第六章 数据的分析单元测试题(附答案)
北师大版八年级数学上册 第六章 数据的分析单元测试(含解析)
第六章数据的分析单元测试一、单选题(共10题;共30分)1、某市2011年5月1日﹣10日十天的空气污染指数的数据如下(主要污染物为可吸入颗粒物):61,75,70,56,81,91,92,91,75,81.那么该组数据的极差和中位数分别是()A、36,78B、36,86C、20,78D、20,77、32、对于数据3,3,2,3,6,3,10,3,6,3,2,(1)这组数据的众数是3,(2)这组数据的众数与中位数的数值不等,(3)这组数据的中位数与平均数的数值相等,(4)这组数据的平均数与众数的数值相等、其中正确的结论个数为()A、1B、2C、3D、43、用计算器求0、35,0、27,0、39,0、21,0、42,0、37,0、41,0、25的平均数(结果保留到小数点后第3位)为()、A、0、334B、0、333C、0、335D、0、333754、某班有48人,在一次数学测验中,全班平均分为81分,已知不及格人数为6人,他们的平均分为46分,则及格学生的平均分是()A、78分B、86分C、80分D、82分5、A、B、C、D、E五名同学在一次数学测验中的平均成绩是80分,而A、B、C三人的平均成绩是78分,下列说法一定正确的是()A、D、E的成绩比其他三人都好B、D、E两人的平均成绩是83分C、五人成绩的中位数一定是其中一人的成绩;D、五人的成绩的众数一定是80分6、某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A、82B、81C、80D、797、在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9、1环,方差分别是S甲2=1、2,S乙2=1、6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A、甲比乙稳定B、乙比甲稳定C、甲和乙一样稳定D、甲、乙稳定性没法对比8、某班统计了10名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学在一周内累计时间的众数是()A、10B、9C、8D、79、为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:这组数据的中位数是()A、4、6B、4、7C、4、8D、4、910、已知样本数据x1,x2,x3,…,x n的方差为4,则数据2x1+3,2x2+3,2x3+3,…,2x n+3的方差为()A、11B、9C、16D、4二、填空题(共8题;共30分)11、(2015•随州)某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________ 组.12、(2015•襄阳)若一组数据1,2,x,4的众数是1,则这组数据的方差为________ .13、从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是________ .14、某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32,对于这组数据,众数是________中位数是________极差是________.15、有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是________(填众数或方差或中位数或平均数)16、我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________ (填序号)17、若样本1,2,3,x的平均数为5,又知样本1,2,3,x,y的平均数为6,那么样本1,2,3,x,y的方差是________.18、已知一组数据:3,5,4,5,2,5,4,则这组数据的中位数为________、三、解答题(共6题;共40分)19、为了从甲、乙两名射击运动员中选拔一名参加比赛,对这两名运动员进行测试,他们10次射击命中的环数如下:甲7 9 8 6 10 7 9 8 6 10乙7 8 9 8 8 6 8 9 7 10根据测试成绩,你认为选择哪一名运动员参赛更好?为什么?20、在对全市初中生的体质健康测试中,青少年体质研究中心随机抽取的10名女生的立定跳远的成绩(单位:厘米)如下:123,191,216,191,159,206,191,210,186,227.(1)通过计算,样本数据(10名女生的成绩)的平均数是190厘米,中位数是多少厘米?众数是多少厘米?(2)本市一初中女生的成绩是194厘米,你认为她的成绩如何?说明理由;(3)研究中心分别确定了一个标准成绩,等于或大于这个成绩的女学生该项素质分别被评定为“合格”、“优秀”等级,其中合格的标准为大多数女生能达到,“优秀”的标准为全市有一半左右的学生能够达到,你认为标准成绩分别定为多少?说明理由;按拟定的合格标准,估计该市4650人中有多少人在合格以上?21、某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):(1)求这14位营销员该月销售该品牌电脑的平均数、中位数和众数.(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?为什么?22、甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x,7,若这组数据的众数和平均数恰好相等,求出其中的x值以及此组数据的标准差.23、现在都采用政府统一采购行为,教育局对各个学校的校服征订的办法,在教育局的样品室里摆放着12个样品,有12种不同的价位,分别为50,60,70,80,90,100,110,120,130,140,150,160元,现要对某校1500名学生统一征订校服,由于价格相差甚远,于是学校决定征求家长的意见,想要制作一张调查表,对家长的意见进行调查,请问,你该怎样设计这张调查表.(要求家长用打“√”的形式来表达).24、判断正误,并说明理由(1)给定一组数据,那么这组数据的众数有可能不唯一________;理由________(2)给定一组数据,那么这组数据的平均数一定是这组数据中的一个数________;理由________(3)n个数的中位数一定是这n个数中的某一个________;理由________(4)求9个数据(x1、x2、……、x9,其平均数为m)的标准差S,计算公式为:________;理由________答案解析一、单选题1、【答案】A【考点】中位数、众数,极差【解析】【分析】求极差的方法是用一组数据中的最大值减去最小值;中位数是把数据从小到大排列起来,位置处于最中间的数就是中位数.【解答】极差:92-56=36,将这组数据从小到大的顺序排列56,61,70,75,75,81,81,91,91,92,处于中间位置的那个数,75和81,所以中位数是(75+81)÷2=78.故选:A.【点评】此题主要考查了极差,中位数的求法,准确把握这两种数的概念是做题的关键2、【答案】A【考点】算术平均数,中位数、众数【解析】【分析】数据按从小到大顺序排列为2,2,3,3,3,3,3,6,6,10,所以中位数为(3+3)÷2=3,数据3出现了5次,出现次数最多,所以众数是3,平均数为(2×2+3×5+6×2+10)÷10=4、1.∴(1)正确,(2)(3)(4)错误.故选A.3、【答案】A【考点】计算器-平均数【解析】【解答】平均数为.【分析】根据加权平均数的定义解题即可.4、【答案】B【考点】算术平均数【解析】【解答】全班学生的总分为:81×48=3888(分),不及格人数的总分为:46×6=276(分),及格人数的总分为:3888﹣276=3612(分),则及格学生的平均分为:=86(分);故选B.【分析】利用平均数的定义先求出全班学生的总分和不及格人数的总分,进而求出及格人数的总分,再除以及格的人数即可.5、【答案】B【考点】算术平均数,中位数、众数【解析】【解答】解:A、无法判断D、E的成绩比其他三人都好,故本选项错误;B、设D、E两人的平均成绩是83分,由题意得,3×78+2x=5×80,解得x=83,所以,D、E两人的平均成绩是83分正确,故本选项正确;C、五人成绩的中位数一定是其中一人的成绩错误,有可能是按成绩排列后中间三位同学的成绩相同,中位数是他们三个人的成绩,故本选项错误;D、五人的成绩的众数一定是80分,错误,有可能没有人正好是80分,故本选项错误.故选B.【分析】根据算术平均数的定义,中位数的定义以及众数的定义对各选项分析判断利用排除法求解.6、【答案】A【考点】算术平均数【解析】【解答】解:根据题意得:(111+96+47+68+70+77+105)÷7=82;答:这七天空气质量指数的平均数是82.故选A.【分析】根据算术平均数的计算公式把这七天的空气质量指数加起来,除以天数即可.7、【答案】A【考点】方差【解析】【解答】解:∵是S甲2=1、2,S乙2=1、6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、【答案】C【考点】中位数、众数∴这10名同学在一周内累计时间的众数是8;故选:C.【分析】根据众数是一组数据中出现次数最多的数,找出这10名同学在一周内累计时间出现最多的数即可.9、【答案】B【考点】中位数、众数【解析】【解答】解:∵共有50名学生,∴中位数是第25和26个数的平均数,∴这组数据的中位数是(4、7+4、7)÷2=4、7;故选B.【分析】根据中位数的定义求出最中间两个数的平均数即可.10、【答案】C【考点】方差【解析】【解答】解:∵样本x1、x2、…、x n的方差为4,又∵一组数据中的各个数据都扩大几倍,则新数据的方差扩大其平方倍,∴样本2x1、2x2、…、2x n的方差为22×4=16,∵一组数据中的各个数据都加上同一个数后得到的新数据的方差与原数据的方差相等,∴样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差为16,故选:C.【分析】先根据方差的性质,计算出样本2x1、2x2、…、2x n的方差,然后再求样本2x1+3,2x2+3,2x3+3,…,2x n+3的方差即可.二、填空题11、【答案】2【考点】频数(率)分布表,中位数、众数【解析】【解答】解:共12+24+18+10+6=70个数据,12+24=36,所以第35和第36个都在第2组,所以这个样本的中位数在第2组.故答案为:2.【分析】共12+24+18+10+6=70个数据,中位数为第35和第36个数的平均数,依此即可求解.【考点】中位数、众数,方差【解析】【解答】解:∵数据1,2,x,4的众数是1,∴x=1,∴平均数是(1+2+1+4)÷4=2,则这组数据的方差为[(1﹣2)2+(2﹣2)2+(1﹣2)2+(4﹣2)2]=1、5;故答案为:1、5.【分析】根据众数的定义先求出x的值,再根据方差的计算公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.13、【答案】5、5【考点】中位数、众数【解析】【解答】解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5、5,故答案为:5、5.【分析】首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.14、【答案】29;29;4【考点】中位数、众数,极差【解析】【解答】解:∵29出现了2次,出现的次数最多,∴众数是29;把这些数从小到大排列为:28,29,29,31,32,最中间的数是29,则中位数是29;极差是32﹣28=4.故答案为:29,29,4.【考点】中位数、众数,统计量的选择【解析】【解答】解:因为7位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故答案为:中位数.【分析】由于比赛设置了7个获奖名额,共有13名选手参加,故应根据中位数的意义分析.16、【答案】②①④⑤③【考点】数据分析【解析】【解答】解:解决上述问题要经历的几个重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体.故答案为:②①④⑤③.【分析】根据已知统计调查的一般过程:①问卷调查法﹣﹣﹣﹣﹣收集数据;②列统计表﹣﹣﹣﹣﹣整理数据;③画统计图﹣﹣﹣﹣﹣描述数据进而得出答案.17、【答案】26【考点】算术平均数,方差【解析】【解答】解:∵样本1,2,3,x的平均数为5,∴1+2+3+x=5×4,∴x=14,∵样本1,2,3,x,y的平均数为6,∴1+2+3+x+y=6×5,∴x+y=24,∴y=10,∴样本的方差s2=[(1﹣6)2+(2﹣6)2+(3﹣6)2+(14﹣6)2+(10﹣6)2]÷5=26.故答案为:26.【分析】根据平均数的定义列出二元一次方程组,运用加减消元法即可解出x、y的值,再代入样本中求出平均值,最后代入方差的公式可得出答案.18、【答案】4【考点】中位数、众数【解析】【解答】从小到大排列此数据为:2、3、4、4、5、5、5,第4位的数字是4,则这组数据的中位数是4.19、【答案】解:=(7+9+8+6+10+7+9+8+6+10)=8(环),=(7+8+9+8+8+6+8+9+7+10)=8(环),S甲2=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=2,S乙2=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2+(6﹣8)2+(8﹣8)2+(9﹣8)2+(7﹣8)2+(10﹣8)2]=1、2,∵S甲2>S乙2,∴乙运动员的成绩比较稳定,∴选择乙运动员参赛更好.【考点】加权平均数,方差【解析】【分析】先计算甲乙的平均数,再根据方程公式计算甲乙的方差,然后通过比较方差的大小,根据方差的意义决定选择哪一名运动员参赛更好.20、【答案】解:(1)从小到大123,159,186,191,191,191,206,210,216,227.所以中位数是:191,众数是191,(2)根据(1)中得到的样本数据的结论,可以估计,在这次立定跳远的成绩测试中,全市学生的平均成绩是190厘米,这位学生的成绩是194厘米,大于平均成绩190厘米,可以推测他的成绩比全市学生的平均成绩好.(3)如果合格的标准为大多数女生能达到,标准成绩应定为191厘米(中位数).因为从样本情况看,成绩在191厘米以上(含191厘米)的学生占总人数的大多数.全市有一半左右的学生评定为“优秀”等级,可以估计,如果标准成绩定为200厘米,全市将有一半左右的学生能够评定为“优秀”等级.估计该市4650人中在合格以上的人数为:4650×=3255(人)【考点】中位数、众数【解析】【分析】(1)利用中位数、众数的定义进行解答即可;(2)将其成绩与平均数比较即可得到答案;(3)用中位数作为一个标准即可衡量是学生达到合格及优秀等级.21、【答案】解:(1)平均数:=90台;∵共14人,∴中位数:80台;有5人销售80台,最多,故众数:80台;(2)不合理,因为若将每位营销员月销售量定为90台,则多数营销员可能完不成任务.【考点】中位数、众数【解析】【分析】(1)用加权平均数的求法求得其平均数,出现最多的数据为众数,排序后位于中间位置的数即为中位数;(2)众数和中位数,是大部分人能够完成的台数.22、【答案】解:∵这组数据的众数和平均数恰好相等,∴(9+9+x+7)÷4=9,∴x=11,∴这组数据的方差是[(9﹣9)2+(9﹣9)2+(11﹣9)2+(7﹣9)2]=2,则这组数据的标准差是:.【考点】算术平均数,中位数、众数,方差【解析】【分析】根据这组数据的众数和平均数恰好相等,求出x的值,再根据方差的计算公式求出方差,再计算方差的算术平方根,即为标准差.23、【答案】解:如表格所示:【考点】数据分析【解析】【分析】利用已知数据范围可以分成6组,进而得出答案即可.24、【答案】(1)正确;众数是一组数据中出现次数最多的数据,注意众数可以不止一个(2)错误;不一定,答案不唯一,如:4,6,7这组数据的平均数是(3)错误;不一定,当数据的个数是双数时,中位数是中间两个数的平均数,答案不唯一,如:2,3,4,5这组数据的中位数是(4)正确;标准差=【考点】中位数、众数【解析】【分析】本题考查统计的有关知识,要掌握众数、平均数、中位数、方差、标准差的定义及实际意义、。
北师大版八年级上第六章数据的分析单元测试含答案解析
《第6章数据的分析》一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是92.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和403.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.64.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲乙丙丁平均数80 85 85 80方差42 42 54 59A.甲B.乙C.丙D.丁5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数6.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是()A.2.8 B.C.2 D.57.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是()A.2,B.2,1 C.4,D.4,38.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5二、填空题11.一组数据2、﹣2、4、1、0的中位数是______.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为______.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是______度.15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是______cm,中位数是______cm.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为______.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是______.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是______,极差是______.(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是______年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组______ ______ ______乙组______ ______ ______23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.《第6章数据的分析》参考答案一、选择题1.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.平均数是9 B.极差是5 C.众数是5 D.中位数是9【解答】解:这组数据的平均数为: =9,极差为:14﹣5=9,众数为:5,中位数为:9.故选B.2.某市测得一周PM2.5的日均值(单位:)如下:50,40,75,50,37,50,40,这组数据的中位数和众数分别是()A.50和50 B.50和40 C.40和50 D.40和40【解答】解:从小到大排列此数据为:37、40、40、50、50、50、75,数据50出现了三次最多,所以50为众数;50处在第4位是中位数.故选:A.3.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选B.4.甲、乙、丙、丁四位同学五次数学测验成绩统计如表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选()甲 乙 丙 丁 平均数 80 85 85 80 方 差42425459A .甲B .乙C .丙D .丁【解答】解:由于乙的方差较小、平均数较大,故选乙. 故选:B .5.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是( )A .众数和平均数B .平均数和中位数C .众数和方差D .众数和中位数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数, 故选:D .6.已知一组数据10,8,9,x ,5的众数是8,那么这组数据的方差是( ) A .2.8 B .C .2D .5【解答】解:因为一组数据10,8,9,x ,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5. 该组数据的平均数为:(10+8+9+8+5)=8,方差S 2= [(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]= =2.8.故选:A .7.已知:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,方差是,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数和方差分别是( ) A .2, B .2,1 C .4, D .4,3【解答】解:∵x 1,x 2,…,x 5的平均数是2,则x 1+x 2+…+x 5=2×5=10. ∴数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是:′= [(3x 1﹣2)+(3x 2﹣2)+(3x 3﹣2)+(3x 4﹣2)+(3x 5﹣2)]= [3×(x 1+x 2+…+x 5)﹣10]=4,S′2=×[(3x1﹣2﹣4)2+(3x2﹣2﹣4)2+…+(3x5﹣2﹣4)2],=×[(3x1﹣6)2+…+(3x5﹣6)2]=9× [(x1﹣2)2+(x2﹣2)2+…+(x5﹣2)2]=3.故选D.8.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有多少条鱼()A.400条B.500条C.800条D.1000条【解答】解:设湖中有x条鱼,则200:10=x:50,解得x=1 000(条).故选D.9.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解答】解:A、全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间,正确;B、可能会出现各班的人数不等,所以,6个的班总平均成绩就不能简单的6个的班的平均成绩相加再除以6,故错误;C、中位数和平均数是不同的概念,故错误;D、六个平均成绩的众数也可能是全年级学生的平均成绩,故错误;故选A.10.有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5【解答】解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为: =9,众数为:7,极差为:12﹣7=5.故选:A.二、填空题11.一组数据2、﹣2、4、1、0的中位数是 1 .【解答】解:从小到大排列此数据为:﹣2、0、1、2、4,处在中间位置的是1,则1为中位数.所以本题这组数据的中位数是1.故答案为1.12.近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为(单位:万辆):11,13,15,19,x,这五个数的平均数为16.2,则x的值为23 .【解答】解:根据题意得:(11+13+15+19+x)÷5=16.2,解得:x=23,则x的值为23;故答案为:23.13.李好在六月连续几天同一时刻观察电表显示的度数,记录如下:日期1号2号3号4号5号6号7号8号…30号电表显示(度)120 123 127 132 138 141 145 148 …估计李好家六月份总月电量是120 度.【解答】解:×30=120(度).15.商店某天销售了11件衬衫,其领口尺寸统计如下表:领口尺寸(单位:cm)38 39 40 41 42件数 1 4 3 1 2则这11件衬衫领口尺寸的众数是39 cm,中位数是40 cm.【解答】解:同一尺寸最多的是39cm,共有4件,所以,众数是39cm,11件衬衫按照尺寸从小到大排列,第6件的尺寸是40cm,所以中位数是40cm.故答案为:39,40.16.已知三个不相等的正整数的平均数,中位数都是3,则这三个数分别为1,3,5或2,3,4 .【解答】解:因为这三个不相等的正整数的中位数是3,设这三个正整数为a,3,b(a<3<b);其平均数是3,有(a+b+3)=3,即a+b=6.且a b为正整数,故a可取1,2,分别求得b的值为5,4.故这三个数分别为1,3,5或2,3,4.故填1,3,5或2,3,4.17.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是 2 .【解答】解:∵1,3,x,2,5,它的平均数是3,∴(1+3+x+2+5)÷5=3,∴x=4,∴S2= [(1﹣3)2+(3﹣3)2+(4﹣3)2+(2﹣3)2+(5﹣3)2]=2;∴这个样本的方差是2.故答案为:2.18.甲,乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135乙55 151 110 135某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数19.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容:演讲能力:演讲效果=5:4:1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A 85 95 95B 95 85 95请决出两人的名次.【解答】解:选手A的最后得分是:(85×5+95×4+95×1)÷(5+4+1)=900÷10=90,选手B最后得分是:(95×5+85×4+95×1)÷(5+4+1)=910÷10=91.由上可知选手B获得第一名,选手A获得第二名.20.广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是345 ,极差是24 .(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是2008 年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.【解答】解:(1)这五年的全年空气质量优良天数按照从小到大排列如下:333、334、345、347、357,所以中位数是345;极差是:357﹣333=24;(2)2007年与2006年相比,333﹣334=﹣1,2008年与2007年相比,345﹣333=12,2009年与2008年相比,347﹣345=2,2010年与2009年相比,357﹣347=10,所以增加最多的是2008年;(3)这五年的全年空气质量优良天数的平均数===343.2天.21.某班实行小组量化考核制,为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:周次组别一二三四五六甲组12 15 16 14 14 13乙组9 14 10 17 16 18(1)请根据上表中的数据完成下表;(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在图中画出甲、乙两组综合评价得分的折线统计图;(3)由折线统计图中的信息,请分别对甲、乙两个小组连续六周的学习情况做出简要评价.平均数中位数方差甲组14 14 1.7乙组14 15 11.7【解答】解:(1)填表如下:平均数中位数方差甲组14 14 1.7乙组14 15 11.7(2)如图:(3)从折线图可看出:甲组成绩相对稳定,但进步不大,且略有下降趋势;乙组成绩不够稳定,但进步较快,呈上升趋势.23.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?【解答】解:(1)=50(人).该班总人数为50人;(2)捐款10元的人数:50﹣9﹣14﹣7﹣4=50﹣34=16,图形补充如右图所示,众数是10;(3)(5×9+10×16+15×14+20×7+25×4)=×655=13.1元,因此,该班平均每人捐款13.1元.24.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次甲10 8 9 8 10 9乙10 7 10 10 9 8(1)根据表格中的数据,分别计算甲、乙的平均成绩.(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.【解答】解:(1)甲的平均成绩是:(10+8+9+8+10+9)÷6=9,乙的平均成绩是:(10+7+10+10+9+8)÷6=9;(2)甲的方差= [(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=.乙的方差= [(10﹣9)2+(7﹣9)2+(10﹣9)2+(10﹣9)2+(9﹣9)2+(8﹣9)2]=.(3)推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。
2020年北师大版八年级数学上册第六章数据的分析单元测试题(含答案)
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C 4. D 5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B错误;1~6月份利润的平均数约是128万元,故C错误;1~6月份利润的极差是40万元,故D正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h . (3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为 (106+102+115+109)÷4=108(分). (2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 000 20.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12;若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙 22. 75 解:(1)75分. (2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、天下兴亡,匹夫有责。
最新八年级数学第六章数据的分析单元测试题及答案
最新八年级数学第六章数据的分析单元测试题及答案一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是( )A. 90分B. 91分C. 92分D. 93分2.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如表,则这组数据的中位数和众数分别是( )星期一二三四五六日收入(点)15212727213021A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点3.若样本x1,x2,x3,⋯,x n的平均数为10,方差为4,则对于样本x1−3,x2−3,x3−3,⋯,x n−3,下列结论正确的是( )A. 平均数为10,方差为2B. 众数不变,方差为4C. 平均数为7,方差为2D. 中位数变小,方差不变4.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确( )A. 中位数是95分B. 众数是90分C. 平均数是95分D. 方差是155.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是( )A. 平均数B. 方差C. 中位数D. 众数6.计算一组数据方差的算式为s2=1×[(x1−10)2+(x2−10)2+⋯+(x5−10)2],则下列信息中,不5正确的是( )A. 这组数据中有5个数据B. 这组数据的平均数是10C. 计算出的方差是一个非负数D. 当x1增加时,方差的值一定随之增加7.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )参加人数平均数中位数方差甲459493 5.3乙459495 4.8A. 甲、乙两班的平均水平相同B. 甲、乙两班竞赛成绩的众数相同C. 甲班的成绩比乙班的成绩稳定D. 甲班成绩优异的人数比乙班多8.某校八(1)班50名学生积极参加献爱心慈善捐款活动,班长将捐款情况进行统计,并绘制成了统计图.根据统计图提供的信息,捐款金额的众数和中位数分别是.( )A.20元、20元B. 30元、20元C. 20元、30元D. 30元、30元9.某电脑公司销售部为了制定下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售员本月销售量的平均数、中位数、众数分别是( )A. 19台、20台、14台B. 19台、20台、20台C.18.4台、20台、20台 D. 18.4台、25台、20台10.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,根据统计图提供的信息,下列推断正确的是( )A.该班学生共有44人B. 该班学生一周锻炼12小时的有9人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼时间的中位数是11二、填空题(本大题共5小题,共15.0分)11.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是___________.12.一组数据1,2,a的平均数为2,另一组数据−2,a,2,1,b的众数为−2,则数据−2,a,2,1,b的中位数为.13.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为.(用“>”连接)14. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是 .15. 在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为______.三、解答题(本大题共10小题,共75.0分。
北师大版八年级数学上册第六章 数据的分析 单元测试试题(含答案)
北师大版八年级数学上册第六章数据的分析单元测试题一、选择题(每小题4分,共40分)1.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为(B)A.7分B.8分C.9分D.10分2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,则他们年龄的众数为(B)A.12 B.13 C.14 D.153.已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是(A)A.10 B.9 C.8 D.74.在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是(B)A.5 B.6 C.7 D.105.某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是(C)A.30吨B.31吨C.32吨D.33吨6.某校在一次学生演讲比赛中共有11个评委,统计每位选手得分时,采用了去掉一个最高分和一个最低分,然后再计算其余给分的平均数.这种计分方法对所有评委给出的11个分数一定不产生影响的是(B)A.平均数 B.中位数C.方差 D.众数7.如果一组数据x1,x2,…,x n的方差是3,那么另一组数据x1+5,x2+5,…,x n+5的方差是(A)A.3 B.8 C.9 D.148.某销售部门有7名员工,所有员工的月工资情况如下表所示(单位:元).则比较合理反映该部门员工工资的一般水平的数据是(C)A.平均数 B.平均数和众数C.中位数和众数 D.平均数和中位数9.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是(D)A.10,15 B.13,15C.13,20 D.15,1510.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时的说法正确的是(B)A.众数是8 B.中位数是3C.平均数是3 D.方差是0.34二、填空题(每小题4分,共20分)11.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是37.12.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是s2甲=0.53,s2乙=0.51,s2丙=0.43,则三人中成绩最稳定的是丙(填“甲”“乙”或“丙”).13.在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.14.某餐厅供应单价为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为17元.15.一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是3.三、解答题(共40分)16.(8分)某市举行一次少年滑冰比赛,各年龄组的参赛人数如下表所示:(1)求全体参赛选手年龄的众数、中位数;(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%.你认为小明是哪个年龄组的选手?请说明理由.解:(1)众数是14岁,中位数是15岁.(2)因为全体参赛选手的人数为5+19+12+14=50(名),又因为50×28%=14(名),所以小明是16岁年龄组的选手.17.(10分)(太原期末)学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).根据表中信息回答下列问题:(1)学校将“服装统一” “队形整齐” “动作规范”三项按2∶3∶5的比例计算各班成绩,求八年级三个班的成绩;(2)由表中三项得分的平均数可知二班排名第一,在(1)的条件下,二班成绩的排名发生了变化,请你说明二班成绩排名发生变化的原因.解:(1)一班成绩为80×2+84×3+88×52+3+5=85.2(分),二班成绩为97×2+78×3+80×52+3+5=82.8(分),三班成绩为90×2+78×3+84×52+3+5=83.4(分).(2)原因:按照2∶3∶5的比例计算成绩时,“队形整齐”与“动作规范”两项所占权重较大,而二班这两项得分较低,所以最后的成绩排名发生了变化.18.(10分)(淄博中考)为了“天更蓝,水更绿”,某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染……根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图;(3)健康专家温馨提示:空气污染指数在100以下适合做户外运动.请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?解:(2)由题意,得轻度污染的天数为30-3-15=12(天).补全统计图如图.(3)该市居民一年(以365天计)中适合做户外运动的天数为18÷30×365=219(天).19.(12分)某学校八年级共有三个班,都参加了学校举行的书法绘画大赛,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:解答下列问题:(1)请填写下表:(2)请从以下两个不同的角度对三个班级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个班级成绩好些);②从平均数和中位数相结合看(分析哪个班级成绩好些).(3)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.解:(2)①从平均数和众数相结合看,八年级2班成绩比较好.②从平均数和中位数相结合看,八年级1班成绩比较好.(3)八年级3班更强一些.理由:因为八年级3班前三名的成绩为97,96,92,八年级2班前三名的成绩为97,88,88,八年级1班前三名的成绩为99,91,89,所以八年级3班的实力更强一些.。
湘教版2019-2020学年七年级数学第二学期第6章数据的分析单元测试卷(含答案)
第6章 数据的分析时间:90分钟 满分:120分一、选择题(每小题4分,共32分) 1、为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且1002=甲s 、1102=乙s 、1202=丙s 、902=丁s .根据统计结果,派去参加竞赛的两位同学是( ) A .甲、乙 B .甲、丙 C .甲、丁 D .乙、丙2、已知数据:2,,3,2,31- π 其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80% 3、某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖).A .3℃,2B .3℃,65C .2℃,2D .2℃,854、今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6, 11,12,17,则这组数据的中位数与极差分别是( )A .8,11B .8,17C .11,11D .11,17 5、下列说法中:①一组数据不可能有两个众数;②将一组数据中的每一个数据都加上(或都减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的数码是奇数,这个事件是必然发生的;④要反映西昌市某一天内气温的变化情况,宜采用折线统计图。
其中正确的是( )A .①和③B .②和④C .①和②D .③和④ 6.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )A .平均数B .中位数C .众数D .方差7.某次知识竞赛中,10名学生的成绩统计如下:A.学生成绩的方差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分 D.学生成绩的平均分是80分8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选( )A.甲 B.乙 C.丙 D.丁二、填空题(每小题4分,共24分)9.一组数据:5,7,6,5,6,5,8,这组数据的平均数是________.10.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是________岁.11.九年级一班同学体育测试后,老师将全班同学成绩绘制成如图所示的条形统计图.每个等级成绩的人数的众数是________.第11题图第12题图12.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图,那么三人中成绩最稳定的是小李.13.有5个从小到大排列的正整数,其中位数是3,唯一的众数是7,则这5个数的平均数是________.14.已知一组数据0,1,2,2,x,3的平均数为2,则这组数据的方差是________.三、解答题(共64分)15.(8分)某蔬菜市场某天批发1000千克青菜,上午按每千克0.8元的价格批发了500千克,中午按每千克0.6元的价格批发了200千克,下午以每千克0.4元的价格将余下的青菜批发完,求这批青菜的平均批发价格.(500×0.8+200×0.6+0.4×300)÷1000=0.64(元/千克).16.(10分)在“心系灾区”自愿捐款活动中,某班50名同学的捐款情况如下表:(1)(2)求这50名同学捐款的平均数、中位数.(3)从表中你还能得到什么信息(只写一条即可)?17.(10分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3∶3∶2∶2计算,那么甲、乙的数学综合素质成绩分别为多少分?18.(12分)小明和小红5次数学单元测试成绩如下(单位:分):小明:89、67、89、92、96;小红:86、62、89、92、92.他们都认为自己的成绩比另一位同学好.(1)分别计算小明和小红5次数学单元测试成绩的平均数、中位数和众数,并分析他们各自认为自己的成绩比另一位同学好的理由;(2)你认为谁的成绩更好些?说一说你的理由.19.(12分)已知一组数据x1,x2,…,x6的平均数为1,方差为5 3 .(1)求x21+x22+…+x26的值;(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).20.(12分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下统计图①和②,请根据相关信息,解答下列问题:(1)图①中a的值为________;(2)求统计的这组初赛数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人能进行复赛,请直接写出初赛成绩为1.65m的运动员能否进入初赛.答案CBACB BCD9.6 10.15 11.6 12.乙13.414.53解析:∵16(0+1+2+2+x+3)=2,∴x=4.s2=16[(0-2)2+(1-2)2+(2-2)2+(2-2)2+(4-2)2+(3-2)2]=53 .15.解:(0.8×500+0.6×200+0.4×300)÷1000=0.64(元/千克)(6分).答:这批青菜的平均批发价格为0.64元/千克.(8分)16.解:(1)捐款总数为5×6+10×7+15×9+20×11+25×8+30×5+50×3+100=1055(元).(3分)(2)50名同学捐款的平均数为1055÷50=21.1(元),(6分)中位数为(20+20)÷2=20.(8分)(3)答案不唯一,如“捐20元的人数最多”等.(10分)17.解:(1)甲成绩的中位数为(90+90)÷2=90;(2分)乙成绩的中位数为(92+94)÷2=93.(4分)(2)3+3+2+2=10,甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分),(7分)乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).(9分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.(10分)18.解:(1)小明成绩的平均数是15(89+67+89+92+96)=86.6,(2分)按从小到大的顺序排列得到第3个数为89.∴中位数是89.(3分)出现次数最多的是89.∴众数是89.(4分)同理,小红成绩的平均数是84.2,中位数是89,众数是92.(7分)因此小明的理由是他成绩的平均数比小红高,而小红的理由是她成绩的众数比小明高.(9分)(2)小明的成绩好一点.∵小明成绩的平均数高于小红成绩的平均数,而且小明每次的成绩都比小红的高.(12分)19.解:(1)∵数据x1,x2,…,x6的平均数为1,∴x1+x2+…+x6=1×6=6.(1分)又∵方差为53,∴s2=16[(x1-1)2+(x2-1)2+…+(x6-1)2]=16[x21+x22+…+x26-2(x1+x2+…+x6)+6]=16(x21+x22+…+x26-2×6+6)=16(x21+x22+…+x26)-1=53,∴x21+x22+…+x26=16.(6分)(2)∵数据x1,x2,…,x7的平均数为1,∴x1+x2+…+x7=1×7=7.∵x1+x2+…+x6=6,∴x7=1.(8分)∵16[(x1-1)2+(x2-1)2+…+(x6-1)2]=53,∴(x1-1)2+(x2-1)2+…+(x6-1)2=10,(10分)∴s2=17[(x1-1)2+(x2-1)2+…+(x7-1)2]=17[10+(1-1)2]=107.(12分)20.解:(1)25(3分)(2)x=1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3=1.61.∴这组数据的平均数是1.61.(5分)∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65.(7分)∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,1.60+1.602=1.60.∴这组数据的中位数为1.60.(9分)(3)能.(12分)。
北师大版八年级上册数学第六章 数据的分析 单元测试卷(含答案解析)
北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。
北师大版八年级数学上册《第六章数据的分析》章节检测卷-带答案
北师大版八年级数学上册《第六章数据的分析》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________1 平均数算术平均数、加权平均数A.基础夯实1. 有一组数据:2 4 5 6 8 这组数据的平均数为()A. 3B. 4C. 5D. 62. 2012年5月某日我国部分城市的最高气温统计如下表所示.城市武汉成都北京上海海南南京拉萨深圳气温(℃)27 27 24 25 28 28 23 26则这组数据的平均数是()A. 24B. 25C. 26D. 273. 若a,b,c的平均数为7,则a+1、b+2、c+3的平均数为()A. 7B. 8C. 9D. 104. 如果一组数据−3−20 1 x 6 9 12的平均数为3 则x为()A. 2B. 3C. −1D. 15. 某学校在开展“生活垃圾分类星级家庭”评选活动中,从八年级任选出10名同学汇报了各自家庭1天生活垃圾收集情况,将有关数据整理如下表.生活垃圾收集量(单位:kg)0.5 1 1.5 2同学数 2 3 4 1请你计算每名同学家庭平均1天生活垃圾收集量是()A. 0.9kgB. 1kgC. 1.2kgD. 1.8kg6. [2023·梅州期末]某校体育期末考核“仰卧起坐”和“800米”两项,并按3:7的比例算出期末成绩.已知小林这两项的考试成绩分别为80分,90分,则小林的体育期末成绩为分.7. 七年级一班某次英语测验后,现以80分为基准,超出的记为正数,不足的记为负数,抽查了4名同学,记录结果如下:+8−2+6−4.那么这4名同学的平均成绩是多少分?B.能力提升8. 若1 4 m7 8的平均数是5 则1 4 m+107 8的平均数是()A. 5B. 6C. 7D. 89. 某校招聘教师,规定综合成绩由笔试成绩和面试成绩构成,其中笔试占60%,面试占40%,有一名应聘者的综合成绩为78分,笔试成绩是80分,则面试成绩为分. 10. 评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试分数为80分,作业分数为95分,课堂参与分数为82分求小明的数学期末成绩为多少.C.拓展思维11. 某农户在承包的荒山上共种植了44棵樱桃树2020年采摘时先随意采摘5棵树上的樱桃称得每棵树上的樱桃质量(单位:kg)如下:35 35 34 39 37.(1)根据以上数据估计该农户2020年樱桃的产量是多少千克;(2)已知该农户的这44棵树在2019年共收获樱桃1440kg若近几年的产量的年增长率相同依照(1)中估计的2020年的产量预计2021年该农户可收获樱桃多少千克?12. 小青在本学期的数学成绩如下表所示(成绩均取整数).测验类别平时期中考试期末考试测验1 测验2 测验3 课题学习成绩88 70 96 86 85 x(1)计算小青本学期平时的平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算那么本学期小青的期末考试成绩x至少为多少分才能保证达到总评成绩90分的最低目标?2 中位数与众数A.基础夯实1. 某学习小组7位同学为玉树地震灾区捐款捐款金额分别为5元6元6元6元7元8元9元则这组数据的中位数与众数分别为()A. 6元6元B. 7元6元C. 7元8元D. 6元8元2. 为切实落实“双减”丰富课后服务活动形式某校开展学生的绘画书法散文诗等艺术作品征集活动从八年级7个班收集到的作品数量(单位:件)分别为50 45 4246 50 44 52 则这组数据的中位数和平均数分别是()A. 46 47B. 45 47C. 50 46D. 42 463. 为了了解某种小麦的长势随机抽取了50株麦苗进行测量测量结果如表.苗高(cm)10 11 12 13 14株数(株)7 12 10 14 7则麦苗高的中位数是()A. 10B. 11C. 12D. 134. [2023·深圳校考]某校男子篮球队10名队员进行定点投篮练习每人投篮10次他们投中的次数统计如表.投中次数 3 5 6 7 9人数 1 3 2 2 2则这些队员投中次数的众数中位数分别为()A. 6 6B. 5 5C. 5 6D. 3 65. 为调动学生参与体育锻炼的积极性某校组织了一分钟跳绳比赛活动体育老师随机抽取了10名参赛学生的成绩将这组数据整理后制成统计表.一分钟跳绳个数181 184 185 186学生人数 2 5 1 2则这组数据的中位数是;众数是.B.能力提升6. 已知一组数据分别为3 8 4 5 x这组数据的众数是8 则这组数据的中位数是()A. 3B. 4C. 5D. 87. 一组数据1 x 5 7有唯一众数且中位数是6 则平均数是.8. 2022年11月5日第二十三届深圳读书月盛大开幕本届读书月以“读时代新篇创文明典范”为年度主题2300余场文化活动“阅”动全城.春海学校积极响应深圳读书月的号召在校内推广课外阅读活动.为了解七八年级学生每周课外阅读的情况分别从两个年级随机抽取了10名学生进行调查并对调查数据进行整理分析.现将参与调查的每个学生每周课外阅读的时间用x(小时)表示并将两个年级的调查数据分成四组:A.0≤x<4 B.4≤x<8 C.8≤x<12 D.12≤x≤16.以下是相关的数据信息:七年级学生调查数据:3 14 8 9 9 11 8 11 16 11.八年级学生调查数据位于C组中的是9 10 10 10.七八年级抽取的学生每周课外阅读时间统计表平均数众数中位数七年级10 a b八年级9 10 c根据以上信息解答下列问题:(1)分别求出上述图表中a b c的值:a=b=c=;(2)若七八年级共有1 000名学生请你估计该校七八年级学生每周课外阅读时间不少于12小时的共有多少人.C.拓展思维9. 某校积极响应“弘扬传统文化”的号召开展经典诗词背诵活动并在活动之后举办经典诗词大赛.为了解本次系列活动的持续效果学校在活动初期随机抽取部分学生调查“一周诗词背诵数量”并根据调查结果绘制成不完整的条形扇形统计图如图所示.诗词大赛结束后一个月再次调查这部分学生“一周诗词背诵数量”绘制成统计表.大赛后学生“一周诗词诵背数量”统计表一周诗词诵背数量3首4首5首6首7首8首人数9 11 15 42 23 20请根据上述调查的信息分析:(1)活动启动之初学生“一周诗词背诵数量”的中位数为首;(2)估计大赛结束后一个月该校学生(总数1 200人)“一周诗词背诵数量”不少于6首的人数;(3)选择适当的统计量从两个不同的角度分析两次调查的相关数据评价该校经典诗词背诵系列活动的效果.4 数据的离散程度极差方差标准差A.基础夯实1. 某中学在备考2023中考体育的过程中抽取该校九年级20名男生进行立定跳远测试成绩如下表所示则下列叙述正确的是()成绩(单位:m) 2.10 2.20 2.25 2.30 2.35 2.40 2.45 2.50人数 2 3 2 4 5 2 1 1A. 这些男生成绩的众数是5B. 这些男生成绩的中位数是2.30C. 这些男生的平均成绩是2.25D. 这些男生成绩的极差是0.352. [2023·深圳期末]南山区博物馆五位小讲解员的年龄分别为10 12 12 13 15(单位:岁)则三年后这五位小讲解员的年龄数据中一定不会改变的是()A. 方差B. 众数C. 中位数D. 平均数3. 方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,⋯,x15可用如下算式计算方差:s2=1[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x15−5)2]则这组数据的平均数是15()A. 5B. 10C. 15D. 1154. 小林爸爸想了解他在学校的数学学习情况于是询问得知了他本学期的近5次数学单元测验成绩(单位:分)分别为88 91 89 92 90 试求小林这5次测验成绩的方差以便帮助小林分析他的数学成绩是否相对稳定.B.能力提升5. 某校九年级参加了“维护小区周边环境”“维护繁华街道卫生”“义务指路”等志愿者活动如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图则关于这六个数据下列说法正确的是()A. 极差是40B. 众数是58C. 中位数是51.5D. 平均数是606. 某班有40人一次体能测试后老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分方差s2=41.后来小亮进行了补测成绩为90分关于该班40人的测试成绩下列说法正确的是()A. 平均分不变方差变大B. 平均分不变方差变小C. 平均分和方差都不变D. 平均分和方差都改变7. 在对一组样本数据进行分析时小华列出了方差的计算公式:s2=(2−x)2+(3−x)2+(3−x)2+(4−x)2请根据此公式提供的信息试求数据2+x0,3+x0,3+x0,4+x0的n标准差.C.拓展思维8. 已知一组数据1 2 3 4 x的方差与另一组数据2020202120222023 2024的方差相等请尝试求x的值.9. 为了解某校八年级暑期参加义工活动的时间某研究小组随机采访了该校八年级的20位同学得到这20位同学暑假参加义工活动的天数的统计如下:天数(天)0 2 3 5 6 8 10人数 1 2 4 8 2 2 1(1)这20位同学暑期参加义工活动的天数的中位数是天众数是天极差是天;(2)若小明同学把天数中的数据“8”看成了“7”那么中位数众数方差极差四个指标中受影响的是;(3)若该校有500位八年级学生试用这20位同学的样本数据去估计该校八年级学生暑期参加义工活动的总天数.章末复习A.基础夯实1. 某校规定英语竞赛成绩85分以上为优秀老师将85分记为0 并将一组5名同学的成绩简记为−3+140 +5−6这5名同学的平均成绩是()A. 83分B. 87分C. 82分D. 84分2. [2023·翠园初级中学校考]某校开展安全知识竞赛进入决赛的有6名同学他们的成绩(单位:分)分别是100 99 90 99 88 97.这6名同学的决赛成绩的中位数和众数分别是()A. 99 99B. 90 98C. 98 99D. 94.5993. [2023·清远期中]班长统计去年1~8月“书香校园”活动中全班的课外书阅读数量(单位:本)绘制了折线统计图(如图).下列说法中正确的是()A. 这组数据的极差是47B. 这组数据的众数是42C. 这组数据的中位数是58D. 月阅读数量超过40本的有5个月4. 某校5个小组在一次植树活动中植树株数的统计图如图所示则平均每组植树株.5. 如果一组数据2 4 x 3 5的众数是4 那么该组数据的平均数是.6. 一组数据是6 8 10 8 这组数据的方差是 .B.能力提升7. 小明同学随机调查七(2)班6名同学每天食堂午饭消费金额 制作如下统计表:类别 同学1 同学2 同学3 同学4 同学5 同学6 金额(元)565668则这组消费金额的( ) A. 平均数为5B. 中位数为5C. 众数为6D. 方差为68. 每年的6月6日是全国爱眼日 就在手机充斥着人们生活 占用大部分时间的同时 其蓝光危害以及用眼过度带来的影响也在悄然威胁着人们的视力健康 某班为了解全班学生的视力情况 随机抽取了10名学生进行调查 将抽取学生的视力统计结果如下表.下列说法错误的是( )视力 4.5 4.6 4.7 4.8 4.9 5.0 人数112 312A. 平均数为4.7B. 中位数为4.8C. 众数为4.8D. 方差为0.02369. 某射击运动员练习射击 5次成绩分别是8 9 7 8 x (单位:环) 下列说法中正确的是 (填序号). ①若这5次成绩的平均数是8 则x =8; ②若这5次成绩的中位数为8 则x =8; ③若这5次成绩的众数为8 则x =8; ④若这5次成绩的方差为8 则x =8.C.拓展思维10. 设x −是x 1,x 2,⋯ ,x n 的平均数 即x −=x 1+x 2+⋯+x nn则方差s 2=1n×[(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2] 它反映了这组数据的波动性.(1) 求证:对任意实数a x 1−a x 2−a ⋯ x n −a 与x 1 x 2 ⋯ x n 方差相同;[x12+x22+⋯+x n2]−x2;(2)求证:s2=1n(3)以下是我校初三(1)班10位同学的身高(单位:cm):169 172 163 173 175 168 170 167 170 171 计算这组数据的方差.参考答案1 平均数算术平均数加权平均数A.基础夯实1.【答案】C2.【答案】C3.【答案】C4.【答案】D5.【答案】C6.【答案】877.【答案】解:这4名同学的平均成绩是80+14×(8−2+6−4)=80+14×8=82(分)。
(典型题)初中数学八年级数学上册第六单元《数据的分析》测试(包含答案解析)
一、选择题1.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12341则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.52.利用计算器求一组数据的平均数.其按键顺序如下:,则输出的结果为()A.1B.3.5C.4D.93.下表是某地援鄂医疗人员的年龄分布年龄/岁29303132频数152018mm,mA.众数、中位数B.众数、方差C.平均数、方差D.平均数、中位数4.某手表厂抽查了10只手表的日走时误差,数据如下表所示:则这10只手表的平均日走时误差(单位:秒)是()日走时误差(秒)0123只数(只)3421A.0 B.0.6 C.0.8 D.1.15.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.26,26 B.26,22 C.31,22 D.31,266.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是()A.平均数是2 B.众数和中位数分别是-1和2.5C.方差是16 D 43 37.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分85≥分为优秀); ③甲班成绩的波动性比乙班小. 上述结论中正确的个数是( ) A .3个 B .2个C .1个D .0个8.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是( )元. A .3,3B .2,2C .2,3D .3,59.小明在计算一组数据的方差时,列出的公式如下:2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5 B .数据平均数是8 C .数据众数是8 D .数据方差是010.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C )绘制成了如下统计表.这组体温数据的众数是( ) 人数(人A .36.2CB .36.3CC .36.4CD .36.5C11.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对12.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下图所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9, 9 C.9.5, 9 D.9.5,8二、填空题13.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.14.若一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是_______.15.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.16.甲、乙两名短跑运动员,每人训练10次,平均成绩恰好相等,且甲成绩的方差是0.11,乙成绩的方差是0.09.则在这10次训练中,甲、乙两人成绩较稳定的是__________.17.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是_____.18.某班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲队789710109101010乙队10879810109109已知甲队成绩的方差是1.4,则成绩较为整齐的是__________队.19.我县教师招聘考试分笔试和面试两种,其中笔试按40%,面试按60%计算加权平均数作为总成绩,周倩笔试成绩为86分,面试成绩为85分,那么周倩的总成绩为____________分.x y的平均数为9,方差为2,则xy的值为__________.20.已知一组数据,,8,9,10三、解答题21.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:组别平均分中位数方差合格率优秀率A队88906170%30%B队a b7175%25%(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?22.2020年是特殊的一年,这一年我们经历了新型冠状病毒肺炎疫情,举国上下众志成城,共同抗疫.口罩成为人们防护防疫的必备武器.西安某药店有3000枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为________;(2)统计的这组数据的中位数为________;众数为________;(3)根据样本数据,估计这3000枚口罩中,价格为1.8元的口罩有多少枚?23.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x(单位:g/L),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730容重等级600≤x<630630≤x< 660660≤x<690690≤x<720x≥720甲乡镇24a b2乙乡镇被抽取的玉米容重在660≤x< 690这一组的数据是:660 670 685 680 685 685 685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?24.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9.(1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.25.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?26.2020年是全面建成小康社会目标实现之年,是全面打赢脱贫攻坚战收官之年.为了让老师们更好地了解国家的宏观政策及具体措施,某学校领导组织全体教师利用“学习强国APP ”对相关知识进行学习并组织定时测试(总分为100分).现从该校中随机抽取20名教师的测试成绩进行分析,过程如下:收集数据20名教师的测试成绩如下(单位:分)76,83,71,100,81,100,82,88,95,90,100,86,89,93,86,100,96,100,92,90整理数据 请你按如下表格分组整理、描述样本数据,并把下列表格补充完整. 成绩(个) 060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤<等级 ABC D E 人数平均数 中位数 满分率91.9 25%(1)用样本中的统计量估计全校教师的测试成绩等级为 ;(2)若该校共有教师210人,请估计该校教师的测试成绩等级为D ,E 的总人数.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5,数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5.故选:C.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.2.C解析:C【分析】根据题意,求的是1、4、3、8的平均数是多少,用1、4、3、8的和除以4即可.【详解】解:143844+++=∴输出结果为4.故选:C.【点睛】此题主要考查了计算器的使用方法,以及平均数的含义和求法,解题关键是理解按键的意义,是求哪些数的平均数.3.A解析:A【分析】由频数分布表可知后两组的频数和为18,即可得知总人数,结合前两组的频数知出现次数最多的数据及中位数,进而可得答案.【详解】解:由表可知,年龄为31岁与年龄为32岁的频数和为m+18−m=18,则总人数为:15+20+18=53,故该组数据的众数为30岁,中位数为:30岁,即对于不同的m,关于年龄的统计量不会发生改变的是众数和中位数,故选:A.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.4.D解析:D 【分析】利用加权平均数公式计算解答. 【详解】这10只手表的平均日走时误差是031422311.110⨯+⨯+⨯+⨯=,故选:D . 【点睛】此题考查加权平均数计算公式,熟记公式及正确理解表格的含义是解题的关键.5.B解析:B 【分析】根据中位数,众数的定义进行解答即可. 【详解】七个整点时数据为:22,22,23,26,28,30,31. 所以中位数为26,众数为22, 故选:B . 【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.6.C解析:C 【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;S ,故D 选项不符合要求. 故选:C 【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.7.A解析:A 【分析】根据平均数、中位数、方差的定义即可判断. 【详解】解:由表格可知,甲、乙两班学生的成绩平均成绩相同; 根据中位数可以确定,乙班优秀的人数少于甲班优秀的人数; 根据方差可知,甲班成绩的波动性比乙班小. 故①②③正确, 故选:A . 【点睛】本题考查了平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C解析:C 【分析】由于小红随机调查了15名同学,根据表格数据可以知道中位数在第三组,再利用众数的定义可以确定众数在第二组. 【详解】∵小红随机调查了15名同学,∴根据表格数据可以知道中位数在第三组,即中位数为3. ∵2出现了5次,它的次数最多, ∴众数为2. 故选C . 【点睛】本题考查了中位数、众数的求法:①给定n 个数据,按从小到大排序,如果n 为奇数,位于中间的那个数就是中位数;如果n 为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.9.D解析:D 【分析】根据题目中的方差公式可以判断各个选项中的结论是否正确,从而可以解答本题. 【详解】 解:∵2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,∴数据个数是5,故选项A正确,数据平均数是:788895++++=8,故选项B正确,数据众数是8,故选项C正确,数据方差是:s2=15[(7−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2]=25,故选项D错误,故选:D.【点睛】本题考查了方差、样本容量、算术平均数、众数,解题的关键是明确题意,会求一组数据的方差、样本容量、算术平均数、众数.10.C解析:C【分析】直接利用众数的概念求解可得.【详解】解:∵在这组数据中,36.4出现了10次,次数最多,∴学生体温数据的众数是36.4C,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.11.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.12.A解析:A【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【详解】解:由表格可得,读书时间为8小时最多,故一周读书时间的众数为8,该班学生一周读书时间的第20个数9和第21个数是9,故该班学生一周读书时间的中位数为9+9=92, 故选:A .【点睛】 本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.二、填空题13.5【分析】将数据重新排列再根据中位数的定义求解可得【详解】解:将这组数据重新排列为1122234456所以这组数据的中位数为=25故答案为:25【点睛】本题主要考查中位数将一组数据按照从小到大(或从解析:5【分析】将数据重新排列,再根据中位数的定义求解可得.【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、5、6, 所以这组数据的中位数为232+=2.5, 故答案为:2.5.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 14.3304【分析】根据平均数求出x=3再根据中位数众数方差的定义解答【详解】∵一组数据2433的平均数是3∴x=将数据由小到大重新排列为:23334∴这组数据的中位数是3众数是3方差为故答案为:330解析:3,3,0.4【分析】根据平均数求出x=3,再根据中位数、众数、方差的定义解答.【详解】∵一组数据2,x ,4,3,3的平均数是3,∴x=3524333⨯----=,将数据由小到大重新排列为:2、3、3、3、4,∴这组数据的中位数是3,众数是3, 方差为2221(23)3(33)(43)0.45⎡⎤-+⨯-+-=⎣⎦, 故答案为:3、3、0.4.【点睛】 此题考查数据的分析:利用平均数求某一个数,求一组数据的中位数、众数和方差,正确掌握计算平均数、中位数、众数及方差的方法是解题的关键.15.33【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445∴中位数解析:3, 3,32. 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 16.乙【分析】方差越小越稳定即可得到答案【详解】∵甲成绩的方差是011乙成绩的方差是009011>009∴乙的成绩较稳定故答案为:乙【点睛】此题考查方差的稳定性:方差越小越稳定掌握方差的应用方法是解题的解析:乙【分析】方差越小越稳定,即可得到答案.【详解】∵甲成绩的方差是0.11,乙成绩的方差是0.09,0.11>0.09,∴乙的成绩较稳定,故答案为:乙.【点睛】此题考查方差的稳定性:方差越小越稳定掌握方差的应用方法是解题的关键.17.8【分析】按照所给的比例进行计算即可小明本学期的数学学习成绩=平时测试×30+期中考试×30+期末考试×40【详解】小明本学期的数学学习成绩=135×30+135×30+122×40=1298(分)解析:8【分析】按照所给的比例进行计算即可,小明本学期的数学学习成绩=平时测试×30%+期中考试×30%+期末考试×40%.【详解】小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为129.8.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.权的大小直接影响结果.18.乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差根据甲队与乙队的方差进行比较即可得答案【详解】甲队的平均数=(7+8+9+7+10+10+9+10+10+10)=9甲队的方差S甲2=解析:乙【分析】根据平均数与方差的计算公式分别计算出两队的平均数和方差,根据甲队与乙队的方差进行比较即可得答案.【详解】甲队的平均数=110(7+8+9+7+10+10+9+10+10+10)=9,甲队的方差S甲2=110[(7-9)2+(8-9)2+(9-9)2+……+(10-9)2]=1.4,乙队的平均数=110(10+8+7+9+8+10+10+9+10+9)=9,乙队的方差S乙2=110[(10-9)2+(8-9)2+(7-9)2+……+(9-9)2]=1,∵甲队的平均数=乙队的平均数,S甲2>S乙2,∴成绩较为整齐的是乙队,故答案为:乙【点睛】此题主要考查平均数与方差,方差是刻画波动大小的重要数据,方差越小,波动越小,稳定性也越好,反之也成立;熟知平均数与方差的求解公式及方差的性质是解题关键.19.4【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩列出算式进行计算即可【详解】解:∵笔试按40面试按60∴总成绩是(86×40+85×60)=854分故答案为:854【点睛】本题考查了加权平解析:4【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可.【详解】解:∵笔试按40%、面试按60%,∴总成绩是(86×40%+85×60%)=85.4分,故答案为:85.4.【点睛】本题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.20.【分析】根据平均数和方差的计算公式得到关于xy 的等式再经过一定的变形可以得到解答【详解】解:由题意所以又由题意所以所以故答案为77【点睛】本题考查平均数和方差的综合应用灵活运用平均数和方差的计算公式 解析:77【分析】根据平均数和方差的计算公式得到关于x 、y 的等式,再经过一定的变形可以得到解答.【详解】 解:由题意,891095x y ++++=,所以 2745x y ++=,18x y += 又由题意,()()()()()2222299899910925x y -+-+-+-+-=,()2218154x y x y +-+=-所以,221818154x y +-⨯=-, 22170x y +=所以,()()2222181707722x y x y xy +-+-===. 故答案为77.【点睛】本题考查平均数和方差的综合应用,灵活运用平均数和方差的计算公式是解题关键.三、解答题21.(1)87a =,85b =;(2)B 队;(3)A 队【分析】(1)结合条形图中的数据,再根据平均数和中位数的概念求解即可(2)由A 队的中位数为90分高于平均分88分,B 队的中位数85分低于平均数87分可得答案(3)从平均分,合格率,优秀率及方差的意义即可解答【详解】(1)B 对成绩的平均分702803856904952100387236423a ⨯+⨯+⨯+⨯+⨯+⨯==+++++ 中位数8585852b +== (2)A 队的中位数为90分高于平均分88,B 队的中位数为85分低于平均分87, ∴小明应属于B 队.(3)应该颁给A 队.理由如下:①A 组的平均分和中位数高于B 队,优秀率也高于B 队,说明A 队的总体平均水平高于B 队;②A 队的中位数高于B 队,说明A 队高分段学生较多;③虽然B 队合格率高于A 队,但A 队方差低于B 队,即A 队的成绩比B 队的成绩整齐. 所以集体奖应该颁给A 队.【点睛】本题考查了条形统计图,中位数,平均数,以及方差,读懂题意,熟练掌握平均数,中位数的概念以及方差的意义是解题关键.22.(1)28,(2)1.5元,1.8元;(3)960【分析】(1)根据扇形统计图中的数据,可以计算出m %的值,从而可以得到m 的值; (2)根据条形统计图中的数据可以得到这组数据的众数和中位数;(3)根据统计图中的数据,可以计算出质量为1.8元的约多少枚.【详解】解:(1)m %=1﹣10%﹣22%﹣32%﹣8%=28%,即m 的值是28,故答案为:28;(2)本次调查了5+11+14+16+4=50枚,中位数是:1.5元,众数是1.8元;故答案为:1.5元,1.8元;(3)3000×32%=960(枚),答:价格为1.8元的约960枚.故答案为:960.【点睛】本题考查条形统计图、扇形统计图、中位数、平均数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【分析】(1)通过对甲乡镇的计数可得a 、b 和d 的值,利用中位数的定义可得c 的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论; (3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =;乙乡镇的中位数为6856856852c+==;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.24.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件);(2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.25.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 26.整理数据:见解析;分析数据:见解析;(1)E ;(2)189人【分析】(1)先将数据排序,求出中位数,再完成表格,根据平均数与中位数作决策即可; (2)利用样本中D 级以上人数所占比例乘以该校教师人数计算即可.【详解】解:将数据排序得71,76,81,82,83,86,86,88,89,90 , 90,92,93, 95,96,100, 100, 100, 100, 100,根据中位数定义第10与11两数据都是90,为此中位数是90分,整理数据,补充表格如下: 成绩(个)060x ≤< 6070x ≤< 7080x ≤< 8090x ≤< 90100x ≤< 等级A B C D E 人数 0 0 27 11 平均数 中位数 满分率 91.9 90 25%为E,故答案为:E.(2)该校共有教师210人,抽样20人中D级以上的人数为18人,估计该校教师的测试成绩等级为D级以上的人数为1821018920⨯=人.【点睛】本题考查数据统计,中位数,平均数,利用样本估计总体,掌握数据统计方法,中位数计算方法,平均数公式,会利用样本估计总体是解题关键.。
北师大版八年级上册数学 第六章 数据的分析 单元测试(含解析)
第六章数据的分析单元测试一.选择题1.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵2.一组数据2,x,﹣2,1,3的平均数是0.8,则x的值是()A.﹣3.2B.﹣1C.0D.13.甲乙丙丁4位同学的平均身高1.65米,而甲乙丙3位同学的平均身高1.63米,下列说法一定正确的是()A.4人丁最高B.丁身高1.71米C.4人身高中位数1.63D.4人甲最高4.在某市举办的主题为“英雄武汉”的网络演讲比赛中,七位选手的得分分别为:88,84,87,90,86,92,94,则这组数据的中位数是()A.86B.88C.90D.925.九九重阳节期间,某班学生积极参加向敬老院孤寡老人献爱心活动,该班50名学生的捐款统计情况如表:金额/元5102050100人数6171485则他们捐款金额的众数和中位数分别是()A.100,10B.10,20C.17,10D.17,206.某中学为了解“停课不停学”期间学生在家的学习情况,随机抽查了40名学生每天做家庭作业的时间,并将调查结果统计如表所示,则这40名学生每天做家庭作业的时间的众数和中位数分别为()60708090100110120每天做家庭作业的时间(分钟)人数(名)2459875 A.90,90B.100,95C.90,95D.100,1007.为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14%B.16%C.20%D.50%8.甲、乙、丙、丁四位同学五次数学测验的成绩的平均数相同,五次测验的方差如表.如果从四位同学中选出一位状态稳定的同学参加全国数学联赛,那么应选择()甲乙丙丁方差425519 A.甲B.乙C.丙D.丁9.某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是()A.这七个月中,每月的生产量不断增加B.1月份生产量最大C.2﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少10.某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多45二.填空题11.学校将平时成绩、期中成绩和期末成绩按3:3:4计算学生的学期平均成绩.若某同学的数学平时成绩、期中成绩和期末成绩分别是90分、85分、90分,则该同学数学学期平均成绩是分.12.若5个正数a1,a2,a3,a4,a5的平均数是a,则a1,a2,0,a3,a4,a5的平均数是.13.为了解学生暑期在家的阅读情况,随机调查了30名学生某一天的阅读小时数,具体统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)128163则关于这30名学生阅读小时的众数是.14.在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是.15.在某校举行的数学竞赛中,某班10名学生的成绩统计如图所示,则这10名学生成绩的众数是分.16.某市5月1~7日的平均气温如图所示,则这七日平均气温的中位数是.17.甲、乙两人各打靶5次,已知甲所中的环数是8,7,9,7,9,乙所中的环数的平均数是8,方差是0.5,那么的射击成绩比较稳定.18.已知一组数据x1,x2,…x n的方差是2,则另一组数据x1﹣a,x2﹣a,…,x n﹣a的方差是.19.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为.20.有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行随机抽样调查,结果统计如下,其中扇形统计图(如图)中C等级所在扇形的圆心角为36°.被抽取的体育测试成绩频数分布表等级成绩(分)频数(人数)A36<x≤4019B32<x≤36bC28<x≤325D24<x≤284E20<x≤242合计a 请你根据以上图表提供的信息,解答下列问题:(1)a=,b=.(2)A等级的频率是.(3)在扇形统计图中,B等级所对应的圆心角是度.三.解答题21.某中学在“书香校园”读书活动中,为了解学生的课外读书情况,学校从各年级随机抽样调查了部分学生在一周内的课外阅读时间,绘制了如图的统计图.请根据图中信息,解答下列问题:(1)被抽查学生课外阅读时间的众数为(h),中位数为(h);(2)若该学校共有1200名学生,请你估算该校学生一周内课外阅读时间不少于3h的学生人数.22.某校为了解七年级学生对“预防新冠病毒知识”的掌握情况,从七年级随机抽取了50名学生进行测试,并对测试成绩(百分制)进行整理、描述和分析,部分信息如下:a.测试成绩频数分布表分数50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100频数6101115m b.成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79根据以上信息,回答下列问题:(1)表中m=;(2)这50名学生测试成绩的中位数是,众数落在80≤x<90范围内(填“一定”或“不一定”);(3)该校七年级学生有500人,假设全部参加此次测试,请估计成绩不低于75分的人数.23.习总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”巴川量子中学响应号召,鼓励师生利用课余时间广泛阅读,学校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:(一)数据收集:从全校随机抽取20名学生,进行每周用于课外阅读时间的调查,数据如下(单位:min):306081504411013014690100 6080120140758110308192(二)整理数据:按如下分段整理样本数据:0≤x<4040≤x<8080≤x<120120≤x<160课外阅读时间(min)等级D C B A人数3584(三)分析数据:补全下列表格中的统计量:平均数中位数众数80a b (四)得出结论(1)表格中的数据a=,b=.(2)如果学校现有学生1000人,估计全校等级为“B”的学生人数;(3)假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读课外书的数量.24.如图是我国某市200年9月1﹣7日甲型H1N1流感病例数资料,请根据此图回答问题:(1)2009年9月1﹣7日甲型H1N1流感病例总数是多少?(2)发病最高日人数是发病最低日人数的几倍?(3)在9月3﹣5日发病的人数占这段时间病例总数的几分之几?25.甲、乙两名同学本学期的五次数学测试成绩如下(单位:分):第1次第2次第3次第4次第5次甲8683908086乙7882848992(1)完成下表:中位数平均数方差甲85乙848524.8(2)请运用所学的统计知识,从两个不同角度评价甲、乙两人的数学成绩.26.在新的教学改革的推动下,某中学初一年级积极推进未来小班教学.为了了解一段时间以来的数学小班教学的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个班,从中各抽取20名同学在某一次定时测试中的数学成绩,过程如下,请补充完整.收集数据:甲班的20名同学的数学成绩统计(单位:分)86 90 60 76 92 83 56 76 85 7096 96 90 68 78 80 68 96 85 81乙班的20名同学的数学成绩统计(单位:分)78 96 75 76 82 87 60 54 87 72100 82 78 86 70 92 76 80 98 78整理数据:(成绩得分用x表示)数量分数/班级0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲班(人数)13466乙班(人数)11864分析数据,请回答下列问题:(1)完成下表:平均分中位数众数甲班80.6a=96乙班80.3579b=(2)在甲班成绩得分的扇形图中,成绩在60≤x<70的扇形所对的圆心角α的度数为,c=.(3)根据以上数据,你认为班(填“甲”或“乙”)的同学的学习效果更好一些,你的理由是;(4)若此次数学成绩不低于80分为优秀,请估计全年级1000人中优秀人数为多少?参考答案1.解:设第四小组植树x株,由题意得:9+12+9+x+8=10×5,解得,x=12,则第四小组植树12棵;故选:D.2.解:∵数据2,x,﹣2,1,3的平均数是0.8,∴2+x﹣2+1+3=5×0.8,解得x=0,故选:C.3.解:丁同学的身高为:1.65×4﹣1.63×3=1.71(米);故选:B.4.解:将这组数据从小到大的顺序排列为:84,86,87,88,90,92,94,处于中间位置的是88,则这组数据的中位数是88.故选:B.5.解:根据题意可知捐款10元的人数有17人,人数最多,即10元是捐款金额的众数,把50名同学捐款从小到大排列,最中间的两个数是20,20,中位数是20元.故选:B.6.解:由图表可得:∵某中学40名学生每天做家庭作业的时间为90分钟的有9人,最多,∴这40名学生每天做家庭作业的时间的众数为:90分;∵40个数据中,第20,21个数据的平均数是中位数,而第20,21个数据分别是90,100,∴中位数为:95分.故选:C.7.解:由题意可得,25÷50×100%=0.5×100%。
第六章 数据的分析单元测试卷(含解析)
第六章数据的分析单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=()A.82 B.83 C.80≤≤82 D.82≤≤832.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9.这5个数据的众数是()A.6 B.7 C.8 D.93.如图是小明进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是544.已知三年四班全班35人身高的算术平均数与中位数都是150厘米,但后来发现其中有一位同学的身高登记错误,将160厘米写成166厘米,正确的平均数为a厘米,中位数为b厘米.关于平均数a的叙述,下列何者正确()A.大于150 B.小于150 C.等于150 D.无法确定5.某汽车从甲地以速度v1匀速行驶至乙地后,又从乙地以速度v2匀速返回甲地,则汽车在整个行驶过程中的平均速度为()A.B.C.D.6.在对某社会机构的调查中收集到以下数据,你认为最能够反映该机构年龄特征的统计量是()年龄13141525283035其他人数30533171220923A.平均数B.众数C.方差D.标准差7.有15位同学参加智力竞赛,已知他们的得分互不相同,取八位同学进入决赛,小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的()A.平均数B.众数C.最高分数D.中位数8.如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是()A.2 B.4 C.8 D.169.有十八位同学参加智力竞赛,且他们的分数互不相同,按分数高低选九位同学进入下一轮比赛.小华知道了自己的分数后,还需要知道哪个统计量,就能判断自己能否进入下一轮比赛()A.中位数B.众数C.方差D.平均数10.我县今年4月某地6天的最高气温如下(单位℃):32,29,30,32,30,32.则这个地区最高气温的众数和中位数分别是()A.30,32 B.32,30 C.32,31 D.32,32二.填空题(共8小题,满分24分,每小题3分)11.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是.12.为了了解我市七年级学生的体能状况,从某校七年级甲、乙两班中各抽取27名女生进行一分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105次的为优秀,那么甲、乙两班的优秀率的关系是甲的优秀率乙的优秀率.(填“>”“<”或“=”)13.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.14.若40个数据的平方和是56,平均数是,则这组数据的方差.15.某市工商局今年4月份抽查民意商场5天的营业额,结果如下(单位:万元):2.5,2.8,2.7,2.4,2.6,则(1)样本平均数为万元;(2)根据样本平均数去估计民意商场4月份的平均日营业额为万元;月营业总额为万元.16.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是.17.将30个数据分别减去300后,得到一组新数据的平均数是4,那么原30个数据的和是.18.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是分.三.解答题(共7小题,满分66分)19.(8分)某学习小组想了解某市全民健身活动的开展情况,准备采用以下调查方式中的一种进行调查:①从一个社区随机选取200名居民;②从一个城镇的不同住宅楼中随机选取200名居民;③从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象.(1)在上述调查方式中,你认为最合理的是(填序号);(2)由一种比较合理的调查方式所得到的数据制成了如图所示的条形统计图,写出这200名居民健身时间的众数是、中位数是;(3)小方在求这200名居民每人健身时间的平均数时,他是这样分析的:小方的分析正确吗?如果不正确,请求出正确的平均数;(4)若某市有300万人,估计该市每天锻炼2小时及以上的人数是多少?.20.(8分)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点A B C D E原价(元)1010152025现价(元)55152530平均日人数(千人)11232(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?21.(8分)某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两位同学在父母的支持下各捐献了50册图书.班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567850人数68152(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.22.(10分)某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15x y2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生本次测试成绩的众数是a,中位数为b,求的值.23.(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩,为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(万元)如图(1)求平均的月销售额及数据的中位数和众数;(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.24.(10分)甲、乙两城市为了解决空气质量污染问题,对城市及其周边的环境污染进行了综合治理.在治理的过程中,环保部门每月初对两城市的空气质量进行监测,连续10个月的空气污染指数如图所示.其中,空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.(1)填写下表:平均数方差中位数空气质量为优的次数甲803401乙1060803(2)从以下四个方面对甲、乙两城市的空气质量进行分析.①从平均数和空气质量为优的次数来分析甲乙两城市的空气质量哪个好一些;②从平均数和中位数来分析甲乙两城市的空气质量哪个好一些;③从平均数和方差来分析甲乙两城市的空气质量变化情况;④根据折线图上两城市空气污染指数的走势来分析甲乙两城市的空气质量哪个好一些.25.(12分)为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图.(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)请根据图示,回答下列问题:(1)求学生每天户外活动时间的平均数,众数和中位数;(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?参考答案与试题解析1.解:大于中位数与小于中位数的数个数相同,可以设都是m个.当这组数有偶数个时,则中位数不是这组数中的数,则这组数有2m个,则平均数是:=83;当这组数据的个数是奇数个时,则这组数有2m+1个,则平均数是:=83﹣,而m≥1,因而0<≤1∴83﹣≥83﹣1=82且83﹣<83.故82≤<83.故选:D.2.解:∵9出现了2次,出现的次数最多,∴这5个数据的众数是9;故选:D.3.解:A、把这些数从小到大排列,最中间的数是=55,则中位数是55,正确;B、60出现的次数最多,则众数是60,正确;C、D、平均数是:(40+50×3+55×2+60×4)=54,则方差是:[(40﹣54)2+3(50﹣54)2+2(55﹣54)2+4(60﹣54)2]=39;则说法错误的是C;故选:C.4.解:已知在错误登记中全班35人身高的算术平均数是150厘米,则总身高总和为35×150=5250;修改后,减少了6厘米,为5244厘米,则正确的平均数为a=≈149.8厘米.故选:B.5.解:设两地距离为S,从甲地行驶至乙地的时间为T1,从乙地返回甲地的时间为T2,则有T1=,T2=;∴平均速度===;故选:D.6.解:由于14岁的人数是533人,影响该机构年龄特征,因此,最能够反映该机构年龄特征的统计量是众数,故选:B.7.解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选:D.8.解:由题意知,新数据是在原来每个数上加上100得到,原来的平均数为,新数据是在原来每个数上加上100得到,则新平均数变为+100,则每个数都加了100,原来的方差s12=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=2,现在的方差s22=[(x1+100﹣﹣100)2+(x2+100﹣﹣100)2+…+(x n+100﹣﹣100)2]=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=2,方差不变.故选:A.9.解:因为有十八位同学参加,选九位同学进入下一轮比赛,那么分数从高到低排列后,第9名的分数就是中位数,所以小华知道自己的分数和中位数后,才能判断自己能否进入下一轮比赛.故选:A.10.解:将这组数据按从小到大的顺序排列为:29,30,30,32,32,32,出现最多的数字为:32,故众数是32,中位数为:31.故选:C.11.解:∵数据6、7、4、6、x、1的平均数是5,∴=5,解得:x=6,则这组数据为数据6、7、4、6、6、1的众数为6,故答案为:6.12.解:根据甲乙两班的中位数可以初步判断乙班优秀的人数≥14人,而甲班的优秀人数≤13个,通过比较可以确定甲的优秀率<乙的优秀率.故填<.13.解:小明的数学期末成绩是=89.3(分),故答案为:89.3.14.解:由方差的计算公式可得:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2+n2﹣2(x1+x2+…+x n)]=[x12+x22+…+x n2+n2﹣2n2]=[x12+x22+…+x n2]﹣2=﹣=1.4﹣0.5=0.9.故填0.9.15.解:依题意得,(1)样本平均数=(2.5+2.8+2.7+2.4+2.6)÷5=2.6(万元);(2)根据样本平均数去估计民意商场4月份的平均日营业额为2.6万元;月营业额=2.6×30=78(万元).故答案为2.6;2.6;78.16.解:∵平均数是12,∴这组数据的和=12×7=84,∴被墨汁覆盖三天的数的和=84﹣4×12=36,∵这组数据唯一众数是13,∴被墨汁覆盖的三个数为:10,13,13,∴S2=[(11﹣12)2+(12﹣12)2+(10﹣12)2+(13﹣12)2+(13﹣12)2+(13﹣12)2+(12﹣12)2]=,故答案为:.17.解:由题意知,将30个数据分别减去300后平均数为4,则原数据的平均数为4+300=304,那么原30个数据的和即为304×30=9120.故答案为9120.18.解:设A、B、C、D、E分别得分为a、b、c、d、e.则[38×67﹣(a+b+c+d+e)]÷(38﹣5)=62,因此a+b+c+d+e=500分.由于最高满分为100分,因此a=b=c=d=e=100,即C得100分.故答案为:100.19.解:(1)①、②两种调查方式具有片面性,故③比较合理;(2)1出现的次数最多,出现了94次,则众数是1;∵共有200个数,所以中位数是第100、101个数的平均数,∴中位数是2;故答案为:1,2;(3)不正确,正确的平均数:(小时),故答案为:1.88小时;(4)根据题意得:300×(52+38+16)÷200=159(万人)答:该市每天锻炼2小时及以上的人数是159万人.故答案为:159万人.20.解:(1)风景区是这样计算的:调整前的平均价格:=16(元)调整后的平均价格:=16(元)∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平;(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了:×100%≈9.4%;(3)根据加权平均数的定义可知,游客的算法是正确的,故游客的说法较能反映整体实际.21.解:(1)设捐献7册的人数为x,捐献8册的人数为y,则解得答:捐献7册的人数为6人,捐献8册的人数为3人.(2)捐书册数的平均数为320÷40=8,按从小到大的顺序排列得到第20,21个数均为6,所以中位数为6.出现次数最多的是6,所以众数为6.因为平均数8受两个50的影响较大,所以平均数不能反映该班同学捐书册数的一般情况.2.解:(1)由题意,有解得.(2)由(1),众数a=90,中位数b=80.∴.23.解:(1)平均月销售额是20万元,中位数是18万元,众数是15万元;(2)这个目标可以定为每月20万元.因为从样本数据看,在平均数、众数和中位数中,平均数最大,因此,将月销售额的最大值定为20万元比较合适.24.解:(1)甲城市10个月的空气污染指数为:50、60、60、70、80、90、90、90、100、110,∴甲的中位数为=85(分),甲城市10个月的空气污染指数为:120、120、110、110、90、70、60、50、40、30,∴乙的平均数为×(120+120+110+110+90+70+60+50+40+30)=80,完成表格如下:平均数方差中位数空气质量为优的次数甲80340851乙801060803(2)①从平均数和空气质量为优的次数来分析:平均数相同,而空气质量为优的次数甲城市比乙城市少,故乙城市的空气质量好些;②从平均数和中位数来分析:平均数相同,甲的中位数大于乙的中位数,故乙城市的空气质量好些;③从平均数和方差来分析:平均数相同,S甲2<S乙2,根据方差的意义,可得空气污染指数比较稳定的城市是甲;④根据折线图上两城市的空气污染指数的走势来分析,乙城市的空气污染指数下降快比较明显,且变化无反复,故治理环境污染的效果较好的城市是乙.25.解:(1)观察条形统计图,可知这组样本数据的平均数=(80×0.5+200×1+120×1.5+100×2)=1.24,所以这组样本数据的平均数是1.24小时,众数为1小时;中位数为1小时;(2)被抽查的500名学生中,户外活动时间超过1小时的有220人,12000×=5280,所以估计该校每天户外活动时间超过1小时的学生有5280人.。
八年级上册第六章 数据的分析单元综合评价(含答案)
第六章数据的分析单元综合评价一、选择题:(每题3分共21分)1.下列说法中错误的是()A.众数是数据中的数B.平均数一定不是数据中的数C.中位数可能是数据中的数D.众数、中位数、平均数有可能是同一个数2.某人打靶,有m次每次中靶a环,有n次是每次中靶b环,则平均每次中靶的环数是()A.a bm n++B.1()2a bn n+C.am bnm n++D.1()2am bn+3.为了让人们了解丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下(单位:个):33、25、28、26、25、31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为()个.A.900 B.1080 C.1260 D.18004.小婉上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,请你告诉她她的数学成绩是()分.A.90 B.95 C.94 D.965.八年级一班共40人,数学老师统计出这个班期中检测平均成绩是92分,在复查时发现漏记一个学生的成绩80分,那么这个班学生的实际平均成绩为()分A.90 B.92 C.94 D.966.甲、乙、丙三个班参加数学竞赛,已知三班总平均成绩为72.5分,又知参赛人数为30人的甲班的平均成绩为75分,参赛人数为25人的乙班平均成绩为80分,丙班有40人参赛,则丙班的平均成绩是()分A.65.5 B.65.9 C.70 D.647.某地区100个家庭收入按从低到高是5800元,……,10000元各不相同,在输入计算机时,把最大数错误地输成100000元,则依据错误数字算出的平均值与实际的平均值的差为()A.900元B.942元C.90000元D.1000元二、填空题:(每空3分,共33分)8.李强家去年的饮食支出为4000元,教育支出为2000元,其他支出为8000元,李强家今年的这三项支出依次比去年增长了3%,10%,8%,李强家今年的总支出比去年增长的百分数是 .9.某学习小组8个成员某次数学测验的分数如下:80,82,79,69,74,x ,78,81,若该组数据的众数为82,则x = ,这一组数据的中位数为 ,平均数为 . 10.已知一组数据:23,27,20,18,x ,12,若它们的中位数是21,那么数据x 是 . 11.某中学生运动会上男子百米第一组、第二组运动员的比赛成绩按跑道序号由低到高登记如下表,第一组成绩的中位数是 秒,第二组成绩中位数是 秒. 12.为了了解用电量的多少,小明在六月初连续几天同一时刻观察电表显示的度数,记录如下:估计小明家六月的总用电量是 度. 13.某次歌唱比赛,三名选手的成绩如下:若按三项的平均值取第一名,则 第一;若三项测试等分按3∶6∶1的比例确定个人的测试成绩,此时第一名是 ;若A 取得第一名,三个项目的权重可能是 . 三、解答题:14.(10分)某学校规定学生期末数学总平均成绩由三部分构成:期末成绩、期中成绩、平日表现成绩,若小芳三项得分分别是92,80,84,则她的期末数学总评成绩是多少?期中占30%期末占60%平日占10%跑道123456 第一组成绩 17.4 16.8 15.6 15.1 16.5第二组成绩 16.2 15.7 15.3 17.1 18.0 16.6日期1 2345678电表显示(度)117120 124 129 135 138 142 145测试项目测试成绩AB C 创新 72 85 67 唱功 50 74 70 综合知识88456715.(10分)为保护环境,某校环保小组成员小明收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克;第二天收集1号电池2节,5号电池3节,总重量为240克.(1)求1号电池和5号电池每节分别重多少克?(2)学校环保小组为估算四月份收集废电池的总重量,随意抽取了该月某五天收集废电池的数量,如下表:分别计算两种废电池的平均数;并由此估算该月(30天)环保小组收集废电池的总重量是多少千克?16.(12分)八年级一班进行个人投篮比赛,下表记录了在规定时间内投进n 个球的人数分布情况,但表格被裁判员不慎弄污了,裁判员只记得进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均投进2.5个球,你能帮裁判员算出投进3个球和4个球的各有多少人吗?17.(14分)有两个卖苹果的人,A 是3个苹果(稍次些)卖1元,B 是2个苹果(较好些)卖1元.当两个人正好各剩下30个苹果的时候,因为有事要离开,就委托C 替他们卖.他们走后,C 就把他们的苹果都合起来,分堆卖.每堆好苹果2个,次苹果3个(共5个),卖2元.两人的苹果合起来共剩下60个,12堆,共卖24元.卖完后,A 、B 回来.A 说:“我3个苹果卖1元,30个应该卖10元.”B 说:“我2个苹果卖1元,30个应该卖15元.”A 、B 合起来应该是25元,但C 只卖了24元,少了1元,请问C 究竟出了什么差错?1号电池 29 30 32 28 31 5号电池 51 53 47 49 50进球数n0 1 2 3 4 5投进n 个球的人数 1 2 72参考答案一、选择题1.B 2.C 3.C 4.A 5.C 6.B 7.A 二、填空题8.6.9% 9.82;79.5;78.125 10.22 11.16.5;16.4 12.120 13.A ;B ;答案开放,如2∶3∶5等 三、解答题14.87.6 15.解(1)1#电池每节90克,5#电池每节20克;(2)111千克 16.解:进3个球的人数为x 人,进4个球的人数为y 人,根据题意,得{34523.5(2)122734 2.5(127)x y x y x t x y ++⨯=++⨯+⨯++=++++,解之得 {93x y == 17.A 的苹果有30个,3个一堆,可分为10堆,B 的苹果有30个,2个一堆,可分为15堆.。
北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案
北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。
(压轴题)初中数学八年级数学上册第六单元《数据的分析》测试题(含答案解析)
一、选择题1.若样本1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为10,方差为4,则对于样本13x -,23x -,33x -,⋅⋅⋅,3n x -,下列结论正确的是( )A .平均数为10,方差为2B .众数不变,方差为4C .平均数为7,方差为2D .中位数变小,方差不变2.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:A .平均数B .中位数C .众数D .方差3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁4.八年级一,二班的同学在一次数学测验中的成绩统计情况如下表:于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是( ) A .②③B .①②C .①③D .①②③5.为了解某电动车一次充电后行驶的里程数(千米),抽检了10辆车统计结果是:200、210、210、210、220、220、220、220、230、230,则这组数据中众数和中位数分别是( ) A .220,220 B .220,210C .200,220D .230,2106.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( )A .平均数是2B .众数和中位数分别是-1和2.5C .方差是16D 7.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.2022年北京张家口将举办冬季奥运会,下表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差2s :根据表中数据,要从中选择出一名成绩好且发挥稳定的运动员,应该选择( ) A .甲B .乙C .丙D .丁9.某班七个学习小组的人数如下:2,3,3,x ,4,6,6,已知这组数据的平均数是4,则这个组数据的中位数是( ) A .4 B .4.5 C .5 D .6 10.已知一组数据:92,94,98,91,95的中位数为a ,方差为b ,则a+b=( ) A .98B .99C .100D .10211.已知:x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b ,则x 1,x 2,x 3...x 50的平均数是( ) A .a +bB .2a b+ C .105060a b+ D .104050a b+ 12.某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10,6,9,11,8,10,下列关于这组数据描述正确的是( ) A .中位数是10B .众数是10C .平均数是9.5D .方差是6二、填空题13.八年级两个班一次数学考试的成绩如下:八(1)班46人,平均成绩为90分,八(2)班54人,平均成绩为80分,则这两个班的平均成绩为_____________分. 14.某公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2:1:3:4的比确定.甲应试者的各项成绩如下表:则甲应试者的综合成绩为________.15.某学校八年级3班有50名同学,30名男生的平均身高为170,20cm 名女生的平均身高160cm ,则全班学生的平均身高是__________cm .16.一组数据:1、2、5、3、3、4、2、4,它们的平均数为_______,中位数为_______,方差是_______.17.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________.18.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比计算学期成绩.小明同学本学期三项成绩依次为90分、80分、90分,则小明同学本学期的体育成绩是_____分.19.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.20.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.三、解答题21.某中学八年级四个班组织征文比赛,共收到参赛学生的文章100篇(参赛学生每人只交一篇),下面扇形统计图描述了各班参赛学生占总人数的百分比情况(尚不完整).比赛设一、二等奖若干,结果共有25人获奖,其中三班参赛学生的获奖率为20%,一、a.二、三、四班获奖人数的比为6:7::5(1)填空:①四班有_______人参赛,α=______︒.②a=______,各班获奖学生数的众数是______.(2)获一等奖、二等奖的学生每人分别得到价值100元、60元的学习用品,购买这批奖品共用去1900元,问一等奖、二等奖的学生人数分别是多少?22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?23.为了了解某学校初四年级学生每周平均课外阅读的时间情况,随机抽查了该学校初四年级m 名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题: ①求m 的值; ②补全条形统计图.(2)求出这组数据的中位数和平均数.24.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?25.某校为了解学生的身体素质情况,对全校学生进行体能测试,现从七、八两个年级各随机抽取10名学生的成绩(满分为100分)进行调查分析,过程如下: (1)收集数据七年级:90,85.80,95,80,90,80,85,95,100 八年级:90,85,90,80,95,100,90,85,95,100 (2)整理数据 分数 80 85 90 95 100 七年级人数32221八年级人数1232a平均数中位数众数方差七年级88c d e八年级b909039(1)直接写出表格中的值:a=_________,b=_________,c=_________,d=__________,e=_________.(2)该校七、八年级各有学生800人,本次竞赛成绒不低于90分的为“优秀”,估计这两个年级共有多少名学生达到“优秀”?26.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(1)求这50个样本数据的平均数、众数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用平均数、中位数、众数和方差的意义进行判断.【详解】解:∵样本x1,x2,x3,…,x n的平均数为10,方差为4,∴样本x1﹣3,x2﹣3,x3﹣3,…,x n﹣3的平均数为12312333333nn x x x x x n x n n x x n+++⋯+⋯+++=-﹣﹣+﹣﹣ =7,原众数和中位数减小了3,方差为各数据偏离平均数的平方,各数都减小了3,平均数也减小了3,但偏离平均数的程度不变,故方差不变. 故选:D . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数.2.C解析:C 【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数. 【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.3.D解析:D 【分析】直接利用方差的意义求解即可. 【详解】解:∵S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42, ∴S 丁2<S 乙2<S 丙2<S 甲2, ∴射击成绩比较稳定的是丁, 故选:D . 【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.4.B解析:B 【分析】根据平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小. 【详解】解:从表中可知,平均成绩都是80,故①正确;一班的中位数是84,二班的中位数是85,由于优生线85分,故二班优生人数多于一班,故②正确;一班的方差大于二班的,又说明一班的波动情况大,所以③错误. 故选:B 【点睛】本题考查了平均数,中位数,方差的应用.解答关键是按照相关定义进行判定.5.A解析:A 【分析】根据众数与中位数的定义,找出出现次数最多的数,把这组数据从小到大排列,求出最中间两个数的平均数即可. 【详解】数据220出现了4次,最多, 故众数为220,重新排序后为:200、210、210、210、220、220、220、220、230、230, 排序后位于第5和第6位的数均为220, 故中位数为220, 故选:A . 【点睛】本题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.C解析:C 【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;=3S ,故D 选项不符合要求. 故选:C 【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.7.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可. 【详解】解:A 、60出现了4次,出现的次数最多,则众数是60,故A 选项说法正确; B 、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B 选项说法错误; C 、调查的户数是2+3+4+1=10,故C 选项说法正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D 选项说法正确; 故选B . 【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.B解析:B 【分析】比较平均数与方差,选择平均数较大且方差较小的运动员参加. 【详解】 解:x x x x =>=甲乙丁丙,∴从乙和丁中选择一人参加比赛,2222s s s s =<<甲乙丁丙,∴要从中选择出一名成绩好且发挥稳定的运动员,应该选择乙.故选:B . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.也考查了平均数.9.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数的定义求解即可. 【详解】解:∵2、3、3、x 、4、6、6的平均数是4, ∴(2+3+3+x+4+6+6)÷7=4, 解得:x=4,将这组数据从小到大排列为2、3、3、4、4、6、6, 最中间的数是4,则这组数据的中位数是4. 故选:A . 【点睛】本题考查平均数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.C解析:C 【分析】分别根据中位数和方差的定义求出a 、b ,然后即可求出答案. 【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94, 该组数据的平均数为15×(92+94+98+91+95)=94, 其方差为15×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2] =6,所以b=6,所以a+b=94+6=100, 故选C . 【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.11.D解析:D 【分析】根据平均数及加权平均数的定义解答即可. 【详解】∵x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b , ∴x 1,x 2,x 3...x 50的平均数是:10401040104050a b a b++=+. 故选D. 【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.12.B解析:B 【分析】根据中位数,众数,平均数和方差的概念逐一判断即可.【详解】中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.这组数据中按顺序排列之后中间位置的数是9,10,所以中位数是9101922+=,故A选项错误;众数:一组数据中出现次数最多的数据为这组数据的众数.这组数据中,10出现2次,次数最多,所以众数是10,故B选项正确;平均数为10691181096x+++++==,故C选项错误;方差为()()()()()()2222222109699911989109863s-+-+-+-+-+-==,故D选项错误;故选:B.【点睛】本题主要考查中位数,众数,平均数和方差,掌握中位数,众数,平均数和方差的求法是解题的关键.二、填空题13.6【分析】先算出两个班的总成绩再除以两个班的总人数即可【详解】解:(90×46+80×54)÷(46+54)=846(分)故答案为:846【点睛】本题考查了加权平均数关键是掌握加权平均数的计算公式解析:6【分析】先算出两个班的总成绩,再除以两个班的总人数即可.【详解】解:(90×46+80×54)÷(46+54)=84.6(分),故答案为:84.6.【点睛】本题考查了加权平均数,关键是掌握加权平均数的计算公式.14.【分析】根据加权平均数的定义列式计算可得【详解】甲应试者的综合成绩为故答案为:804【点睛】本题主要考查加权平均数解题的关键是掌握加权平均数的定义解析:80.4【分析】根据加权平均数的定义列式计算可得.【详解】甲应试者的综合成绩为73280182383480.42134⨯+⨯+⨯+⨯=+++, 故答案为:80.4.【点睛】 本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.15.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 16.33【分析】根据平均数的公式即可求出答案将数据按照由小到大的顺序重新排列中间两个数的平均数即是中位数根据方差的公式计算即可得到这组数据的方差【详解】平均数=将数据重新排列是:12233445∴中位数解析:3, 3,32. 【分析】根据平均数的公式即可求出答案,将数据按照由小到大的顺序重新排列,中间两个数的平均数即是中位数,根据方差的公式计算即可得到这组数据的方差.【详解】平均数=1(12533424)38⨯+++++++=,将数据重新排列是:1、2、2、3、3、4、4、5,∴中位数是3332+=, 方差=222221(13)2(23)2(33)2(43)(53)8⎡⎤⨯-+⨯-+⨯-+⨯-+-⎣⎦=32, 故答案为:3,3,32. 【点睛】 此题考查计算能力,计算平均数,中位数,方差,正确掌握各计算的公式是解题的关键. 17.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分). 故答案为:87.5分.【点睛】 本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n n n n x f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.18.87【分析】根据加权平均数的计算方法进行计算即可【详解】解:故答案为:87【点睛】本题考查加权平均数的意义和计算方法理解加权平均数的意义掌握加权平均数的计算方法是正确解答的前提解析:87【分析】根据加权平均数的计算方法进行计算即可.【详解】解:90280390587235x ⨯+⨯+⨯==++, 故答案为:87.【点睛】 本题考查加权平均数的意义和计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是正确解答的前提.19.7【分析】根据平均数求出x 的值再根据中位数定义求出答案【详解】由题意得:解得x=8将数据重新排列为:5667889∴这组数据的中位数是7故答案为:7【点睛】此题考查平均数的计算公式中位数的定义求一组解析:7【分析】根据平均数求出x 的值,再根据中位数定义求出答案.【详解】由题意得:56678977x ++++++=⨯,解得x=8,将数据重新排列为:5、6、6、7、8、8、9,∴这组数据的中位数是7,故答案为:7.此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.20.64【分析】根据平均数的计算公式众数和中位数的定义即可得【详解】平均数为因为这组数据中6出现的次数最多所以它的众数是6将这组数据按从小到大进行排序为则它的中位数是4故答案为:464【点睛】本题考查了 解析:6 4【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】 平均数为1646345++++=, 因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为1,3,4,6,6,则它的中位数是4,故答案为:4,6,4.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.三、解答题21.(1)25人,90°,7,7;(2)一、二等奖学生人数分别为10人,15人.【分析】(1)先求出四班参赛人数,再用所占比例乘以360就得到α的度数.再根据一、二、三、四班获奖人数为6:7:a :5,求出a 的值;得到各班获奖学生数的众数;(2)设获一二等奖的学生人数分别为x 人,y 人,根据共有25人和共用去1900元,可以列方程组即可求得.【详解】解:(1)①九(四)班参赛人数有100×(1-20%-20%-35%)=25人;α=360×(1-20%-20%-35%)=90;②三班参赛人数有100×35%=35,获奖者有35×20%=7,因为一、二、三、四班获奖人数为6:7:a :5,所以a=7;即一、二、三、四班获奖人数分别为6,7,7,5.所以各班获奖学生数的众数是7;故答案为:①25人,90°②7,7;(2)设获一二等奖的学生人数分别为x 人,y 人,则25100601900x y x y +=⎧⎨+=⎩,解得:1015x y =⎧⎨=⎩, 即获一二等奖学生人数分别为10人,15人.此题考查了学生的综合应用能力,解题的关键是掌握扇形图和方程组的应用以及众数的意义.22.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 23.(1)①60;②20,图见解析;(2)中位数为3小时;平均数为324小时 【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m 的值;②求得总人数后减去其他小组的人数即可求得第三小组的人数,再补全统计图即可; (2)利用中位数的定义及平均数的计算公式确定即可.【详解】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为90°÷360°=14, ∵课外阅读时间为2小时的有15人,∴m =15÷14=60; ②∵课外阅读时间为3小时的人数()60101510520=-+++=,∴补全条形统计图如下:()2将60个数据由小到大排序,由条形统计图知,最中间的两个数都是3,这两数的平均值3=(小时),∴中位数为3小时;1011522031045532604x ⨯+⨯+⨯+⨯+⨯==(小时), 这组数据的平均数为324小时. 【点睛】 本题考查了众数、中位数、平均数及扇形统计图和条形统计图的知识,解题的关键是能够结合两个统计图并找到进一步解题的有关信息,难度不大.24.(1)见解析;(2)108 ;(3)C 组;见解析;(4)150人【分析】(1)根据B 组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C 组的人数,即可补全条形统计图;(2)用360°乘以D 组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A :60≤x <70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C 组人数为60-(6+12+18)=24(人),补全图形如下:(2)D 组对应圆心角度数为:360°1810860⨯=︒, 故答案为:108; (3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C 组,所以中位数落在C 组;(4)1500615060⨯=(人), 答:这次竞赛成绩在A :60≤x <70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)2,91,87.5,80,46;(2)960【分析】(1)用总人数10减去其他得分的人数即可得到a 的值;根据平均数、中位数、众数、方差的定义依次计算可得答案;(2)用每个年级的总人数乘以成绩“优秀”的比例,两者相加即可得到答案.【详解】解:(1)a=10-1-2-3-2=2;80185290395210029110b ⨯+⨯+⨯+⨯+⨯==; 859087.52c +==; d=80;222223(8088)(8588)(9088)1(9588)(100822248)610e ⨯---⎡⎤=+⨯--+⨯+⨯+=⎣⎦;故答案为:2,91,87.5,80,46; (2)2213228008009601010++++⨯+⨯=(人), 答:这两个年级共有960名学生达到“优秀”.【点睛】此题考查统计知识,正确掌握平均数、中位数、众数、方差的定义及计算方法,求总体中部分的人数,利用部分的比例求总体中该部分的人数,正确计算是解题的关键. 26.(1)平均数是3.3次,众数是4次;(2)3960.【分析】(1)根据加权平均数的公式和众数的定义即可求出.(2)利用样本估计总体的方法,用1200×平均数即可.【详解】(1)观察条形统计图,可知这组样本数据的平均数是:132731741855 3.350x ⨯+⨯+⨯+⨯+⨯==次, 则这组样本数据的平均数是3.3次. 在这组样本数据中,4出现了18次,出现的次数最多,这组数据的众数是4次.(2)这组样本数据的平均数是3.3次,估计全校1200人参加活动次数的总体平均数是3.3次,故全校1200人参加活动次数为3.312003960⨯=次.【点睛】本题考查的是条形统计图,平均数,众数以及样本估计总体.读懂统计图,从统计图中得到必要的信息是解题的关键.。
北师大八年级数学上册:第六章数据的分析单元测试题(含答案)
第六章数据的分析综合测评一、选择题(每小题3分,共30分)1.一组数据6,7,8,9,10,这组数据的平均数是()A.6 B.7 C.8 D.92.已知一组数据75,80,80,85,90,那么这组数据的众数和中位数分别为()A.75,80 B.80,85 C.80,90 D.80,803.九年级某班12名同学练习定点投篮,每人各投10次,进球数统计如下:进球数(1 2 3 4 5 7个)人数(人) 1 1 4 2 3 1这12名同学进球数的众数是()A.3.75B.3C.3.5D.74. 教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在相同条件下各射出5发子弹,命中环数如下:甲:9,8,7,7,9;乙:10,8,9,7,6.应该选择参加比赛的是()A.甲B.乙C.甲、乙都可以D.无法确定5. (2021年临沂)某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成图1所示的条形统计图,则这10名学生周末学习的平均时间是()A.1小时B.2小时C.3小时D.4小时图1 图26. 某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成图2所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台7. 若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或68.九年级体育素质测试,某小组5名同学成绩如下表所示,其中有两个数据被遮盖:那么被遮盖的两个数据依次是()A.35,2B.36,4C.35,3D.36,39. 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.中位数B.最高分C.方差D.平均数10. 下表是某校合唱团成员的年龄分布情况:年龄/岁13 14 15 16频数 5 15 x 10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.中位数、方差C.平均数、方差D.众数、中位数二、填空题(每小题4分,共32分)11. 某学习小组有8人,在一次数学测验中的成绩分别是102,115,100,105,92,105,85,104,则他们成绩的平均数是_____________.12. 某超市决定招聘广告策划人员一名,一位应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩(分)70 80 92将创新能力、综合知识和语言表达三项测试成绩按5∶3∶2的比例计入总成绩,则该应聘者的总成绩是_____________分.13某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.14.已知一组数据3,3,4,7,8,则这组数据的方差为____________.15.若干名同学制作卡通图片,他们制作的卡通图片张数的条形统计图如图3所示,设他们制作的卡通图片张数的平均数为a,中位数为b,众数为c,则a,b,c的大小关系为________.图316. 一组数据2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是________.17.两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为________,中位数为________.18. 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择____________.三、解答题(共58分)19.(8分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分)得到如下样本数据:140146143175125164134155152168162148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分,请你依据样本数据的中位数,推断他的成绩如何?20.(2021年盐城)(8分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分):(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3︰3︰2︰2计算,那么甲、乙的数学综合素质成绩分别为多少分?21. (8分)从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.请回答下列问题:(1)甲成绩的平均数是,乙成绩的平均数是;(2)经计算知2s甲=6,2s乙=42,你认为选谁参加比赛更合适,说明理由.22.(10分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)某校九年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100个)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总成绩甲班100 98 110 89 103 500乙班89 100 95 119 97 500经统计发现两班总成绩相等,只好将数据中的其他信息作为参考.根据要求回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)求两班比赛数据的方差;(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.24.(12分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动.七、八、九三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:决赛成绩(单位:分)七年级80 86 88 80 88 99 80 74 91 89八年级85 85 87 97 85 76 88 77 87 88九年级82 80 78 78 81 96 97 88 89 86(1)请你填写下表:平均数众数中位数七年级85.5 87八年级85.5 85九年级84(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些).(3)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.附加题(15分,不计入总分)25. 小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,由于经营不善,经常导致牛奶滞销(没卖完)或脱销(量不够),为此细心的小红结合所学知识帮奶奶统计了一个星期牛奶的销售情况,并绘制成下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,会给奶奶哪些建议?第六章数据的分析综合测评参考答案一、1. C 2. D 3. B 4. A 5. C 6. C 7. C 8. B 9. A 10. D二、11. 101 12. 77.413. 15 14. 4.415. c<a<b16. 3.2 17.12 6 18.甲三、19. 解:(1)将样本数据按从小到大的顺序排列,得到最中间两个数据是148,152,所以中位数为150分,平均数为112(140+146+143+…+148)=151(分).(2)由(1)知样本数据的中位数为150分,可以估计这次马拉松比赛有一半选手的成绩快于150分,这名选手的成绩为147分,快于中位数150分,可以推断他的成绩比一半以上选手的成绩好.20. 解:(1)将甲的成绩按从小到大的顺序排列为89,90,90,93,中位数为90;将乙的成绩按从小到大的顺序排列为86,92,94,94,中位数为(92+94)÷2=93.(2)甲的数学综合素质成绩为90×310+93×310+89×210+90×210=27+27.9+17.8+18=90.7(分);乙的数学综合素质成绩为94×310+92×310+94×210+86×210=28.2+27.6+18.8+17.2=91.8(分).21. 解:(1)83 82(2)选甲参加比赛更合适.理由如下:∵甲成绩的平均数>乙成绩的平均数,且2s甲<2s乙,∴甲的平均成绩高于乙,且甲的成绩更稳定,故选拔甲参加比赛更合适.22. 解:(1)9.5 10(2)乙队的平均成绩是110(10×4+8×2+7+9×3)=9,则方差是110[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1.(3)乙23.解:(1)甲班踢100个以上(含100个)的人数是3,则优秀率是60%;乙班踢100个以上(含100个)的人数是2,则优秀率是40%.(2)甲班比赛数据的中位数是100,乙班比赛数据的中位数是97.(3)因为两班的总分均为500,所以平均数都为100.2 s 甲=15[(100﹣100)2+(98﹣100)2+(110﹣100)2+(89﹣100)2+(103﹣100)2]=46.8;2 s 乙=15[(89﹣100)2+(100﹣100)2+(95﹣100)2+(119﹣100)2+(97﹣100)2]=103.2.(4)应把冠军奖状给甲班.理由:甲班的优秀率、中位数都高于乙班,甲班的方差小于乙班,说明甲班成绩更稳定.24.解:(1)表从上到下、从左到右依次填80,86,85.5,78(2)①八年级的成绩更好一些.②七年级的成绩好一些.(3)九年级的实力较强.理由:如果从三个年级中分别选出3人参加总决赛,可以看到九年级的高分较多,成绩更好一些.25.解:(1)金键学生奶的平均数是3,金键酸牛奶的平均数是80,金键原味奶的平均数是40,金键酸牛奶的销量最高.(2)学生奶的方差=17[(2﹣3)2+2×(1﹣3)2+2×(0﹣3)2+(9﹣3)2+(8﹣3)2]≈12.57;酸牛奶的方差=17[2×(70﹣80)2+(80﹣80)2+(75﹣80)2+(84﹣80)2+(81﹣80)2+(100﹣80)2]≈91.71;原味奶的方差=17[(40﹣40)2+2×(30﹣40)2+(35﹣40)2+(38﹣40)2+(47﹣40)2+(60﹣40)2]≈96.86.金键学生奶销量最稳定.(3)答案不唯一,合理即可.如建议学生奶平常尽量少进或不进,周末可以进几瓶.。
(典型题)初中数学八年级数学上册第六单元《数据的分析》测试卷(有答案解析)
一、选择题1.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >> B .x z y >> C .y x z >> D .z y x >> 2.数据201,202,198,199,200的方差与极差分别是( )A .1,4B .2,2C .2,4D .4,23.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A .26,26B .26,22C .31,22D .31,264.在学校数学竞赛中,某校10名学生参赛成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是85C .平均数是89D .极差是155.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,46.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表: 班级参赛人数平均数中位数方差某同学分析上表后得到如下结论: ①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分85≥分为优秀); ③甲班成绩的波动性比乙班小. 上述结论中正确的个数是( ) A .3个B .2个C .1个D .0个7.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁8.学校举行演讲比赛,共有13名同学进入决赛,比赛将评出金奖1名,银奖2名,铜奖3名,某选手知道自己的分数后,要判断自己能否获奖,他应当关注有关成绩的( ) A .平均数B .中位数C .众数D .方差9.小李大学毕业到一家公司应聘英文翻译,该公司对他进行了听、说、读、写的英语水平测试,他的各项成绩(百分制)分别为70、80、90、100.他这四项测试的平均成绩是( ) A .80B .85C .90D .9510.小明在计算一组数据的方差时,列出的公式如下:2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5 B .数据平均数是8 C .数据众数是8 D .数据方差是011.已知数据1x 、2x 、3x 、、100x 是龙岩市某企业普通职工的2019年的年收入,设这100个数据的平均数为a ,中位数为b ,方差为c ,如果再加上中国首富马化腾的年收入101x ,则在这101个数据中,a 一定增大,那么对b 与c 的判断正确的是( ) A .b 一定增大,c 可能增大 B .b 可能不变,c 一定增大 C .b 一定不变,c 一定增大D .b 可能增大,c 可能不变12.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .8二、填空题13.小明用222212101(3)(3)(3)10s x x x ⎡⎤=-+-+⋅⋅⋅+-⎣⎦计算一组数据的方差,那么12310x x x x ++++=____.14.一组数据:9、12、10、9、11、9、10,则它的方差是_____.15.已知一组数据123,,,,n x x x x 的方差是2S ,那么另一组数据1233,3,3,,3n x x x x ----的方差是______.16.小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,根据图中的信息,成绩较稳定的是____.17.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.18.在实验操作中,某兴趣小组的得分情况是:有5人得10分,有8人得9分,有4人得8分,有3人得7分,则这个兴趣小组实验操作得分的平均分是________. 19.一组数据1、6、4、6、3,它的平均数是_______,众数是_______,中位数是_______.20.下表是某学习小组一次数学测验的成绩统计表: 分数 70 80 90 100 人数13x1三、解答题21.某商店1~6周销售甲、乙两种品牌冰箱的数量如表(表Ⅰ)所示(单位:台):第1周 第2周 第3周 第4周 第5周 第6周 甲 9 10 10 9 12 10 乙1312711107现根据表Ⅰ数据进行统计得到表Ⅱ:平均数 中位数 众数 甲 10 乙107(2)老师计算了乙品牌冰箱销量的方差: S 乙2=16[(13﹣10)2+(12﹣10)2+(7﹣10)2+(11﹣10)2+(10﹣10)2+(7﹣10)2]=163(台2). 请你计算甲品牌冰箱销量的方差,根据计算结果,建议商家可多采购哪一种品牌冰箱?为什么?22.聪聪利用暑假到工厂进行社会实践活动,他跟在张师傅后学加工某种机器零件,共加工9天,每天加工的机器零件个数如下:1,2,3,4,5,6,7,8,9. (1)求聪聪这9天加工零件数的平均数;(2)聪聪问张师傅加工的零件数,张师傅说;我每天加工的零件数是两位数,并且每天加工零件数的个位上数字都与你相同,这9天加工零件数的平均数比你多30但方差和你一样,听完张师傅的话,聪聪笑着说,张师傅我知道了,根据上面的信息,请你直接写出张师傅每天加工的零件数.23.为了解学生参加体育活动的情况,某地对九年级学生每天参加体育活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生总数和每天体育活动时间为1.5小时的学生数; (2)每天体育活动时间的中位数;(3)该校共有3500名学生,请估计该地九年级每天体育活动时间超过1小时的学生有多少人?24.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测试,两个人在相同条件下各射靶5次,甲命中的环数分别是:10、6、10、6、8,乙命中的环数分别是:7、9、7、8、9.经过计算,甲命中的平均数为8x =甲,方差为23.2S =甲.(1)求乙命中的平均数x 乙和方差2S 乙;(2)现从甲、乙两名队员中选出一人去参加射击比赛,你认为应该选哪名队员去?为什么?25.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm )分别是甲队:163 165 165 164 168 乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题. 【详解】解:由题意可得,去掉一个最低分,平均分为x ,此时x 的值最大;若去掉一个最高分,平均分为y ,则此时的y 一定小于同时去掉一个最高分和一个最低分后的平均分为z , 故x z y >>, 故选:B . 【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.2.C解析:C 【分析】极差=数据最大值-数据最小值,求出数据的平均数,后套用方差公式计算即可. 【详解】∵最大数据为202,最小数据为198, ∴极差=202-198=4; ∵1200(12210)5x =++--+=200, ∴2222221[(201200)(202200)(198200)(199200)(200200)]5S =-+-+-+-+- =2, 故选C. 【点睛】本题考查了方差和极差的计算,熟记方差的公式,极差的定义是解题的关键.3.B解析:B 【分析】根据中位数,众数的定义进行解答即可. 【详解】七个整点时数据为:22,22,23,26,28,30,31. 所以中位数为26,众数为22, 故选:B . 【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.4.B解析:B 【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案. 【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90; ∵平均数是(80×1+85×2+90×5+95×2)÷10=89; 极差是:95﹣80=15. 故选:B . 【点睛】此题主要考查折线统计图、众数、中位数、平均数、极差,正确读懂统计图的信息是解题关键.5.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.6.A解析:A【分析】根据平均数、中位数、方差的定义即可判断.【详解】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数少于甲班优秀的人数;根据方差可知,甲班成绩的波动性比乙班小.故①②③正确,故选:A.【点睛】本题考查了平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D . 【点睛】本题考查方差,正确理解方差的意义是解题关键.8.B解析:B 【分析】根据进入决赛的13名学生所得分数互不相同,所以这13名学生所得分数的中位数即是获奖的学生中的最低分,所以某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,据此解答即可. 【详解】解:∵进入决赛的13名学生所得分数互不相同,共有1+2+3=6个奖项, ∴这13名学生所得分数的中位数即是获奖的学生中的最低分,∴某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖. 故选:B . 【点睛】本题考查了统计量的选择,要熟练掌握,解答此题的关键是要明确:数据的平均数、众数、中位数是描述一组数据集中趋势的特征量.9.B解析:B 【分析】利用平均数公式计算即可. 【详解】他这四项测试的平均成绩是708090100854+++=,故选:B. 【点睛】此题考查平均数的计算公式,正确掌握公式是解题的关键.10.D解析:D 【分析】根据题目中的方差公式可以判断各个选项中的结论是否正确,从而可以解答本题. 【详解】解:∵2222221(7)(8)(8)(8)(9)s x x x x x n⎡⎤=⨯-+-+-+-+-⎣⎦, ∴数据个数是5,故选项A 正确,数据平均数是:788895++++=8,故选项B 正确,数据众数是8,故选项C 正确, 数据方差是:s 2=15[(7−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2]=25,故选项D 错误,故选:D . 【点睛】本题考查了方差、样本容量、算术平均数、众数,解题的关键是明确题意,会求一组数据的方差、样本容量、算术平均数、众数.11.B解析:B 【分析】我们根据平均数的意义,中位数的定义,及方差的意义,分析由于加入x 201后,数据的变化特征,易得到答案. 【详解】解:∵数据x 1,x 2,x 3,…,x 200是龙岩市某企业普通职工的2019年的年收入, 而x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200, 故这201个数据中,年收入平均数大大增大, 但中位数可能不变,也可能稍微变大,但由于数据的集中程度也受到x 201比较大的影响,而更加离散,则方差变大 故选:B . 【点睛】本题考查的知识点是方差,平均数,中位数,正确理解平均数的意义,中位数的定义,及方差的意义,是解答本题的关键,另外,根据实际情况,分析出x 201为中国首富马云的年收入,则x 201会远大于x 1,x 2,x 3,…,x 200也是解答本题的关键.12.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=.故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.二、填空题13.30【分析】由方差的计算可得这组数据的平均数然后利用平均数的计算方法求解【详解】解:由题意可得这组数据共10个数且它们的平均数是3∴=10×3=30故答案为:30【点睛】此题主要考查了方差与平均数的解析:30 【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解. 【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3 ∴12310x x x x ++++=10×3=30故答案为:30. 【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=22221231()()()...()n x x x x x x x x n ⎡⎤-+-+-+-⎣⎦.14.【分析】先由平均数的公式计算出这组数据的平均数再根据方差的公式计算即可【详解】解:这组数据的平均数是:(9+12+10+9+11+9+10)=10则它的方差是:3×(9﹣10)2+2×(10﹣10)解析:87【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可. 【详解】解:这组数据的平均数是:17(9+12+10+9+11+9+10)=10, 则它的方差是:17 [3×(9﹣10)2+2×(10﹣10)2+(12﹣10)2+(11﹣10)2]=87; 故答案为:87. 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【分析】设原数据的平均数为另一组数据是原数据都减去3则另一组数据的平均数为然后根据方差的计算公式化简即可得出答案【详解】解:设原数据的平均数为因为另一组数据的每一个数是原数据减去了3则平均数变为则原 解析:2S【分析】 设原数据的平均数为x ,另一组数据是原数据都减去3,则另一组数据的平均数为3x -,然后根据方差的计算公式化简即可得出答案.【详解】 解:设原数据的平均数为x ,因为另一组数据的每一个数是原数据减去了3, 则平均数变为3x -, 则原数据的方差为:2222121[()()()]n x x x x x x S n -+-++-=,另一组数据的方差为:222121[(33)(33)(33)]n x x x x x x n --++--+++--+222121[()()()]n x x x x x x n=-+-++-2=S .故答案为:2S .【点睛】 本题考查了方差的定义和性质,方差是用来衡量一组数据波动大小的量,每个数都加上或减去一个数,波动不会变,方差不变.16.小明【分析】观察图象可得:小明的成绩较集中波动较小即方差较小故小明的成绩较为稳定【详解】解:根据图象可直接看出小明的成绩波动不大根据方差的意义知波动越小成绩越稳定故答案为:小明【点睛】此题主要考查了 解析:小明【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小,故小明的成绩较为稳定.【详解】解:根据图象可直接看出小明的成绩波动不大,根据方差的意义知,波动越小,成绩越稳定,故答案为:小明.【点睛】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(1)858;(2)两队的平均分相同但乙组的方差小于甲组方差所以乙组成绩更稳定【分析】(1)根据方差平均数的计算公式求出甲组方差和乙组平均数根据中位数的定义取出甲组中位数;(2)根据(1)中表格数据解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.18.5【分析】根据平均分=总分数÷总人数求解即可【详解】这个兴趣小组实验操作得分的平均分=(分)故答案为:875分【点睛】本题考查了加权平均数的求法熟记公式:是解决本题的关键解析:5【分析】根据“平均分=总分数÷总人数”求解即可.【详解】这个兴趣小组实验操作得分的平均分=105+98+84+73175==87.55+8+4+320⨯⨯⨯⨯(分). 故答案为:87.5分.【点睛】 本题考查了加权平均数的求法.熟记公式:11221212 ( 0)n n n n x f x f x f x f f f f f f ++⋯++++≠+++=是解决本题的关键.19.64【分析】根据平均数的计算公式众数和中位数的定义即可得【详解】平均数为因为这组数据中6出现的次数最多所以它的众数是6将这组数据按从小到大进行排序为则它的中位数是4故答案为:464【点睛】本题考查了 解析:6 4【分析】根据平均数的计算公式、众数和中位数的定义即可得.【详解】平均数为1646345++++=, 因为这组数据中,6出现的次数最多,所以它的众数是6,将这组数据按从小到大进行排序为1,3,4,6,6,则它的中位数是4,故答案为:4,6,4.【点睛】本题考查了平均数、众数、中位数,熟记公式和定义是解题关键.20.3【分析】利用加权平均数的计算公式列出方程求解即可【详解】解:由题意得70+80×3+90x+100=85×(1+3+x+1)解得x =3故答案为3【点睛】本题考查了加权平均数的计算和列方程解决问题的解析:3【分析】利用加权平均数的计算公式列出方程求解即可.【详解】解:由题意,得70+80×3+90x +100=85×(1+3+x+1),解得x =3.故答案为3.【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.三、解答题21.(1)10、10、10.5;(2)2=1S 甲,216=3乙S ,甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱,理由见解析【分析】(1)将两种品牌冰箱销售量重新排列,再根据平均数、众数和中位数的概念求解即可; (2)先计算出甲品牌冰箱销售数量的方差,再根据方差的意义求解即可.【详解】解:(1)甲品牌销售数量从小到大排列为:9、9、10、10、10、12, 所以甲品牌销售数量的平均数为92103126⨯+⨯+=10(台),众数为10台, 乙品牌销售数量从小到大排列为7、7、10、11、12、13, 所以乙品牌销售数量的中位数为10112+=10.5(台), 补全表格如下:(2)建议商家可多采购甲品牌冰箱,∵甲品牌冰箱销量的方差2S 甲=16×[(9﹣10)2×2+(10﹣10)2×3+(12﹣10)2]=1,S 乙2=163, ∴2S 甲<S 乙2,∴甲品牌冰箱的销售量比较稳定,建议商家可多采购甲品牌冰箱.【点睛】本题考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,也考查平均数、众数和中位数的定义. 22.(1)5件;(2)31,32,33,34,35,36,37,38,39【分析】(1)利用平均数的定义即可求解;(2)根据“平均数比你多30但方差一样”可得张师傅每天加工的零件数都比聪聪多30,即可求解.【详解】解:(1)这9天加工零件数的平均数为:12345678959++++++++=(件); (2)∵每天加工零件数的个位上数字都与聪聪的相同,这9天加工零件数的平均数比聪聪多30,且方差一样,∴张师傅每天加工的零件数为:31,32,33,34,35,36,37,38,39.【点睛】本题考查平均数和方差,掌握平均数和方差的定义是解题的关键.23.(1)500人,120人;(2)1小时;(3)1400人【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数; (2)根据条形统计图可以得到这组数据的中位数;(3)用样本中超过1小时的比例乘以总人数3500,即可得该校九年级每天体育活动时间超过1小时的学生有多少人.【详解】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%, 故被调查的人数有:100÷20%=500(人),1.5小时的人数有:500×24%=120(人);(2)由(1)可知被调查学生500人,∴中位数是第250和251对应的数的平均数,由条形统计图可得,中位数是1小时;(3)∵12080500+×3500= 1400(人), ∴该地九年级每天体育活动时间超过1小时的学生约为1400人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.24.(1)8x =乙;20.8S =乙;(2)乙,见解析【分析】(1)利用平均数以及方差的定义得出即可;(2)利用方差的意义,分析得出答案即可.【详解】解:(1)()7978958x =++++÷=乙(个),()()()()()222222178987888980.85S ⎡⎤=-+-+-+-+-=⎣⎦乙; (2)应选乙去,理由:∵x x =甲乙∵2 3.2 S=甲,20.8 S=乙,∴22S S>甲乙,∴乙的波动小,成绩更稳定∴应选乙去参加射击比赛.【点睛】此题主要考查了平均数以及方差,正确记忆相关定义是解题关键.25.(1)见解析;(2)108 ;(3)C组;见解析;(4)150人【分析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C组的人数,即可补全条形统计图;(2)用360°乘以D组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:(2)D组对应圆心角度数为:360°18108 60⨯=︒,故答案为:108;(3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,所以中位数落在C组;(4)1500615060⨯=(人),答:这次竞赛成绩在A:60≤x<70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)甲队女演员身高的平均数是165cm,中位数是165cm,众数是165cm;(2)甲队数据方差为2.8;乙队数据方差为4.8;甲队女演员的身高更整齐【分析】(1)根据平均数、众数、中位数的定义分别进行解答即可;(2)先求出乙队女演员的平均数身高,再根据方差公式求出甲队和乙队的方差,然后根据方差的意义即可得出答案.【详解】解:(1)()()1163164165165168165cm 5⨯++++=,∴甲队女演员身高的平均数是165cm ,把这些数从小到大排列,则中位数是165cm ,165cm 出现了2次,出现的次数最多,则众数是165cm ;(2)乙队女演员身高的平均数()()1162164164167168165cm 5=⨯++++=, 甲队数据方差 ()()()()()2222221163165164165165165165165168165 2.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲,乙队数据方差()()()()()2222221162165164165164165167165168165 4.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,∵22s s <甲乙,∴甲队女演员的身高更整齐.【点睛】本题考查了平均数、众数、中位数和方差,平均数表示一组数据的平均程度.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。
新北师大版八年级数学上册单元测试卷附答案第六章 数据的分析
14.某校 名学生的某次竞赛成绩统计如图,则这组数据的众数、中位数、方差依次是
A. , , B. , , C. , , D. , ,
15.一组数据: , , , , 的平均数是 ,这组数据的方差为
A. B. C. D.
二、填空题(共8小题;共40分)
16.在某公益活动中,小明对本年级同学的捐款情况进行了统计,绘制成如图所示的不完整的统计图,其中捐 元的人数占本年级捐款总人数的 ,则本次捐款 元的人数为人.
A. 元B. 元C. 元D. 元
7.某课外小组的同学们在社会实践活动中调查了 户家庭某月的用电量,如表所示:
则这 户家庭该月用电量的众数和中位数分别是
A. , B. , C. , D. ,
8.某班 名学生的校服尺寸与对应人数如下表所示:
则这 名学生校服尺寸的众数和中位数分别为
A. , B. , C. , D. ,
A.套餐一B.套餐二C.套餐三D.套餐四
5.为估计某地区黄柳羊的只数,先捕捉 只黄柳羊给它们分别作上标志,然后放回,待有标志的黄柳羊完全混合于黄柳羊群后,第二次捕捉 只黄羊,发现其中 只有标志.从而估计该地区有黄柳羊
A. 只B. 只C. 只D. 只
6.在一次“爱心互助”捐款活动中,某班第一小组 名同学捐款的金额(单位:元)如表所示:这 名同学捐款的平均金额约为
23.某人统计八年级一个班 人的身高时,算出平均数与中位数都是 厘米,但后来发现其中有一位同学的身高登记错误,将 厘米写成了 厘米.经重新计算后,正确的平均数为 厘米,中位数为 厘米.那么
( )平均数
(A)大于 ;(B)小于 ;(C)等于 ;(D)无法判断.
( )中位数
(A)大于 ;(B)小于 ;(C)等于 ;(D)无法判断.
〖数学同步试题〗最新北师大数学八上《第六章-数据的分析》单元测试题(含答案)
北师大数学八上《第六章-数据的分析》单元测试题一、选择题(每题3分,共30分)1.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( )A.6 B.7 C.8 D.92.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩.小明说:“我们组成绩是86分的同学最多.”小英说:“我们组7位同学的成绩排在最中间的恰好也是86分.”上面两位同学的话能反映的统计量分别是( )A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数3.一组数据为-1,0,4,x,6,16,这组数据的中位数为5,则这组数据众数可能是( )A.5 B.6 C.-1 D.5.54.已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( ) A.3 B.4 C.5 D.65.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数6.甲、乙、丙、丁四人进行射箭测试,每人10次,射箭成绩的平均数都是8.9环,方差分别是s甲2=0.65,s乙2=0.55,s丙2=0.50,s丁2=0.45,则射箭成绩最稳定的是( )A.甲B.乙C.丙D.丁7.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )A.2 400元,2 400元B.2 400元,2 300元C.2 200元,2 200元D.2 200元,2 300元(第8题)8.某赛季甲、乙两名篮球运动员12场比赛得分情况如图所示,对这两名运动员的成绩进行比较,下面四个结论中,不正确的是( ) A .甲运动员得分的极差大于乙运动员得分的极差 B .甲运动员得分的中位数大于乙运动员得分的中位数 C .甲运动员得分的平均数大于乙运动员得分的平均数 D .甲运动员的成绩比乙运动员的成绩稳定9.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是( ) A .平均数 B .标准差C .中位数D .众数10.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,a 2+a 2+a 32C. 56a ,a 2+a 32D. 56a ,a 3+a 42二、填空题(每题3分,共24分)11.已知一组数据为25,25,27,27,26,则其平均数为________.12.某项目六名礼仪小姐的身高(单位:cm)如下:168,166,168,167,169,168,则她们身高的众数是________,极差是________.13.如图是某商场一天的运动鞋销售量情况统计图,这些运动鞋的尺寸的众数和中位数分别为____________ .(第13题)(第16题)14.某学生数学学科课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例计入总评成绩,则该学生数学学科总评成绩是________分.15.已知样本数据x1,x2,x3,x4的方差为2,则4x1,4x2,4x3,4x4的方差是________.16.甲、乙两名射击运动员进行10次射击,甲的成绩(单位:环)是7,7,8,9,8,9,10,9,9,9,乙的成绩如图所示,则甲、乙两人射击成绩的方差之间的关系是s甲2________s乙2(填“>”“<”或“=”).17.某班40名学生的某次数学测验成绩统计表如下:若这个班的数学平均成绩是74分,则x=________,y=________.18.某商店3月份、4月份出售同一品牌各种规格的空调台数如下表:型号根据表中的数据回答下列问题:(1)该商店这两个月平均每月销售空调________台;(2)请你帮助该商店经理考虑下,6月份进货时,商店对________型号的空调要多进,对________型号的空调要少进.三、解答题(19~21题每题10分,其余每题12分,共66分)19.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对其使用寿命跟踪调查.结果如下(单位:年):甲:3 4 5 6 8 8 9 10乙:4 6 6 6 8 9 12 13丙:3 3 4 7 9 10 11 12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果来判断厂家在广告中分别运用了平均数、众数、中位数的哪一种集中趋势的特征数.20.小亮和小莹自制了一个标靶进行投标比赛,两人各投了10次,下图是他们投标成绩的统计图.(第20题)(1)根据图中信息填写上表;(2)分别用平均数和中位数解释谁的成绩比较好.21.某饮料店为了了解本店一种果汁饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?22.张林、李明、王浩、刘平、陈亮五人学习小组在两次数学测试中,成绩如表所示. (1)为了比较学习小组数学测验成绩某种意义上的稳定性,可采取绝对差作为评价标准.若绝对差的计算公式是:绝对差=1n (|x 1-x |+|x 2-x |+…+|x n -x |)(其中x表示n 个数据x 1,x 2,…,x n 的平均数),并规定绝对差小的稳定性好.请问这两次数学测验成绩,哪一次测验成绩更稳定?(2)请你设计一种能评价张林两次数学测验成绩好与差的方案?并通过计算说明.223.某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图(如图). (1)参加这次夏令营活动的初中生共有多少人?(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元.问平均每人捐款多少元?(3)在(2)的条件下,把每个学生的捐款数额(单位:元)一一记录下来,则在这组数据中,众数是多少?(第23题)24.某市甲、乙两个汽车销售公司1至10月每月销售同种品牌汽车的情况如图所示.(1)请你根据统计图填写下表:(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司1至10月的销售情况进行分析(分析哪个汽车销售公司较有潜力):①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售量的趋势看.(第24题)答案一、1.C 2.D 3.B 4.B 5.D 6.D 7.A 8.D 9.B 10.D 二、11.26 12.168 cm ;3 cm 13.25 cm 和24.5 cm 14.88.6 15.3216.< 17.10;8 18.(1)52 (2)B ;D三、19.解:甲厂用了众数,乙厂用了平均数,丙厂用了中位数. 20.解:(1)7;7;7.5(2)平均数相等说明两人整体水平相当,成绩一样好;小莹的中位数大说明小莹的成绩比小亮好.21.解:(1)这8天的平均日销售量是18(33+32+28+32+25+24+31+35)=30(听).(2)30×181=5 430(听).所以估计上半年该店能销售这种饮料5 430听.22.解:(1)设两次数学测验成绩的绝对差分别是P 1,P 2,则P 1=15(|81-80|+|82-80|+|79-80|+|78-80|+|80-80|)=1.2,P 2=15(|82-82|+|79-82|+|89-82|+|85-82|+|75-82|)=4.因为P 1<P 2,所以第1次数学测验成绩更稳定. (2)答案不唯一,以下提供一种设计方案参考:第1次测验成绩81分排序是第2名,第2次测验成绩82分排序是第3名,所以从排名序号来看,张林第1次测验成绩比第2次更好些.23.解:(1)200×(1-10%-20%-30%)=80(人).(2)[(20%×5+30%×15+10%×20)×200+80×10]÷200=11.5(元). (3)众数是10元.24.解:(1)甲乙司的销售情况稳定.②因为甲汽车销售公司每月销售量在平均数上下波动,而乙汽车销售公司每月销售量总体上呈上升趋势,并且从6月起每月都比甲汽车销售公司销售量多,所以乙汽车销售公司较有潜力.。
初中数学北师大版(2012)八年级上册 第六章数据的分析 单元测试(有答案)
初中数学北师大版(2012)八年级上册 第六章数据的分析 单元测试一、单选题1.某快递公司快递员六月第三周投放快递物品件数为:有3天是20件,有1天是30件,有3天是40件,这周里日平均投递物品件数为( )A.28件B.29件C.30件D.31件2.一组数据2,3,5,6,x ;它们的平均数为4,则这组数据的方差为( )A.5B.4C.3D.2 3.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A.3a b c ++ B.3m n k ++ C.3ma nb kc ++ D.ma nb kc m n k ++++ 4.一组数据2,1,2,5,3,2的众数是( )A.1B.2C.3D.55.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为( )A.80,81B.81,89C.82,81D.73,816.下表是某校合唱团成员的年龄分布表:x A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差7.一组数据的方差为9,将这组数据中的每个数据扩大3倍,得到一组新数据的方差是( )A. 9B. 27C. 81D. 2438.七年级(1)班的同学最喜欢的球类运动用如图的统计图表示,下面说法正确的是( )A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学喜欢各种球类的变化情况D.从图中可以直接看出全班同学最喜欢的各种球类的人数的大小关系9.甲、乙两名同学是同班同学,他们中考前夕回忆了初中学习的经历,他们一共参加了 6次期中考试,5次期末考试,还有初三下学期的2次中考模拟考试,共有13次考试.经计算,两名同学这13次的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们的成绩的()A.众数B.中位数C.方差D.以上都不对10.根据PM2.5空气质量标准:24小时PM2.5均值在0〜35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5—周的检测数据制作成如下统计表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 数据的分析单元测试题一、选择题(30分)1、要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( ) A .调查全体女生 B .调查全体男生C .调查九年级全体学生D .调查七、八、九年级各100名学生 2、下列调查适合作普查的是( ) A .了解在校大学生的主要娱乐方式 B .了解宁波市居民对废电池的处理情况 C .日光灯管厂要检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 3、下列调查适合作抽样调查的是A .了解义乌电视台“同年哥讲新闻”栏目的收视率 B.了解某甲型H1N1确诊病人同机乘客的健康状况 C.了解某班每个学生家庭电脑的数量 D.“神七”载人飞船发射前对重要零部件的检查4、为了了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是( ) A .15000名学生是总体B .1000名学生的视力是总体的一个样本C .每名学生是总体的一个个体D .上述调查是普查5、在对n 个数据进行分组整理的过程中,各组频数之和与频率之和等于( ) A. 1、nB. n 、1C. n 、nD. 1、16、为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且1002=甲s 、1102=乙s 、1202=丙s 、902=丁s .根据统计结果,派去参加竞赛的两位同学是( )A .甲、乙B .甲、丙C .甲、丁D .乙、丙7、已知数据:2,,3,2,31- π 其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80%8、某一段时间,小芳测得连续五天的日最低气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是A .3℃,2B .3℃,65C .2℃,2D .2℃,859、今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是( )A .8,11B .8,17C .11,11D .11,1710、下列说法中:①一组数据不可能有两个众数;②将一组数据中的每一个数据都加上(或都减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的数码是奇数,这个事件是必然发生的;④要反映西昌市某一天内气温的变化情况,宜采用折线统计图。
其中正确的是( )A .错误!未找到引用源。
和错误!未找到引用源。
B .错误!未找到引用源。
和错误!未找到引用源。
C .错误!未找到引用源。
和错误!未找到引用源。
D .错误!未找到引用源。
和错误!未找到引用源。
二、填空题11、近几年,人们的环保意识逐渐增加,“白色污染”现象越来越受到人们的重视,李昕同学想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为可采用 调查方式合适一些. 12、为了了解某校小学生的体能情况,对该校一个年级的部分学生进行一分钟跳绳次数测试,这个问题中,总体是____________________,个体是____________________,样本是____________________。
13、在一次体检中,测得某小组5名同学的身高分别是170、162、155、160、168(单位:厘米),则这组数据的极差是 厘米.14、时代中学举行了一次科普知识竞赛.满分100分,学生得分的最低分31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为 . 15、为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后,画出如图所示的频数分布直方图,已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5,则第四小组的频数为 ,参加这次测试的学生是_______人. 16、给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_____________.17、随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:13=甲x ,13=乙x ,5.72=甲S ,6.212=乙S ,则小麦长势比较整齐的试验田是(填“甲”或“乙”).18、甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.棉农甲 68 70 72 69 71 棉农乙6971716970三、解答题19、为了解某地区30万电视观众对新闻、动画、娱乐三类节目的喜爱情况,根据老年人、成年人、青少年各年龄段实际人口的比例3∶5∶2,随机抽取一定数量的观众进行调查,得到如下统计图.(1)上面所用的调查方法是_________(填“全面调查”或“抽样调查”); (2)写出折线统计图中A 、B 所代表的值;A :_____________;B :_____________; (3)求该地区喜爱娱乐类节目的成年人的人数.青少年 老年人节目 人数/人 图一:观众喜爱的节目统计图新闻 娱乐 动画 02040 60 80100 32 4668 94 A B 图二:成年人喜爱的节目统计图 新闻娱乐 动画108°20、上海世博园开放后,前往参观的人非常多.5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min 而小于20min ,其它类同.(1)这里采用的调查方式是 ;(2)求表中a 、b 、c 的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min 的有 人; (4)此次调查中,中位数所在的时间段是 ~ min .21、某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次 测试结果的数据作出整理,下图是这四名同学提供的部分信息: 甲:将全体测试数据分成6组绘成直方图(如图); 乙:跳绳次数不少于105次的同学占94%吧。
丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题: (1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min 跳绳次数的平均值.等候时间(min )第21题图22、广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:(1)本次问卷调查取样的样本容量为_______,表中的m值为_______.(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?不太了解2%18%23、经市场调查,某种优质西瓜质量为(5±0.25)kg的最为畅销.为了控制西瓜的质量,农科所采用A、B两种种植技术进行试验.现从这两种技术种植的西瓜中各随机抽取20颗,记录它们的质量如下(单位:kg):A:4.1 4.8 5.4 4.9 4.7 5.0 4.9 4.8 5.8 5.25.0 4.8 5.2 4.9 5.2 5.0 4.8 5.2 5.1 5.0B:4.5 4.9 4.8 4.5 5.2 5.1 5.0 4.5 4.7 4.95.4 5.5 4.6 5.3 4.8 5.0 5.2 5.3 5.0 5.3(1)若质量为(5±0.25)kg的为优等品,根据以上信息完成下表:(2)请分别从优等品数量、平均数与方差三方面对A、B两种技术作出评价;从市场销售的角度看,你认为推广哪种种植技术较好.24、新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.(1)写出4位应聘者的总分;(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差;(3)由(1)和(2),你对应聘者有何建议?参考答案1、D 解析:调查九年级全体学生肯定课外作业负担偏重,调查男生或女生也不具有代表性,只有选项D 比较合理。
2、D 解析:选项A 、B 的调查结果不需要太精确,适合抽样调查;选项C 进行普查具有破坏性,只有D 必须普查,以防止流感蔓延。
3、A 解析:选项B 、D 必须普查,选项C 调查的范围较小,也适合普查,只有A 适合抽样调查。
4、B 解析:总体应该是15000名学生的视力;每名学生的视力是总体的一个个体;这项调查实行的是抽样调查;所以只有B 正确。
5、B6、C 解析:这四位同学的平均分相等,而甲、丁的方差较小,成绩比较稳定,所以应该派甲和丁去。
7、B 解析:无理数只有3,2 ;π是有理数。
8、A 解析:先根据平均数求出第五天的最低气温后再求方差。
9、C 解析:将这一组数据按从小到大的顺序排列后最中间的数是11,所以中位数是11;用最大的数减去最小的数,17-6=11,所以极差是11。
10、B 解析:一组数据,可能没有众数,也可能有多个众数所以①错误;随意翻到一本书的某页,可能是奇数,也可能是偶数,所以③页错误。
11、抽样调查12、某校一年级小学生一分钟跳绳次数的全体;每个小学生一分钟跳绳次数;一个年级部分学生一分钟跳绳次数。
13、15 解析:170-155=15。
14、0.1 解析:根据频数分布直方图可以求出得分在60~70分的频数为4,频率为1.0404=。
15、10 50 解析:根据第一组数据,可以求出参加测试的学生是501.05=人,第四组的频数为1020155504.0503.050550=---=⨯-⨯--。
16、23;2.6 解析:先求出平均数为24,则方差为6.21871)2423()2425()2427()2423()2425()2422()2423[(7122222222≈⨯=-+-+-+-+-+-+-=S 17、甲 解析:甲的方差较小,长势比较整齐。