中的问题,如计算圆桌的周长等。

第六章:圆的周长与弧长6.1 弧长的概念引入弧长的概念,让学生理解弧长是圆上任意两点间线段的长度。

北师大版九年级下册数学习题PPT课件3.1圆

北师大版九年级下册数学习题PPT课件3.1圆

(又∵AB=) O△C,O∴AAB′=OBB,′∴中∠B,OA根=∠据A,勾∴∠股EB定O=理2∠可A,得∴∠AEO′BD=′=∠E2+∠3A=3∠A=78°,∴∠A=26°
A.a>b>c B.a=b=c
8.(6分)(原创题)在平面直角坐标系中,已知点A的坐标为(1,0),⊙A的半径为2,若点B的坐标为(a,0),则:
9.(8分)(教材P68习题3.1T2变式)如图,Rt△ABC的直角边BC=3 cm, AC=4 cm,斜边上的高为CD,若以点C为圆心,分别以r1=2 cm,r2= 2.4 cm,r3=4 cm为半径作圆,试判断点D与这三个圆的位置关系.
解:∵AC=4 cm,BC=3 cm,∠ACB=90°,∴AB= 32+42 =5(cm).
解8.:(6连分接分)(原OB别创,题∵是)在OE方平=面O程直B,角x∴2坐-∠标E系7=中x∠+,EB已1O知.2点=A的0坐的标两为(1根,0,),⊙则A的点半A径与为2,⊙若O点B的的坐位标置为(a关,0系),则是:(
A.a>b>c B.a=b=c
D)
AC..点直O上
A.内
B.上
C.外
D.无法确定
(3)当___________________时,点B在⊙A外.
11.如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,则下列各式中正确的是
(
)
三A.、内解答题点(共B4.与0分上圆) 的C位.外置关系D.无法确定
点称为格点),如果以点 A 为圆心,r 为半径画圆,选取的格点中除点 A
外恰好有 3 个在圆内,则 r 的取值范围为( B
)
A.2 2 <r< 17 B. 17 <r≤3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级数学下册3.1圆教案1新版北师大版
教学目标:
1.知道圆的有关定义,及表示方法;
2.掌握点和圆的位置关系;
3.会根据要求画出图形。

教学重点与难点:
重点:点和圆的三种位置关系.
难点:用集合的观点研究圆的概念.
教学准备:多媒体课件
教学过程
一、创设情境,引入新课
同学们,春节期间中央电视台举办的《中央谜语大会》很受观众们的关注,也让我们积极的参与进来吧?出示谜题,学生自由讨论发挥,随着谜底的解开引入课题.(引入新课,板书课题)
活动一:
1.让学生举例说明生活中存在的圆的图案.
2.出示老师搜集的图片让学生感受圆.
活动二:
(1)请大家用自己的方式在草稿纸上画一个圆.
要求:①尝试用多种方法;②观察、思考圆
的形成过程.
(2)教师演示用圆规和绳子画圆.
活动三:出示图片
一些学生正在做投圈游戏,他们呈“一”字排
开.思考:这样的队形对每一人都公平吗?你认为
他们应当排成什么样的队形?
设计意图:增加对圆的感性认知,为抽象出圆的定
义做准备.
二、师生合作,探究新知
活动一:圆的定义
[师]日常生活中同学们经常见到的汽车,摩托车、自行车等一些交通运输工具的车轮是什么形状的?
[生]圆形.
[师]请同学们思考一个问题,为什么车轮要做成圆形呢?能否做成长方形或正方形?
老师这里有两个车轮模具,一个是圆形,一个是正方形.我们一起观察一下这两个车轮在行进中有些什么特点?大家讨论.
讨论如下图:
[生]圆形车轮行进时,较平稳;方形车轮运转不方便,颠簸较大,行走不平稳……
[师]通过我们平常乘坐汽车,或骑自行车感受到,圆形的车轮只要路面平整,车子就不会上下颠簸,人坐在车上就感到平稳、舒服,假如车轮是方形的,那么车子在行进中,就会对人产生一种上下颠簸,坐着不舒服的感觉.
下面我们一起来探讨一下,是什么原因导致车轮要做成圆形,不能做成方形.看几,图,A、B表示车轮边缘上的两点,点O表示车轮的轴心,A、O之间的距离与B、O之间的距离有什么关系?用什么方法可以判断,大家动手做一做.
[生]……
[师]同学们做得很好.大家通过不同的方法,得到的结果是什么?
[生]OA=OB.
[师)刚才是两个特殊点,现在我们在车轮边缘上任意取一点C,要使车轮能够平稳地滚动,C、O之间的距离与A、O之间的距离应有什么关系?
[生]CO=AO.这样才能保证车轮平稳地滚动.
[师]同学们以前画过圆,画一个圆很简单.将圆规的一个脚固定,另一个带有铅笔头的脚转一圈.一个圆就画出来了.固定的那一点称为圆心,所画得的圆圈叫圆周.从画圆的过程中可以看到,圆规两个脚之间的长度始终保持不变,也就是说圆心到圆周上任意一点的距
离都相等.这是圆的一个重要而又最基本的性质.人们就是用圆的这种性质来制造车轮的,车轴总是安装在车轮的圆心位置上,这样.车轴到车轮边缘的距离处处相等.也就是说,车子在行进中,车轴离路面的距离总是一样的.车子在乎路上行走较平稳,假如是方形的,车轴到路面的距离时大时小,车子就会产生颠簸.
平面上到定点的距离等于定长的所有点组成的图形叫做圆(circle).其中,定点称为圆心(centreofacircle),定长称为半径(radius)的长(通常也称为半径).以点O为圆心的圆记作⊙O,读作“圆O”.
注意:确定一个圆需要两个要素,一是位置,二是大小;圆心确定其位置,半径确定其大小.只有圆心没有半径,虽圆的位置固定,但大小不定,因而圆不确定;只有半径而没有圆心,虽圆的大小固定,但圆心的位置不定.因而圆也不确定,只有圆心和半径都固定,圆才被唯一确定.
活动二:
介绍弦、弧、直径、半径、半圆、等圆的相关概念.以教师介绍、学生认知为主.
设计意图:通过这一过程培养学生思维的灵活,从而达到巩固双基,举一反三的目的。

此处留给学生充分的时间去思考、讨论.并培养学生对某个问题作出正确判断、合理决策的能力.使学生完整地经历“表象——本质;粗放——准确”的活动过程,培养学生抓关键条件的能力和缜密描述的能力.
活动三:想一想:
如图:是一个圆形耙的示意图,O为圆心,小明向上投了5枝飞镖,它们分别落到了A、B、C、D、E点。

观察A、B、C、D、E这5个点与⊙O的位置关系?
问题1.点A,B,C,D,E到圆心O的距离与⊙O的半径有怎样的大小关系?
总结:
“点与圆的位置关系”和“点到圆心的距离(d)与半径( r)之间的数量关系”
(1).点在圆内,则d<r
(2).点在圆上,则d=r
(3).点在圆外,则d>r
点的集合:
圆上:可以看作是到圆心的距离等于半径的点的集合。

圆的内部:可以看作是到圆心的距离小于半径的点的集合。

圆的外部: 可以看作是到圆心的距离大于半径的点的集合。

设计意图:通过此问题的探究,使学生理解点与圆的位置关系,并体会定性分析与定量分析的关系.
三、随堂练习,巩固提高
1.已知⊙O的面积为25π,判断点P与⊙O的位置关系.
(1)若PO=5.5,则点P在;
(2)若PO=4,则点P在;
(3)若PO= ,则点P在圆上.
2.正方形ABCD的边长为3cm,以A为圆心,3cm长为半径作⊙A,则点A在⊙A ,点B在⊙A ,点C在⊙,点D在⊙A 。

3.设AB=3cm,作图说明满足下列要求的图形.
(1)到点A和点B的距离都等于2cm的所有点组成的
图形.
(分别以A、B为圆心,2厘米长为半径的⊙A和⊙B
的交点)
(2)到点A和点B的距离都小于2cm的所有点组成的
图形
(分别以点A、B为圆心,2厘米长为半径的⊙A的内
部和⊙B的内部的公共部分,即图中阴影部分,不包括阴
影的边界)
设计意图:涌过这一训练,让学生多层次,多角度认识问题,多种策略考虑问题,发展其创新意识和实践。

四、课堂小结,反思提高
[师]通过这节课的学习,同学们谈一下你有何收获和体会.
[生]我们知道了马轮为什么做成圆形以及圆的定义和确定一个圆的两个条件.
[生]找还学会了如何确定点和圆的三种位置关系.
设计意图:组织学生小结,并作适当的补充,从知识、方法和情感三方面归纳小结,进行反思.有困惑的学生,课后和老师交流.
五、巩固新知 ,拓展应用
1.如图,一根6m 长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.
2.已知:如图,矩形ABCD 的对角线相交于点O ,试猜想:矩形的四个顶点在同一个圆上吗?如果在同一个圆上, 是在怎样一个圆上,并给予证明?如果不在同一个圆上,试说明为什么?
设计意图:
学以致用,
及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.
六、布置作业,课后促学
必做题:课本习题8.1的第1,2题.
选做题:课本习题8.1的第3题.
板书设计。

相关文档
最新文档