2019届云南省玉溪市红塔区第一学区九年级第一次模拟考试数学试卷【含答案及解析】
云南省玉溪市2019-2020学年中考数学一模考试卷含解析
云南省玉溪市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .2.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°3.已知关于x 的不等式ax <b 的解为x >-2,则下列关于x 的不等式中,解为x <2的是() A .ax+2<-b+2 B .–ax-1<b-1 C .ax >b D .1xa b <-4.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .1005.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b6.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件716 )A .±4B .4C .2D .±28.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP,CP 分别平分∠EDC 、∠BCD ,则∠P 的度数是()A .60°B .65°C .55°D .50°9.对于不等式组1561333(1)51x x x x ⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是( )A .此不等式组的正整数解为1,2,3B.此不等式组的解集为716x -<≤C .此不等式组有5个整数解D .此不等式组无解10.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 11.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A .50°B .110°C .130°D .150°12.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8B .若这5次成绩的众数是8,则x =8C .若这5次成绩的方差为8,则x =8D .若这5次成绩的平均成绩是8,则x =8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是14.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.15.已知反比例函数21kyx+=的图像经过点(2,1)-,那么k的值是__.16.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=10,AC=6,则DF的长为__.17.分解因式:a3b+2a2b2+ab3=_____.18.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=32CD,求⊙O半径.20.(6分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB 上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF 交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.21.(6分)如图,点是反比例函数与一次函数在轴上方的图象的交点,过点作轴,垂足是点,.一次函数的图象与轴的正半轴交于点. 求点的坐标;若梯形的面积是3,求一次函数的解析式;结合这两个函数的完整..图象:当时,写出的取值范围.22.(8分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p 倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!23.(8分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地距离y (千米)与时间x (小时)之间的函数关系;折线OBCDA 表示轿车离甲地距离y (千米)与时间x (小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x 的值;在两车行驶过程中,当轿车与货车相距20千米时,求x 的值.24.(10分)如图,抛物线交X 轴于A 、B 两点,交Y 轴于点C ,445,OB OA CBO ︒=∠=.(1)求抛物线的解析式;(2)平面内是否存在一点P ,使以A ,B ,C ,P 为顶点的四边形为平行四边形,若存在直接写出P 的坐标,若不存在请说明理由。
云南省玉溪市2019-2020学年中考数学一模试卷含解析
云南省玉溪市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+1x=2 C.x2+1=x2﹣1 D.x(x﹣1)=02.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A远动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.3.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分4.不等式组1240xx>⎧⎨-≤⎩的解集在数轴上可表示为()A.B.C.D.5.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩6.如图是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,依此规律,第2018个图案中涂有阴影的小正方形个数为()A.8073 B.8072 C.8071 D.80707.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A.B.C.D.8.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是()A.100°B.80°C.60°D.50°9.下列图形不是正方体展开图的是()A.B.C.D.10.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)11.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=212.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则CDMV周长的最小值为()A.6 B.8 C.10 D.12 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.△ABC中,∠A、∠B都是锐角,若sinA=32,cosB=12,则∠C=_____.14.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.15.若x a y与3x2y b是同类项,则ab的值为_____.16.如图,直线a∥b,∠P=75°,∠2=30°,则∠1=_____.17.已知⊙O的面积为9πcm2,若点O到直线L的距离为πcm,则直线l与⊙O的位置关系是_____.18.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则⊙O的半径为___________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为a,点B表示的数为b.(1)若A、B移动到如图所示位置,计算+a b的值.(2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b a-. (3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.20.(6分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD 的面积.21.(6分)如图,△ABC 是等腰直角三角形,且AC=BC ,P 是△ABC 外接圆⊙O 上的一动点(点P 与点C 位于直线AB 的异侧)连接AP 、BP ,延长AP 到D ,使PD=PB ,连接BD .(1)求证:PC ∥BD ;(2)若⊙O 的半径为2,∠ABP=60°,求CP 的长;(3)随着点P 的运动,PA PB PC+的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.22.(8分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .23.(8分)先化简代数式211a a a a a +⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭,再从﹣1,0,3中选择一个合适的a 的值代入求值.24.(10分)(1)计算:|﹣3|+(5+π)0﹣(﹣12)﹣2﹣2cos60°; (2)先化简,再求值:(1111a a --+)+2421a a +-,其中a=﹣2+2. 25.(10分)如图,抛物线y =12x 2+bx+c 与x 轴交于点A (﹣1,0),B (4,0)与y 轴交于点C ,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交抛物线与点Q .求抛物线的解析式;当点P 在线段OB 上运动时,直线1交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;在点P 运动的过程中,坐标平面内是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.26.(12分)化简求值:212(1)211x x x x -÷-+++,其中x 是不等式组273(1)423133x x x x -<-⎧⎪⎨+≤-⎪⎩①②的整数解. 27.(12分)解方程:1322x x x+=--.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C 没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 2.A【解析】【分析】当点F 在MD 上运动时,0≤x <2;当点F 在DA 上运动时,2<x≤4.再按相关图形面积公式列出表达式即可.【详解】解:当点F 在MD 上运动时,0≤x <2,则:y=S 梯形ECDG -S △EFC -S △GDF =()()()2421144224222x x x x x x x -+⨯--+-⨯-=+, 当点F 在DA 上运动时,2<x≤4,则:y=()142244162x x ⎡⎤--⨯⨯=-+⎣⎦, 综上,只有A 选项图形符合题意,故选择A.【点睛】本题考查了动点问题的函数图像,抓住动点运动的特点是解题关键.3.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4.A【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:1240x x >⎧⎨-≤⎩①② ∵不等式①得:x >1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.5.A【解析】【分析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.【详解】由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 6.A【解析】【分析】观察图形可知第1个、第2个、第3个图案中涂有阴影的小正方形的个数,易归纳出第n 个图案中涂有阴影的小正方形个数为:4n+1,由此求解即可.【详解】解:观察图形的变化可知:第1个图案中涂有阴影的小正方形个数为:5=4×1+1; 第2个图案中涂有阴影的小正方形个数为:9=4×2+1; 第3个图案中涂有阴影的小正方形个数为:13=4×3+1; …发现规律:第n 个图案中涂有阴影的小正方形个数为:4n+1;∴第2018个图案中涂有阴影的小正方形个数为:4n+1=4×2018+1=1.故选:A .【点睛】本题考查了图形的变化规律,根据已有图形确定其变化规律是解题的关键.7.B【解析】【分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.8.B【解析】试题分析:如图,翻折△ACD,点A落在A′处,可知∠A=∠A′=100°,然后由圆内接四边形可知∠A′+∠B=180°,解得∠B=80°.故选:B9.B【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选B.【点睛】此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.10.C【解析】【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.11.A【解析】【分析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【详解】解:原方程可化为:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故选:A.【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.12.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+12BC=8+12×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60°.【解析】【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角cosB=12,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.14.2.【解析】【分析】设第n层有a n个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“a n=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有a n个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴a n=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“a n=2n﹣2”是解题的关键.15.2【解析】试题解析:∵x a y与3x2y b是同类项,∴a=2,b=1,则ab=2.16.45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.17.相离【解析】【分析】设圆O的半径是r,根据圆的面积公式求出半径,再和点0到直线l的距离π比较即可.【详解】设圆O的半径是r,则πr2=9π,∴r=3,∵点0到直线l的距离为π,∵3<π,即:r<d,∴直线l与⊙O的位置关系是相离,故答案为:相离.【点睛】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当r<d时相离;当r=d时相切;当r>d时相交.18.15 2【解析】【分析】如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,∴5:r=3:(r-3),解得:r=152,故答案为152.【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.【解析】【分析】(1)根据数轴即可得到a,b数值,即可得出结果.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2,b a即可求解.(1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.【详解】(1)由图可知:a=10,b=2,∴a+b= 2故a+b的值为2.(2)由B点不动,点A向左移动1个单位长,可得a=3,b=2∴b|a|=b+a=23= 3故a的值为3,b|a|的值为3.(1)∵点A不动,点B向右移动15.1个单位长∴a=10,b=17.1∴b a=17.1(10)=27.1故b比a大27.1.【点睛】本题主要考查了数轴,关键在于数形结合思想.20.2.【解析】试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.21.(1)证明见解析;(262;(3)PA PBPC+的值不变,2PA PBPC+=.【解析】【分析】(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;(3)证明△CBP∽△ABD,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC 是等腰直角三角形,且AC=BC ,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB 为⊙O 的直径,∴∠APB=90°,∵PD=PB ,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC ∥BD ;(2)作BH ⊥CP ,垂足为H ,∵⊙O 的半径为2,∠ABP=60°,∴2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt △BCH 中,CH=BC•cos ∠6,BH=BC•sin ∠2,在Rt △BHP 中,2,∴62;(3)PA PB PC+的值不变, ∵∠BCP=∠BAP ,∠CPB=∠D ,∴△CBP ∽△ABD , ∴AD AB PC BC=2, ∴PA PD PC +2,即PA PB PC +2. 【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.22.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(32 【解析】【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式; (3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求.【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q , ∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=- 解得:12b =-,∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得:233x x +-=, 解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入k y x =得:6k =,6y x ∴=.将()3,3-代入ky x =得:9k =-,9y x=-∴. 综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --,则点D 的坐标为()21,23x x bx +--, C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦ DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.AD Q 的长度不变,∴当DC 最小时,AC 有最小值.AC ∴的最小值=.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.23.11a a +-,1 【解析】【分析】 先通分得到22211a a a a a ⎛⎫⎛⎫++-÷ ⎪ ⎪⎝⎭⎝⎭,再根据平方差公式和完全平方公式得到2(1)(1)(1)a a a a a +⨯+-,化简后代入a =3,计算即可得到答案.【详解】 原式=22211a a a a a ⎛⎫⎛⎫++-÷ ⎪ ⎪⎝⎭⎝⎭=2(1)(1)(1)a a a a a +⨯+-=11a a +-, 当a =3时(a≠﹣1,0),原式=1.【点睛】本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.24.(1)-1;(2)267+-. 【解析】【分析】 (1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a 的值代入即可求出答案.【详解】(1)原式=3+1﹣(﹣2)2﹣2×12=4﹣4﹣1=﹣1;(2)原式=211a a -+()()+4211a a a ++-()() =2621a a +-当a=﹣时,原式=267+-. 【点睛】 本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25. (1) 213222y x x =--;(2) 当m =2时,四边形CQMD 为平行四边形;(3) Q 1(8,18)、Q 2(﹣1,0)、Q 3(3,﹣2)【解析】【分析】(1)直接将A (-1,0),B (4,0)代入抛物线y=12x 2+bx+c 方程即可; (2)由(1)中的解析式得出点C 的坐标C (0,-2),从而得出点D (0,2),求出直线BD :y =−12x+2,设点M(m ,−12m+2),Q(m ,12m 2−32m−2),可得MQ=−12m 2+m+4,根据平行四边形的性质可得QM=CD=4,即−12m 2+m+4=4可解得m=2; (3)由Q 是以BD 为直角边的直角三角形,所以分两种情况讨论,①当∠BDQ=90°时,则BD 2+DQ 2=BQ 2,列出方程可以求出Q 1(8,18),Q 2(-1,0),②当∠DBQ=90°时,则BD 2+BQ 2=DQ 2,列出方程可以求出Q 3(3,-2).【详解】(1)由题意知,∵点A (﹣1,0),B (4,0)在抛物线y =12x 2+bx+c 上,∴210214402b c b c ⎧-+=⎪⎪⎨⎪⨯++=⎪⎩解得:322b c ⎧=-⎪⎨⎪=-⎩ ∴所求抛物线的解析式为 213222y x x =-- (2)由(1)知抛物线的解析式为213222y x x =--,令x =0,得y =﹣2 ∴点C 的坐标为C (0,﹣2)∵点D 与点C 关于x 轴对称∴点D 的坐标为D (0,2)设直线BD 的解析式为:y =kx+2且B (4,0)∴0=4k+2,解得:1k 2=- ∴直线BD 的解析式为:122y x =+ ∵点P 的坐标为(m ,0),过点P 作x 轴的垂线1,交BD 于点M ,交抛物线与点Q∴可设点M 1m,22m ⎛⎫-+ ⎪⎝⎭,Q 213,222m m m ⎛⎫-- ⎪⎝⎭ ∴MQ =2142m m -++ ∵四边形CQMD 是平行四边形 ∴QM =CD =4,即2142m m -++=4 解得:m 1=2,m 2=0(舍去)∴当m =2时,四边形CQMD 为平行四边形(3)由题意,可设点Q 213,222m m m ⎛⎫-- ⎪⎝⎭且B (4,0)、D (0,2) ∴BQ 2=22213(4)222m m m ⎛⎫-+-- ⎪⎝⎭ DQ 2=22213422m m m ⎛⎫+-- ⎪⎝⎭BD 2=20①当∠BDQ =90°时,则BD 2+DQ 2=BQ 2, ∴2222221313204(4)22222m m m m m m ⎛⎫⎛⎫++--=-+-- ⎪ ⎪⎝⎭⎝⎭ 解得:m 1=8,m 2=﹣1,此时Q 1(8,18),Q 2(﹣1,0)②当∠DBQ =90°时,则BD 2+BQ 2=DQ 2,∴22 2222131320(4)242222 m m m m m m⎛⎫⎛⎫+-+--=+--⎪ ⎪⎝⎭⎝⎭解得:m3=3,m4=4,(舍去)此时Q3(3,﹣2)∴满足条件的点Q的坐标有三个,分别为:Q1(8,18)、Q2(﹣1,0)、Q3(3,﹣2).【点睛】此题考查了待定系数法求解析式,还考查了平行四边形及直角三角形的定义,要注意第3问分两种情形求解.26.当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1.【解析】【分析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.27.5 2【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可. 详解:去分母,得()132x x -=-.去括号,得136x x -=-.移项,得 361x x -=-.合并同类项,得 25x =.系数化为1,得52x =. 经检验,原方程的解为52x =. 点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.。
2019年玉溪市中考数学一模试题(及答案)
2019年玉溪市中考数学一模试题(及答案)一、选择题1.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.22D.22.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.123D.1634.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A14B.4cm C15D.3cm5.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A .3.5B .3C .4D .4.56.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.下列计算正确的是( ) A .a 2•a=a 2 B .a 6÷a 2=a 3 C .a 2b ﹣2ba 2=﹣a 2b D .(﹣32a )3=﹣398a8.如果,则a 的取值范围是( ) A .B .C .D .9.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 11.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+5 )米12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.19.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.20.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.三、解答题21.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.22.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.23.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?24.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.【详解】解:连接OA,OB.∵∠APB=45°,∴∠AOB=2∠APB=90°.∵OA=OB=2,∴AB=22OA OB+=22.故选C.2.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.3.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积33D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.4.A解析:A【解析】运用直角三角形的勾股定理,设正方形D的边长为x,则22222(65)(5)10x+++=,14x cm=(负值已舍),故选A5.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B .6.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.C解析:C【分析】根据同底数幂的乘法运算可判断A;根据同底数幂的除法运算可判断B;根据合并同类项可判断选项C;根据分式的乘方可判断选项D.【详解】A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=-a2b,符合题意;D、原式=-278a,不符合题意,故选C.【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.8.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.9.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,故选C . 【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.10.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.A解析:A 【解析】试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理12.B解析:B 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,B 、是中心对称图形,也是轴对称图形,故该选项符合题意,C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,D 、是中心对称图形,不是轴对称图形,故该选项不符合题意. 故选B . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.36°或37°【解析】分析:先过E 作EG∥AB 根据平行线的性质可得∠AEF=∠BAE+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB ∥CD ,∴GE ∥CD ,∴∠BAE=∠AEG ,∠DFE=∠GEF ,∴∠AEF=∠BAE+∠DFE ,设∠CEF=x ,则∠AEC=2x ,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE <15°,∴6°<3x-60°<15°,解得22°<x <25°,又∵∠DFE 是△CEF 的外角,∠C 的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.【解析】试题分析:如图设AF 的中点为D 那么DA=DE=DF 所以AF 的最小值取决于DE 的最小值如图当DE ⊥BC 时DE 最小设DA=DE=m 此时DB=m 由AB=DA+DB 得m+m=10解得m=此时AF=2解析:152【解析】试题分析:如图,设AF 的中点为D ,那么DA=DE=DF.所以AF 的最小值取决于DE 的最小值.如图,当DE⊥BC 时,DE 最小,设DA=DE=m ,此时DB=53m ,由AB=DA+DB ,得m+53m=10,解得m=154,此时AF=2m=152. 故答案为152.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.【解析】【分析】【详解】解:∵四边形ABCD是矩形∴AB=CD∠D=90°∵将矩形ABCD沿CE折叠点B恰好落在边AD的F处∴CF=BC∵∴∴设CD =2xCF=3x∴∴tan∠DCF=故答案为:【点5【解析】【分析】【详解】解:∵四边形ABCD是矩形,∴AB=CD,∠D=90°,∵将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,∴CF=BC,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-.∴tan ∠DCF =DF =CD 2x 2.【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.19.10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体利用完全平方公式求解【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2)=解析:10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体,利用完全平方公式求解.【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2) =[(a ﹣4)-(a ﹣2)]2+2(a ﹣4)(a ﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a 2±2ab+b 2求解,整体思想的运用使运算更加简便. 20.5【解析】【分析】连接CC1根据M 是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC 1,根据M 是AC 、A 1C 1的中点,AC=A 1C 1,得出CM=A 1M=C 1M=12AC=5,再根据∠A 1=∠A 1CM=30°,得出∠CMC 1=60°,△MCC 1为等边三角形,从而证出CC 1=CM ,即可得出答案.【详解】解:如图,连接CC 1,∵两块三角板重叠在一起,较长直角边的中点为M ,∴M 是AC 、A 1C 1的中点,AC=A 1C 1,∴CM=A 1M=C 1M=12AC=5, ∴∠A 1=∠A 1CM=30°,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.三、解答题21.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.22.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•B F=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.(1)8%,16;(2)P(1名男生和1名女生)23;(3)至少需要选取6人进行集训.【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%;总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.24.(1)甲对,乙不对,理由见解析;(2)2.【解析】试题分析:(1)根据多边形的内角和公式判定即可;(2)根据题意列方程,解方程即可. 试题解析:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.考点:多边形的内角和.301325.(1)证明见解析;xy【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB AD AD AF =,即AD 2=AB•AF=xy , 则AD=xy ; (3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =, ∴AF=AE•sin ∠AEF=10×513=5013, ∵AF ∥OD ,∴501013513AG AF DG OD ===,即DG=1323AD , ∴AD=503013·1813AB AF =⨯=, 则DG=133033013231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
云南省2019年中考数学模拟试卷(一)(含解析)(1)
17.当前,“校园 ipad 现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中
学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:
频数分布表
看法
频数
频率
赞成
5
无所谓
0.1
反对
40
0.8
(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
,即 1+3+32+33+…+3100=
,仿照以上推理计算:
1+5+52+53+… +52015 的值是
.
二、选择题(本大题共 8 个小题,每小题只有一个正确选项,每小题
7.一个数用科学记数法表示为 2.37 ×105,则这个数是(
)
A. 237 B. 2370 C . 23700 D. 237000
C.
D.
13.某鞋店一天卖出运动鞋 12 双,其中各种尺码的鞋的销售量如下表: 则这 12 双鞋的尺码
组成的一组数据中,众数和中位数分别是(
)
码( cm)
23.5
24
24.5
25
25.5
销售量(双)
1
2
2
5
2
A. 25, 25 B. 24.5 , 2
(3)若该校有 3000 名学生,请您估计该校持“反对”态度的学生人数.
件是 (只需添加一个即可)
5.已知 A( 0, 3),B( 2, 3)是抛物线 y= ﹣ x2+bx+c 上两点,该抛物线的顶点坐标是
.
2019学年云南省玉溪市红塔区第一学区九年级上学期期末考试数学试卷【含答案及解析】
2019学年云南省玉溪市红塔区第一学区九年级上学期期末考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是()A.1个 B.2个 C.3个 D.42. 一元二次方程x2=2x的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=-23. 下列计算正确的是()A. B.C. D.4. 端午节吃粽子是中华民族的传统习俗,妈妈买了2个红枣馅粽、3个豆沙馅粽、5个肉馅粽,粽子除内部馅料不同外其它均相同.小颖任意挑一个,吃到红枣馅粽的概率是()5. 将一幅三角板(含45°角的直角三角板ABC与含30°角的直角三角板DCB)按图示方式叠放,斜边交点为O,则△AOB与△COD的面积之比等于()A. B. C. D.6. 如图所示,两个同心圆的半径分别为3cm和5cm,弦AB与小圆相切于点C,则AB的长为()A.8cm B.6cm C.5cm D.4cm7. 将二次函数的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A. B.C. D.8. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大二、填空题9. 已知反比例函数的图象经过点(2,5),则k= .10. 要使二次根式有意义,字母x必须满足的条件是.11. 二次根式抛物线的顶点坐标是______________,对称轴是.12. 关于的一元二次方程有两个实数根,则的取值范围是.13. 某小区2012年底绿化面积为2000平方米,计划2014年底绿化面积要达到2880平方米,如果每年绿化面积的增长率相同,那么这个增长率是__________。
2019年云南省玉溪市红塔区初中毕业数学试卷(解析版)
分析:如图:由∠1=∠2,可得a∥b(同位角相等,两直线平行),所以∠5=∠3(两直线平行,同位角相等),再根据邻补角的定义,即可求得∠4的度数.解答:源自:∵∠1=∠2,∴a∥b,
∠3+∠4=180°,
∵∠1=∠2=∠3=72°,
∴∠4=108°.
故答案为108°
点评:此题考查了平行线的判定(同位角相等,两直线平行)与平行线的性质(两直线平行,同位角相等)以及邻补角的定义.比较简单.
∴左视图的面积=1×3=3m2.
故选:B.
点评:此题主要考查了简单几何体的三视图,解决本题的难点是根据所给视图得到长方体的长,宽,高,关键是理解俯视图的面积等于长方体的宽×高.
3、据报道,我省盈江“3•10”地震恢复重建各项工作正式全面启动,初步规划总投资55亿元,用5年时间完成灾区恢复重建和提升.55亿元用科学记数法可表示为( )
专题:证明题。
分析:本题关键是理清弧的关系,找出等弧,则可根据“同圆中等弧对等角”求解.
解答:解:由垂径定理,得: = ;
∴∠CDB= ∠AOC(等弧所对的圆周角是圆心角的一半);
又∵∠CDB=25°,
∴∠AOC=2∠CDB=50°.
故选D.
点评:此题综合考查垂径定理和圆周角的求法及性质.解得该题的关键是利用垂径定理找到等弧 = .
点评:本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.
9、2019年是落实“十二五”规划的起步之年,红塔区在年初“两会”上提出:“全区上下要加快实施四大战略,力争年内实现生产总值180亿元,增12%左右….”由此信息可知,我区上一年的生产总值是160亿元.
考点:一元一次方程的应用。
云南省玉溪市红塔区第一学区九年级第一次模拟考试数学考试卷(解析版)(初三)中考模拟.doc
云南省玉溪市红塔区第一学区九年级第一次模拟考试数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】-3的相反数是 ____.【答案】3【解析】试题分析:只有符号不同的两个数,我们称这两个数互为相反数.考点:相反数的定义【题文】PM2.5是大气中直径小于或等于0.0000025米的颗粒物, 0.0000025用科学记数法表示为______.【答案】2.5×10-6【解析】试题分析:科学计数法是指:a×,且,小数点向右移动几位,则n的相反数就是几.考点:科学计数法【题文】若分式的值为零,则x的值为.【答案】1【解析】试题分析:当分式的分子为零,分母不为零时,分式的值为零,即2x-2=0,解得:x=1.考点:分式的性质【题文】跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得到他们的平均成绩都是1.86米,甲的方差为0.3,乙的方差为0.4,那么成绩较为稳定的是.(填“甲”或“乙”)【答案】甲【解析】试题分析:一组数据的方差越小,则说明这组数据比较整齐,根据性质可得:成绩比较稳定的是甲.考点:方差的作用【题文】已知关于x的方程x2﹣5x+k=0有一个根为1,则它的另一个根为.【答案】4【解析】试题分析:根据韦达定理可得:,即1+=5,则=4,即方程的另一个根为4.考点:韦达定理【题文】如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线上,则点A2的坐标是________.【答案】【解析】试题分析:根据题意可得:O=4,过作C垂直于x轴,则C=2,OC=2,则点的坐标为(2,4).考点:等边三角形的性质【题文】下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3 D.2xy2•(﹣x)=﹣2x2y2【答案】C【解析】试题分析:A、根据合并同类项的法则可得:原式=(-2+3)x=x;B、同底数幂的除法,底数不变,指数相减,原式=3y;C、积的乘方等于乘方的积,原式=;D、同底数幂的乘法,底数不变,指数相加,原式=.考点:同底数幂的计算【题文】如右图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A.30° B.60° C.120° D.150°【答案】C【解析】试题分析:根据平行线的性质以及对顶角的性质可得:∠1+∠2=180°,则∠2=120°考点:平行线的性质【题文】如右图所示的几何体的左视图是()A. B. C. D.【答案】C【解析】试题分析:根据三视图的法则可得:B为主视图;C为左视图;D为俯视图.考点:三视图【题文】抛物线y=x2+2x-1,与x轴的交点个数是()A.1个交点 B.2个交点C.1个或2个交点 D.没有交点【答案】B【解析】试题分析:△=4-4×1×(-1)=4+4=80,则抛物线与x轴有两个交点.考点:抛物线与一元二次方程【题文】如果一个正多边形的一个内角是140°,那么这个正多边形的边数是()A. 10B. 9C. 8D. 7【答案】B【解析】试题分析:根据多边形的内角和定理可得:(n-2)×180°=140n,解得:n=9,即正多边形的边数是9.考点:多边形的内角【题文】不等式组的解集是()A.x>1 B. x< C.<x<1 D.无解【答案】C【解析】试题分析:解不等式①可得:x<1,解不等式②可得:x>,则不等式组的解为<x<1 .考点:解不等式组【题文】已知扇形的圆心角为60°,半径长为12,则扇形的面积为()。
2019年云南省中考数学模拟试卷(一)(解析版)
2019年云南省中考数学模拟试卷(一)(解析版)2019年云南省中考数学模拟试卷(一)一、选择题(每小题4分,共32分)1.2019的相反数是()A。
-2019 B。
-1 C。
2019 D。
12.下列图形中,既是轴对称图形又是中心对称图形的是()A。
图A B。
图B C。
图C D。
图D3.下列运算正确的是()A。
3a^2-2a^2=a^2B。
-(2a)^2=-2a^2C。
(a+b)^2=a^2+b^2D。
-2(a-1)=-2a+14.云南宣威普立大桥,连接桥面的公路总长度约为米,将数据用科学记数法表示为()A。
1.46×10^5 B。
0.146×10^6 C。
1.46×10^6 D。
146×10^35.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A。
图A B。
图B C。
图C D。
图D6.一组数据2,4,6,4,8的中位数为()A。
2 B。
4 C。
6 D。
87.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A。
35° B。
45° C。
55° D。
65°8.已知一元二次方程x^2+kx-3=0有一个根为1,则k的值为()A。
-2 B。
2 C。
-4 D。
4二、填空题(每小题3分,共18分)9.因式分解:8a^3-2ab^2=2a(4a^2-b^2)10.函数y=√(x-2)的自变量x的取值范围是[2,∞)11.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为1/312.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=50°13.如图,点D为矩形OABC的AB边的中点,反比例函数y=k/x的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=214.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为4π cm三、解答题(共9个小题,70分)15.(6分)计算:|-2|-2cos60°-(2019-1)=|-2|-2×1/2-2018=-201916.(6分)解不等式组:{x|x≤-2}∪{x|x>3},表示为数轴上的解集。
2018-2019学年云南省玉溪市红塔区九年级(上)期末数学模拟试卷(PDF版)
∵BE=EE′, ∴∠EE′B=30°, ∴∠AE′B=90°, BE′= ∵PE+PB=BE′, ∴PE+PB 的最小值是: 故答案为: . . = ,
三.解答题(共 8 小题,满分 55 分) 16. 【解答】解: (1)原式=2﹣1﹣1=0;
(2)原式=( =﹣3 =﹣9 =﹣ × ﹣ ; ﹣
(2)A 所占的比例是: C 所占的百分比:
×100%=10%,
×100%=40%.
C 等级对应扇形的圆心角是:360×40%=144°;
(3)设 A 等级的小明用 a 表示,其他的几个学生用 b、c、d 表示.
共有 12 种情况,其中小明参加的情况有 6 种,则 P(小明参加比赛)= 22. 【解答】解: (1)连接 OP,则∠OPC=90° ∵ ∴∠BAF=30° 设 EF=x,则 AE= ∵tan∠BFE= ∴BE=3 x x
,所以 B 选项错误; ,所以 C 选项错误; =2 ,所以 D 选项正确.
∴OE⊥CD, ∴OF⊥AB,OE=OB; 设 OB=R,则 OF=2﹣R, 在 Rt△OBF 中,BF= AB= ×2=1,OB=R,OF=2﹣R, ∴R2=(2﹣R)2+12, 解得 R= . 故选:D.
7. 【解答】解:原抛物线的顶点坐标为(1,3) ,向左平移 2 个单位,再向上平移 3 个单位 得到新抛物线的顶点坐标为(﹣1,6) .可设新抛物线的解析式为:y=﹣2(x﹣h)2+k, 代入得:y=﹣2(x+1)2+6.故选 C. 8. 【解答】解:y=(x﹣2)2+3 是抛物线的顶点式方程, 根据顶点式的坐标特点可知,顶点坐标为(2,3) . 故选:A. 二.填空题(共 7 小题,满分 21 分,每小题 3 分) 9. 【解答】解:设函数解析式为:y= , 把 x=2,y=6 代入,得 k=12, ∴y= . 中:y= ,
云南省玉溪市九年级下学期数学第一次月考试卷
云南省玉溪市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019九上·成都开学考) 将一元二次方程5x2-1=4x化成一般形式后,二次项的系数和一次项系数分别是()A . 5,-1B . 5,4C . 5,-4D . 5,12. (2分)一元二次方程x(x﹣3)=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根3. (2分)在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A . AB⊥CDB . ∠AOB=4∠ACDC . AD=BDD . PO=PD4. (2分)用配方法解方程x2+8x+9=0,变形后的结果正确的是()A . (x+4)2=﹣7B . (x+4)2=﹣9C . (x+4)2=7D . (x+4)2=255. (2分)(2018·龙东) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A . 平均分是91B . 中位数是90C . 众数是94D . 极差是206. (2分)(2019·惠安模拟) 如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A . 美B . 丽C . 惠D . 安7. (2分)(2017·石家庄模拟) 某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元.设这种药品成本的年平均下降率为x,则x为()A . 3%B . 6%C . 8%D . 10%8. (2分)(2015·宁波模拟) 如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于().A . a:b:cB .C . sinA:sinB:sinCD . cosA:cosB:cosC二、填空题 (共10题;共10分)9. (1分)(2020·成都模拟) 已知m是方程x2﹣3x+1=0的一个根,则(m﹣3)2+(m+2)(m﹣2)的值是________.10. (1分)(2019·宁夏) 在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为________.11. (1分) (2017九上·合肥开学考) 一组数据2,4,a,7,7的平均数 =5,则方差S2=________.12. (1分)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是________.13. (1分)(2016·徐州) 用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为________.14. (1分)(2017·官渡模拟) 关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是________.15. (1分) (2016九上·苍南期末) 如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∠ACB=90°.若AF=4,CF=1.则BD的长是________.16. (1分)(2016·丹阳模拟) 如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O 的半径等于________.17. (1分)(2019·黔南模拟) 若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是________三角形.18. (1分)如图,PA、PB分别切⊙O于A、B,点C、M是⊙O上的点,∠AMB=60°,过点C作的切线交PA、PB于E、F,△PEF的外心在PE上.已知PA=3,则AE的长为________.三、解答题 (共10题;共81分)19. (10分) (2017九上·江北期中) 解方程:(1) x2﹣2x=5(2) 2(x﹣3)=3x(x﹣3)20. (10分)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.21. (6分) (2016九上·仙游期末) 某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图________,并指出这个样本数据的中位数落在第________小组;(1)(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?22. (7分) (2018八上·卫辉期末) “先学后教”课题组对学生参与小组合作的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.课题组随机抽取了若干名初中学生的参与情况,绘制了如图两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了________名学生;(2)请将条形统计图补充完整;(3)求出扇形统计图中,“主动质疑”所对应扇形的圆心角的度数.23. (5分) (2016九上·北区期中) 如图,已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上,点D 在⊙O上,连接CD,且CD=OA,OC=2 .求证:CD是⊙O的切线.24. (5分) (2016九上·肇庆期末) 如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC =110°.连接AC,求∠A的度数.25. (10分)(2019·辽阳) 我市某化工材料经销商购进一种化工材料若干千克,成本为每千克30元,物价部门规定其销售单价不低于成本价且不高于成本价的2倍,经试销发现,日销售量y(千克)与销售单价x(元)符合一次函数关系,如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若在销售过程中每天还要支付其他费用450元,当销售单价为多少时,该公司日获利最大?最大获利是多少元?26. (2分) (2020·金华模拟) 如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,以O为圆心,OA为半径作⊙O,与BC相切于点D,且交AB于点E。
云南省玉溪市数学中考一模试卷
云南省玉溪市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共33分)1. (2分) (2020九上·建湖期末) 给出下列各组线段,其中成比例线段的是()A .B .C .D .2. (2分) (2019九上·深圳期中) 直线与y轴相交,所成的锐角的正切值为,则k的值为()A .B .C .D . 无法确定3. (2分) (2019九上·海宁开学考) 如图,在△ABC中,点D,E分别在AB,AC上,∠ADE=∠C,如果AE=4,△A DE的面积为5,四边形的面积为15,那么AB的长为().A . 8B .C . 6D .4. (2分)(2016·巴彦) 如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A . 40°,80°B . 50°,100°C . 50°,80°D . 40°,100°5. (2分)(2012·内江) 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD= ,则阴影部分图形的面积为()A . 4πB . 2πC . πD .6. (2分)(2020·温州模拟) 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是()A .B .C .D .7. (2分)(2020·开远模拟) 如图,某建筑物的顶部有一块标识牌 CD,小明在斜坡上 B 处测得标识牌顶部C 的仰角为45°,沿斜坡走下来在地面 A 处测得标识牌底部D 的仰角为60°,已知斜坡 AB 的坡角为30°,AB=AE=10 米.则标识牌 CD 的高度是()米.A . 15-5B . 20-10C . 10-5D . 5 -58. (2分)将一个五边形改成与它相似的五边形,如果面积扩大为原来的9倍,那么周长扩大为原来的()A . 9倍B . 3倍C . 81倍D . 18倍9. (2分)cos30°=()A .B .C .D .10. (2分)直角三角形的一个锐角是23°,则另一个锐角等于()A . 23°B . 63°C . 67°D . 77°11. (5分) (2020九下·西安月考) cos30°+ sin45°=________12. (5分) (2017·天津模拟) 如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ=________.13. (1分)(2019·莆田模拟) 计算:cos60°+()0=________14. (1分)有底面为正方形的直四棱柱容器A和圆柱形容器B,容器材质相同,厚度忽略不计.如果它们的主视图是完全相同的矩形,那么将B容器盛满水,再将水全部倒入A容器,结果为________.(填“溢出”“刚好”或“未装满”)15. (1分)(2017·自贡) 在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为________.二、解答题 (共5题;共40分)16. (10分)(2017·景德镇模拟) 综合题。
云南省玉溪市2019-2020学年中考数学仿真第一次备考试题含解析
云南省玉溪市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在实数﹣3.5、、0、﹣4中,最小的数是( ) A .﹣3.5 B . C .0 D .﹣42.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .83.一次函数y=kx+k (k≠0)和反比例函数()0ky k x =≠在同一直角坐标系中的图象大致是() A . B . C . D . 4.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A .B .C .D .5.关于x 的方程x 2﹣3x+k =0的一个根是2,则常数k 的值为( )A .1B .2C .﹣1D .﹣26.在实数0,-π,3,-4中,最小的数是( )A .0B .-πC .3D .-47.如图,在平行四边形ABCD 中,都不一定 成立的是( )①AO=CO ;②AC ⊥BD ;③AD ∥BC ;④∠CAB=∠CAD .A.①和④B.②和③C.③和④D.②和④8.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()A.32πB.43πC.4 D.2+32π9.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变10.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.1011.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1412.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O 是△ABC 的( )A .外心B .内心C .三条中线的交点D .三条高的交点二、填空题:(本大题共6个小题,每小题4分,共24分.)13. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x ,可列方程_____.14.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 15.不等式-2x+3>0的解集是___________________16.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .17.如图,在△ABC 中,∠BAC=50°,AC=2,AB=3,将△ABC 绕点A 逆时针旋转50°,得到△AB 1C 1,则阴影部分的面积为_______.18.已知反比例函数(0)k y k x=≠,在其图象所在的每个象限内,y 的值随x 的值增大而减小,那么它的图象所在的象限是第__________象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率. 20.(6分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI ),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1. (1)请你完成如下的统计表; AQI0~50 51~100 101~150 151~200 201~250 300以上 质量等级 A (优) B (良) C (轻度污染) D (中度污染)E (重度污染)F (严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.22.(8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?23.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.24.(10分)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.25.(10分)计算:()20113232-⎛⎫+--- ⎪⎝⎭﹣3tan30°. 26.(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由27.(12分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可【详解】在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D .【点睛】掌握实数比较大小的法则2.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.3.C【解析】A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误;B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y 轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,故选C.4.C【解析】看到的棱用实线体现.故选C.5.B【解析】【分析】根据一元二次方程的解的定义,把x=2代入2x-3x+k=0得4-6+k=0,然后解关于k的方程即可.【详解】把x=2代入2x-3x+k=0得,4-6+k=0,解得k=2.故答案为:B.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.6.D【解析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.7.D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.8.B【解析】【分析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.【详解】如图:BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯.故选B.9.D【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S 矩形ADOE =|−k|,∴|−k|=1,∵k <0,∴k =−1.故选A .【点睛】本题考查了反比例函数y =k x (k≠0)系数k 的几何意义:从反比例函数y =k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.11.C【解析】【分析】根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C .【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.12.B【解析】【分析】利用平行线间的距离相等,可知点O 到BC 、AC 、AB 的距离相等,然后可作出判断.【详解】解:如图1,过点O 作OD BC ⊥于D ,OE AC ⊥于E ,OF AB ⊥于F .图1//MN AB Q ,OD OE OF ∴==(夹在平行线间的距离相等).如图2:过点O 作OD BC '⊥于D ',作于E ,作OE AC '⊥于F '.由题意可知: OD OD '=,OE OE '=,OF OF '=,∴OD =OE OF '''= ,∴图2中的点O 是三角形三个内角的平分线的交点,∴点O 是ABC ∆的内心,故选B.【点睛】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出OD OE OF ==.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3004x - ﹣300x=1. 【解析】 原有的同学每人分担的车费应该为3004x -,而实际每人分担的车费为300x ,方程应该表示为:3004x -﹣300x=1. 故答案是:3004x -﹣300x=1. 14.2k <且1k ≠【解析】【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.15.x<32【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x >-3, 系数化为1,得:x <32, 故答案为x <32. 【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 16.1×10﹣1 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:10nm 用科学记数法可表示为1×10-1m , 故答案为1×10-1. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 17.π 【解析】 试题分析:∵,∴S 阴影=1ABB S 扇形=250360ABπ⋅=54π.故答案为54π. 考点:旋转的性质;扇形面积的计算. 18.【解析】 【分析】直接利用反比例函数的增减性进而得出图象的分布. 【详解】 ∵反比例函数y kx=(k≠0),在其图象所在的每个象限内,y 的值随x 的值增大而减小,∴它的图象所在的象限是第一、三象限. 故答案为:一、三. 【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.考点:概率统计20.(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】【分析】(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI 0~50 51~100 101~150 151~200 201~250 300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16 20 7 3 3 1(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×3150+≈29天.【点睛】本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.21.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x尺,y尺,依题意得:552x yxy=+⎧⎪⎨=-⎪⎩解得:20x=,15y=.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(1)证明见解析;(2)AE=2时,△AEF的面积最大.【解析】【分析】(1)根据正方形的性质,可得EF=CE,再根据∠CEF=∠90°,进而可得∠FEH=∠DCE,结合已知条件∠FHE=∠D=90°,利用“AAS”即可证明△FEH≌△ECD,由全等三角形的性质可得FH=ED;(2)设AE=a,用含a的函数表示△AEF的面积,再利用函数的最值求面积最大值即可.【详解】(1)证明:∵四边形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,,∴△FEH≌△ECD,∴FH=ED.(2)解:设AE=a,则ED=FH=4-a,∴S△AEF=AE·FH=a(4-a)=-(a-2)2+2,∴当AE=2时,△AEF的面积最大.【点睛】本题考查了正方形性质、矩形性质以及全等三角形的判断和性质和三角形面积有关的知识点,熟记全等三角形的各种判断方法是解题的关键.23.(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c=180.36=50,a=50×0.2=10,b=1450=0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为: (5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本). (4)该校七年级学生课外阅读7本及以上的人数为: (0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型. 24.见解析,49. 【解析】 【分析】画树状图展示所有9种等可能的结果数,找出两次抽取的卡片上的数字都是偶数的结果数,然后根据概率公式求解. 【详解】 解:画树状图为:共有9种等可能的结果数,其中两次抽取的卡片上的数字都是偶数的结果数为4, 所以两次抽取的卡片上的数字都是偶数的概率=49. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 25.1. 【解析】 【分析】直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案. 【详解】(20113232-⎛⎫+-- ⎪⎝⎭﹣3tan30°1﹣1﹣=1.【点睛】此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.26.(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大; (3) A方案利润更高.【解析】【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较. 【详解】解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.(2)∵w=-10x2+700x-10000=-10(x-35)2+2250∴当x=35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20<x≤30,函数w=-10(x-35)2+2250随x的增大而增大,∴当x=30时,w有最大值,此时,最大值为2000元.B方案中:10x50010x2025-+≥⎧⎨-≥⎩,解得x的取值范围为:45≤x≤49.∵45≤x≤49时,函数w=-10(x-35)2+2250随x的增大而减小,∴当x=45时,w有最大值,此时,最大值为1250元.∵2000>1250,∴A方案利润更高27.木竿PQ的长度为3.35米.【解析】【分析】过N点作ND⊥PQ于D,则四边形DPMN为矩形,根据矩形的性质得出DP,DN的长,然后根据同一时刻物高与影长成正比求出QD的长,即可得出PQ的长.试题解析:【详解】解:过N点作ND⊥PQ于D,则四边形DPMN为矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴AB QD BC DN=,∴QD=AB DNBC⋅=2.25,∴PQ=QD+DP= 2.25+1.1=3.35(m).答:木竿PQ的长度为3.35米.【点睛】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.。
云南省玉溪市红塔区第一学区中考数学一模试卷
云南省玉溪市红塔区第一学区中考数学一模试卷一、填空题(每小题3分,共18分)1.(3分)﹣3的相反数是.2.(3分)PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.3.(3分)若分式的值为零,则x的值为.4.(3分)跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得到他们的平均成绩都是1.86米,甲的方差为0.3,乙的方差为0.4,那么成绩较为稳定的是.(填“甲”或“乙”)5.(3分)若关于x的方程x2﹣5x+k=0的一个根是1,则另一个根是.6.(3分)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线y=x上,则点A2的坐标是.二、选择题(每题4分,共32分)7.(4分)下列计算中,不正确的是()A.﹣2x+3x=x B.6xy2÷2xy=3yC.(﹣2x2y)3=﹣6x6y3D.2xy2•(﹣x)=﹣2x2y28.(4分)如图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()A.30°B.60°C.120°D.150°9.(4分)如图所示的几何体的左视图是()A.B.C.D.10.(4分)抛物线y=x2+2x﹣1,与x轴的交点个数是()A.1个交点B.2个交点C.1个或2个交点D.没有交点11.(4分)如果一个正多边形的一个内角是140°,那么这个正多边形的边数是()A.10B.9C.8D.712.(4分)不等式组的解集是()A.x>1B.x<C.<x<1D.无解13.(4分)已知扇形的圆心角为60°,半径长为12,则扇形的面积为()A.B.2πC.3πD.24π14.(4分)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.三、解答题(共9题,共70分)15.(5分)(2016﹣π)0﹣|1﹣︳+2cos45°.16.(6分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.求证:AE=DF.17.(6分)某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土及时运走,应如何分配挖土和运土人数?18.(7分)为了了解某市初三年级学生体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计如下体育成绩统计表分数段频数/人频率A120.05B36aC840.35D b0.25E480.20根据上面提供的信息,回答下列问题:(1)在统计表中,a=,b=,并将统计图补充完整;(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗?(填“正确”或“错误”);(3)若成绩在27分以上(含27分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?19.(7分)在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机取出一个小球,是红球的概率为,(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,n﹣1,随机取出一个小球后不放回,再随机地取出一个小球,求第二次取出的小球标号大于第一次取出的小球标号的概率.20.(9分)王杰为了测量他家小楼附近楼房AB的高度,他从楼底的B处测得到他家小楼顶部D的仰角∠CBD为30°,又测得两幢楼之间的距离BC为10m.(以下计算结果精确到0.1m,参考值≈1.414,≈1.732,≈2.236)(1)求王杰家所在楼房CD的高度;(2)王杰的身高ED是1.6m,他站在他家楼顶看高层楼顶A处的仰角为45°,求楼房AB 的高度.21.(9分)如图,直线y=2x+3与反比例函数y=的图象相交于点B(a,5),且与x轴相交于点A.(1)求反比例函数的表达式.(2)若P为y轴上的点,且△BOP的面积是△AOB的面积的,请求出P点的坐标.22.(9分)如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.23.(12分)如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C 两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)(1)求此抛物线的解析式.(2)求点B到直线AC的距离.(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.云南省玉溪市红塔区第一学区中考数学一模试卷参考答案一、填空题(每小题3分,共18分)1.3;2.2.5×10﹣6;3.1;4.甲;5.4;6.(2,4);二、选择题(每题4分,共32分)7.C;8.C;9.C;10.B;11.B;12.C;13.D;14.C;三、解答题(共9题,共70分)15.;16.;17.;18.0.15;60;错误;19.;20.;21.;22.;23.;。
玉溪市中考数学一模试卷
玉溪市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·永年模拟) 下列运算正确是()A . x﹣2x=xB . (xy2)0=xy2C .D .2. (2分) 1纳米=0.000 000 001米,则2.5纳米应表示为()米.A . 2.5×10﹣8B . 2.5×10﹣9C . 2.5×10﹣10D . 2.5×1093. (2分)如图所示的是三通管的立体图,则这个几何体的俯视图是()A .B .C .D .4. (2分)下列运算结果为a6的是()A . a2+a3B . a2•a3C . (-a2)3D . a8÷a25. (2分)(2017·应城模拟) 某小学校园足球对22名队员年龄情况如下:年龄/岁9101112人数26104则这个队队员年龄的众数和中位数分别是()A . 11,10B . 10,11C . 10,9D . 11,116. (2分)(2019·浙江模拟) 如图,△ABC内接于⊙O,若∠A=α度,则∠OBC的度数为()A . αB . 90-αC . 90+αD . 90+2α7. (2分)方程x2-4=0的根是()A . 2B . -2C . 2或-2D . 以上都不对8. (2分)在平面直角坐标系中,将点P(x , y)先向左平移4个单位,再向上平移3个单位后得到点P′(1,2),则点P的坐标为()A . (2,6)B . (﹣3,5)C . (﹣3,1)D . (5,﹣1)9. (2分)(2020·上城模拟) “杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟。
设提速前车辆平均速度为xkm/h,则下列方程正确的是()A .B .C .D .10. (2分) (2019七下·盐田期中) 已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间有如下关系,则()x(kg)012345y(cm)6 6.577.588A . y随x的增大而增大B . 质量每增加1kg,度增加0.5cmC . 不挂物体时,长度为6cmD . 质量为6kg时,长度为8.cm二、填空题 (共6题;共6分)11. (1分) (2019七上·南浔月考) 平方根等于它本身的数是________,算术平方根等于它本身的数是________,立方根等于它本身的数是________.12. (1分)(2019·新会模拟) 分解因式:4x2y3﹣4x2y2+x2y=________.13. (1分) (2019八上·凤翔期中) 已知:一次函数的图像在直角坐标系中如图所示,则________0(填“>”,“<”或“=”)14. (1分) (2017七下·水城期末) 如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为________cm.15. (1分) (2018九上·灌云月考) 圆心角是120°的扇形,弧长为6π,则这个扇形的面积为________.16. (1分)(2019·岐山模拟) 如图,在平面直角坐标系中,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,AB=4,△ABC的面积为2,将△ABC以点B为旋转中心,顺时针旋转90°得到△DBE,一反比例函数图象恰好过点D时,则此反比例函数解析式是________.三、解答题 (共9题;共82分)17. (5分) (2020九下·龙岗月考) 计算:18. (5分)如图,一位测量人员,要测量池塘的宽度的长,他过两点画两条相交于点的射线,在射线上取两点,使,若测得米,他能求出之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.19. (5分)(1)先化简,再求值:()÷,其中x=2(2)已知xm=6,xn=3,试求x2m﹣3n的值.20. (5分) (2017八上·启东期中) 作图题:(不写作法,但要保留痕迹)如图1,已知点C、D和∠AOB,求作一点P,使P到点C、D的距离相等,且到∠AOB的两边的距离相等.在图2中直线m上找到一点Q,使它到A、B两点的距离和最小.21. (15分)(2017·常州模拟) 某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力频数(人)频率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次调查的样本为________,样本容量为________;(2)在频数分布表中,a=________,b=________,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?22. (2分) (2017九上·文水期中) 操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。
2019年玉溪市九年级数学上期中一模试题(及答案)
2019年玉溪市九年级数学上期中一模试题(及答案)一、选择题1.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°2.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( )A .4.75B .4.8C .5D .43.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C .D .4.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -= 5.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是( )A .310B .925C .425D .1106.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕点B 按逆时针方向转动一个角度到△A 1BC 1的位置,使得点A 1、B 、C 在同一条直线上,那么旋转角等于( )A .30°B .60°C .90°D .120° 7.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( )A .﹣1或3B .﹣3或1C .3D .1 8.在Rt ABC ∆中,90ABC ∠=︒,:BC 2:3=AB , 5AC =,则AB =( ). A .52 B .10C .5D .15 9.若关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,则k 的取值范围是( )A .12k >且k ≠1B .12k >C .12k ≥且k ≠1D .12k < 10.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( )A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=2111.一元二次方程x 2+2x +2=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,»»»AC CDDB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.15.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=52,则BC的长为_____.16.现有甲、乙两个盒子,甲盒子中有编号为4,5,6的3个球,乙盒子中有编号为7,8,9的3个球.小宇分别从这两个盒子中随机地拿出1个球,则拿出的2个球的编号之和大于12的概率为_____.17.若抛物线的顶点坐标为(2,9),且它在x轴截得的线段长为6,则该抛物线的表达式为________.18.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为_____.19.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是_____°.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b <a+c;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论有_____.(填序号)三、解答题21.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.()1求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;()2求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?()3如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本⨯每天的销售量)22.如图,已知抛物线y=2x -+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0),(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.23.已知关于x 的方程2(31)30mx m x +++=.(1)求证:不论m 为任何实数,此方程总有实数根;(2)若抛物线()2313y mx m x =+++与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式.24.已知△ABC 在平面直角坐标系中的位置如图所示.(1)分别写出图中点A 和点C 的坐标;(2)画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B′C′;(3)求点A 旋转到点A ′所经过的路线长(结果保留π).25.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC =∠D =60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理2.B解析:B【解析】【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【详解】如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选B .【点睛】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.3.B解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A 、C 、D 都不是中心对称图形,只有B 是中心对称图形.故选B.4.A解析:A【解析】【分析】利用配方法把方程2680x x --=变形即可.【详解】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .【点睛】本题考查了解一元二次方程﹣配方法,熟练掌握配方法解一元二次方程的基本步骤是解本题的关键.5.A解析:A【解析】【分析】画树状图(用A 、B 、C 表示三本小说,a 、b 表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A 、B 、C 表示三本小说,a 、b 表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=310.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.6.D解析:D【解析】根据题意旋转角为∠ABA1,由∠ABC=60°,∠C=90°,A、B、C1在同一条直线上,得到∠ABA1=180°-∠A1BC1=180°-60°=120°解:旋转角为∠ABA1,∵∠ABC=60°,∠C=90°,∴∠ABA1=180°-∠A1BC1=180°-60°=120°;故答案为D点评:本题考查了弧长的计算公式:l=n R180,其中l表示弧长,n表示弧所对的圆心角的度数.7.D解析:D【解析】【分析】设x2﹣2x+1=a,则(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0化为a2+2a﹣3=0,求出方程的解,再判断即可.【详解】解:设x2﹣2x+1=a,∵(x2﹣2x+1)2+2(x2﹣2x+1)﹣3=0,∴a2+2a﹣3=0,解得:a=﹣3或1,当a=﹣3时,x2﹣2x+1=﹣3,即(x﹣1)2=﹣3,此方程无实数解;当a=1时,x2﹣2x+1=1,此时方程有解,故选:D.【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.8.B解析:B【解析】【分析】 依题意可设2=AB x ,3BC x =,根据勾股定理列出关于x 的方程,解方程求出x 的值,进而可得答案.【详解】解:如图,设2=AB x ,3BC x =,根据勾股定理,得:222325+=x x ,解得5x =,∴10AB =.故选B.【点睛】本题考查了勾股定理和简单的一元二次方程的解法,属于基础题型,熟练掌握勾股定理是解题的关键. 9.A解析:A【解析】【分析】由根的判别式求出k 的取值范围,再结合一元二次方程的定义,即可得到答案.【详解】解:∵关于x 的一元二次方程2(1)220k x x -+-=有两个不相等的实数根,∴224(1)(2)0k ∆=-⨯-⨯->,解得:12k >, ∵10k -≠,则1k ≠,∴k 的取值范围是12k >且k≠1; 故选:A .【点睛】本题考查了利用根的判别式求参数的取值范围,以及一元二次方程的定义,解题的关键是正确求出k 的取值范围. 10.D解析:D【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:∵x2-8x=5,∴x2-8x+16=5+16,即(x-4)2=21,故选D.【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.11.D解析:D【解析】【分析】求出b2-4ac的值,根据b2-4ac的正负即可得出答案.【详解】x2+2x+2=0,这里a=1,b=2,c=2,∵b2−4ac=22−4×1×2=−4<0,∴方程无实数根,故选D.【点睛】此题考查根的判别式,掌握运算法则是解题关键12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率解析:5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.15.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定解析:8【解析】【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴2.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴22+.AD BD∵AC=6,∴2222-=-.106AB AC故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.16.【解析】【分析】列举出所有情况找出取2个球的编号之和大于12的情况即可求出所求的概率【详解】列树状图得::共有9种等可能的情况其中编号之和大于12的有6种所以概率=故答案为:【点睛】此题主要考查了利 解析:23【解析】【分析】列举出所有情况,找出取2个球的编号之和大于12的情况,即可求出所求的概率. 【详解】列树状图得::共有9种等可能的情况,其中编号之和大于12的有6种,所以概率=6293=, 故答案为:23 . 【点睛】此题主要考查了利用树状图法求概率,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题的关键. 17.【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k 由已知条件可得h=2k=9再由条件:它在x 轴上截得的线段长为6求出a 的值即可【详解】解:由题意设此抛物线的解析式为:y=a (x-2)2+9解析:2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a + , ∴|x 1-x 2|=21212()46x x x x +-=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9, 故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.18.【解析】【分析】连接OAOB 根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB =90°又OA =OBAB =4根据勾股定理得圆的半径是2【详解】解:连接OAOB ∵∠C =45°∴∠AOB =90°又∵解析:22.【解析】【分析】连接OA ,OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB =90°,又OA =OB ,AB =4,根据勾股定理,得圆的半径是22.【详解】解:连接OA ,OB∵∠C =45°∴∠AOB =90°又∵OA =OB ,AB =4∴2224OA OB +=∴OA =.【点睛】本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB =90°是解题的关键.19.【解析】试题分析:连结BC 因为AB 是⊙O 的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD 分别是过⊙O 上点BC 的切线∠BDC=110°所以CD=BD 所以∠BCD=∠DBC=35°又∠AB解析:【解析】试题分析:连结BC ,因为AB 是⊙O 的直径,所以∠ACB =90°,∠A+∠ABC =90°,又因为BD ,CD 分别是过⊙O 上点B ,C 的切线,∠BDC =110°,所以CD=BD,所以∠BCD =∠DBC =35°,又∠ABD =90°,所以∠A=∠DBC =35°.考点:1.圆周角定理;2.切线的性质;3.切线长定理.20.③④【解析】【分析】【详解】由抛物线的开口向下可得a <0;由与y 轴的交点为在y 轴的正半轴上可得c >0;因对称轴为x==1得2a=-b 可得ab 异号即b >0即可得abc <0所以①错误;观察图象根据抛物线解析:③④【解析】【分析】【详解】由抛物线的开口向下,可得a <0;由与y 轴的交点为在y 轴的正半轴上,可得c >0;因对称轴为x=2b a-=1,得2a=-b ,可得a 、b 异号,即b >0,即可得abc <0,所以①错误; 观察图象,根据抛物线与x 轴的交点可得,当x=-1时,y <0,所以a-b+c <0,即b >a+c ,所以②错误;观察图象,抛物线与x 轴的一个交点的横坐标在-1和0之间,根据对称轴为x=2b a -=1可得抛物线与x 轴的一个交点的横坐标在2和3之间,由此可得当x=2时,函数值是4a+2b+c >0,所以③正确;由抛物线与x 轴有两个交点,可得b 2-4ac >0,所以④正确.综上,正确的结论有③④.【点睛】本题考查了二次函数y=ax 2+bx+c (a≠0)的图象与系数的关系:①二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;a 还可以决定开口大小,a 越大开口就越小.②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点, 抛物线与y 轴交于(0,c ).④抛物线与x 轴交点个数:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.三、解答题21.()()21y 5x 800x 2750050x 100=-+-≤≤;()2当x 80=时,y 4500=最大值;()3 销售单价应该控制在82元至90元之间.【解析】【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【详解】解:由题意得:()()y x 50505100x ⎡⎤=-+-⎣⎦()()x 505x 550=--+25x 800x 27500=-+-()2y 5x 800x 2750050x 100∴=-+-≤≤;()22y 5x 800x 27500=-+-25(x 80)4500=--+a 50=-<Q ,∴抛物线开口向下.50x 100≤≤Q ,对称轴是直线x 80=,∴当x 80=时,y 4500=最大值;()3当y 4000=时,25(x 80)45004000--+=,解得1x 70=,2x 90=.∴当70x 90≤≤时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得()505x 5507000-+≤,解得x 82≥.82x 90∴≤≤,50x 100≤≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.22.(1)m=2,顶点为(1,4);(2)(1,2).【解析】【分析】(1)首先把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3,利用待定系数法即可求得m 的值,继而求得抛物线的顶点坐标;(2)首先连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【详解】解:(1)把点B 的坐标为(3,0)代入抛物线y=2x -+mx+3得:0=23-+3m+3, 解得:m=2,∴y=2x -+2x+3=()214x --+,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0),∴033k b b =+⎧⎨=⎩,解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).考点:二次函数的性质.23.(1)证明见解析;(2)y=x 2+4x+3.【解析】【分析】(1)分别讨论当m=0和m≠0的两种情况,分别对一元一次方程和一元二次方程的根进行判断;(2)令y=0,则 mx 2+(3m+1)x+3=0,求出两根,再根据抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数,求出m 的值.【详解】解:(1)当m=0时,原方程化为x+3=0,此时方程有实数根x=-3.当m≠0时,原方程为一元二次方程.∵△=(3m+1)2-12m=9m 2-6m+1=(3m-1)2≥0.∴此时方程有两个实数根.综上,不论m 为任何实数时,方程mx 2+(3m+1)x+3=0总有实数根.(2)∵令y=0,则mx 2+(3m+1)x+3=0解得x 1=-3,x 2=-1m.∵抛物线y=mx 2+(3m+1)x+3与x 轴交于两个不同的整数点,且m 为正整数, ∴m=1.∴抛物线的解析式为y=x 2+4x+3.考点:二次函数综合题.24.(1)()04A ,、()31C ,(2)见解析(3)322【解析】 试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A 所经过的路程是以点C 为圆心,AC 长为半径的扇形的弧长.试题解析:(1)A (0,4)C (3,1)(2)如图所示:(3)根据勾股定理可得:2,则903232180n r l ππ⨯===. 考点:图形的旋转、扇形的弧长计算公式.25.(1)60°;(2)见解析;(3)16433π-【解析】【分析】(1)根据∠ABC 与∠D 都是劣弧AC 所对的圆周角,利用圆周角定理可证出∠ABC =∠D =60°;(2)根据AB 是⊙O 的直径,利用直径所对的圆周角是直角得到∠ACB =90°,结合∠ABC =60°求得∠BAC =30°,从而推出∠BAE =90°,即OA ⊥AE ,可得AE 是⊙O 的切线; (3)连接OC ,作OF ⊥AC ,根据三角形中位线性质得出OF =2,根据圆周角定理得出∠AOC =120°,然后根据S 阴影=S 扇形﹣S △AOC 即可求得.【详解】解:(1)∵∠ABC 与∠D 都是劣弧AC 所对的圆周角,∠D =60°,∴∠ABC =∠D =60°;(2)∵AB 是⊙O 的直径,∴∠ACB =90°.可得∠BAC =90°﹣∠ABC =30°,∴∠BAE =∠BAC +∠EAC =30°+60°=90°,即BA ⊥AE ,得OA ⊥AE ,又∵OA是⊙O的半径,∴AE是⊙O的切线;(3)连接OC,作OF⊥AC,∴OF垂直平分AC,∵OA=OB,∴OF=12BC=2,∵∠D=60°,∴∠AOC=120°,∠ABC=60°,∴AC=32AB=43,∴S阴影=S扇形﹣S△AOC=2120411643243 36023ππ⨯-⨯⨯=-.【点睛】本题着重考查了切线的判定、圆周角定理以及扇形面积公式等知识,属于中档题.解题过程中,请注意注意辅助线的作法与数形结合思想的应用.。
云南省玉溪市中考数学一模考试试卷
云南省玉溪市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题2分,共16分) (共8题;共16分)1. (2分)下面几何体的左视图是()A .B .C .D .2. (2分)(2017·东莞模拟) 某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A . 6.7×10﹣5B . 0.67×10﹣6C . 0.67×10﹣5D . 6.7×10﹣63. (2分)(2012·沈阳) 下列各数中比0小的数是()A . ﹣3B .C . 3D .4. (2分)(2019·莘县模拟) 如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AD的长是().A . 3B . 6C . 4D . 55. (2分) (2018八上·沙洋期中) 一个多边形的内角和为540°,则它的对角线共有()A . 3条B . 5条C . 6条D . 12条6. (2分) (2020八上·滨州期末) 若 ,则的值为()A .B .C .D .7. (2分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,这个一次函数的表达式是().A . y = 2x+3B . y = x-3C . y = x+3D . y = 3-x8. (2分)甲、乙两人连续6年调查某地养鱼业的情况,提供了两方面的信息图(如图).甲调查表明:每个鱼池平均产量从第1年的1万条上升到第6年的2万条;乙调查表明:该地养鱼池的个数由第1年的30个减少到第6年的10个.现给出下列四个判断:①该地第3年养鱼池产鱼数量为1.4万条;②该地第2年养鱼池产鱼的数量低于第3年养鱼池产鱼的数量;③该地这6年养鱼池产鱼的数量逐年减少;④这6年中,第6年该地养鱼池产鱼的数量最少.根据甲、乙两人提供的信息,可知其中正确的判断有()A . ①④B . ④C . ②③D . ③④二、填空题(每小题2分,共16分) (共8题;共16分)9. (2分)(2019·慈溪模拟) 二次根式有意义,则x的取值范围是________ 。
2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题【含答案】
2024年云南省玉溪市红塔区第一区九年级数学第一学期开学考试模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)有意义,那么x 的取值范围是()A .x ≥0B .x ≠1C .x >1D .x ≥0且x ≠12、(4分)多项式x 2-4因式分解的结果是()A .(x +2)2B .(x -2)2C .(x +2)(x -2)D .(x +4)(x -4)3、(4分)如图,设线段AC =1.过点C 作CD ⊥AC ,并且使CD =12AC :连结AD ,以点D 为圆心,DC 的长为半径画弧,交AD 于点E ;再以点A 为圆心,AE 的长为半径画弧,交AC 于点B ,则AB 的长为()A .2515-B .512C .514-D .5144、(4分)将直线y=12x+1向右平移4个单位长度后得到直线y=kx+b ,则k ,b 对应的值是()A .12,1B .-12,1C .-12,-1D .12,-15、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是()A .452名学生B .抽取的50名学生C .452名学生的课外阅读情况D .抽取的50名学生的课外阅读情况6、(4分)关于x 的一元二次方程210ax x -+=有实数根,则a 的最大整数值是()A .1B .0C .-1D .不能确定7、(4分)如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为()A .21n +B .32n -C .31n +D .4n 8、(4分)若1x +在实数范围内有意义,则x 的取值范围是()A .x >-4B .x≥-4C .x >-4且x≠1D .x≥-4且x≠-1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知2019x y +=,20202019-=x y ,则22x y -的值为___________.10、(4分)如图,在等边三角形ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP,将线段OP 绕点O 逆时针旋转60°得到线段OD,要使点D 恰好落在BC 上,则AP 的长是________.11、(4分)正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…、正方形A n B n ∁n C n ﹣1按如图方式放置,点A 1、A 2、A 3、…在直线y =x+1上,点C 1、C 2、C 3、…在x 轴上.已知A 1点的坐标是(0,1),则点B 3的坐标为_____,点B n 的坐标是_____.12、(4分)若直角三角形的两直角边长为a 、b ,且满足b 40+-=,则该直角三角形的斜边长为.13、(4分)不等式3x+1<-2的解集是________.三、解答题(本大题共5个小题,共48分)14、(12分)先化简2221x x x x +-+÷(21x --1x ),然后再从-2<x≤2的范围内选取一个合适的x 的整数值代入求值15、(8分)如图,已知△ABC 三个顶点的坐标分别为A(﹣2,﹣1),B(﹣3,﹣3),C(﹣1,﹣3).将△ABC 先向右平移3个单位,再向上平移4个单位得到△A 1B 1C 1,在坐标系中画出△A 1B 1C 1,并写出△A 1B 1C 1各顶点的坐标.16、(8分)如图①,四边形ABCD 和四边形CEFG 都是正方形,且2BC =,CE =,正方形ABCD 固定,将正方形CEFG 绕点C 顺时针旋转α角(0360α︒<<︒).(1)如图②,连接BG 、DE ,相交于点H ,请判断BG 和DE 是否相等?并说明理由;(2)如图②,连接AC ,在旋转过程中,当ACG ∆为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P 为边EF 的中点,连接PB 、PD 、BD ,在正方形CEFG 的旋转过程中,BDP ∆的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.17、(10分)如图,在平面直角坐标系中,一次函数y kx b =+图像经过点A(-2,6),且与x 轴相交于点B ,与正比例函数3y x =的图像相交于点C ,点C 的横坐标为1.(1)求,k b 的值;(2)请直接写出不等式30kx b x +->的解集.18、(10分)如图,BD 是矩形ABCD 的一条对角线.(1)作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F ,垂足为点O ;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE 和DF ,求证:四边形DEBF 是菱形B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)比较大小:32_____23.20、(4分)如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.21、(4分)在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是_______.22、(4分)如图:已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴,y轴分别交于点C、点D,若DB=DC,则直线CD的函数表达式为__________.23、(4分)关于的x方程5mx =1的解是正数,则m的取值范围是_____.二、解答题(本大题共3个小题,共30分)24、(8分)计算(1))0+|2(2)(+((2)25、(10分)(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP 于点E ,试判断四边形BPEP′的形状,并说明理由.26、(12分)如图,在4×3的正方形网格中,每个小正方形的边长都是1.(1)分别求出线段AB ,CD 的长度;(2)在图中画出线段EF ,使得EF 的长为,用AB 、CD 、EF 三条线段能否构成直角三角形,请说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据二次根式中被开方数是非负数,分式分母不为零列出不等式即可求出答案.【详解】根据题意可知10xx≥⎧⎨->⎩,解得x>1,故答案选C.本题考查的是二次根式和分式存在有意义的条件,熟知该知识点是解题的关键.2、C【解析】分析:根据公式a2﹣b2=(a+b)(a﹣b),进行计算即可.详解:x2﹣4=(x+2)(x﹣2).故选C.点睛:本题主要考查对因式分解﹣平方差公式的理解和掌握,能熟练地运用公式分解因式是解答此题的关键.3、B【解析】根据勾股定理求得AD的长度,则AB=AE=AD-CD.【详解】解:如图,AC=1,CD=12AC=12,CD⊥AC,∴由勾股定理,得52==,又∵DE=DC=12,∴AB=AE=AD-CD=2-12=12-,故选:B.本题考查了勾股定理.根据勾股定理求得斜边AD 的长度是解题的关键.4、D 【解析】分析:由已知条件易得12k =,直线112y x =+过点(0,1),结合直线y kx b =+是由直线112y x =+向右平移4个单位长度得到的可知直线y kx b =+必过点(4,1),把12k =和点(4,1)代入y kx b =+中解出b 的值即可.详解:∵在直线112y x =+中,当0x =时,1y =,∴直线112y x =+过点(0,1),又∵直线y kx b =+是由直线112y x =+向右平移4个单位长度得到的,∴12k =,且直线y kx b =+过点(4,1),∴1142b =⨯+,解得:1b =-,∴112k b ==-.故选D.点睛:“由直线112y x =+过点(0,1)结合已知条件得到12k =,直线y kx b =+必过点(4,1)”是解答本题的关键.5、D 【解析】根据样本是总体中所抽取的一部分个体,可得答案.【详解】解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.故选:D .本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6、C【解析】利用一元二次方程的定义和判别式的意义得到a≠0且△=(﹣1)2﹣4a≥0,求出a的范围后对各选项进行判断.【详解】解:根据题意得a≠0且△=(﹣1)2﹣4a≥0,解得a≤14且a≠0,所以a的最大整数值是﹣1.故选:C.本题考查了一元二次方程的定义和根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7、B【解析】根据图形的变化规律即可求出第n个图形中小菱形的个数.【详解】根据第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,每次增加3个菱形,故第n个图形中小菱形的个数为1+3(n-1)=32n-个,故选B.此题主要考查图形的规律探索,解题的关键是根据图形的变化找到规律进行求解.8、D【解析】直接利用二次根式有意义的条件结合分式有意义的条件进行求解即可得.【详解】若1x+在实数范围内有意义,则x+4≥0且x+1≠0,解得:x≥-4且x≠-1,故选D .本题考查了二次根式有意义的条件和分式有意义的条件,正确把握相关知识是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y ,∴()()222020==2019=20202019x y x y y x -+⨯-,故答案为:1.本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.10、6【解析】由题意得,∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°,∴∠APO=∠COD ,在△AOP 与△CDO 中,A C APO COD OP DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△CDO (AAS ),∴AP=CO=AC ﹣AO=9﹣3=6.故答案为6.11、(7,4)(2n ﹣1,2n ﹣1).【解析】根据一次函数图象上点的坐标特征可得出点A 1的坐标,结合正方形的性质可得出点B 1的坐标,同理可得出点B 2、B 3、B 4、…的坐标,再根据点的坐标的变化即可找出点B n 的坐标.【详解】当x =0时,y =x +1=1,∴点A 1的坐标为(0,1).∵四边形A 1B 1C 1O 为正方形,∴点B 1的坐标为(1,1).当x =1时,y =x +1=2,∴点A 2的坐标为(1,2).∵四边形A 2B 2C 2C 1为正方形,∴点B 2的坐标为(3,2).同理可得:点A 3的坐标为(3,4),点B 3的坐标为(7,4),点A 4的坐标为(7,8),点B 4的坐标为(15,8),…,∴点B n 的坐标为(2n ﹣1,2n ﹣1).故答案为:(7,4),(2n ﹣1,2n ﹣1)本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合正方形的性质找出点B n 的坐标是解题的关键.12、1.【解析】b 40+-=,∴2a 6a 9-+=0,b -2=0,解得a=3,b=2.∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长5==.13、.【解析】试题分析:3x+1<-2,3x <-3,x <-1.故答案为x <-1.考点:一元一次不等式的解法.三、解答题(本大题共5个小题,共48分)14、3.【解析】先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x 的取值范围得出合适的x 的值,将其代入化简后的代数式中即可得出结论.【详解】解:原式=2(1)2(1)(1)(1)x x x x x x x +--÷--=2(1)(1)(1)1x x x x x x +-⨯-+=21x x -.其中2210(1)010x x x x x ⎧-+≠⎪-≠⎨⎪+≠⎩,即x≠﹣1、0、1.又∵﹣2<x≤2且x 为整数,∴x=2.将x=2代入21x x-中得:21x x -=2221-=3.考点:分式的化简求值.15、A 1(1,3);B 1(0,1);C 1(2,1)【解析】把三角形ABC 的各顶点先向右平移3个单位,再向上平移4个单位得到平移后的个点,顺次链接平移后的各顶点即为平移后的三角形,根据个点所在象限的符号和距坐标轴的距离即可得各点的坐标.【详解】解:△A 1B 1C 1如图所示;A 1(1,3);B 1(0,1);C 1(2,1).本题考查了作图-平移变化,掌握作图-平移变化是解答本题的关键.16、(1)相等,理由见解析;(2)45α=︒和225α=︒;(3)存在,最大值为2+【解析】(1)由四边形ABCD 和四边形CEFG 都是正方形知BC =CD ,CF =CE ,∠BCD =∠GCE=90°,从而得∠BCG =∠DCE ,证△BCG ≌△DCE 得BG =DE ;(2)分两种情况求解可得;(3)由BD ==,知当点P 到BD 的距离最远时,△BDP 的面积最大,作PH ⊥BD ,连接CH 、CP ,则PH≤CH +CP ,当P 、C 、H 三点共线时,PH 最大,此时△BDP 的面积最大,据此求解可得.【详解】(1)证明:相等∵四边形ABCD 和四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD GCE ∠=∠=︒,∴BCD DCG GCE DCG ∠+∠=∠+∠,即BCG DCE ∠=∠,∴()BCG DCE SAS ∆∆≌;∴BG=DE (2)如图1,∠ACG=90°时,旋转角45DCG α=∠=︒;如图2,当∠ACG=90°时,旋转角360225DCG α=︒-∠=︒;综上所述,旋转角α的度数为45°或225°;(3)存在∵如图3,在正方形ABCD 中,2BC =,∴BD ==∴当点P 到BD 的距离最远时,BDP ∆的面积最大,作PH BD ⊥,连接CH ,CP ,则PH CH CP ≤+当,,P C H 三点共线时,PH 最大,此时BDP ∆的面积最大.∵CE =,点P 为EF 的中点,∴EP =此时12CH BD ==CP ==,∴11222BDP S BD PH ∆=⋅=⨯=+本题是四边形的综合问题,解题的关键是掌握正方形的性质、旋转的性质、全等三角形的判定与性质等知识点.17、(1)14k b =-⎧⎨=⎩;(2)1x <【解析】根据题意先求得点C 的坐标,再将点A 、C 代入y kx b =+即可解答.由30kx b x +->,得3kx b x +>,根据点C 的坐标为(1,3)即可得出答案.【详解】解:(1)当1x =时,33y x ==,∴点C 的坐标为()1,3.将A(-2,6), C(1,3)代入y kx b =+,得:263k b k b -+=⎧⎨+=⎩解得:14k b =-⎧⎨=⎩;(2)由30kx b x +->,得3kx b x +>,点C 的横坐标为1,1x ∴<;本题考查一次函数,熟练掌握运算法则是解题关键.18、(1)作图见解析;(2)证明见解析.【解析】(1)分别以B 、D 为圆心,以大于12BD 的长为半径四弧交于两点,过两点作直线即可得到线段BD 的垂直平分线;(2)利用垂直平分线证得△DEO ≌△BFO 即可证得EO=FO ,进而利用菱形的判定方法得出结论.本题解析:(1)如图所示:EF 即为所求;(2)证明:如图所示:∵四边形ABCD 为矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF 垂直平分线段BD,∴BO=DO,在△DEO 和三角形BFO 中,∵ {ADB CBDBO DODOE BOF∠=∠=∠=∠∴△DEO≌△BFO(ASA),∴EO=FO,∴四边形DEBF 是平行四边形,又∵EF⊥BD,∴四边形DEBF 是菱形.一、填空题(本大题共5个小题,每小题4分,共20分)19、>【解析】先计算乘方,再根据有理数的大小比较的方法进行比较即可.【详解】∵32=9,23=8,9>8,∴32>23.故答案为>.本题考查了有理数大小比较,同号有理数比较大小的方法:都是正有理数:绝对值大的数大.如果是代数式或者不直观的式子要用以下方法,(1)作差,差大于0,前者大,差小于0,后者大;(2)作商,商大于1,前者大,商小于1,后者大.都是负有理数:绝对值的大的反而小.如果是复杂的式子,则可用作差法或作商法比较.异号有理数比较大小的方法:就只要判断哪个是正哪个是负就行,都是字母:就要分情况讨论20、(﹣4,3).【解析】求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=3 4,∴y=34x+6,∴P(x,34x+6),由题意:12×6×(34x+6)=1,∴x =﹣4,∴P (﹣4,3),故答案为(﹣4,3).本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.21、.【解析】直接利用菱形的性质结合勾股定理得出菱形的另一条对角线的长,进而利用菱形面积求法得出答案.【详解】如图所示:∵在菱形ABCD 中,∠BAD=60°,其所对的对角线长为4,∴可得AD=AB ,故△ABD 是等边三角形,则AB=AD=4,故BO=DO=2,则AO==,故AC=4则菱形ABCD 的面积是:12故答案为:.此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键.22、22y x =-+【解析】试题分析:设直线AB 的解析式为y=kx+b ,把A (0,1)、点B (1,0)代入,得k b0b2+=⎧⎨=⎩,解得k2b2=-⎧⎨=⎩.∴直线AB的解析式为y=﹣1x+1.将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC时,∵y轴⊥BC∴OB=OC,∴BC=1,因为平移后的图形与原图形平行,故平移以后的函数解析式为:y=﹣1(x+1)+1,即y=-1x-1.23、m>﹣5且m≠0【解析】先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.【详解】去分母,得m=x-5,即x=m+5,∵方程的解是正数,∴m+5>0,即m>-5,又因为x-5≠0,∴m≠0,则m的取值范围是m>﹣5且m≠0,故答案为:m>﹣5且m≠0.本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.二、解答题(本大题共3个小题,共30分)24、(1;(2)1.【解析】(1)此题涉及零次幂、开立方和绝对值3个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先计算括号里面二次根式的减法,再计算括号外的乘除,最后计算加减即可.【详解】解:(1)原式=1﹣3+2=(2)原式=(﹣4)+4﹣÷+4﹣5=1+4﹣5=1.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25、(1)AM ⊥BN ,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【解析】(1)易证△ABM ≌△BCN ,再根据角度的关系得到∠APB=90°,即可得到AM ⊥BN ;(2)根据旋转的性质及(1)得到四边形BPEP′是矩形,再根据BP=BP′,得到四边形BPEP′是正方形.【详解】(1)AM ⊥BN 证明:∵四边形ABCD 是正方形,∴AB=BC ,∠ABM=∠BCN=90°∵BM=CN ,∴△ABM ≌△BCN ∴∠BAM=∠CBN ∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM ⊥BN .(2)四边形BPEP′是正方形.△A′P′B 是△APB 绕着点B 逆时针旋转90º所得,∴BP=BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP=BP′,所以四边形BPEP′是正方形.此题主要考查特殊平行四边形的性质与判定,解题的关键是熟知正方形的性质与判定.26、(2)能否构成直角三角形,理由见解析.【解析】(1)利用勾股定理求出AB 、CD 的长即可;(2)根据勾股定理的逆定理,即可作出判断.【详解】(1)AB CD ===(2)如图,EF ==∵2225813,13CD EF AB +=+==,∴222CD EF AB ,+=∴以AB 、CD 、EF 三条线可以组成直角三角形.考查勾股定理,勾股定理的逆定理,比较基础,熟练掌握勾股定理以及勾股定理的逆定理是解题的关键.。
云南省玉溪市2019-2020学年中考数学考前模拟卷(1)含解析
云南省玉溪市2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.当 a >0 时,下列关于幂的运算正确的是( )A .a 0=1B .a ﹣1=﹣aC .(﹣a )2=﹣a 2D .(a 2)3=a 52.已知:二次函数y=ax 2+bx+c (a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m (am+b )(m≠-1);④ax 2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A .2个B .3个C .4个D .5个3.如图,ABC ∆的三边,,AB BC CA 的长分别为20,30,40,点O 是ABC ∆三条角平分线的交点,则::ABO BCO CAO S S S ∆∆∆等于( )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶54.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯5.下列图形中,不是轴对称图形的是( )A .B .C .D .6.如图,A ,B 是半径为1的⊙O 上两点,且OA ⊥OB ,点P 从点A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束,设运动时间为x (单位:s ),弦BP 的长为y ,那么下列图象中可能表示y 与x 函数关系的是( )A.①B.③C.②或④D.①或③7.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm29.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.10.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④11.18的绝对值是()A.8 B.﹣8 C.18D.﹣1812.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.三角形两边的长是3和4,第三边的长是方程x2﹣14x+48=0的根,则该三角形的周长为_____.14.若不等式组有解,则m的取值范围是______.15.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.16.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.17.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.18.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2013年四川绵阳12分)如图,AB是⊙O的直径,C是半圆O上的一点,AC平分∠DAB,AD⊥CD,垂足为D,AD交⊙O于E,连接CE.(1)判断CD与⊙O的位置关系,并证明你的结论;(2)若E是»AC的中点,⊙O的半径为1,求图中阴影部分的面积.20.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)21.(6分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣32与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C 位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.22.(8分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE 于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.24.(10分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.25.(10分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?26.(12分)如图,AB为⊙O的直径,点E在⊙O上,C为»BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,6,求AB的长.27.(12分)矩形AOBC中,OB=4,OA=1.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019届云南省玉溪市红塔区第一学区九年级第一次模拟考试数学试卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、填空题
1. -3的相反数是 ____.
2. PM2.5是大气中直径小于或等于0.0000025米的颗粒物, 0.0000025用科学记数法表示
为______.
3. 若分式的值为零,则x的值为.
4. 跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得到他们的平均成绩都是
1.86米,甲的方差为0.3,乙的方差为0.4,那么成绩较为稳定的是.(填“甲”或“乙”)
5. 已知关于x的方程x2﹣5x+k=0有一个根为1,则它的另一个根为.
6. 如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y
轴上,点B1,B2,B3,…都在直线上,则点A2的坐标是________.
二、选择题
7. 下列计算中,不正确的是()
A.﹣2x+3x=x B.6xy2÷2xy=3y
C.(﹣2x2y)3=﹣6x6y3 D.2xy2•(﹣x)=﹣2x2y2
8. 如右图,已知直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数为()
A.30° B.60° C.120° D.150°
9. 如右图所示的几何体的左视图是()
A. B. C. D.
10. 抛物线y=x2+2x-1,与x轴的交点个数是()
A.1个交点 B.2个交点
C.1个或2个交点 D.没有交点
三、单选题
11. 如果一个正多边形的一个内角是140°,那么这个正多边形的边数是()
A. 10
B. 9
C. 8
D. 7
四、选择题
12. 不等式组的解集是()
A.x>1 B. x< C.<x<1 D.无解
13. 已知扇形的圆心角为60°,半径长为12,则扇形的面积为()。
A. B. C. D.
14. 如右图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO
长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()
A. B. C. D.
五、计算题
15. (2016-π)0-∣1-︳+
六、解答题
16. 如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F,求证:AE =DF.
17. 某队有55人,每人每天平均挖土2.5方或运土3方,为合理安排劳力,使挖出的土
及时运走,应如何分配挖土和运土人数?
七、填空题
18. 为了了解某市初三年级学生体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计如右体育成绩统计表
根据上面的信息,回答下列问题:
(1)、统计表中,a = , b= ,并将统计图补充完整;
(2)、小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗?
(填“正确”或“错误”);
(3)、若成绩在27分以上(含27分)定为优秀,则该市今年48000名初三年级学生中体育成绩为优秀的学生人数约有多少?
八、解答题
19. 一个不透明的口袋中有个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,从袋中随机地取出一个球,它是红球的概率是.
(1)求的值;
(2)把这个球中的两个标号为1,其余分别标号为2,3,…,,随机地取出一个小球后不放回,再随机地取出一个小球,请用画树状图或列表的方法求第二次取出小球标号大于第一次取出小球标号的概率.
20. 王杰为了测量他家小楼附近楼房AB的高度,他从楼底的B处测得到他家小楼顶部D 的仰角∠CBD为30°,又测得两幢楼之间的距离BC为10m.(以下计算结果精确到0.1m, 参考值,,)
(1)求王杰家所在楼房CD的高度;
(2)王杰的身高ED是1.6m,他站在他家楼顶看高层楼顶A处的仰角为45°,求楼房AB 的高度.
21. 如图,直线y=2x+3与反比例函数的图像相交于点B(a,5),且与x轴相交于点A.
(1)求反比例函数的表达式。
(2)若P为y轴上的点,且△BOP的面积是△AOB的面积的,请求出P点的坐标。
22. 如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为,OP=1,求BC的长.
23. 如图,对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于B,C两点,其中B点坐标为(1,0),与y轴交于点A,A点坐标为(0,3)
(1)求此抛物线的解析式.
(2)求点B到直线AC的距离.
(3)在此抛物线的对称轴上,是否存在点P使得以点P,A,B为顶点的三角形是等腰三角形,若存在,求点P的坐标;若不存在,请说明理由.
参考答案及解析
第1题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第6题【答案】
第8题【答案】
第9题【答案】
第10题【答案】
第11题【答案】
第12题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】。