SGB04N60中文资料

合集下载

4N60F PDF规格书

4N60F PDF规格书

Fig.1. Normalised power dissipation. PD% = 100⋅PD/PD 25 ˚C = f(Ths)
ID% Normalised Current Derating
with heatsink compound
Fig.4. Transient thermal impedance. Zth j-hs = f(t); parameter D = tp/T
ID, Drain current (Amps) Tj = 25 C 7V PHP3N60 10 V 6V 5.5 V 5V VGS = 4.5 V
120 110 100 90 80 70 60 50 40 30 20 10 0
12 10 8 6 4 2 0
0
20
40
60
80 Ths / C
100
120
140
0
5
10 15 20 25 VDS, Drain-Source voltage (Volts)
30
Fig.2. Normalised continuous drain current. ID% = 100⋅ID/ID 25 ˚C = f(Ths); conditions: VGS ≥ 10 V
φ
3.
18
2.54 ±0.20 0.70 ±0.20
15.87 ±0.20
3.30 ±0.20
12.42 ±0.20
6.68 ±0.20
2.76 ±0.20
9.75 ±0.20
1.47max
D
0.50 ±0.20
1
2.54typ 2.54typ
2 3
0.80 ±0.20
G

4N60规格书

4N60规格书

█极限参数(T A =25℃)参数说明 符号测试条件最小值 典型值 最大值 单 位漏源反向电压 BV DSS V GS =0V , I D =250µA 600 V 漏源截止电流 I DSS V DS = 600V , V GS = 0V, T J = 25℃10 µA 栅源截止电流 I GSS V GS = ±30V ±100 nA 通态电阻 R DS(ON) V GS =10V ,I D =2A 1.77 2.2 Ω 栅-源极开启电压V GS(TH) V DS = V GS , I D = 250µA 2.0 4.0 V 跨导g fsV DS =50V , I D = 2A3.1S参数说明符号 数值 单位 漏极—源极电压 V DSS 600 V 漏极电流(连续) I D 4 A 漏极电流(脉冲) I DM 17.6 A 栅源电压 V GS ±30 V 耗散功率(TC=25℃) P D 100 W 结温 T J 150 ℃ 贮存温度 T atg -55-150 ℃ █电参数(T A =25℃)G D S广州友益电子科技有限公司N-Channel Enhacement Mode Field Effectt Transistor4N60█ 主要用途高速开关应用开关特性图一安全工作区曲线ID(A)V DS(V) PD(W)T C(℃)图二P D-T C关系曲线图三I D-T C关系曲线ID(A)T C(℃)图四典型输出特性曲线ID(A)V DS(V)Z θJCt p (s)图八 R DS(ON)-V GS 曲线R DS(ON)( Ω) 图五 结到管壳热阻图六 最大峰值电流I DM (A)t p (s)图七 典型传输特性曲线I D (A) V GS (V)V GS (V)图九 R DS(ON)-I D 曲线图十 R DS(ON)-T J 曲线图十一 V GS(TH)-T J 曲线图十二 C-V DS 曲线C(pF)R DS(ON)( Ω)I D (A)R DS(ON) T J (℃)V GS(TH) T J (℃)V DS (V)。

WFP4N60(4N60)参数

WFP4N60(4N60)参数

W F P4N4N660S i l i c o n N-ChCha a n n el M OSOSF F ETFeatures■4A,600V,R DS(on)(Max2.2Ω)@V GS=10V■Ultra-low Gate Charge(Typical16nC)■Fast Switching Capability■100%Avalanche Tested■Isolation Voltage(V ISO=4000V AC)■Maximum Junction Temperature Range(150℃)General DescriptionThis Power MOSFET is produced using Winsemi's advancedplanar stripe,VDMOS technology.This latest technology has beenespecially designed to minimize on-state resistance,have a highrugged avalanche characteristics.This devices is specially wellsuited for half bridge and full bridge resonant topology line aelectronic lamp ballast.Absolute Maximum RatingsSymbol Parameter Value Units V DSS Drain Source Voltage600VI D Continuous Drain Current(@Tc=25℃)4A Continuous Drain Current(@Tc=100℃) 2.5AI DM Drain Current Pulsed(Note1)16A V GS Gate to Source Voltage±30V E AS Single Pulsed Avalanche Energy(Note2)240mJ E AR Repetitive Avalanche Energy(Note1)10mJ dv/dt Peak Diode Recovery dv/dt(Note3) 4.5V/nsP D Total Power Dissipation(@Tc=25℃)105W Derating Factor above25℃0.83W/℃T J,T stg Junction and Storage Temperature-55~150℃T L Channel Temperature300℃Thermal CharacteristicsSymbol ParameterValueUnits Min Typ MaxR QJC Thermal Resistance,Junction-to-Case-- 1.20℃/W R QCS Thermal Resistance,Case-to-Sink-0.5-℃/W R QJA Thermal Resistance,Junction-to-Ambient--62.5℃/WElectrical Characteristics(Tc=25℃)Characteristics Symbol Test Condition Min Type Max Unit Gate leakage current I GSS V GS=±30V,V DS=0V--±100nA Gate-source breakdown voltage V(BR)GSS I G=±10µA,V DS=0V±30--VDrain cut-off current I DSS V DS=600V,V GS=0V--10µA V DS=480V,Tc=125℃-100µADrain-source breakdown voltage V(BR)DSS I D=250µA,V GS=0V600--V Gate threshold voltage V GS(th)V DS=10V,I D=250µA2-4V Drain-source ON resistance R DS(ON)V GS=10V,I D=3.25A- 1.8 2.2ΩInput capacitance C iss V DS=25V,V GS=0V,f=1MHz -710920pFReverse transfer capacitance C rss-1419 Output capacitance C oss-6585Switching time Rise time tr V DD=300V,I D=4.4A,R G=25Ω,(Note4,5)-55120nsTurn-on time ton-2050Fall time tf-55120Turn-off time toff-70150 Total gate charge(gate-sourceplus gate-drain)QgV DD=480V,V GS=10V,I D=4.4A(Note4,5)-1620nCGate-source charge Qgs- 3.4-Gate-drain("miller")Charge Qgd-7-Source-Drain Ratings and Characteristics(Ta=25℃)Characteristics Symbol Test Condition Min Type Max Unit Continuous drain reverse current I DR---4A Pulse drain reverse current I DRP---17.6A Forward voltage(diode)V DSF I DR=4.4A,V GS=0V-- 1.4VReverse recovery time trr I DR=4.4A,V GS=0V,dI DR/dt=100A/µs -390-nsReverse recovery charge Qrr- 2.2-µCNote1.Repeativity rating:pulse width limited by junction temperature2.L=18.5mH I AS=4.4A,V DD=50V,R G=0Ω,Starting T J=25℃3.I SD≤4A,di/dt≤200A/us,V DD<BV DSS,STARTING T J=25℃4.Pulse Test:Pulse Width≤300us,Duty Cycle≤2%5.Essentially independent of operating temperature.This transistor is an electrostatic sensitive devicePlease handle with cautionFig.1On-State Characteristics Fig.2Transfer Current characteristicsFig.3On Resistance variation vsDrain Current Fig.4Body Diode Forward Voltage Variation vs Source Currentand temperatureFig.5On-Resistance Variation vsJunction TemperatureFig.6Gate Charge CharacteristicsFig.7Maximum Safe Operation Area Fig.8Maximum Drain Current vsCase TemperatureFig.9Transient Thermal Response curveFig.10Gate Test circuit&WaveformFig.11Resistive Switching Test Circuit&WaveformFig.12Uncamped Inductive Switching Test Circuit&WaveformFig.13Peak Diode Recovery dv/dt Test Circuit&WaveformT O -2-2220Pa Pac c ka kage ge Dim Dimee n s i on Unit:mm。

fgh04n60场效应管参数

fgh04n60场效应管参数

fgh04n60场效应管参数fgh04n60场效应管是一种常用的功率场效应管,具有许多重要的参数。

本文将介绍fgh04n60场效应管的主要参数及其意义,以帮助读者更好地理解和应用该器件。

1. 最大漏极-源极电压(VDSmax):该参数表示fgh04n60场效应管可以承受的最大漏极-源极电压。

超过该电压值,场效应管可能会发生击穿或损坏。

因此,在实际应用中,需要根据电路要求选择合适的电压等级的fgh04n60场效应管。

2. 最大漏极电流(IDmax):该参数表示fgh04n60场效应管可以承受的最大漏极电流。

超过该电流值,场效应管可能会过载而损坏。

因此,在设计电路时,需要根据负载要求和工作环境选择合适的场效应管。

3. 静态工作点(Q-point):静态工作点是指fgh04n60场效应管在无输入信号时的工作状态。

静态工作点的选择对于电路的稳定性和线性度具有重要影响。

通常需要通过适当的偏置电路来确定静态工作点。

4. 开启电压(VGSth):开启电压是指fgh04n60场效应管开始导通的门源电压。

当门源电压大于等于开启电压时,场效应管开始导通,形成通路。

开启电压的大小对于电路的灵敏度和响应速度有一定影响。

5. 静态漏极-源极电阻(RDSon):静态漏极-源极电阻是指fgh04n60场效应管在导通状态下的漏极-源极电阻。

电阻越小,场效应管的导通能力越强,功耗越低。

在功率放大电路中,需要选择具有较小静态电阻的场效应管,以提高电路效率。

6. 增益:增益是指fgh04n60场效应管的输入-输出特性曲线斜率的绝对值。

增益越大,场效应管的放大能力越强。

在放大电路中,需要选择具有较大增益的场效应管,以实现所需的放大倍数。

7. 耗散功率(PD):耗散功率是指fgh04n60场效应管在工作过程中消耗的功率。

耗散功率与场效应管的导通电流和导通电压有关。

在电路设计中,需要根据场效应管的耗散功率和散热条件选择合适的散热措施,以确保场效应管的工作稳定性和可靠性。

SKP04N60参数资料

SKP04N60参数资料

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode• 75% lower E off compared to previous generationcombined with low conduction losses• Short circuit withstand time – 10 µs • Designed for:- Motor controls - Inverter• NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour - parallel switching capability• Very soft, fast recovery anti-parallel EmCon diode• Complete product spectrum and PSpice Models : /igbt/Type V CE I C V CE(sat )T j Package Ordering Code SKP04N60600V4A2.3V150°CTO-220AB Q67040-S4216SKB04N60TO-263ABQ67040-S4229Maximum Ratings ParameterSymbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°CI C9.44.9Pulsed collector current, t p limited by T jmax I C p u l s 19Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -19Diode forward current T C = 25°C T C = 100°CI F104Diode pulsed current, t p limited by T jmax I F p u l s 19AGate-emitter voltage V G E ±20V Short circuit withstand time 1)V GE = 15V, V CC ≤ 600V, T j ≤ 150°Ct S C 10µs Power dissipation T C = 25°CP t o t50WOperating junction and storage temperatureT j , T s t g-55...+150°C1)Allowed number of short circuits: <1000; time between short circuits: >1s.P-TO-220-3-1(TO-220AB)P-TO-263-3-2 (D²-PAK)(TO-263AB)Thermal Resistance Parameter Symbol Conditions Max. ValueUnit CharacteristicIGBT thermal resistance,junction – caseR t h J C 2.5Diode thermal resistance,junction – case R t h J C D 4.5Thermal resistance,junction – ambientR t h J A TO-220AB 62SMD version, device on PCB1)R t h J ATO-263AB40K/WElectrical Characteristic, at T j = 25 °C, unless otherwise specified ValueParameterSymbol Conditionsmin.Typ.max.UnitStatic CharacteristicCollector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500µA 600--Collector-emitter saturation voltageV C E (s a t )V G E = 15V, I C =4A T j =25°C T j =150°C1.7-2.02.3 2.42.8Diode forward voltageV FV G E =0V, I F =4A T j =25°C T j =150°C1.2- 1.41.25 1.81.65Gate-emitter threshold voltage V G E (t h )I C =200µA,V C E =V G E 345VZero gate voltage collector currentI C E SV C E =600V,V G E =0V T j =25°C T j =150°C----20500µAGate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s V C E =20V, I C =4A 3.1-S Dynamic Characteristic Input capacitance C i s s -264317Output capacitanceC o s s -2935Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz-1720pFGate chargeQ G a t e V C C =480V, I C =4A V G E =15V -2431nC Internal emitter inductancemeasured 5mm (0.197 in.) from case L E TO-220AB-7-nH Short circuit collector current2)I C (S C )V G E =15V,t S C ≤10µs V C C ≤ 600V,T j ≤ 150°C-40-A 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2(one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.2)Allowed number of short circuits: <1000; time between short circuits: >1s.Switching Characteristic, Inductive Load, at T j =25 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1518Turn-off delay time t d (o f f )-237284Fall time t f -7084nsTurn-on energy E o n -0.0700.081Turn-off energy E o f f -0.0610.079Total switching energyE t sT j =25°C,V C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.1310.160mJ Anti-Parallel Diode Characteristic Diode reverse recovery timet r r t S t F---18015165---nsDiode reverse recovery charge Q r r -130-nC Diode peak reverse recovery current I r r m - 2.5-A Diode peak rate of fall of reverse recovery current during t bdi r r /dtT j =25°C,V R =200V, I F =4A,di F /dt =200A/µs-180-A/µs Switching Characteristic, Inductive Load, at T j =150 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1619Turn-off delay time t d (o f f )-264317Fall time t f -104125nsTurn-on energy E o n -0.1150.132Turn-off energy E o f f -0.1110.144Total switching energyE t sT j =150°CV C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.2260.277mJ Anti-Parallel Diode Characteristic Diode reverse recovery timet r r t S t F---23023227---nsDiode reverse recovery charge Q r r -300-nC Diode peak reverse recovery current I r r m -4-A Diode peak rate of fall of reverse recovery current during t bdi r r /dtT j =150°C V R =200V, I F =4A,di F /dt =200A/µs-200-A/µs 1)Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.I C , C O L L E C T O R C U R R E N T10Hz100Hz 1kHz 10kHz 100kHz0A 10A20AI C , C O L L E C T O R C U R R E N T1V10V100V1000V0.01A0.1A1A10Af , SWITCHING FREQUENCYV CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 67Ω)Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)P t o t , P O W E R D I S S I P A T I O N25°C50°C 75°C 100°C 125°C0W 10W20W30W40W50W60WI C , C O L L E C T O R C U R R E N T25°C50°C 75°C 100°C 125°C0A2A4A6A8A10A12AT C , CASE TEMPERATURET C , CASE TEMPERATUREFigure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature(V GE ≤ 15V, T j ≤ 150°C)I C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A 6A 9A12A 15AI C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A6A9A12A15AV CE , COLLECTOR -EMITTER VOLTAGEV CE , COLLECTOR -EMITTER VOLTAGEFigure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)I C , C O L L E C T O R C U R R E N T0V2V 4V 6V 8V 10V0A 2A 4A 6A 8A 10A 12A14A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E-50°C 0°C 50°C 100°C 150°C1.0V1.5V2.0V2.5V3.0V3.5V4.0VV GE , GATE -EMITTER VOLTAGET j , JUNCTION TEMPERATUREFigure 7. Typical transfer characteristics(V CE = 10V)Figure 8. Typical collector-emittersaturation voltage as a function of junction temperature (V GE = 15V)t , S W I T C H I N G T I M E S0A2A4A6A8A10A10ns100nst , S W I T C H I N G T I M E S0Ω50Ω100Ω150Ω200Ω10ns 100nsI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 9. Typical switching times as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 10. Typical switching times as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)t , S W I T C H I N G T I M E S0°C50°C100°C150°C10ns100nsV G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E-50°C0°C50°C100°C150°C 2.0V2.5V3.0V 3.5V4.0V 4.5V5.0V 5.5VT j , JUNCTION TEMPERATURET j , JUNCTION TEMPERATUREFigure 11. Typical switching times as a function of junction temperature(inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.2mA)E , S W I T C H I N G E N E R G Y L O S S E S0A2A 4A 6A 8A 10A0.0mJ0.1mJ0.2mJ0.3mJ0.4mJ0.5mJ0.6mJE , SW I T C H I N G E N E R G Y L O S S E S0Ω50Ω100Ω150Ω200Ω0.0mJ0.1mJ0.2mJ0.3mJ0.4mJI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 13. Typical switching energy losses as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 14. Typical switching energy losses as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)E ,S W I T C H I N G E N E R G Y L O S S E S0°C50°C 100°C 150°C0.0mJ0.1mJ0.2mJ0.3mJZ t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-310-210-1100T j , JUNCTION TEMPERATUREt p , PULSE WIDTHFigure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 16. IGBT transient thermalimpedance as a function of pulse width (D = t p / T )V G E , G A T E -E M I T T E R V O L T A G E0nC10nC 20nC 30nC 0V 5V10V15V20V25VC , C A P A C I T A N C E0V 10V 20V 30V10pF100pFQ GE , GATE CHARGEV CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 4A)Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)t s c , S H O R T C I R C U I T W I T H S T A N D T I M E10V11V12V13V14V15V0µs 5µs10µs15µs20µs25µs I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T10V12V 14V 16V 18V20V0A 10A 20A 30A 40A 50A 60A 70AV GE , GATE -EMITTER VOLTAGEV GE , GATE -EMITTER VOLTAGEFigure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)t r r , R E V E R S E R E C O V E R Y T I M E40A/µs120A/µs 200A/µs 280A/µs 360A/µs0ns100ns200ns300ns400ns500nsQ r r , R E V E R S E R E C O V E R Y C H A R G E40A/µs120A/µs 200A/µs 280A/µs 360A/µs0nC80nC160nC240nC320nC400nC480nC560nCdi F /dt , DIODE CURRENT SLOPEdi F /dt , DIODE CURRENT SLOPEFigure 21. Typical reverse recovery time as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)Figure 22. Typical reverse recovery charge as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)I r r , R E V E R S E R E C O V E R Y C U R R E N T40A/µs120A/µs 200A/µs 280A/µs360A/µs0A2A4A6A8Ad i r r /d t , D I O D E P E A K R A T E O F F A L LO F R E V E R S E R E C O V E R Y C U R R E N T40A/µs120A/µs 200A/µs 280A/µs 360A/µs0A/µs80A/µs160A/µs240A/µs320A/µs400A/µsdi F /dt , DIODE CURRENT SLOPEdi F /dt , DIODE CURRENT SLOPEFigure 23. Typical reverse recovery current as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R = 200V, T j = 125°C,Dynamic test circuit in Figure E)I F , F O R W A R D C U R R E N T0.0V0.5V 1.0V 1.5V 2.0V0A 2A4A6A8AV F , F O R W A R D V O L T A G E-40°C 0°C 40°C 80°C 120°C1.0V1.5V2.0VV F , FORWARD VOLTAGET j , JUNCTION TEMPERATUREFigure 25. Typical diode forward current as a function of forward voltage Figure 26. Typical diode forward voltage as a function of junction temperatureZ t h J C D , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-210-1100t p , PULSE WIDTHFigure 27. Diode transient thermalimpedance as a function of pulse width (D = t p / T )dimensionssymbol[mm][inch]minmax minmax A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.951.320.03740.0520M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T2.302.720.09060.1071TO-220ABdimensionssymbol[mm][inch]minmax minmax A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.0.2 typ.H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° maxS 2.40 3.000.09450.1181T 0.400.600.01570.0236U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)Z16.150.6358Figure A. Definition of switching times Figure B. Definition of switching lossesIr r m90% Ir r m10% Ir r mdi/dtFtr rIFi,vtQSQFtStFVRdi/dtr rQ=Q Qr r S F+t=t tr r S F+Figure C. Definition of diodesswitching characteristicsτ1τ2nτr r rFigure D. Thermal equivalentcircuitFigure E. Dynamic test circuitLeakage inductance Lσ=180nHand Stray capacity Cσ=180pF.Published byInfineon Technologies AG,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München© Infineon Technologies AG 2000All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。

N沟道增强型高压功率MOS场效应晶体管SVD4N60D(F)(FG)(T)说明书_1.4-L

N沟道增强型高压功率MOS场效应晶体管SVD4N60D(F)(FG)(T)说明书_1.4-L

SVD4N60D/F(G)/T 说明书4A、600V N沟道增强型场效应管描述SVD4N60D/F(G)/T N沟道增强型高压功率MOS场效应晶体 管采用士兰微电子的S-RinTM平面高压VDMOS 工艺技术制造。

先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电 阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于 AC-DC 开关电源,DC-DC 电源转换 器,高压 H 桥 PWM 马达驱动。

特点∗ ∗ ∗ ∗ ∗4A,600V,RDS(on)(典型值)=2.0 Ω@VGS=10V 低栅极电荷量 低反向传输电容 开关速度快 提升了 dv/dt 能力命名规则产品规格分类产 品 名 称 SVD4N60T SVD4N60F SVD4N60FG SVD4N60D SVD4N60DTR 封装形式 TO-220-3L TO-220F-3L TO-220F-3L TO-252-2L TO-252-2L 打印名称 SVD4N60T SVD4N60F SVD4N60FG SVD4N60D SVD4N60D 材料 无铅 无铅 无卤 无铅 无铅 包装 料管 料管 料管 料管 编带版本号:1.42011.09.01 共9页 第1页SVD4N60D/F(G)/T 说明书极限参数(除非特殊说明,TC=25°C)参数名称 漏源电压 栅源电压 漏极电流 漏极脉冲电流 耗散功率(TC=25°C) - 大于 25°C 每摄氏度减少 单脉冲雪崩能量(注 1) 工作结温范围 贮存温度范围 TC=25°C TC=100°C 符号 VDS VGS ID IDM PD EAS TJ Tstg 100 0.8 参数范围 SVD4N60T SVD4N60F(G) 600 ±30 4.0 2.5 16 33 0.26 276 -55~+150 -55~+150 77 0.62 SVD4N60D 单位 V V A A W W/°C mJ °C °C热阻特性参数名称 芯片对管壳热阻 芯片对环境的热阻 符号 RθJC RθJA 参数范围 SVD4N60T 1.25 62.5 SVD4N60F(G) 3.85 120 SVD4N60D 1.61 110 单位 °C/W °C/W关键特性参数(除非特殊说明,TC=25°C)参 数 漏源击穿电压 漏源漏电流 栅源漏电流 栅极开启电压 导通电阻 输入电容 输出电容 反向传输电容 开启延迟时间 开启上升时间 关断延迟时间 关断下降时间 栅极电荷量 栅极-源极电荷量 栅极-漏极电荷量 符号 BVDSSB测试条件 VGS=0V,ID=250µA VDS=600V,VGS=0V VGS=±30V,VDS=0V VGS= VDS,ID=250µA VGS=10V, ID=2A VDS=25V,VGS=0V, f=1.0MHZ VDD=300V,ID=4A, RG=25Ω (注 2,3) VDS=480V,ID=4A, VGS=10V (注 2,3)最小值 600 --2.0 ------------典型值 ----2.0 672 66 4.7 27 19 160 22 19.8 4 7.2最大值 -10 ±100 4.0 2.4 -----------单位 V µA nA V ΩIDSS IGSS VGS(th) RDS(on) Ciss Coss Crss td(on) tr td(off) tf Qg Qgs QgdpFnsnC版本号:1.42011.09.01 共9页 第2页SVD4N60D/F(G)/T 说明书源-漏二极管特性参数参 源极电流 源极脉冲电流 源-漏二极管压降 反向恢复时间 反向恢复电荷 注: 1. 2. 3. L=30mH,IAS=3.81A,VDD=175V,RG=25Ω,开始温度 TJ=25°C; 脉冲测试: 脉冲宽度≤300μs,占空比≤2%; 基本上不受工作温度的影响。

4N60中文资料

4N60中文资料

UNISONIC TECHNOLOGIES CO., LTD4N60 Power MOSFET4 Amps, 600 VoltsN-CHANNEL POWER MOSFETDESCRIPTIONThe UTC 4N60 is a high voltage MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in power supplies, PWM motor controls, high efficient DC to DC converters and bridge circuits.FEATURES* RDS(ON) = 2.5Ω @V GS = 10 V* Ultra low gate charge ( typical 15 nC )* Low reverse transfer Capacitance ( C RSS = typical 8.0 pF ) * Fast switching capability * Avalanche energy Specified* Improved dv/dt capability, high ruggednessSYMBOL1.GateTO-22011TO-220F*Pb-free plating product number: 4N60LORDERING INFORMATIONOrder Number Pin AssignmentNormalLead Free Plating Package 1 2 3 Packing4N60-TA3-T 4N60L-TA3-T TO-220 G D S Tube 4N60-TF3-T 4N60L-TF3-T TO-220F G D S TubeABSOLUTE MAXIMUM RATINGS (T C = 25℃, unless otherwise specified)PARAMETER SYMBOL RATINGS UNITDrain-Source Voltage V DSS 600 V Gate-Source Voltage V GSS ±30 V Avalanche Current - (Note 1) I AR 4.4 AT C = 25°C 4.0 AContinuous Drain CurrentT C = 100°C I D 2.8 APulsed Drain Current, T P Limited by T JMAX - (Note 1) I DM 16 A Avalanche Energy, Single Pulsed (Note 2) E AS 260 mJ Avalanche Energy, Repetitive, Limited by T JMAX E AR 10.6 mJ Peak Diode Recovery dv/dt (Note 3) dv/dt 4.5 V/ns Power Dissipation (T C = 25°C) P D 106 W Junction Temperature T J +150 Storage Temperature T STG -55 ~ +150Note Absolute maximum ratings are those values beyond which the device could be permanently damaged.Absolute maximum ratings are stress ratings only and functional device operation is not implied.THERMAL DATAPARAMETER SYMBOL MIN TYP MAX UNITJunction-to-Ambient θJA 62.5 °C/W Junction-to-Case θJC 3 °C/W Case-to-Sink θCS 0.5 °C/WELECTRICAL CHARACTERISTICS (T C =25℃, unless otherwise specified)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITOff CharacteristicsDrain-Source Breakdown Voltage BV DSS V GS = 0 V, I D = 250 µA 600V V DS = 600 V, V GS = 0 V10µA Drain-Source Leakage Current I DSSV DS = 480 V, T C = 125°C100µA Forward V GS = 30 V, V DS = 0 V100nA Gate-Source Leakage CurrentReverse I GSSV GS = -30 V, V DS = 0 V-100nA Breakdown Voltage Temperature CoefficientBV DSS /△T J I D = 250 µA, Referenced to 25°C 0.6 V/ On Characteristics Gate Threshold VoltageV GS(TH)V DS = V GS , I D = 250 µA 2.0 4.0V Drain-Source On-State Resistance R DS(ON) V GS = 10 V, I D = 2.2 A2.5ΩForward Transconductance g FSV DS = 50 V, I D = 2.2 A (Note 4)4.0SDynamic Characteristics Input Capacitance C ISS 520 670pFOutput CapacitanceC OSS 70 90pFReverse Transfer Capacitance C RSSV DS = 25 V, V GS = 0 V, f = 1MHz 8 11pF Switching Characteristics Turn-On Delay Time t D(ON) 13 35nsTurn-On Rise Time t R 45 100ns Turn-Off Delay Time t D(OFF) 25 60nsTurn-Off Fall Time t FV DD = 300V, I D = 4.0 A, R G = 25Ω(Note 4, 5) 35 80ns Total Gate Charge Q G 15 20nCGate-Source Charge Q GS 3.4 nCGate-Drain ChargeQ DDV DS = 480V,I D = 4.0A, V GS = 10 V(Note 4, 5)7.1 nCELECTRICAL CHARACTERISTICS(Cont.)PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITSource- Drain Diode Ratings and Characteristics Drain-Source Diode Forward Voltage V SD V GS = 0 V, I S = 4.4 A 1.4VMaximum Continuous Drain-SourceDiode Forward CurrentI S 4.4AMaximum Pulsed Drain-Source DiodeForward CurrentI SM 17.6AReverse Recovery Time t RR 250 ns Reverse Recovery Charge Q RR V GS = 0 V, I S = 4.4 A,dI F /dt = 100 A/µs (Note 4) 1.5 µCNotes: 1. Repetitive Rating : Pulse width limited by T J2. L = 25mH, I AS = 4.4A, V DD = 50V, R G = 25 Ω, Starting T J = 25°C3. I SD ≤4.4A, di/dt ≤200A/µs, V DD ≤ BV DSS , Starting T J = 25°C 4. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%5. Essentially independent of operating temperatureTEST CIRCUITS AND WAVEFORMSV DDV GS (Driver)I SD (D.U.T.)Body DiodeForward Voltage DropV DS(D.U.T.)Fig. 1A Peak Diode Recovery dv/dt Test CircuitFig. 1B Peak Diode Recovery dv/dt WaveformsTEST CIRCUITS AND WAVEFORMS (Cont.)R LDDV DS90%10%V GStFig. 2A Switching Test Circuit Fig. 2B Switching WaveformsFig. 3A Gate Charge Test CircuitFig. 3B Gate Charge Waveform10VLV DDI ASFig. 4A Unclamped Inductive Switching Test Circuit Fig. 4B Unclamped Inductive Switching WaveformsTYPICAL CHARACTERISTICS-100D r a i n -S o u rc e B r e a kd o w n V o l t a ge , B V D S S (N o r m a l i z e d )Junction Temperature , T J (℃)502001001501.201.11.00.90.8Breakdown Voltage Variation vs .Temperature-100D r a i n -S o u r ce O n -R e s i s t a n c e , R D S (O N ) (N o r m a l i z e d )Junction Temperature , T J (℃)-50502001001503.002.01.00.50.01.52.5On-Resistance Junction Temperature10Drain-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )1001011000Maximum Safe Operating AreaD r a i n C u r r e n t , I D (A )Case Temperature , T C (℃)751000125502512345Maximum Drain Current vs . CaseTemperature100.11Drain -to-Source Voltage , V DS (V)D r a i n C u r r e n t , I D (A )On-State Characteristics2Gate-Source Voltage , V GS (V)D r a i n C u r r e n t , I D (A )Transfer Characteristics 46810100.1TYPICAL CHARACTERISTICS(Cont.)D r a i n -S o u r c e O n -R e s i s t a n c e , R D S (O N ) (o h m )Drain Current, I D (A)24On-Resistance Variation vs . DrainCurrent and Gate Voltage 6810120.2Source-Drain Voltage , V SD (V)On State Current vs. Allowable CaseTemperature1.80.40.60.81.01.2 1.61.4120000.1Drain-SourceVoltage , V DS (V)C a p a c i t a n c e (p F )1000200110800600Capacitance Characteristics(Non-Repetitive)G a t e -S o u r c e V o l t a g e , V G S (V )Total Gate Charge , Q G (nC)515258101210642020Gate Charge Characteristics400T h e r m a l R e s p o n s e , θJ C (t )Square Wave Pulse Duration , t 1(sec)Transient Thermal ResponseCurve 00P D (w )T C (°C)2040204080100120Power Dissipation606080100120140160。

ARK品牌FTA04N60B完整规格书

ARK品牌FTA04N60B完整规格书

ARK Microelectronics Co., Ltd. Rev. 2.1 May. 2012600V N-Channel MOSFETGeneral FeaturesLow ON ResistanceLow Gate Charge (typical 14.7nC) Fast Switching100% Avalanche Tested RoHS CompliantHalogen-free availableApplicationsHigh Efficiency SMPS Adaptor/ChargerActive PFCLCD Panel PowerCaution: Stresses greater than those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device.Thermal CharacteristicsElectrical CharacteristicsARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012NOTE:[1] T J=+25℃to +150℃[2] Repetitive rating, pulse width limited by maximum junction temperature.[3] I SD=3.6A, di/dt≤100A/µs, V DD≤BV DSS, T J=+150℃[4] Pulse width≤380µs; duty cycle≤2%.ARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012ARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012ARK Microelectronics Co., Ltd. Rev. 2.1 May. 2012ARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012ARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012Test CircuitV DDFigure 17. Gate Charge Test CircuitV GSFigure 18. Gate Charge WaveformV DDFigure 19. Resistive Switching Test CircuitV DSV GSFigure 20. Resistive Switching WaveformsFTP04N60B/FTA04N60BFigure 21. Diode Reverse Recovery Test Circuit Figure 22. Diode Reverse Recovery WaveformVV DDFigure 23. Unclamped Inductive Switching Test CircuitpAVV DDBV DSSV GS22LIE ASASFigure 24. Unclamped Inductive Switching WaveformsARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012FTP04N60B/FTA04N60B Package DimensionsARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012FTP04N60B/FTA04N60BARK Microelectronics Co., Ltd.Rev. 2.1 May. 2012FTP04N60B/FTA04N60B Published byARK Microelectronics Co., Ltd.No.9, East Zijing Road, High-tek District, Chengdu, P. R. ChinaAll Rights Reserved.DisclaimersARK Microelectronics Co., Ltd. reserves the right to make change without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to ARK Microelectronics Co., Ltd’s terms and conditions supplied at the time of order acknowledgement.ARK Microelectronics Co., Ltd. warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent ARK Microelectronics Co., Ltd deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessary performed.ARK Microelectronics Co., Ltd. does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using ARK Microelectronics Co., Ltd’s components. To minimize risk, customers must provide adequate design and operating safeguards.ARK Microelectronics Co., Ltd. does not warrant or convey any license either expressed or implied under its patent rights, nor the rights of others. Reproduction of information in ARK Microelectronics Co., Ltd’s data sheets or data books is permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for such altered documentation.Resale of ARK Microelectronics Co., Ltd’s products with statements different from or beyond the parameters stated by ARK Microelectronics Co., Ltd. for the product or service voids all express or implied warrantees for the associated ARK Microelectronics Co., Ltd’s product or service and is unfair and dece ptive business practice. ARK Microelectronics Co., Ltd is not responsible or liable for any such statements.Life Support Policy:ARK Microelectronics Co., Ltd’s products are not authorized for use as critical components in life devices or systems without the expressed written approval of ARK Microelectronics Co., Ltd.As used herein:1.Life support devices or systems are devices or systems which:a.are intended for surgical implant into the human body,b.support or sustain life,c.whose failure to perform when properly used in accordance with instructions for used provided in thelabeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component is any component of a life support device or system whose failureto perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.ARK Microelectronics Co., Rev. 2.1 May. 201211 / 11。

SSS4N60AS中文资料

SSS4N60AS中文资料

Value Units A V mJ A mJ V/ns W A V TO-220F1.Gate2. Drain3. Source3216002.31.5162602.33.33.0330.2630W/oCTRADEMARKSACEx™CoolFET™CROSSVOLT™E 2CMOS TM FACT™FACT Quiet Series™FAST ®FASTr™GTO™HiSeC™The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.LIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROV AL OF FAIRCHILD SEMICONDUCTOR CORPORA TION.As used herein:ISOPLANAR™MICROWIRE™POP™PowerTrench™QS™Quiet Series™SuperSOT™-3SuperSOT™-6SuperSOT™-8TinyLogic™1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.2. A critical component is any component of a lifesupport device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status DefinitionAdvance InformationPreliminary No Identification Needed Obsolete This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.Formative or In DesignFirst ProductionFull ProductionNot In ProductionDISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY , FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.UHC™VCX™。

AOD4N60规格书

AOD4N60规格书

General DescriptionSymbol V DS Parameter Absolute Maximum Ratings T A =25°C unless otherwise notedMaximum Drain-Source Voltage Gate-Source Voltage G SV GSSymbol R θJA R θCSR θJCMaximum Case-to-sinkAMaximum Junction-to-CaseD,F°C/W°C/W 10.51.2T =25°C Continuous Drain Current BMaximum Junction-to-Ambient A,G -55MaximumThermal Characteristics Units °C/W 43ParameterTypical AOI4N60AOD4N60G S DG SDGG D DSS D GD AOU4N60SymbolMinTypMaxUnits600700BV DSS /∆TJ 0.67V/ o C 110I GSS Gate-Body leakage current ±100n ΑV GS(th)Gate Threshold Voltage3.44.1 4.5V R DS(ON) 1.8 2.3Ωg FS 6S V SD 0.761V I S Maximum Body-Diode Continuous Current4A I SM14A C iss 420528640pFC oss 355370pF C rss 2.5 4.87pF R g1.22.53.8ΩQ g 9.51214.5nC Q gs 2.8 3.6 4.5nC Q gd 2.24.4 6.6nC t D(on)17ns µA V Static Drain-Source On-Resistance V GS =10V, I D =2A Reverse Transfer Capacitance V GS =0V, V DS =25V, f=1MHz SWITCHING PARAMETERSI DSS Zero Gate Voltage Drain Current V DS =600V, V GS =0V Gate Drain Charge V DS =5V, I D =250µA V DS =480V, T J =125°C I S =1A,V GS =0VElectrical Characteristics (T J =25°C unless otherwise noted)STATIC PARAMETERS ParameterConditionsZero Gate Voltage Drain Current ID=250µA, VGS=0V BV DSS Maximum Body-Diode Pulsed CurrentInput Capacitance Output CapacitanceDYNAMIC PARAMETERS V Gate resistanceV GS =0V, V DS =0V, f=1MHzTotal Gate Charge V GS =10V, V DS =480V, I D =4ATurn-On DelayTime Gate Source Charge Drain-Source Breakdown Voltage I D =250µA, V GS =0V, T J =25°C I D =250µA, V GS =0V, T J =150°C Diode Forward VoltageV DS =0V, V GS =±30V V DS =40V, I D =2A Forward Transconductance t r 26ns t D(off)34ns t f 21ns t rr 150190230ns Q rr1.92.43µCTHIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,FUNCTIONS AND RELIABILITY WITHOUT NOTICE.Body Diode Reverse Recovery TimeI F =4A,dI/dt=100A/µs,V DS =100VBody Diode Reverse Recovery Charge I F =4A,dI/dt=100A/µs,V DS =100VTurn-On Rise Time Turn-Off DelayTime GS =10V, V DS =300V, I D =4A,R G =25ΩTurn-Off Fall TimeA. The value of R θJA is measured with the device in a still air environment with T A =25°C.B. The power dissipation P D is based on T J(MAX)=150°C in a TO252 package, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.C. Repetitive rating, pulse width limited by junction temperature T J(MAX)=150°C.D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient.E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T J(MAX)=150°C.G.These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C.H. L=60mH, I AS =2.8A, V DD =150V, R G =10Ω, Starting T J =25°CTYPICAL ELECTRICAL AND THERMAL CHARACTERISTICSI D (A )Fig 1: On-Region CharacteristicsV R D S (O N )(Ω)I Figure 3: On-Resistance vs. Drain Current and GateN o r m a l i z e d O n -R e s i s t a n c e401.0E-041.0E-031.0E-021.0E-011.0E+001.0E+011.0E+020.20.40.60.8 1.0I S (A )V SD (Volts)Figure 6: Body-Diode Characteristics25°C125°CI D =30A25°125°012345678051015202530V DS (Volts)V GS =5.5V6V10V6.5V 0.1110100246810I D (A )GS (Volts)Figure 2: Transfer Characteristics-55°CV DS =40V25°C125°C1.01.52.02.53.03.54.04.5246810D (A)VoltageV GS =10V00.511.522.53-100-50050100150200Temperature (°C)Figure 4: On-Resistance vs. JunctionTemperature V GS =10V I D =2A0.80.911.11.2-100-5050100150200B V D S S (N o r m a l i z e d )T J (o C)Figure 5: Break Down vs. Junction TemperatureVdsC ha rgeGate Charge Test Circuit & W av eformResistiv e Switching Test Circuit & W av eformsDSS2ARVddVddVdsI dVgsB V I Unclamped Inductive Switching (UIS) Test Circuit & W av eformsI Diode Recovery Vd ARE = 1/2 LI ddVdd AR。

士兰微 SGT40N60NPFDPN 说明书 40A、600V绝缘栅双极型晶体管 说明书

士兰微 SGT40N60NPFDPN 说明书 40A、600V绝缘栅双极型晶体管 说明书

40A 、600V 绝缘栅双极型晶体管描述SGT40N60NPFDPN 绝缘栅双极型晶体管采用新一代场截止(Field Stop )工艺制作,具有低的导通损耗和开关损耗,正温度系数易于并联应用等特点。

该产品可应用于感应加热UPS ,SMPS 以及PFC 等领域。

特点♦ 40A ,600V ,V CE(sat)(典型值)=1.8V@I C =40A ♦ 低导通损耗 ♦ 超快开关速度 ♦高击穿电压命名规则SGT 40 N E 60 □□□□ PNIGBT 产品系列名称电流值,20表示20AN ChannelE:表示有带ESD空白:表示不带ESD电压值:120表示1200VNP:表示NPT 工艺 P: 表示PT 工艺T: 表示Trench 工艺空白: 表示非Trench 工艺 F: 表示采用了Field stop 工艺空白: 表示非采用Field stop 工艺 D: 表示内置了FRD 空白: 表示没有内置了FRD表示封装形式,如PN 表示TO-3P 封装形式产品规格分类产 品 名 称 封装形式 打印名称 材料 包装 SGT40N60NPFDPNTO-3P40N60NPFD无铅料管极限参数 (除非特殊说明,T C =25°C)参 数符 号 参数范围 单位 集电极-射极电压 V CE 600 V 栅极-射极电压V GE±20 V 集电极电流 T C =25°CI C 80 A T C =100°C40 集电极脉冲电流 I CM 120 A 耗散功率(T C =25°C ) - 大于25°C 每摄氏度减少 P D 290 W 2.32 W/°C 工作结温范围 T J -55~+150 °C 贮存温度范围 T stg -55~+150°C热阻特性参数符号参数范围单位芯片对管壳热阻(IGBT)RθJC0.24 °C/W 芯片对管壳热阻(FRD)RθJC 1.4 °C/W 芯片对环境的热阻RθJA35.5 °C/WIGBT电性参数(除非特殊说明,TC=25°C)参 数 符 号 测试条件 最小值 典型值 最大值 单位 集射击穿电压BV CE V GE=0V,I C=250uA 600 -- -- V 集射漏电流I CES V CE=600V,V GE=0V -- -- 200 uA 栅射漏电流I GES V GE=20V,V CE=0V -- -- ±500 nA 栅极开启电压V GE(th)I C=250μA,V CE=V GE 4.0 5.0 6.5 V 饱和压降V CE(sat)I C=40A,V GE=15V -- 1.8 2.7 VI C=40A, V GE=15V, T C=125°C -- 2.1 -- V输入电容C ies VCE=30VV GE=0Vf=1MHz -- 1850 --pF输出电容C oes-- 180 -- 反向传输电容C res-- 50 --开启延迟时间T d(on)V CE=400VI C=40AR g=10ΩV GE=15V感性负载-- 18 --ns开启上升时间T r-- 80 --关断延迟时间T d(off)-- 110 --关断下降时间T f-- 105 --导通损耗E on-- 1.87 --mJ 关断损耗E off-- 0.68 --开关损耗E st-- 2.55 --栅电荷Q gV CE = 300V, I C=20A,V GE = 15V -- 100 --nC发射极栅电荷Q ge-- 11 --集电极栅电荷Q gc-- 52 --FRD电性参数(除非特殊说明,T C=25°C)参 数 符 号 测试条件 最小值 典型值 最大值 单位二极管正向压降V fm I F = 20A T C=25°C -- 1.9 2.6V I F = 20A T C=125°C -- 1.5 --二极管反向恢复时间T rr I ES =20A, dI ES/dt = 200A/μs-- 32 -- ns 二极管反向恢复电荷Q rr I ES =20A, dI ES/dt = 200A/μs-- 74 -- nC典型特性曲线图1. 典型输出特性集电极电流 – I C (A )0401201.53.06.0集电极-发射极电压 – V CE (V)集电极电流 – I C (A )集电极-发射极电压 – V CE (V)图3. 典型饱和电压特性802060100 4.5图2. 典型输出特性集电极电流 – I C (A )401200 1.5 3.0 6.0集电极-发射极电压 – V CE (V)8020601004.5040120012580206010043集电极电流 – I C (A )栅极-发射极电压 – V GE (V)图4. 传输特性40120456128020601001089711图5. 饱和电压vs. V GE集电极-发射极电压 – V C E (V )0420481220栅极-发射极电压 – V GE (V)1281616图6. 饱和电压vs. V GE集电极-发射极电压 – V C E (V )0420481220栅极-发射极电压 – V GE (V)1281616典型特性曲线(续)图7. 电容特性电容(p F )0200050000.11.010.030.0集电极-发射极电压 – V CE (V)开关时间 [n s ]栅极电阻 - R G (Ω)图9. 开启特性 vs. 栅极电阻300010004000102001020501004030图8. 栅极电荷特性栅极-发射极电压 - V G E (V )06153060120栅极电荷量 – Q G (nC)931290开关时间 [n s ]栅极电阻 - R G (Ω)图10. 关闭特性 vs. 栅极电阻10550010205010004030开关损耗 [m J ]栅极电阻 - R G (Ω)图11. 开关损耗 vs. 栅极电阻0.310.01020504030正向电流 - I F (A )正向电压 - V F (V)图12. 正向特性0.280.01410.0321.0典型特性曲线(续)图14. IGBT 瞬态热阻抗峰值功率阻抗 (°C /W )00.10.2510-510-410-310-1脉冲持续时间(S)0.150.050.210-210-110101100101102103102集电极电流 - I C (A )图13. SOA 特性集电极-射极电压 - V CE(V)封装外形图声明:♦士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。

4N60说明书NCE

4N60说明书NCE

N-Channel Super Junction Power MOSFET ⅡV DS @T jmax 650V R DS(ON) MAX 1200 m ΩI D 4 AGeneral DescriptionThe series of devices use advanced super junction technology and design to provide excellent R DS(ON) with low gate charge. This super junction MOSFET fits the industry’s AC-DC SMPS requirements for PFC, AC/DC power conversion, and industrial power applications.Features●New technology for high voltage device ●Low on-resistance and low conduction losses ●Small package●Ultra Low Gate Charge cause lower driving requirements ●100% Avalanche Tested ●ROHS compliantApplication● Power factor correction (PFC ) ● Switched mode power supplies(SMPS) ● Uninterruptible Power Supply (UPS )Package Marking And Ordering InformationDeviceDevice PackageMarkingNCE60R1K2 TO-220 NCE60R1K2 NCE60R1K2D TO-263 NCE60R1K2D NCE60R1K2F TO-220F NCE60R1K2FTable 1.Absolute Maximum Ratings (T C =25℃)Parameter SymbolNCE60R1K2NCE60R1K2DNCE60R1K2F Unit Drain-Source Voltage (V GS=0V ) V DS600 V Gate-Source Voltage (V DS=0V) V GS ±30 VContinuous Drain Current at Tc=25°C I D (DC) 4 4* AContinuous Drain Current at Tc=100°C I D (DC) 2.5 2.5 APulsed drain current(Note 1)I DM (pluse) 12 12 A Maximum Power Dissipation(Tc=25℃) Derate above 25°CP D46 0.3728.5 0.23WW/°CSingle pulse avalanche energy (Note2)E AS 130mJAvalanche current(Note 1)I AR 2 A Repetitive Avalanche energy ,t AR limited by T jmax(Note 1)E AR0.2mJSchematic diagramTO-263 TO-220 TO-220FParameter SymbolNCE60R1K2NCE60R1K2DNCE60R1K2F Unit Drain Source voltage slope, V DS ≤480 V, dv/dt 50 V/ns Reverse diode dv/dt ,V DS ≤480 V,I SD <I Ddv/dt 15V/nsOperating Junction and Storage Temperature RangeT J ,T STG -55...+150 °C* limited by maximum junction temperatureTable 2. Thermal CharacteristicParameter Symbol Value UnitThermal Resistance ,Junction-to-Case (Maximum ) R thJC 2.7 4.4 °C /WThermal Resistance ,Junction-to-Ambient (Maximum )R thJA62 80 °C /WTable 3. Electrical Characteristics (TA=25℃unless otherwise noted)Parameter Symbol ConditionMin Typ Max UnitOn/off statesDrain-Source Breakdown VoltageBV DSSV GS =0V I D =250μA 600 V Zero Gate Voltage Drain Current(Tc=25℃) I DSS V DS =600V,V GS =0V1μAZero Gate Voltage Drain Current(Tc=125℃) I DSS V DS =600V,V GS =0V 50 μA Gate-Body Leakage Current I GSS V GS =±30V,V DS =0V±100nAGate Threshold VoltageV GS(th) V DS =V GS ,I D =250μA 2.5 3 3.5 V Drain-Source On-State Resistance R DS(ON)V GS =10V, I D = 2.5A 1000 1200m ΩDynamic CharacteristicsForward Transconductance g FS V DS = 20V, I D = 2.5A4SInput Capacitance C lss 280 PFOutput CapacitanceC oss 26 PFReverse Transfer Capacitance C rssV DS =50V,V GS =0V,F=1.0MHz2.3 PF Total Gate Charge Q g 6.5 10 nCGate-Source Charge Q gs 1.3 nCGate-Drain Charge Q gd V DS =480V,I D =4A,V GS =10V2.5 nC Intrinsic gate resistance R Gf = 1 MHz open drain2.5ΩSwitching timesTurn-on Delay Time t d(on) 6 nSTurn-on Rise Time t r 3 nS Turn-Off Delay Time t d(off) 48 60 nSTurn-Off Fall Timet fV DD =380V,I D =2.5A, R G =20Ω,V GS =10V 8 15 nSSource- Drain Diode CharacteristicsSource-drain current(Body Diode) I SD 4 APulsed Source-drain current(Body Diode) I SDMT C =25°C12 A Forward On Voltage V SD Tj =25°C,I SD =4A,V GS =0V1 1.3 V Reverse Recovery Time t rr 150 nS Reverse Recovery Charge Q rr 0.85 uCPeak reverse recovery currentI rrmTj=25°C,I F =4A,di/dt=100A/μs 11 ANotes: 1.Repetitive Rating: Pulse width limited by maximum junction temperature2. Tj=25℃,VDD=50V,VG=10V, R G =25ΩTYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS (curves)Figure1. Safe operating area for TO-220,TO-263 Figure2. Source-Drain Diode Forward VoltageFigure3. Output characteristics Figure4. Transfer characteristicsFigure5. Static drain-source on resistance Figure6. R DS(ON) vs Junction TemperatureFigure7. BV DSS vs Junction Temperature Figure8. Maximum I D vs Junction TemperatureFigure9. Gate charge waveforms Figure10. CapacitanceFigure11. Transient Thermal Impedance for TO-220,TO-263 Figure12. Safe operating area for TO-220FFigure13. Transient Thermal Impedance for TO-220FTest circuit1)Gate charge test circuit & Waveform2)Switch Time Test Circuit:3)Unclamped Inductive Switching Test Circuit & WaveformsTO-263-2L Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.470 4.670 0.176 0.184A1 0.000 0.150 0.000 0.006B 1.170 1.370 0.046 0.054b 0.710 0.910 0.028 0.036b1 1.170 1.370 0.046 0.054c 0.310 0.530 0.012 0.021c1 1.170 1.370 0.046 0.05410.310 0.394 0.406D 10.010E 8.500 8.900 0.335 0.350e 2.540 TYP. 0.100 TYP.e1 4.980 5.180 0.196 0.20415.450 0.593 0.608L 15.050L1 5.080 5.480 0.200 0.216 L2 2.340 2.740 0.092 0.108 L3 1.300 1.700 0.051 0.067 V 5.600 REF 0.220 REFTO-220-3L-C Package InformationDimensions In Millimeters Dimensions In Inches SymbolMin.Max.Min.Max.A 4.400 4.600 0.173 0.181A1 2.250 2.550 0.089 0.100b 0.710 0.910 0.028 0.036b1 1.170 1.370 0.046 0.054c 0.330 0.650 0.013 0.026c1 1.200 1.400 0.047 0.0550.390 0.40410.250D 9.910E 8.9500 9.750 0.352 0.384E1 12.650 12.950 0.498 0.510e 2.540 TYP. 0.100 TYP.e1 4.980 5.180 0.196 0.204F 2.650 2.950 0.104 0.116H 7.900 8.100 0.311 0.319h 0.000 0.300 0.000 0.01213.400 0.508 0.528L 12.900L1 2.850 3.250 0.112 0.128 V 7.500 REF. 0.295 REF.Φ 3.400 3.800 0.134 0.150TO-220F Package InformationNCE60R1K2,NCE60R1K2D,NCE60R1K2F ATTENTION:■Any and all NCE products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your NCE representative nearest you before using any NCE products described or contained herein in such applications.■ NCE assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all NCE products described or contained herein.■ Specifications of any and all NCE products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer’s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer’s products or equipment.■ NCE Power Semiconductor CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.■ In the event that any or all NCE products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.■No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of NCE Power Semiconductor CO.,LTD.■Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. NCE believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the NCE product that you intend to use.■This catalog provides information as of Mar. 2010. Specifications and information herein are subject to change without notice.。

SGU04N60中文资料

SGU04N60中文资料

Fast IGBT in NPT-technology• 75% lower E off compared to previous generationcombined with low conduction losses• Short circuit withstand time – 10 µs • Designed for:- Motor controls - Inverter• NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour - parallel switching capability• Complete product spectrum and PSpice Models : /igbt/Type V CE I C V CE(sat )T j Package Ordering Code SGP04N60600V4A2.3V150°CTO-220AB Q67040-S4443SGB04N60SGD04N60SGU04N60TO-263AB TO-252AA(DPAK)TO-251AA(IPAK)Q67040-S4442Q67041-A4708Q67040-S4444Maximum Ratings ParameterSymbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°CI C9.44.9Pulsed collector current, t p limited by T jmax I C p u l s 19Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -19AGate-emitter voltageV G E ±20V Avalanche energy, single pulse I C = 4 A, V CC = 50 V, R GE = 25 Ω,start at T j = 25°CE A S25mJShort circuit withstand time 1)V GE = 15V, V CC ≤ 600V, T j ≤ 150°Ct S C 10µs Power dissipation T C = 25°CP t o t50WOperating junction and storage temperatureT j , T s t g-55...+150°C1)Allowed number of short circuits: <1000; time between short circuits: >1s.P-TO-220-3-1(TO-220AB)P-TO-252-3-1 (D-PAK)(TO-252AA)P-TO-263-3-2 (D²-PAK)(TO-263AB)P-TO-251-3-1 (I-PAK)(TO-251AA)Thermal Resistance Parameter Symbol ConditionsMax. ValueUnit CharacteristicIGBT thermal resistance,junction – case R t h J C 2.5Thermal resistance,junction – ambientR t h J A TO-251AA TO-220AB 7562SMD version, device on PCB1)R t h J ATO-252AA TO-263AB5040K/WElectrical Characteristic, at T j = 25 °C, unless otherwise specified ValueParameterSymbol Conditionsmin.Typ.max.UnitStatic CharacteristicCollector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500µA 600--Collector-emitter saturation voltageV C E (s a t )V G E = 15V, I C =4A T j =25°C T j =150°C1.7-2.02.3 2.42.8Gate-emitter threshold voltage V G E (t h )I C =200µA,V C E =V G E 345VZero gate voltage collector currentI C E SV C E =600V,V G E =0V T j =25°C T j =150°C----20500µAGate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s V C E =20V, I C =4A 3.1-S Dynamic Characteristic Input capacitance C i s s -264317Output capacitanceC o s s -2935Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz-1720pFGate chargeQ G a t e V C C =480V, I C =4A V G E =15V -2431nC Internal emitter inductancemeasured 5mm (0.197 in.) from case L E TO-220AB-7-nH Short circuit collector current2)I C (S C )V G E =15V,t S C ≤10µs V C C ≤ 600V,T j ≤ 150°C-40-A 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2(one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.2)Allowed number of short circuits: <1000; time between short circuits: >1s.Switching Characteristic, Inductive Load, at T j =25 °C Value ParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1518Turn-off delay time t d (o f f )-237284Fall time t f -7084nsTurn-on energy E o n -0.0700.081Turn-off energy E o f f -0.0610.079Total switching energyE t sT j =25°C,V C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.1310.160mJ Switching Characteristic, Inductive Load, at T j =150 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1619Turn-off delay time t d (o f f )-264317Fall time t f -104125nsTurn-on energy E o n -0.1150.132Turn-off energy E o f f -0.1110.144Total switching energyE t sT j =150°CV C C =400V, I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.2260.277mJ 1)Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.I C , C O L L E C T O R C U R R E N T10Hz100Hz 1kHz 10kHz 100kHz0A 10A20AI C , C O L L E C T O R C U R R E N T1V10V100V1000V0.01A0.1A1A10Af , SWITCHING FREQUENCYV CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 67Ω)Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)P t o t , P O W E R D I S S I P A T I O N25°C50°C 75°C 100°C 125°C0W 10W20W30W40W50W60WI C , C O L L E C T O R C U R R E N T25°C50°C 75°C 100°C 125°C0A2A4A6A8A10A12AT C , CASE TEMPERATURET C , CASE TEMPERATUREFigure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature(V GE ≤ 15V, T j ≤ 150°C)I C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A 6A 9A12A 15AI C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A6A9A12A15AV CE , COLLECTOR -EMITTER VOLTAGEV CE , COLLECTOR -EMITTER VOLTAGEFigure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)I C , C O L L E C T O R C U R R E N T0V2V 4V 6V 8V 10V0A 2A 4A 6A 8A 10A 12A14A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E-50°C 0°C 50°C 100°C 150°C1.0V1.5V2.0V2.5V3.0V3.5V4.0VV GE , GATE -EMITTER VOLTAGET j , JUNCTION TEMPERATUREFigure 7. Typical transfer characteristics(V CE = 10V)Figure 8. Typical collector-emittersaturation voltage as a function of junction temperature (V GE = 15V)t , S W I T C H I N G T I M E S0A2A4A6A8A10A10ns100nst , S W I T C H I N G T I M E S0Ω50Ω100Ω150Ω200Ω10ns 100nsI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 9. Typical switching times as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 10. Typical switching times as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)t , S W I T C H I N G T I M E S0°C50°C100°C150°C10ns100nsV G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E-50°C0°C50°C100°C150°C 2.0V2.5V3.0V 3.5V4.0V 4.5V5.0V 5.5VT j , JUNCTION TEMPERATURET j , JUNCTION TEMPERATUREFigure 11. Typical switching times as a function of junction temperature(inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.2mA)E , S W I T C H I N G E N E R G Y L O S S E S0A2A 4A 6A 8A 10A0.0mJ0.1mJ0.2mJ0.3mJ0.4mJ0.5mJ0.6mJE , SW I T C H I N G E N E R G Y L O S S E S0Ω50Ω100Ω150Ω200Ω0.0mJ0.1mJ0.2mJ0.3mJ0.4mJI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 13. Typical switching energy losses as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 14. Typical switching energy losses as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)E ,S W I T C H I N G E N E R G Y L O S S E S0°C50°C 100°C 150°C0.0mJ0.1mJ0.2mJ0.3mJZ t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-310-210-1100T j , JUNCTION TEMPERATUREt p , PULSE WIDTHFigure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 16. IGBT transient thermalimpedance as a function of pulse width (D = t p / T )V G E , G A T E -E M I T T E R V O L T A G E0nC10nC 20nC 30nC 0V 5V10V15V20V25VC , C A P A C I T A N C E0V 10V 20V 30V10pF100pFQ GE , GATE CHARGEV CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 4A)Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)t s c , S H O R T C I R C U I T W I T H S T A N D T I M E10V11V12V13V14V15V0µs 5µs10µs15µs20µs25µs I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T10V12V 14V 16V 18V20V0A 10A 20A 30A 40A 50A 60A 70AV GE , GATE -EMITTER VOLTAGEV GE , GATE -EMITTER VOLTAGEFigure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)dimensionssymbol[mm][inch]minmax minmax A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.951.320.03740.0520M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T2.302.720.09060.1071TO-220ABdimensionssymbol[mm][inch]minmax minmax A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.0.2 typ.H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° maxS 2.40 3.000.09450.1181T 0.400.600.01570.0236U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)Z16.150.6358P-TO251 (I-Pak)P-TO252 (D-Pak)Figure A. Definition of switching times Figure B. Definition of switching lossesτ1τ2nτr r rFigure D. Thermal equivalent circuitFigure E. Dynamic test circuit Leakage inductance Lσ=180nH and Stray capacity Cσ=180pF.Published byInfineon Technologies AG,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München© Infineon Technologies AG 2000All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。

4N60 PDF规格书

4N60 PDF规格书
12
VDS = 120V
VGS, Gate-Source Voltage [V]
1000
10
VDS = 300V VDS = 480V
Capacitance [pF]
800
* Notes : 1. VGS = 0 V
8
600
Coss Ciss
6
2. f = 1 MHz
400
4
200
2
* Note : ID = 3.9A
10
1
10 us 100 us 1 ms
ID, Drain Current [A]
3
ID, Drain Current [A]
.
10
0
10 ms DC
* Notes : o 1. TC = 25 C
2
1
10
-1
3. Single Pulse
2. TJ = 150 C
o
10
0
10
1
10
2
10
3
0 25
10
1
10
0
1
VGS = 20V
150 C
o
25 C
* Notes : 1. VGS = 0V
o
* Note : TJ = 25 C
o
2. 250µs Pulse Test
0 0.0
2.5
5.0
7.5
10.0
12.5
10
-1
0.2
0.4
0.6
0.8
1.0
1.2
ID, Drain Current [A]
PDM t1 t2
10
-2

FTD4N60B规格书

FTD4N60B规格书

4.5
V/ns
300 ℃
-55 to 150
Caution: Stresses greater than those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device.
ARK Microelectronics Co., Ltd.
Figure 20. Resistive Switching Waveforms
ARK Microelectronics Co., Ltd.
w w w. a r k - m i c r o . c o m 7 / 11
Rev. 2.1 May. 2012
di/dt adj.
Current Pump
Applications
High Efficiency SMPS Adaptor/Charger Active PFC LCD Panel Power
FTU04N60B/FTD04N60B
BVDSS 600V
RDS(ON) (Max.) 2.8Ω
ID 3.6A
Ordering Information
TJ and TSTG Operating and Storage Temperature Range
TC=25℃ unless otherwise specified
FTU04N60B FTD04N60B
Unit
600
V
3.6
Figure 3
A
Figure 6
89
W
0.71
W/℃
±30
V
140
mJ
w w w. a r k - m i c r o . c o m 1 / 11

FNB41060中文资料

FNB41060中文资料

100% I C 100% I C
t rr V CE IC IC V CE
V IN t ON
10% I C V IN(ON)
V IN t OFF
V IN(OFF) 10% V CE
t C(ON)
10% V CE
t C(OFF)
10% I C
90% I C
(a) turn-on
图 4. 开关时间的定义
最小值
0.45 -
典型值
1.5 1.5 0.75 0.20 0.70 0.15 0.15 0.65 0.15 0.65 0.15 0.15 -
最大值
2.0 2.0 1.25 0.45 1.20 0.40 1.15 0.40 1.15 0.40 1
单位
V V μs μs μs μs μs μs μs μs μs μs mA
引脚名
VTH RTH P U V W NU NV NW CSC VFO IN(WL) IN(VL) IN(UL) COM VCC(L) VCC(H) IN(WH) IN(VH) IN(UH) VS(W) VB(W) VS(V) VB(V) VS(U) VB(U) 热敏电阻偏压 用于热敏电阻 (温度检测)的串连电阻 直流输入正端 U 相输出 V 相输出 W 相输出 U 相的直流输入负端 V 相的直流输入负端 W 相的直流输入负端 短路电流感测输入电容 (低通滤波器) 故障输出 低端 W 相的信号输入 低端 V 相的信号输入 低端 U 相的信号输入 公共电源接地 IC 和 IGBT 驱动的低端公共偏压 IC 和 IGBT 驱动的高端公共偏压 高端 W 相的信号输入 高端 V 相的信号输入 高端 U 相的信号输入 W 相 IGBT 驱动的高端偏压接地 W 相 IGBT 驱动的高端偏压 V 相 IGBT 驱动的高端偏压接地 V 相 IGBT 驱动的高端偏压 U 相 IGBT 驱动的高端偏压接地 U 相 IGBT 驱动的高端偏压

三极管4N60是什么管用什么管能代用。

三极管4N60是什么管用什么管能代用。

三极管4N60是什么管用什么管能代用。

厂效应管,4A,600V,可以用SO813 (FQPF)6N60替换。

常用三极管型号及参数晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应IRF540 100V 28A 150W * * NMOS场效应IRF530 100V 14A 79W * * NMOS场效应IRF440 500V 8A 125W * * NMOS场效应晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型IRF230 200V 9A 79W * * NMOS场效应IRF130 100V 14A 79W * * NMOS场效应BUZ20 100V 12A 75W * * NMOS场效应BS170 60V 0.3A 0.63W * * NMOS场效应2SC4582 600V 15A 75W * * NPN2SC4517 550V 3A 30W * * NPN2SC4429 1100V 8A 60W * * NPN2SC4297 500V 12A 75W * * NPN2SC4288 1400V 12A 200W * * NPN2SC4242 450V 7A 40W * * NPN2SC4231 800V 2A 30W * * NPN2SC4119 1500V 15A 250W * * NPN2SC4111 1500V 10A 250W * * NPN2SC4106 500V 7A 50W * 20MHZ NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SC4059 600V 15A 130W * * NPN2SC4038 50V 0.1A 0.3W * 180MHZ NPN2SC4024 100V 10A 35W * * NPN2SC3998 1500V 25A 250W * * NPN2SC3997 1500V 15A 250W * * NPN2SC3987 50V 3A 20W 1000 * NPN(达林顿)2SC3953 120V 0.2A 1.3W * 400MHZ NPN2SC3907 180V 12A 130W * 30MHZ NPN2SC3893 1400V 8A 50W * 8MHZ NPN2SC3886 1400V 8A 50W * 8MHZ NPN2SC3873 500V 12A 75W * 30MHZ NPN2SC3866 900V 3A 40W * * NPN2SC3858 200V 17A 200W * 20MHZ NPN2SC3807 30V 2A 1.2W * 260MHZ NPN2SC3783 900V 5A 100W * * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SC3720 1200V 10A 200W * * NPN2SC3680 900V 7A 120W * * NPN2SC3679 900V 5A 100W * * NPN2SC3595 30V 0.5A 1.2W 90 * NPN2SC3527 500V 15A 100W 13 * NPN2SC3505 900V 6A 80W 12 * NPN2SC3460 1100V 6A 100W 12 * NPN2SC3457 1100V 3A 50W 12 * NPN2SC3358 20V 0.15A * * 7000MHZ NPN2SC3355 20V 0.15A * * 6500MHZ NPN2SC3320 500V 15A 80W * * NPN2SC3310 500V 5A 40W 20 * NPN2SC3300 100V 15A 100W * * NPN2SC1855 20V 0.02A 0.25W * 550MHZ NPN2SC1507 300V 0.2A 15W * * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SC1494 36V 6A 40W * 175MHZ NPN2SC1222 60V 0.1A 0.25W * 100MHZ NPN2SC1162 35V 1.5A 10W * * NPN2SC1008 80V 0.7A 0.8W * 50MHZ NPN2SC900 30V 0.03A 0.25W * 100MHZ NPN2SC828 45V 0.05A 0.25W * * NPN2SC815 60V 0.2A 0.25W * * NPN2SC380 35V 0.03A 0.25W * * NPN2SC106 60V 1.5A 15W * * NPN2SB1494 120V 25A 120W * * PNP(达林顿)2SB1429 180V 15A 150W * * PNP2SB1400 120V 6A 25W 1000-20000 * PNP(达林顿)2SB1375 60V 3A 2W * * PNP2SB1335 80V 4A 30W * * PNP2SB1317 180V 15A 150W * * PNP晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SB1316 100V 2A 10W 15000 * PNP(达林顿)2SB1243 40V 3A 1W * 70MHZ PNP2SB1240 40V 2A 1W * 100MHZ PNP2SB1238 80V 0.7A 1W * 100MHZ PNP2SB1185 60V 3A 25W * 75MHZ PNP2SB1079 100V 20A 100W 5000 * PNP(达林顿)2SB1020 100V 7A 40W 6000 * PNP(达林顿)2SB834 60V 3A 30W * * PNP2SB817 160V 12A 100W * * PNP2SB772 40V 3A 10W * * PNP2SB744 70V 3A 10W * * PNP2SB734 60V 1A 1W * * PNP2SB688 120V 8A 80W * * PNP2SB675 60V 7A 40W * * PNP(达林顿)2SB669 70V 4A 40W * * PNP(达林顿)晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SB649 180V 1.5A 1W * * PNP2SB647 120V 1A 0.9W * 140MHZ PNP2SB449 50V 3.5A 22W * * PNP2SA1943 230V 15A 150W * * PNP2SA1785 400V 1A 1W * 140MHZ PNP2SA1668 200V 2A 25W * 20MHZ PNP2SA1516 180V 12A 130W * 25MHZ PNP2SA1494 200V 17A 200W * 20MHZ PNP2SA1444 100V 1.5A 2W * 80MHZ PNP2SA1358 120V 1A 10W * 120MHZ PNP2SA1302 200V 15A 150W * * PNP2SA1301 200V 10A 100W * * PNP2SA1295 230V 17A 200W * * PNP2SA1265 140V 10A 30W * * PNP2SA1216 180V 17A 200W * * PNP晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SA1162 50V 0.15A 0.15W * * PNP2SA1123 150V 0.05A 0.75W * * PNP2SA1020 50V 2A 0.9W * * PNP2SA1009 350V 2A 15W * * PNP2N6678 650V 15A 175W * * NPN2N5685 60V 50A 300W * * NPN2N6277 180V 50A 300W * * NPN2N5551 160V 0.6A 0.6W * 100MHZ NPN2N5401 160V 0.6A 0.6W * 100MHZ PNP2N3773 160V 16A 150W * * NPN2N3440 450V 1A 1W * * NPN2N3055 100V 15A 115W * * NPN2N2907 60V 0.6A 0.4W 200 * NPN2N2369 40V 0.5A 0.3W * 800MHZ NPN2N2222 60V 0.8A 0.5W 45 * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型9018 30V 0.05A 0.4W * 1G NPN9015 50V 0.1A 0.4W * 150MHZ PNP9014 50V 0.1A 0.4W * 150MHZ NPN9013 50V 0.5A 0.6W * * NPN9012 50V 0.5A 0.6W * * PNP9011 50V 0.03A 0.4W * 150MHZ NPNTIP147 100V 10A 125W * * PNPTIP142 100V 10A 125W * * NPNTIP127 100V 8A 65W * * PNPTIP122 100V 8A 65W * * NPNTIP102 100V 8A 2W * * NPNTIP42C 100V 6A 65W * * PNPTIP41C 100V 6A 65W * * NPNTIP36C 100V 25A 125W * * PNPTIP35C 100V 25A 125W * * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型TIP32C 100V 3A 40W * * PNPTIP31C 100V 3A 40W * * NPNMJE13007 1500V 2.5A 60W * * NPNMJE13005 400V 4A 60W * * NPNMJE13003 400V 1.5A 14W * * NPNMJE2955T 60V 10A 75W * * NPNMJE350 300V 0.5A 20W * * NPNMJE340 300V 0.5A 20W * * NPNMJ15025 400V 16A 250W * * PNPMJ15024 400V 16A 250W * * NPNMJ13333 400V 20A 175W * * NPNMJ11033 120V 50A 300W * * NPNMJ11032 120V 50A 300W * * NPNMJ10025 850V 20A 250W * * NPNMJ10016 500V 50A 200W * * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型BUH515 1500V 10A 80W * * NPNBU2532 1500V 15A 150W * * NPNBU2527 1500V 15A 150W * * NPNBU2525 1500V 12A 150W * * NPNBU2522 1500V 11A 150W * * NPNBU2520 800V 10A 150W * * NPNBU2508 700V 8A 125W * * NPNBU2506 1500V 7A 50W * * NPNBU932R 500V 15A 150W * * NPNBU806 400V 8A 60W * * NPNBU406 400V 7A 60W * * NPNBU323 450V 10A 125W * * NPN(达林顿)BF458 250V 0.1A 10W * * NPNBD682 100V 4A 40W * * PNP晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型MJ10015 400V 50A 200W * * NPNMJ10012 400V 10A 175W * * NPN(达林顿)MJ4502 90V 30A 200W * * PNPMJ3055 60V 15A 115W * * NPNMJ2955 60V 15A 115W * * PNPMN650 1500V 6A 80W * * NPNBUX98A 400V 30A 210W * * NPNBUX84 800V 2A 40W * * NPNBUW13A 1000V 15A 150W * * NPNBUV48A 450V 15A 150W * * NPNBUV28A 225V 10A 65W * * NPNBUV26 90V 14A 65W * * NPNBUT12A 450V 10A 125W * * NPNBUS14A 1000V 30A 250W * * NPN晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型BD681 100V 4A 40W * * NPNBD244 45V 6A 65W * * PNPBD243 45V 6A 65W * * NPNBD238 100V 2A 25W * * PNPBD237 100V 2A 25W * * NPNBD138 60V 1.5A 12.5W * * PNPBD137 60V 1.5A 12.5W * * NPNBD136 45V 1.5A 12.5W * * PNPBD135 45V 1.5A 12.5W * * NPNBC547 50V 0.2A 0.5W * 300MHZ NPNBC546 80V 0.2A 0.5W * * NPNBC338 50V 0.8A 0.6W * * NPNBC337 50V 0.8A 0.6W * * NPNBC327 50V 0.8 0.6W * * PNPBC307 50V 0.2AA 0.3W * * PNP。

4N60 产品资料 4N60 产品资料

4N60 产品资料 4N60 产品资料

功率MOSEFT—4N604A,600V N沟道4N60功率MOS场效应管采用先进的高压DMOS工艺技术。

这种先进工艺使器件具有优良的特性,如极快的开关速度,极低栅电荷,最小化的导通电阻以及极强的雪崩击穿特性。

这种器件非常适合于高效开关电源,DC/DC转换器,PWM马达控制和桥式驱动电路等。

1、特征· 4A,600V, RDS(on)=2.5Ω@Vgs=10V; · 极低栅电荷,典型15nC; ·极低反向转换电容;典型8pF · 快速开关能力; · 增强的dV/di能力;· 100%雪崩击穿测试; · 封装型式:TO-220/TO-220F· 最大结温 150 ℃2、性能指标极限值:(除其他标注外Tamb= 25℃)参 数符 号 数 值 单 位 最大漏源电压 V DSS 600 V 栅源电压 V GS ±30 V 雪崩电流 I AR 4.4 A 最大持续漏电流I D 4.0 A 最大脉冲漏电流 (注1) I DM 16 A 雪崩能量(单脉冲) (注2) E AR 260 mJ 峰值二极管恢复dv/dt (注3) dv/dt 4.5 V/ns TO-220 106 最大耗散功率TO-220FP D 48 W 工作结温/储存温度范围T J /T STG-55~150℃热性能(除其他标注外Tamb = 25°C)参数符号数值 单位TO-2200.85从结到每只管脚的典型热阻TO-220FR θJC2.6℃/W电性能(除其他标注外Tamb= 25°C)规范值 单位 参数名称 符号 测试条件最小典型 最大关断特性 最大漏源电压 B VDSS V GS =0V;I D =250uA 600 V 漏源漏电流 I DSS V DS =600V;V GS =0V 10 uA V DS =30V;V GS =0V 100 nA 栅源漏电流 I GSSV DS =-30V;V GS =0V-100nA导通特性 栅开启电压 V GS(th)V DS =V GS ;I D =250uA 2 4 V漏源导通电阻 R DS(on)V GS =10V;I D =2.2A1 2.5 Ω动态特性 输入电容 C iSS 520 670 输出电容 C OSS 70 90 反向传输电容 C rSSV GS =0V; V DS =25V;f=1MHz811pF开关特性 导通延迟时间 Td(on) 13 35 上升时间 tr 45 100 关断延迟时间 Td(off) 25 60 下降时间 tf V DD =300V;I D =4A, R G =25Ω (注4, 注5)35 80 ns栅电荷 Qg 15 20 栅-源电荷 3.4 栅-漏电荷V DS =480V;V GS =10V;I D =7.5A (注4, 注5)7.1nC源-漏二极管特性规范值 单位参数名称符号 测试条件最小典型 最大 二极管正向电压 V SD V GS =0V;I S =7.5A 1.4 V 持续源电流 I S 4.4 A 脉冲源电流 I SM MOSEFT 内部反向P-N 结二极管17.6 A 反向恢复时间 t rr 255 ns 反向恢复电荷 Q rrV GS =0V;I S =7.5A; dI F/dt=100A/us1.5uC注释:⑴ 重复范围: 脉冲宽度受结温限制⑵ L = 7.3mH, IAS = 7.5A, VDD = 50V, RG = 25 Ω, 开始TJ = 25°C ⑶ ISD ≤ 7.5A, di/dt ≤200A/μs, VDD ≤ BVDSS, 开始 TJ = 25°C ⑷ 脉冲测试: 脉冲宽度<= 300us, 占空比<=2% (5)工作温度必须单独3. 测试电路及波形Fig. 1A 峰值二极管恢复 dv/dt 测试电路Fig. 1B峰值二极管恢复 dv/dt 测试波形Fig. 2A 开关测试电路Fig. 2B 开关波形Fig. 3A 栅电荷测试电路Fig. 3B栅电荷测试波形Fig. 4A 未箝位电感开关测试电路Fig. 4B未箝位电感开关测试波形4.典型特性曲线。

1984060资料

1984060资料

Extract from the onlinecatalogPT 1,5/ 7-PVH-3,5Order No.: 1984060The figure shows a 10-position version of the producthttp://eshop.phoenixcontact.de/phoenix/treeViewClick.do?UID=1984060PCB terminal block, can be plugged onto pin strips vertically and horizontally, nominal current: 8 A, rated voltage: 160 V, pitch: 3.5 mm, number of positions: 7, connection method: Screw connectionhttp://Please note that the data givenhere has been taken from theonline catalog. For comprehensiveinformation and data, please referto the user documentation. TheGeneral Terms and Conditions ofUse apply to Internet downloads. Technical dataDimensions / positionsLength14.6 mmHeight11 mmPitch 3.5 mmDimension a21 mmNumber of positions7Screw thread M 2 Tightening torque, min0.25 NmTechnical dataInsulating material group IRated surge voltage (III/3) 2.5 kV Rated surge voltage (III/2) 2.5 kV Rated surge voltage (II/2) 2.5 kV Rated voltage (III/2)200 V Rated voltage (II/2)400 V Connection in acc. with standard EN-VDE Nominal current I N8 A Nominal voltage U N160 V Nominal cross section 1.5 mm2 Maximum load current8 A Insulating material PA Inflammability class acc. to UL 94V0 Stripping length 5 mmConnection dataConductor cross section solid min.0.2 mm2 Conductor cross section solid max. 1.5 mm2 Conductor cross section stranded min.0.2 mm2 Conductor cross section stranded max. 1.5 mm2 Conductor cross section stranded, with ferrule0.25 mm2 with plastic sleeve min.Conductor cross section stranded, with ferrule0.75 mm2 with plastic sleeve max.Conductor cross section AWG/kcmil min.26 Conductor cross section AWG/kcmil max162 conductors with same cross section, solid min.0.2 mm2 2 conductors with same cross section, solid max.0.34 mm2 2 conductors with same cross section, stranded0.2 mm2 min.2 conductors with same cross section, stranded0.5 mm2 max.Certificates / ApprovalsCULNominal voltage U N300 VNominal current I N10 AAWG/kcmil26-16ULNominal voltage U N300 VNominal current I N10 AAWG/kcmil26-16Certification CCA, CUL, SEV, ULAccessoriesItem Designation DescriptionGeneral1985564CP-PT 1,5Keying profile, is inserted into the hole in the plug, red insulatingmaterial1945148PST 1,0/ 7-3,5Pin strip, 3.5 mm pitch, color: BlackMarking0804073SK 3,5/2,8:FORTL.ZAHLEN Marker card, printed horizontally, self-adhesive, 10-section markerstrip, 14 identical decades marked 1-10, 11-20 etc. up to 91-100,sufficient for 140 terminal blocksTools1205037SZS 0,4X2,5Screwdriver, bladed, matches all screw terminal blocks up to 1.5mm² connection cross section, blade: 0.4 x 2.5 mmDrawings Dimensioned drawingAddressPHOENIX CONTACT GmbH & Co. KGFlachsmarktstr. 832825 Blomberg,GermanyPhone +49 5235 3 00Fax +49 5235 3 41200http://www.phoenixcontact.de© 2008 Phoenix ContactTechnical modifications reserved;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fast IGBT in NPT-technology• 75% lower E off compared to previous generationcombined with low conduction losses• Short circuit withstand time – 10 µs • Designed for:- Motor controls - Inverter• NPT-Technology for 600V applications offers:- very tight parameter distribution- high ruggedness, temperature stable behaviour - parallel switching capability• Complete product spectrum and PSpice Models : /igbt/Type V CE I C V CE(sat )T j Package Ordering Code SGP04N60600V4A2.3V150°CTO-220AB Q67040-S4443SGB04N60SGD04N60SGU04N60TO-263AB TO-252AA(DPAK)TO-251AA(IPAK)Q67040-S4442Q67041-A4708Q67040-S4444Maximum Ratings ParameterSymbol Value Unit Collector-emitter voltage V C E 600V DC collector current T C = 25°C T C = 100°CI C9.44.9Pulsed collector current, t p limited by T jmax I C p u l s 19Turn off safe operating area V CE ≤ 600V, T j ≤ 150°C -19AGate-emitter voltageV G E ±20V Avalanche energy, single pulse I C = 4 A, V CC = 50 V, R GE = 25 Ω,start at T j = 25°CE A S25mJShort circuit withstand time 1)V GE = 15V, V CC ≤ 600V, T j ≤ 150°Ct S C 10µs Power dissipation T C = 25°CP t o t50WOperating junction and storage temperatureT j , T s t g-55...+150°C1)Allowed number of short circuits: <1000; time between short circuits: >1s.P-TO-220-3-1(TO-220AB)P-TO-252-3-1 (D-PAK)(TO-252AA)P-TO-263-3-2 (D²-PAK)(TO-263AB)P-TO-251-3-1 (I-PAK)(TO-251AA)Thermal Resistance Parameter Symbol ConditionsMax. ValueUnit CharacteristicIGBT thermal resistance,junction – case R t h J C 2.5Thermal resistance,junction – ambientR t h J A TO-251AA TO-220AB 7562SMD version, device on PCB1)R t h J ATO-252AA TO-263AB5040K/WElectrical Characteristic, at T j = 25 °C, unless otherwise specified ValueParameterSymbol Conditionsmin.Typ.max.UnitStatic CharacteristicCollector-emitter breakdown voltage V (B R )C E S V G E =0V, I C =500µA 600--Collector-emitter saturation voltageV C E (s a t )V G E = 15V, I C =4A T j =25°C T j =150°C1.7-2.02.3 2.42.8Gate-emitter threshold voltage V G E (t h )I C =200µA,V C E =V G E 345VZero gate voltage collector currentI C E SV C E =600V,V G E =0V T j =25°C T j =150°C----20500µAGate-emitter leakage current I G E S V C E =0V,V G E =20V --100nA Transconductance g f s V C E =20V, I C =4A 3.1-S Dynamic Characteristic Input capacitance C i s s -264317Output capacitanceC o s s -2935Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz-1720pFGate chargeQ G a t e V C C =480V, I C =4A V G E =15V -2431nC Internal emitter inductancemeasured 5mm (0.197 in.) from case L E TO-220AB-7-nH Short circuit collector current2)I C (S C )V G E =15V,t S C ≤10µs V C C ≤ 600V,T j ≤ 150°C-40-A 1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm 2(one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air.2)Allowed number of short circuits: <1000; time between short circuits: >1s.Switching Characteristic, Inductive Load, at T j =25 °C Value ParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1518Turn-off delay time t d (o f f )-237284Fall time t f -7084nsTurn-on energy E o n -0.0700.081Turn-off energy E o f f -0.0610.079Total switching energyE t sT j =25°C,V C C =400V,I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.1310.160mJ Switching Characteristic, Inductive Load, at T j =150 °C ValueParameterSymbolConditionsmin.typ.max.UnitIGBT Characteristic Turn-on delay time t d (o n )-2226Rise timet r -1619Turn-off delay time t d (o f f )-264317Fall time t f -104125nsTurn-on energy E o n -0.1150.132Turn-off energy E o f f -0.1110.144Total switching energyE t sT j =150°CV C C =400V, I C =4A,V G E =0/15V,R G =67Ω,L σ1)=180nH,C σ1)=180pFEnergy losses include “tail” and diode reverse recovery.-0.2260.277mJ 1)Leakage inductance L σ and Stray capacity C σ due to dynamic test circuit in Figure E.I C , C O L L E C T O R C U R R E N T10Hz100Hz 1kHz 10kHz 100kHz0A 10A20AI C , C O L L E C T O R C U R R E N T1V10V100V1000V0.01A0.1A1A10Af , SWITCHING FREQUENCYV CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency(T j ≤ 150°C, D = 0.5, V CE = 400V,V GE = 0/+15V, R G = 67Ω)Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)P t o t , P O W E R D I S S I P A T I O N25°C50°C 75°C 100°C 125°C0W 10W20W30W40W50W60WI C , C O L L E C T O R C U R R E N T25°C50°C 75°C 100°C 125°C0A2A4A6A8A10A12AT C , CASE TEMPERATURET C , CASE TEMPERATUREFigure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature(V GE ≤ 15V, T j ≤ 150°C)I C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A 6A 9A12A 15AI C , C O L L E C T O R C U R R E N T0V1V 2V 3V 4V 5V0A 3A6A9A12A15AV CE , COLLECTOR -EMITTER VOLTAGEV CE , COLLECTOR -EMITTER VOLTAGEFigure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)I C , C O L L E C T O R C U R R E N T0V2V 4V 6V 8V 10V0A 2A 4A 6A 8A 10A 12A14A V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E-50°C 0°C 50°C 100°C 150°C1.0V1.5V2.0V2.5V3.0V3.5V4.0VV GE , GATE -EMITTER VOLTAGET j , JUNCTION TEMPERATUREFigure 7. Typical transfer characteristics(V CE = 10V)Figure 8. Typical collector-emittersaturation voltage as a function of junction temperature (V GE = 15V)t , S W I T C H I N G T I M E S0A2A4A6A8A10A10ns100nst , S W I T C H I N G T I M E S0Ω50Ω100Ω150Ω200Ω10ns 100nsI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 9. Typical switching times as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 10. Typical switching times as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)t , S W I T C H I N G T I M E S0°C50°C100°C150°C10ns100nsV G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E-50°C0°C50°C100°C150°C 2.0V2.5V3.0V 3.5V4.0V 4.5V5.0V 5.5VT j , JUNCTION TEMPERATURET j , JUNCTION TEMPERATUREFigure 11. Typical switching times as a function of junction temperature(inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.2mA)E , S W I T C H I N G E N E R G Y L O S S E S0A2A 4A 6A 8A 10A0.0mJ0.1mJ0.2mJ0.3mJ0.4mJ0.5mJ0.6mJE , SW I T C H I N G E N E R G Y L O S S E S0Ω50Ω100Ω150Ω200Ω0.0mJ0.1mJ0.2mJ0.3mJ0.4mJI C , COLLECTOR CURRENTR G , GATE RESISTORFigure 13. Typical switching energy losses as a function of collector current(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, R G = 67Ω,Dynamic test circuit in Figure E)Figure 14. Typical switching energy losses as a function of gate resistor(inductive load, T j = 150°C, V CE = 400V,V GE = 0/+15V, I C = 4A,Dynamic test circuit in Figure E)E ,S W I T C H I N G E N E R G Y L O S S E S0°C50°C 100°C 150°C0.0mJ0.1mJ0.2mJ0.3mJZ t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E1µs10µs 100µs 1ms 10ms 100ms 1s10-310-210-1100T j , JUNCTION TEMPERATUREt p , PULSE WIDTHFigure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V,I C = 4A, R G = 67Ω,Dynamic test circuit in Figure E)Figure 16. IGBT transient thermalimpedance as a function of pulse width (D = t p / T )V G E , G A T E -E M I T T E R V O L T A G E0nC10nC 20nC 30nC 0V 5V10V15V20V25VC , C A P A C I T A N C E0V 10V 20V 30V10pF100pFQ GE , GATE CHARGEV CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 4A)Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)t s c , S H O R T C I R C U I T W I T H S T A N D T I M E10V11V12V13V14V15V0µs 5µs10µs15µs20µs25µs I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T10V12V 14V 16V 18V20V0A 10A 20A 30A 40A 50A 60A 70AV GE , GATE -EMITTER VOLTAGEV GE , GATE -EMITTER VOLTAGEFigure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 600V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (V CE ≤ 600V, T j = 150°C)dimensionssymbol[mm][inch]minmax minmax A 9.7010.300.38190.4055B 14.8815.950.58580.6280C 0.650.860.02560.0339D 3.55 3.890.13980.1531E 2.60 3.000.10240.1181F 6.00 6.800.23620.2677G 13.0014.000.51180.5512H 4.35 4.750.17130.1870K 0.380.650.01500.0256L 0.951.320.03740.0520M 2.54 typ.0.1 typ.N 4.30 4.500.16930.1772P 1.17 1.400.04610.0551T2.302.720.09060.1071TO-220ABdimensionssymbol[mm][inch]minmax minmax A 9.8010.200.38580.4016B 0.70 1.300.02760.0512C 1.00 1.600.03940.0630D 1.03 1.070.04060.0421E 2.54 typ.0.1 typ.F 0.650.850.02560.0335G 5.08 typ.0.2 typ.H 4.30 4.500.16930.1772K 1.17 1.370.04610.0539L 9.059.450.35630.3720M 2.30 2.500.09060.0984N 15 typ.0.5906 typ.P 0.000.200.00000.0079Q 4.20 5.200.16540.2047R 8° max 8° maxS 2.40 3.000.09450.1181T 0.400.600.01570.0236U 10.800.4252V 1.150.0453W 6.230.2453X 4.600.1811Y 9.400.3701TO-263AB (D 2Pak)Z16.150.6358P-TO251 (I-Pak)P-TO252 (D-Pak)Figure A. Definition of switching times Figure B. Definition of switching lossesτ1τ2nτr r rFigure D. Thermal equivalent circuitFigure E. Dynamic test circuit Leakage inductance Lσ=180nH and Stray capacity Cσ=180pF.Published byInfineon Technologies AG,Bereich KommunikationSt.-Martin-Strasse 53,D-81541 München© Infineon Technologies AG 2000All Rights Reserved.Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.Infineon Technologies is an approved CECC manufacturer.InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.。

相关文档
最新文档