八年级下册数学模拟试卷51
八年级数学下册期末模拟练习试卷及答案详解(PDF可打印)
2020-2021学年福建省莆田市八年级(下)期末数学模拟练习试卷一.选择题(共10*4=40分)1.(4分)如果=2﹣a,那么()A.a<2B.a≤2C.a>2D.a≥22.(4分)若3、4、a为勾股数,则a的相反数的值为()A.﹣5B.5C.﹣5或﹣D.5或3.(4分)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小4.(4分)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.(4分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm26.(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB =3,AC=2,则四边形ABCD的面积为()A.B.C.D.57.(4分)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.988.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE =3,ED=3BE,则AB的值为()A.6B.5C.2D.39.(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.(4分)已知=k,则一次函数y=kx﹣2k的图象一定过()A.一、二、三象限B.一、四象限C.一、三、四象限D.一、二象限二.填空题(共6*4=24分)11.(4分)计算﹣2的结果是.12.(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k =.使代数式有意义的x的取值范围是.13.(4分)=2,=3,=4,…观察下列各式:请你找出其中规律,并将第n(n≥1)个等式写出来.14.(4分)如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是.15.(4分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是分钟.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(2,0),B(6,0)是x轴上的两点,则PA+PB的最小值为.三.解答题17.(8分)计算:(﹣1)(+1)+﹣.18.(8分)已知:如图,直线y1=x+1在平面直角坐标系xOy中(1)在平面直角坐标系xOy中画出y2=﹣2x+4的图象;(2)求y1与y2的交点坐标;(3)根据图象直接写出当y1≥y2时,x的取值范围.19.(8分)如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.20.(8分)定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是;(3)若(2)中两个函数图象与y轴围成的三角形的面积为4,求b的值.21.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班120118130109123600乙班109120115139117600经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为,乙班的优秀率为;(2)填空:甲班比赛数据的中位数为,乙班比赛数据的中位数为;(3)根据以上两条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.22.(10分)已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.23.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=,b=;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点N的运动轨迹是一条直线l,请你求出这条直线l的解析式.24.(12分)在平面直角坐标系中,A(0,8)、C(8,0),四边形AOCB是正方形,点D (a,0)是x轴正半轴上一动点,∠ADE=90°,DE交正方形AOCB外角的平分线CE 于点E.(1)如图1,当点D是OC的中点时,求证:AD=DE;(2)点D(a,0)在x轴正半轴上运动,点P在y轴上.若四边形PDEB为菱形,求直线PB的解析式.(3)连AE,点F是AE的中点,当点D在x轴正半轴上运动时,点F随之而运动,点F到CE的距离是否为定值?若为定值,求出这个值;若不是定值,请说明理由.25.(14分)如图,平面直角坐标系xOy中,正方形ABCD的边AB在x轴上,点O是AB 的中点,直线l:y=kx+2k+4过定点D,交x轴于点P.(1)求正方形ABCD的边长;(2)如图1,在直线l上有一点N,DN=AB,连接BN,点M为BN的中点,连接AM,求线段AM的长度的最小值,并求出此时点N的坐标.(3)如图2,过点P作PE⊥DP交∠CBx的平分线于点E,点Q是直线AD上一点,四边形PQCE是否可能为菱形,如果能求出此时直线CQ的解析式,如果不能,则说明理由.2020-2021学年福建省莆田市八年级(下)期末数学模拟练习试卷参考答案与试题解析一.选择题(共10*4=40分)1.(4分)如果=2﹣a,那么()A.a<2B.a≤2C.a>2D.a≥2【考点】二次根式的性质与化简.【分析】利用二次根式的性质得出2﹣a≥0,进而得出答案.【解答】解:∵=2﹣a,∴2﹣a≥0,解得:a≤2.故选:B.2.(4分)若3、4、a为勾股数,则a的相反数的值为()A.﹣5B.5C.﹣5或﹣D.5或【考点】勾股数;实数的性质.【分析】根据勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数求解即可.【解答】解:∵3、4、a为勾股数,∴a==5,∴a的相反数为﹣5,故选:A.3.(4分)下列关于一次函数y=﹣2x+2的图象的说法中,错误的是()A.函数图象经过第一、二、四象限B.函数图象与x轴的交点坐标为(2,0)C.当x>0时,y<2D.y的值随着x值的增大而减小【考点】一次函数的性质;一次函数的图象.【分析】根据一次函数的性质可以判断各个选项是否正确,从而可以解答本题.【解答】解:A、∵k=﹣2<0,b=2>0,∴函数图象经过第一、二、四象限,说法正确;B、∵y=0时,x=1,∴函数图象与x轴的交点坐标为(1,0),说法错误;C、当x>0时,y<2,说法正确;D、∵k=﹣2<0,∴y的值随着x值的增大而减小,说法正确;故选:B.4.(4分)如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.130【考点】平面展开﹣最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵它的每一级的长宽高为20cm,宽30cm,长50cm,∴AB==50(cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是50cm,故选:B.5.(4分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】勾股定理;完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.6.(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD中,AB =3,AC=2,则四边形ABCD的面积为()A.B.C.D.5【考点】菱形的判定与性质;三角形的面积.【分析】先证四边形ABCD是菱形,由勾股定理可求BO,由菱形的面积公式可求解.【解答】解:过点A作AE⊥CD于E,AF⊥BC于F,连接AC,BD交于点O,∵两条纸条宽度相同,∴AE=AF.∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AF=CD•AE.又∵AE=AF.∴BC=CD,∴四边形ABCD是菱形,∴AO=CO=1,BO=DO,AC⊥BD,∴BO===2,∴BD=4,∴四边形ABCD的面积==4,故选:A.7.(4分)如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为()A.47B.62C.79D.98【考点】勾股数;规律型:数字的变化类.【分析】依据每列数的规律,即可得到a=n2﹣1,b=2n,c=n2+1,进而得出x+y的值.【解答】解:由题可得,3=22﹣1,4=2×2,5=22+1,……∴a=n2﹣1,b=2n,c=n2+1,∴当c=n2+1=65时,n=8,∴x=63,y=16,∴x+y=79,故选:C.8.(4分)如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE =3,ED=3BE,则AB的值为()A.6B.5C.2D.3【考点】矩形的性质.【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.9.(4分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)【考点】正方形的性质;坐标与图形性质;勾股定理.【分析】由已知条件得到AD′=AD=2,AO=AB=1,根据勾股定理得到OD′==,于是得到结论.【解答】解:∵AD′=AD=2,AO=AB=1,∴OD′==,∵C′D′=2,C′D′∥AB,∴C′(2,),故选:D.10.(4分)已知=k,则一次函数y=kx﹣2k的图象一定过()A.一、二、三象限B.一、四象限C.一、三、四象限D.一、二象限【考点】一次函数的性质.【分析】根据=k,可以得到k的值,再根据一次函数y=kx﹣2k,可知k≠0,然后即可得到该函数图象经过哪几个象限,从而可以解答本题.【解答】解:∵=k,∴a=k(b+c),b=k(a+c),c=k(a+b),∴a+b+c=2k(a+b+c),∴(a+b+c)﹣2k(a+b+c)=0,∴(1﹣2k)(a+b+c)=0,∴1﹣2k=0或a+b+c=0,∴k=,b+c=﹣a,∴=﹣1=k,由上可得,k=或k=﹣1,∴当k=时,一次函数y=x﹣1,该函数图象过第一、三、四象限,当k=﹣1时,一次函数y=﹣x+2,该函数图象过第一、二、四象限,∴一次函数y=kx﹣2k的图象一定过第一、四象限,故选:B.二.填空题(共6*4=24分)11.(4分)计算﹣2的结果是3.【考点】二次根式的加减法;二次根式的性质与化简.【分析】直接化简二次根式,进而合并得出答案.【解答】解:﹣2=2×2﹣2×=4﹣=3.故答案为:3.12.(4分)已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,则k=﹣5.使代数式有意义的x的取值范围是x≤2.【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标;二次根式有意义的条件;一次函数的性质.【分析】根据点P的坐标可求出点P′的坐标,再利用一次函数图象上点的坐标特征可求出关于k的一元一次方程,解之即可求出k值.根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:∵点P(1,2)关于x轴的对称点为P′,∴点P′的坐标为(1,﹣2).∵点P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣5.由题意得,2﹣x≥0,解得x≤2.故答案为:﹣5;x≤2.13.(4分)=2,=3,=4,…观察下列各式:请你找出其中规律,并将第n(n≥1)个等式写出来=(n+1).【考点】二次根式的性质与化简.【分析】根据观察,可发现规律,根据规律,可得答案.【解答】解:由=2,=3,=4,…得=(n+1),故答案为:=(n+1).14.(4分)如图,两条宽度分别为2和4的纸条交叉放置,重叠部分为四边形ABCD,若AB•BC=100,则四边形ABCD的面积是20.【考点】平行四边形的判定与性质;三角形的面积.【分析】根据题意判定四边形ABCD是平行四边形.如图,过点A作AE⊥BC于点E,过点A作AF⊥CD于点F,利用面积法求得AB与BC的数量关系,从而求得该平行四边形的面积.【解答】解:依题意得:AB∥CD,AD∥BC,则四边形ABCD是平行四边形.如图,过点A作AE⊥BC于点E,过点A作AF⊥CD于点F,∴AE=2,AF=4,∴BC•AE=AB•AF,即BC=2AB.又AB•BC=100,∴BC=10,∴四边形ABCD的面积=10×2=20,故答案为20.15.(4分)小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是15分钟.【考点】函数的图象.【分析】依据图象分别求出平路、上坡路和下坡路的速度,然后根据路程,求出时间即可.【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是(分钟).故答案为:15.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(2,0),B(6,0)是x轴上的两点,则PA+PB的最小值为2.【考点】一次函数图象上点的坐标特征;轴对称﹣最短路线问题.【分析】作A点关于直线y=x的对称点A′,利用一次函数图象上点的坐标性质得出OA′=2,进而利用勾股定理得出结论即可.【解答】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x 于点P,此时PA+PB最小,∵OA′=2,BO=6,∴PA+PB=A′B==2.故答案为:2.三.解答题17.(8分)计算:(﹣1)(+1)+﹣.【考点】二次根式的混合运算;平方差公式.【分析】根据平方差公式和分母有理化,可以化简题目中的式子,然后合并同类项和同类二次根式即可.【解答】解:(﹣1)(+1)+﹣=2﹣1+4﹣=1+.18.(8分)已知:如图,直线y1=x+1在平面直角坐标系xOy中(1)在平面直角坐标系xOy中画出y2=﹣2x+4的图象;(2)求y1与y2的交点坐标;(3)根据图象直接写出当y1≥y2时,x的取值范围.【考点】一次函数的性质;一次函数的图象.【分析】(1)依据函数解析式即可画出y2=﹣2x+4的图象;(2)解方程组可得y1与y2的交点坐标;(3)依据函数图象以及交点坐标即可得到当y1≥y2时,x的取值范围.【解答】解:(1)y2=﹣2x+4的图象如图所示:(2)解方程组,可得,∴y1与y2的交点坐标为(1,2);(3)当y1≥y2时,x的取值范围是x≥1.19.(8分)如图,在四边形ABCD中,AD=BC,E、F分别是边DC、AB的中点,FE的延长线分别AD、BC的延长线交于点H、G,求证:∠AHF=∠BGF.【考点】三角形中位线定理.【分析】连接BD,取BD的中点P,连接EP,FP,根据三角形中位线定理得到PF=AD,PF∥AD,EP=BC,EP∥BC,根据平行线的性质、等腰三角形的性质证明结论.【解答】证明:连接BD,取BD的中点P,连接EP,FP,∵E、F、P分别是DC、AB、BD边的中点,∴EP是△BCD的中位线,PF是△ABD的中位线,∴PF=AD,PF∥AD,EP=BC,EP∥BC,∴∠H=∠PFE,∠BGF=∠FEP,∵AD=BC,∴PE=PF,∴∠PEF=∠PFE,∴∠AHF=∠BGF.20.(8分)定义:关于x的一次函数y=ax+b与y=bx+a(ab≠0)叫做一对交换函数,例如:一次函数y=3x+4与y=4x+3就是一对交换函数.(1)一次函数y=2x﹣b的交换函数是y=﹣bx+2;(2)当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1;(3)若(2)中两个函数图象与y轴围成的三角形的面积为4,求b的值.【考点】一次函数的性质;三角形的面积.【分析】(1)由题意可以写出一次函数y=2x﹣b的交换函数;(2)根据题意和(1)中的结果,可以求得当b≠﹣2时,(1)中两个函数图象交点的横坐标;(3)根据题意和(1)、(2)的结果,可以计算出b的值.【解答】解:(1)由题意可得,一次函数y=2x﹣b的交换函数是y﹣bx+2,故答案为:y=﹣bx+2;(2)由题意可得,当2x﹣b=﹣bx+2时,解得x=1,即当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,故答案为:x=1;(3)函数y=2x﹣b与y轴的交点是(0,﹣b),函数y=﹣bx+2与y轴的交点为(0,2),由(2)知,当b≠﹣2时,(1)中两个函数图象交点的横坐标是x=1,∵(1)中两个函数图象与y轴围成的三角形的面积为4,∴=4,解得b=6或b=﹣10,即b的值是6或﹣10.21.(8分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班120118130109123600乙班109120115139117600经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)填空:甲班的优秀率为100%,乙班的优秀率为100%;(2)填空:甲班比赛数据的中位数为120,乙班比赛数据的中位数为115;(3)根据以上两条信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.【考点】中位数.【分析】(1)优秀率就是优秀的人数与总人数的百分比;(2)中位数就是一组数据中先把所有数据按从大到小或从小到大的顺序排列起来,如果是奇数个时,就是中间的那一个数,如果是偶数个时,就是中间两个数的平均数;(3)根据计算出来的统计量的意义分析判断.【解答】解:(1)甲班优秀率为100%,乙班优秀率为100%;故答案为:100%,100%;(2)甲班5名学生比赛成绩的中位数是120个,乙班5名学生比赛成绩的中位数是117个.故答案为:120,117;(3)将冠军奖状发给甲班,因为甲班5人比赛成绩的优秀率等于乙班,但中位数比乙班大,综合评定甲班比较好.22.(10分)已知一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.①求点E的坐标;②△AOB与△FOD是否全等,请说明理由;(2)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.【考点】一次函数综合题.【分析】(1)①由等腰直角三角形的性质和中点坐标公式可求点E坐标;②先求点F坐标,由“SAS”可证△AOB≌△FOD;(2)分三种情况讨论,利用等腰三角形的性质可求解.【解答】解:(1)①如图1,连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,∵一次函数y=﹣3x+3的图象分别与x轴,y轴交于A,B两点,∴点A(1,0),点B(0,3),∵点D与点C关于y轴对称,点C(3,0),∴点D(﹣3,0),∵EG⊥OC,EH⊥OB,∴OE平分∠BOC,又∵OB=OC=3,∴OE=BE=EC,∴点E(,);②△AOB≌△FOD,理由如下:设直线DE解析式为y=kx+b,由题意可得:,解得:,∴直线DE解析式为y=x+1,∵点F是直线DE与y轴的交点,∴F(0,1),∴OF=OA=1,又∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD(SAS);(3)∵点G与点B关于x轴对称,点B(0,3),∴点G(0,﹣3),∵点G(0,﹣3),点C(3,0),∴直线GC的解析式为y=x﹣3,∵点B(0,3),点A(1,0),∴AB2=1+9=10,设点P(a,a﹣3),若AB=AP时,则10=(a﹣1)2+(a﹣3﹣0)2,∴a=0或4,∴点P(0,﹣3)或(4,1);若AB=PB时,则10=(a﹣0)2+(a﹣3﹣3)2,∴a2﹣6a+13=0,∵Δ<0,∴方程无解,若AP=BP时,则(a﹣1)2+(a﹣3﹣0)2=(a﹣0)2+(a﹣3﹣3)2,∴a=,∴点P(,),综上所述:点P(0,﹣3)或(4,1)或(,).23.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b)满足(a+1)2+=0(1)直接写出:a=﹣1,b=﹣3;(2)点B为x轴正半轴上一点,如图1,BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,求直线BE的解析式;(3)在(2)条件下,点M为直线BE上一动点,连OM,将线段OM逆时针旋转90°,如图2,点O的对应点为N,当点N的运动轨迹是一条直线l,请你求出这条直线l的解析式.【考点】一次函数综合题.【分析】(1)根据非负数是性质来求a、b的值;(2)如图1,过点O作OF⊥OE,交BE于F.构建全等三角形:△EOC≌△FOB(ASA),△AOC≌△DOB(ASA),易求D(0,﹣1),B(3,0).利用待定系数法求得直线BE的解析式y=x﹣1;(3)如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H.构建全等三角形:△GOM≌△HMN,故OG=MH,GM=NH.设M(m,m﹣1),则H(m,﹣m﹣1),N(m﹣1,﹣m﹣1),由此求得点N的横纵坐标间的函数关系.【解答】解:(1)依题意得a+1=0,b+3=0,解得a=﹣1,b=﹣3.故答案是:﹣1;﹣3;(2)如图1,过点O作OF⊥OE,交BE于F.∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形.∵在△EOC与△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC.∴在△AOC与△DOB中,,∴△AOC≌△DOB(ASA),∴OA=OD,∵A(﹣1,0),C(0,﹣3),∴D(0,﹣1),B(3,0)∴直线BD,即直线BE的解析式y=x﹣1;(3)依题意,△NOM为等腰Rt△,如图2,过点M作MG⊥x轴,垂足为G,过点N作NH⊥GH,垂足为H,∵△NOM为等腰Rt△,则易证△GOM≌△HMN,∴OG=MH,GM=NH,由(2)知直线BD的解析式y=x﹣1,设M(m,m﹣1),则H(m,﹣m﹣1),∴N(m﹣1,﹣m﹣1),令m﹣1=x,﹣m﹣1=y,∴m=x代入m﹣1=y,消去参数m得,y=﹣x﹣即直线l的解析式为y=﹣x﹣.24.(12分)在平面直角坐标系中,A(0,8)、C(8,0),四边形AOCB是正方形,点D (a,0)是x轴正半轴上一动点,∠ADE=90°,DE交正方形AOCB外角的平分线CE 于点E.(1)如图1,当点D是OC的中点时,求证:AD=DE;(2)点D(a,0)在x轴正半轴上运动,点P在y轴上.若四边形PDEB为菱形,求直线PB的解析式.(3)连AE,点F是AE的中点,当点D在x轴正半轴上运动时,点F随之而运动,点F到CE的距离是否为定值?若为定值,求出这个值;若不是定值,请说明理由.【考点】一次函数综合题.【分析】(1)如图1中,取OA的中点M,连接DM.只要证明△AMD≌△DCE即可;(2)如图2中,作BP⊥AD交y作于P,则PD∥DE,由四边形AOBC是正方形,可证△AOD≌△BAP,四边形PDEB是平行四边形,当D点在边OC上时,P点在OA上,DP<DA(DE),推出四边形PDEB不可能是菱形,推出点D在点C的右侧,如图3中,利用全等三角形的性质求出OP,可得当P坐标,致力于待定系数法即可解决问题;(3)只要证明点F到CE的距离为定值且等于平行线OB、CE之间的距离即可;【解答】解:(1)如图1中,取OA的中点M,连接DM.∵CE为正方形的外角平分线,∴∠BCE=45°,∴∠DCE=90°+45°=135°,∵D、M分别为OC、OA的中点,∴OM=OD=AM=CD,∴△OMD是等腰直角三角形,∴∠OMD=45°,∴∠AMD=45°,∴∠AMD=135°=∠DCE,∵∠EDC+∠ADO=90°,∠ADO+∠DAO=90°,∴∠EDC=∠DAM,∴△AMD≌△DCE,∴AD=DE.(2)如图2中,作BP⊥AD交y作于P,由四边形AOBC是正方形,可证△AOD≌△BAP,∴AD=BP,由(1)可知DE=AD,∴DE=BP,∴四边形PDEB是平行四边形,当D点在边OC上时,P点在OA上,DP<DA(DE),∴四边形PDEB不可能是菱形,∴点D在点C的右侧,如图3中,∵四边形PDEB是菱形,∴PD=DE,∵AD=DE,∵OD⊥AP,∴OP=OA=8,∴P(0,﹣8),设直线PB的解析式为y=kx+b,则有,解得,∴直线PB的解析式为y=2x﹣8.(3)如图4或5,连接FC,AC.∵∠ACB=45°,∠BCE=45°,∴∠ACE=90°,∵F是AE中点,∴FA=FC=FE,∴点F在AC的垂直平分线上,∵OB垂直平分AC,∴点F在直线OB上,∵AC⊥CE,AC⊥OB,∴OB∥CE,∴点F到CE的距离为定值且等于平行线OB、CE之间的距离,∴点F到CE的距离d=CT=AC=4.25.(14分)如图,平面直角坐标系xOy中,正方形ABCD的边AB在x轴上,点O是AB 的中点,直线l:y=kx+2k+4过定点D,交x轴于点P.(1)求正方形ABCD的边长;(2)如图1,在直线l上有一点N,DN=AB,连接BN,点M为BN的中点,连接AM,求线段AM的长度的最小值,并求出此时点N的坐标.(3)如图2,过点P作PE⊥DP交∠CBx的平分线于点E,点Q是直线AD上一点,四边形PQCE是否可能为菱形,如果能求出此时直线CQ的解析式,如果不能,则说明理由.【考点】一次函数综合题.【分析】(1)由y=kx+2k+4,可得y﹣4=k(x+2),由y=kx+2k+4过定点,则x与y的值与k无关,可得,解得,进而得出D点的坐标,即可得出正方形ABCD 的边长为4.(2)连BD,取BD中点E,连EM,EA,由三角形中位线定理可得ME=1,由三角形的三边关系可得AM≥AE﹣ME,当点A、M、E三点共线时,AM有最小值为﹣1.(3)如图2中,在DA上截取DS=PB,作CQ⊥DP交AD于点Q,首先证明四边形CQPE 是平行四边形,分两种情形分别求解即可.【解答】解:(1)由y=kx+2k+4,可得y﹣4=k(x+2),∵直线l:y=kx+2k+4过定点,则x与y的值与k无关,∴,解得,∴D(﹣2,4),∴正方形ABCD的边长为4.(2)连BD,取BD中点E,连EM,EA,∵DN=AB=2,∴EM=DN=1,∵AE=BD=,在△AME中,AM≥AE﹣ME,∴当点A、M、E三点共线时,AM有最小值为﹣1,此时PD⊥BD,N(﹣2﹣,4﹣).(3)如图2中,在DA上截取DS=PB,∵AD=AB,DS=PB,∴AS=AP,∴∠ASP=45°,∴∠DSP=135°,∵∠ABC=90°,∠CBE=45°,∴∠PBE=135°=∠DSP,∵∠DPE=∠DAP=90°,∴∠DPA+∠ADP=90°,∠DPA+∠EPB=90°,∴∠SDP=∠EPB,∴△DSP≌△PBE(ASA),∴DP=PE,作CQ⊥DP交AD于点Q,连接PQ,EC,则△CDQ≌△DAP(AAS),∴CQ=DP=PE,∴CQ∥PE且CQ=PE,∴四边形PQCE是平行四边形,∴当QP=QC时,四边形PQCE为菱形,∴QP=QC=DP,①当点Q与点D重合,直线CQ:y=4;②当点Q在x轴下方时,∵QP=QC=PQ,又PA⊥AD,∴QA=AD=4,∴Q(﹣2,﹣4),∵C(2,4),∴直线CQ:y=2x.综上所述,满足条件的直线CQ的解析式为y=4或y=2x.。
北师大八年级下期数学模拟试题(含答案)
、如果把分式中的x 和y 都扩大3倍,那么分式的值A 、扩大3倍 B 、不变 C 、缩小3倍 D 、下列两个三角形不一定相似的是⎩yx x+第9题图11、分解因式:12、四条线段线段a的长为 cm.E=35°,第13题图的竹竿做测量工具测量学校旗杆的高度,移动第14题图第16题图18、(6分)如图所示,每个小方格都是边长为1的正方形,△ABC的三个顶点都在格点上,(1)请在方格纸上建立平面直角坐标系,使A、C两点的坐标分别为A (2,3),C(6,2),并写出B点坐标。
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A´B´C´。
第18题图年级随机抽取200坐测试,统计出每位女生次数(次数为整数)于E,BF⊥CD于F,求证:(1)AB=BH21、已知:m第23题图的外角平分线交BC的延长线于点D,第24题图第25题图B,预计前期投入资金不少于用于两种校服的研制,其成本和售价如下表:三项绿化改造工作。
图如下图所示。
(1)由统计图可知第27题图四、(12分)28、如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在射线AM,BN上运动(点D不与A重合,点C不与B重合),E是AB边上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE。
(1)求证:△ADE∽△BEC;(2)当点E为AB边的中点时(如图2),求证:DE,CE分别平分∠ADC,∠BCD;(3)若A D+DE=AB=a,设AE=m,请探究:△BEC的周长是否与m的值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由。
第28题图MN…………2 分2201+-≤+x >①、解:(1)①=0.19,②=54,③=0.27)合格率为:合格人数:(人) …………2答:该地区八年级女生仰卧起坐达到合格的约有证明:(1)∵DE ⊥BC 于E ,∠DBC=45°BDE=45°, ∴BE=DE …………1分F ∴∠HBE+∠C=90°%73%100200146=⨯1825%732500=⨯MFN所以:△BEC的周长与m无关。
八年级下学期数学期中模拟试卷及答案-百度文库
八年级下学期数学期中模拟试卷及答案-百度文库一、选择题1.如图,在四边形ABCD 中,//AB CD ,要使四边形ABCD 是平行四边形,下列可添加的条件不正确的是( )A .AB CD = B .//AD BC C .A C ∠∠=D .AD BC =2.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC 的度数为( )A .35°B .40°C .45°D .60°3.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AB =4,BC =3,则四边形CODE 的周长是( )A .5B .8C .10D .124.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 6.已知关于x 的分式方程22x m x +-=3的解是5,则m 的值为( ) A .3 B .﹣2C .﹣1D .8 7.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .32B .26C .25D .238.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 9.下面图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.下列调查中,适宜采用普查方式的是( )A .一批电池的使用寿命B .全班同学的身高情况C .一批食品中防腐剂的含量D .全市中小学生最喜爱的数学家 11.若分式5x x -的值为0,则( ) A .x =0 B .x =5 C .x ≠0 D .x ≠512.下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .二、填空题13.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m 的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是__m 2.14.若菱形的两条对角线分别为2和3,则此菱形的面积是 .15.在函数y =1x x +中,自变量x 的取值范围是_____. 16.如图是某市连续5天的天气情况,最大的日温差是________℃.17.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.18.任意掷一枚质地均匀的骰子,下列事件:①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数,这些事件发生的可能性大小,按从小到大的顺序排列为_____.19.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2.20.如图,E 、F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =1,则四边形BEDF 的周长是_____.21.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若 6 cm AB =,8 cm BC =则AEF 的周长=______cm .22.如图,在矩形ABCD 中,5AB =,12BC =,点E 是BC 边上一点,连接AE ,将ABE ∆沿AE 折叠,使点B 落在点B ′处.当CEB ∆'为直角三角形时,BE =__.23.▱ABCD 的周长是32cm ,∠ABC 的平分线交AD 所在直线于点E ,且AE :ED =3:2,则AB 的长为_____.24.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为_____.三、解答题25.如图,矩形ABCD 中,AB =8,AD =6,点O 是对角线BD 的中点,过点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.26.如图,在ABC 中,AD 是BC 边上的中线,点E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于F ,连接CF .(1)求证:AEF ≌△DEB ;(2)若∠BAC =90°,求证:四边形ADCF 是菱形.27.如图,在正方形网格中,△ABC 的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)直接写出:以A 、B 、C 为顶点的平形四边形的第四个顶点D 的坐标 .28.如图,在△ABC 中,点O 是AC 边上(端点除外)的一个动点,过点O 作直线MN∥BC.设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F ,连接AE 、AF .那么当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.29.已知23x =+,23y =-。
2022-2023学年人教版八年级下册数学期末模拟卷(含答案)
2022-2023学年人教版八年级下册数学期末模拟卷一、单选题(共10题;共30分)1.如图,在矩形中,分别是的中点,,则的长为( )A.6B.5C.4D.32.班主任随机调查了名学生某天的阅读时间,下列说法正确的是( )阅读时间(小时)学生人数(名)A.方差是B.中位数是C.众数是D.平均数是3.下列四组数据中,不能作为直角三角形的三边长的是( )A.7,24,25B.8,15,17C.5,11,12D.3,4,5 4.在中,若,,则的周长为( )A.7B.10C.11D.14 5.如图,在△ABC中,三边a、b、c的大小关系是( )A.a<b<c B.c<a<b C.c<b<a D.b<a<c6.如图,在平行四边形中,分别是的中点,分别交,于点,.给出下列结论中:①;②;③;④,正确的是()A.②③B.③④C.①②③D.②③④7.函数中,自变量x的取值范围是( )A.B.C.且D.且8.如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G,则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值是-2其中正确的有( )A.1个B.2个C.3个D.4个9.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=3,则图中阴影部分的面积为( )A.9B.3C.D.10.如图,平行四边形HEFG的四个顶点分别在正方形ABCD的四条边上,NE∥AD,分别交DC,HG,AB于点N,M,E,且CG=MN要求得平行四边形HEFG的面积,只需知道一条线段的长度这条线段可以是( )A.EH B.AE C.EB D.DH 二、填空题(共6题;共18分)11.三角形的三条中位线的长分别为3,4,5,则此三角形的周长为 .12.化简:= .13.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、,A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为 dm.14.如图,在矩形ABCD中,AD=6,AB=4,∠BAD的平分线交BC于点E,则DE = .15.下表给出的是某个一次函数的自变量x及其对应的函数值y的部分对应值:x……-2-10……y……m2n……则m+n的值为 16.如图,在长方形中,点为坐标原点,点的坐标为,点,在坐标轴上,直线与交于点,与轴交于点.动点在边上,点是坐标平面内的点.当点在第一象限,且在直线上时,若是等腰直角三角形,则点的坐标为 .三、解答题(共9题;共72分)17.(8分)计算:(1)(4分)(2)(4分)18.(6分)已知,化简:.19.(6分)某公司招聘一名部门经理,对A、B、C三位候选人进行了三项测试,成绩如下(单位:分):候选人语言表达微机操作商品知识A608070B507080C608065如果语言表达、微机操作和商品知识的成绩按3∶3∶4计算,那么谁将会被录取?20.(7分)如图,将▱ABCD的对角线BD向两个方向延长,分别至点E和点F,且使BE=DF.求证:四边形AECF是平行四边形.21.(8分)如图,在平面直角坐标系xOy中,O为坐标原点,已知直线l经过点A (-6,0),它与y轴交于点B,点B在y轴正半轴上,且OA=2OB,求直线l的函数解析式.22.(8分)如图,在正方形ABCD中,正方形的边长为,是的中点,F是CD上一点,且,判断的形状并说明理由.23.(8分)若直线y=ax+4与两坐标轴所围成的三角形面积是8,则a的值是多少?24.(9分)如图,将矩形ABCD沿EF折叠,使点C恰好落在AB边的中点C'上,点D 落在D'处,C'D'交AE于点M.若AB=6,BC=9,求线段ED.25.(12分)如图,在平面直角坐标系中长方形ABCO的顶点A,C的坐标分别为(0,8) ,(20,0),D是OC的中点,点P在AB上运动,当△ODP是腰长为10的等腰三角形时,求点P的坐标.答案解析部分1.A2.B3.C4.D5.D6.C7.D8.B9.D10.C11.2412.13.1714.215.416.;;17.(1)解:(2)解:18.解:,,..19.解:A的成绩==70(分),B的成绩==68(分),C的成绩==68(分),∵A的成绩最高,∴A将会被录取.20.证明:连接AC,设AC与BD交于点O.如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵BE=DF,∴OE=OF.∴四边形AECF是平行四边形.21.解:∵点A坐标为(-6,0)∴OA=6,又∵OA=2OB∴OB=3 即点B坐标为(0,3)设直线l的函数解析式为y=kx+b,把点A、B代入解析式得解得:∴直线l的函数解析式为22.解:为直角三角形,理由如下:∵四边形ABCD为正方形,边长为,∴,,∵E是BC的中点,且,∴,,,在 中,由勾股定理可得:,同理在 , 中,可得:∴∴为直角三角形23.解:当x=0时,y=4,则直线与y 轴的交点坐标为(0,4).当y=0时,ax+4=0,解得x= ,则直线与x 轴的交点坐标为( ,0).因为直线y=ax+4与两坐标轴所围成的三角形面积是8,所以×4×||=8,解得a=1或a=-1.24.解:如图,连接C'E ,设DE =D'E =x ,∵在矩形ABCD 中,AB =6,BC =9,∴CD =AB =6,AD =BC =9,∠A =∠D =90°,∴AE =AD -DE =9-x ,∵折叠,∴∠D'=∠D =90°,C'D'=CD =6,∵点C'为AB 边的中点,∴AC'=AB =3,在Rt △AEC'中,C'E 2=AE 2+AC'2=32+(9-x )2,在Rt △C'D'E 中,C'E 2=C'D'2+D'E 2=62+x 2,∴32+(9-x )2=62+x 2,解得x =3,∴线段ED的长为3.25.解:∵A(0,8),C(20,0),四边形OABC是矩形,D是OC的中点,∴OA=8,OD=10,∠OAB=∠COA=,①当OP=OD=10时,过点P作PE⊥OC轴于点E,则PE=8.在Rt△PEO中,由勾股定理得:OE=,即P点的坐标是(6,8);②当DP=OD=10时,过P作PE⊥OC于E,则PE=OA=8,由勾股定理得:DE=,OE=10-6=4,即P点坐标是(4,8);③当OP=DP=10时,由勾股定理得:DE=OE=,即OD=DE+OE=12≠10,即此时不存在;④当OD=PD时,过点P作PE⊥OC轴于点E,则PE=8在Rt△PED中,由勾股定理得:DE= ,∴OE=OD+DE=10+6=16∴此时点P坐标为(16,8).故P点的坐标为:(6,8)或(4,8)或(16,8).。
【人教版】八年级数学下期末模拟试卷(带答案)
一、选择题1.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1002.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( )A .1个B .2个C .3个D .4个3.某校10名学生参加某项比赛成绩统计如图所示。
对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是15 4.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( ) A .142,142 B .143,142 C .143,143 D .144,143 5.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 6.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .37.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 8.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个9.下列式子中无意义的是( )A .3--B .3--C .2(3)--D .2(3)--- 10.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .304 11.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案12.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6二、填空题13.已知一组数据:3,3,x ,5,5的平均数是4,则这组数据的方差是___________. 14.若一组数据1,2,a ,3,5的平均数是3,则这组数据的标准差是______. 15.如图,在平面直角坐标系xOy 中,一次函数12y x b =--与正比例函数32y x =的图象交于点()2,A m ,与x 轴交于点B (5,0),则△OAB 的面积是________.16.一次函数2y x b =+的图象过点()0,2,将函数2y x b =+的图象向下平移5个单位长度,所得图象的函数表达式为______.17.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______. 18.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.19.当2<a <3时,化简:22(3)a a --______.20.一个直角三角形,一边长5cm ,另一边长4cm ,则该直角三角形面积为____三、解答题21.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.某篮球队在一次联赛中共进行了10场比赛,已知这10场比赛的平均得分为48分,且前9场比赛的得分依次为:57,51,45,51,44,46,45,42,48.(1)求第10场比赛的得分;(2)直接写出这10场比赛的中位数,众数和方差.23.综合与探究如图1,一次函数162y x=-+的图象交x轴、y轴于点A,B,正比例函数12y x=的图象与直线AB交于点(),3C m.(1)求m 的值并直接写出线段OC 的长;(2)如图2,点D 在线段OC 上,且与O ,C 不重合,过点D 作DE x ⊥轴于点E ,交线段CB 于点F .请从A ,B 两题中任选一题作答.我选择题____题.A .若点D 的横坐标为4,解答下列问题:①求线段DF 的长;②点P 是x 轴上的一点,若PDF 的面积为CDF 面积的2倍,直接写出点P 的坐标; B .设点D 的横坐标为a ,解答下列问题:①求线段DF 的长,用含a 的代数式表示;②连接CE ,当线段CD 把CEF △的面积分成1:2的两部分时,直接写出a 的值. 24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积.25.计算:22783-⨯. 26.如图,ABC ∆中,,AB AC AD >是BC 边上的高,将ADC 沿AD 所在的直线翻折,使点C 落在BC 边上的点E 处.()1若20,13,5AB AC CD ===,求ABC ∆的面积;()2求证:22AB AC BE BC -=⋅.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A .【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.2.B解析:B【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可.【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误; ②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°,∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B .【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.3.C解析:C【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.4.B解析:B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.【详解】中位数:142144=1432+平均数:135138142144140147145145=1428+++++++故选B【点睛】考核知识点:中位数,算术平均数.理解定义是关键.5.C解析:C【分析】可设直线l的解析式为y=-2x+c,由题意可得关于a、b、c的一个方程组,通过方程组消去a、b后可以得到c的值,从而得到直线l的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.B解析:B【分析】根据关于x 轴的对称点的坐标特点可得B (2,−m ),然后再把B 点坐标代入y =−x +1可得m 的值.【详解】点A 关于x 轴的对称点B 的坐标为:(2,﹣m ),将点B 的坐标代入直线y =﹣x+1得:﹣m =﹣2+1,解得:m =1,故选:B .【点睛】此题主要考查了关于x 轴对称点的坐标,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.7.D解析:D【分析】根据一次函数的性质,依次分析各个选项,选出错误的选项即可.【详解】A 选项:25y x =-+,当0x =时5y =,则一次函数与y 轴交于()0,5,A 正确,故不符合题意;B 选项:25y x =-+,斜率2k =-,则0k <,y 随x 增大而减小,B 正确,故不符合题意;C 选项:25y x =-+,5y >即255x -+>,解得0x <,C 正确,故不符合题意;D 选项:25y x =-+,与y 轴交于()0,5,与x 轴交于5,02⎛⎫ ⎪⎝⎭,则图象过一、二、四象限,D 错误,故符合题意.故选:D .【点睛】本题考查一次函数的性质,属于基础题,熟练掌握一次函数的性质是解决本题的关键.8.B解析:B【分析】根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,甲始终是匀速行进,乙的行进不是匀速的,故①正确;乙用了50.5 4.5-=个小时到达目的地,故②错误;乙比甲迟出发0.5小时,故③正确;甲在出发不到5小时后被乙追上,故④错误;故选:B.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.A解析:A【分析】先分别将各式化简,再根据二次根式的非负性解答.【详解】A、-3,由被开放数不能为负数得此式无意义;B、=3>0,故有意义;C、=-3,有意义;D、=13-,有意义,故选:A.【点睛】此题考查二次根式的化简,二次根式的非负性,二次根式具有双重非负性,被开方数为非负数,二次根式的值为非负数.10.B解析:B【分析】由题意可证四边形AECF是平行四边形,可得AO=CO,EO=FO=12EF=6,由勾股定理可求AO=10,可得AC=20,由阴影分的面积=S正方形ABCD-S▱AECF可求解.【详解】解:连接AC,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.11.D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.12.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、222123+= 能组成直角三角形;C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键;二、填空题13.【分析】先由平均数的定义求得x 的值再根据方差的公式计算方差【详解】根据题意得:3+3+x+5+5=4×5解得:x=4则这组数据的方差为×2(3-4)2+(4-4)2+2(5-4)2=08故答案是:0解析:0.8【分析】先由平均数的定义求得x 的值,再根据方差的公式计算方差.【详解】根据题意得:3+3+x+5+5=4×5,解得:x=4, 则这组数据的方差为15×[2(3-4)2+(4-4)2+2(5-4)2]=0.8, 故答案是:0.8.【点睛】 考查了求一组数的方差,解题关键是熟记方差计算公式:()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦. 14.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S【分析】 根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差.【详解】 根据题意 由平均数的定义得15×(1+3+2+5+a)=3, 解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2, 故标准差为:2故答案为:2.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.15.【分析】先求出A 点坐标再过点A 作AC ⊥OB 垂足为C 用三角形面积公式即可求出面积【详解】解:把点代入得解得∴A 点坐标为(23)过点A 作AC ⊥OB 垂足为C ∵点B 坐标为(50)∴S △OAB=故答案为:【点解析:152【分析】先求出A 点坐标,再过点A 作AC ⊥OB ,垂足为C ,用三角形面积公式即可求出面积.【详解】解:把点()2,A m 代入32m x =,得 322m =⨯, 解得,3m =,∴A 点坐标为(2,3),过点A 作AC ⊥OB ,垂足为C ,∵点B 坐标为(5,0),∴S △OAB =111553222OB AC ⨯⨯=⨯⨯=, 故答案为:152.【点睛】本题考查了求正比例函数图象上点的坐标和利用坐标求三角形面积,解题关键是求出A 点坐标.16.【分析】根据待定系数法求得b 然后根据函数图象平移的法则上加下减就可以求出平移以后函数的解析式【详解】解:∵一次函数y=2x+b 的图象过点(02)∴b=2∴一次函数为y=2x+2将函数y=2x+2的图解析:23y x =-【分析】根据待定系数法求得b ,然后根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式.【详解】解:∵一次函数y=2x+b 的图象过点(0,2),∴b=2,∴一次函数为y=2x+2,将函数y=2x+2的图象向下平移5个单位长度,所得函数的解析式为y=2x+2-5,即y=2x-3. 故答案为:y=2x-3.【点睛】本题考查了一次函数图象与几何变换,利用函数图象平移的规律是解题关键,注意求直线平移后的解析式时要注意平移时k 的值不变.17.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==.∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222=+=-+(2)1EF FC CE x∴2222+=-+2)(2)1x xx,即1,解得:11【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.2a-5【分析】直接利用绝对值的性质二次根式的性质化简求出答案【详解】∵2<a<3∴a-2>0a-3<0∴|原式=a−2-(3−a)=a-2-3+a=2a-5故答案为:2a-5【点睛】此题主要考查了解析:2a-5【分析】直接利用绝对值的性质,二次根式的性质化简求出答案.【详解】∵2<a<3,∴a-2>0,a-3<0,∴|原式=a−2-(3−a)=a-2-3+a=2a-5.故答案为:2a-5.【点睛】此题主要考查了二次根式的性质与化简,正确利用a的取值范围化简是解题关键.20.10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可【详解】解:当5为直角边时4也为直角边则该直角三角形的面积为5×4÷2=10;当5为斜边时由勾股定理得另一直角边为=3则该直角三角形解析:10或6【分析】分5为直角边和5为斜边两种情况求解三角形的面积即可.【详解】解:当5为直角边时,4也为直角边,则该直角三角形的面积为5×4÷2=10;当5,则该直角三角形的面积为3×4÷2=6,综上,该直角三角形的面积为10或6,故答案为:10或6.【点睛】本题考查直角三角形的面积、勾股定理,利用分类讨论的思想求解是解答的关键.三、解答题21.(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360︒乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】解:(1)甲校参赛的总人数是:630%20÷=(人),100分的人数有:206365---=(人),补全统计图如下:(2)图①中,90分所在扇形的圆心角是:36030%108︒⨯=︒,图③中80分有:207184---=(人),故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分),乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分).(4)甲、乙两校的平均分相同,22135175S S=<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.22.(1)第10场比赛的得分为51分;(2)这10场比赛得分的中位数为47分,众数为51分,方差18.2.【分析】(1)根据平均数的定义先求出总数,再分别减去前9个数即可;(2)根据中位数、众数的定义分别求出最中间两个数的平均数和出现次数最多数,再根据方差的计算公式代入计算即可.【详解】(1)∵10场比赛的平均得分为48分,∴第10场比赛的得分=48×10-57-51-45-51-44-46-45-42-48=51(分),(2)把这10个数从小到大排列为;42、44、45、45、46、48、51、51、51、57,最中间两个数的平均数是(46+48)÷2=47,则这10场比赛得分的中位数为47分,∵51出现了3次,出现次数最多,所以众数为51分,方差22222221(4248)(4448)2(4548)(4648)(4848)3(5148)(5748)18.210⎡⎤=-+-+⨯-+-+-+⨯-+-=⎣⎦. 【点睛】此题考查了平均数、众数与中位数和方差.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数;方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,牢记方差的公式是求解方差的关键.23.(1)6m =,OC =2)A 或B ;A①2DF =;②()0,0P 或()8,0;B①6FD a =-+,②3a =或245【分析】 (1)将(),3m 代入12y x =求解即可,根据勾股定理即可得出OC ; (2)若选择A 题:①先求出D 和F 的坐标,然后即可求出DF ; ②先求出CDF 的面积,然后可求出PDF S △,可求出EP 即可得出答案;若选择B 题:①过程如下:先求出D 和F 的坐标,即可求出FD ;②先求出D ,F 的坐标,然后得出FD ,DE ,分当12CDF CDE S S =△△时和当21CDF CDE S S =△△时两种情况求解即可.【详解】(1)将(),3m 代入12y x =得132m =, 解得6m =,OC ==(2)若选A 题:①过程如下:将4x =代入162y x =-+得1462y =-⨯+=4, ∴()4,4F ;将4x =代入12y x =得142y =⨯=2, ∴()4,2D ,∴422DF =-=.②过程如下:易得CDF 的面积1S 2222CDF =⨯⨯=△, ∴224PDF S =⨯=△, 又∵12PDF S DF EP =⨯⨯△,易得4EP =, ∵P 点是x 轴上动点,E 的坐标为(4,0) ∴P 点坐标()0,0或()8,0;若选B 题:①过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭;将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. 116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. ②过程如下:将x a =代入162y x =-+,易得1,62F a a ⎛⎫-+ ⎪⎝⎭; 将x a =代入12y x =,易得1,2D a a ⎛⎫ ⎪⎝⎭. D 点在C 点左侧,116622F D FD y y a a a ⎛⎫=-=-+-=-+ ⎪⎝⎭. 12D E DE y y a =-=, 当12CDF CDE S S =△△时,12DF DE =, ∴61122a a -+=, 解得245a =, 当21CDF CDE S S =△△时,21DF DE =, ∴62112a a -+=, 解得3a =.【点睛】本题考查了一次函数的综合,充分理解题意是解题关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME ∥DN ,∴四边形DEMN 是平行四边形,∵BD=2AB ,BD=2BO ,∴AB=OB ,又∵M 是AO 的中点,∴BM ⊥AO ,∴∠EMN=90°,∴四边形DEMN 是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN 的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.53 【分析】 直接化简二次根式进而计算得出答案. 【详解】 解:22783-⨯=693435333223333-⨯=-=. 【点睛】本题考查了二次根式的混合运算,正确化简二次根式是解题的关键.26.(1)126;(2)见解析【分析】(1)利用勾股定理容易求出AD 长;进而求出BD ,从而得到BC 长,再由三角形面积公式即可求解;(2)利用勾股定理易得2222AB AC BD DE -=-,再利用平方差公式分解因式可得()()22AB AC BD DE BD DE -=-+,根据折叠性质和线段和差关系即可得出结论.【详解】(1)解:AD 是BC 边上的高,90ADB ADC ∴∠=∠=在Rt ADC 中,13,5,AC CD ==2213514412AD ∴=-=在Rt ADB 中,20,12,AB AD ==22201225616BD ∴=-==16521,BC BD CD ∴=+=+=11211212622ABC S BC AD ∴=⨯⨯=⨯⨯=(平方单位). (2)证明:ADC 沿AD 所在的直线翻折得到,ADE,,AC AE DC DE ∴==在Rt ADC 中,由勾股定理,得222,AC AD DC =+在Rt ADB 中,由勾股定理,得222BD AB AD =-, ()22222AB AC AB AD DC ∴-=-+222AB AD DC =-- 22BD DE =-()(),BD DE BD DE =-+,,BE BD DE BC BD DC BD DE =-=+=+22AB AC BE BC ∴-=⋅.【点睛】本题主要考查了勾股定理;熟练掌握翻折变换的性质,利用由勾股定理求解是解决问题的关键.。
仁爱版初二下册《数学》模拟考试卷及答案【可打印】
一、选择题(每题2分,共30分)1. 若|a|=3,|b|=4,则a×b=()。
A. 12B. 12C. 7D. 72. 下列各数中,是无理数的是()。
A. √9B. √16C. √3D. √13. 已知函数f(x)=x²2x+1,则f(1)=()。
A. 0B. 2C. 4D. 24. 已知a=3,b=2,则a²b³=()。
A. 216B. 216C. 54D. 545. 下列哪个数是既是有理数又是无理数?()A. √2B. √3C. πD. 1二、判断题(每题1分,共20分)1. 两个负数相乘,结果一定是正数。
()2. 任何数的平方都是正数。
()3. 0既不是正数也不是负数。
()4. 1是既是有理数又是无理数。
()5. 两个奇数相加,结果一定是偶数。
()三、填空题(每空1分,共10分)1. 若a=2,b=3,则a+b=______,ab=______。
2. 已知函数f(x)=x²,则f(3)=______,f(3)=______。
3. 若|a|=5,则a=______或______。
4. 两个偶数相乘,结果一定是______数。
5. 任何数乘以0都等于______。
四、简答题(每题10分,共10分)1. 请证明:若a、b为实数,且a≠0,b≠0,则a×b=|a|×|b|×cosθ,其中θ为a和b的夹角。
2. 请简述有理数和无理数的区别。
五、综合题(1和2两题7分,3和4两题8分,共30分)1. 已知a=4,b=3,求a²b³的值。
2. 已知函数f(x)=x²2x+1,求f(1)的值。
3. 若|a|=3,|b|=4,求a×b的值。
4. 请证明:若a、b为实数,且a≠0,b≠0,则a×b=|a|×|b|×cosθ,其中θ为a和b的夹角。
(考试时间:90分钟,满分:100分)三、填空题(每空1分,共10分)6. 若a=3,b=5,则a+b=______,ab=______。
2022—2023年人教版八年级数学(下册)期末模拟试卷及答案
2022—2023年人教版八年级数学(下册)期末模拟试卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.已知15x x+=,则221x x +=________________. 3.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为________. 4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2211(1)m m m m +--÷,其中3.3.已知11881,2y x x =-+-+求代数式22x y x y y x y x++-+-的值.4.如图①,△ABC 中,AB =AC ,∠B 、∠C 的平分线交于O 点,过O 点作EF ∥BC 交AB 、AC 于E 、F .(1)图①中有几个等腰三角形?猜想:EF 与BE 、CF 之间有怎样的关系.(2)如图②,若AB ≠AC ,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF 与BE 、CF 间的关系还存在吗?(3)如图③,若△ABC 中∠B 的平分线BO 与三角形外角平分线CO 交于O ,过O 点作OE ∥BC 交AB 于E ,交AC 于F .这时图中还有等腰三角形吗?EF 与BE 、CF 关系又如何?说明你的理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、D6、A7、A8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、233、14、145、406、4三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、33、14、(1)△AEF 、△OEB 、△OFC 、△OBC 、△ABC 共5个,EF=BE+FC ;(2)有,△EOB 、△FOC ,存在;(3)有,EF=BE-FC .5、CD 的长为3cm.6、(1)120件;(2)150元.。
人教版八年级数学下册期末考试模拟测试卷(含答案)
-人教版八年级数学下册期末考试模拟测试卷(含答案)班级 姓名 成绩(考试时间:120分钟 )一、选择题(本题共10小题,每小题3分,满分30分)1. 二次根式x -2中x 的取值范围是( )A. x >2B. x ≥2C. x <2D. x ≤2 2. 下列二次根式中,是最简二次根式的是( )13 B.2a 12D.3 3.一次函数y=kx 1(常数k <0)的图象一定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.如果一个n 边形的内角和与外角和相等,那么这个n 边形是( )A .四边形B .五边形C .六边形D .七边形5.已知三角形三边的长分别为3、2、5,则该三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定6.某同学对数据26,36,36,46,5█,52进行统计分析.发现其中一个两位数的个位数字 被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.方差C.中位数D.众数7.下列命题: ①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是( )A.1B.2C.3D.48.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23 B .23 C .721 D .7212 9.已知,在平面直角坐标系中,点A )04(,-,点B 在直线y =x +2上,当A 、B 两点间的 距离最小时,点B 的坐标是( )A .(22-,2-)B .)13(--, C.(22--,2) D .(23--,)10.如图,用长度相等的小棍摆正方形,图(1)有一个正方形,图(2)中有1大4小共5个正方形……,照此方法摆下去,第6个图中共有大小正方形的个数是( )A .91B .87C .55D .21二、填空题(本题共6小题,每小题3分,满分18分)11.16= . 12.正比例函数y =kx 的图象经过点(1,2),则k 的值为 .13.己知一组数据:0,2,x ,4,5的众数是4,那么这组数据的中位数是 .14.如图所示,在菱形ABCD 中,点E 为线段CD 的中垂线与对角线BD 的交点,连接AE ,如果∠ABC=70°,则∠AEB= 度.15.一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为 米(答案可保留根号).16.如图,矩形ABCD 中,AD=6,E 为AD 中点,点P 为对角线AC 上的一个动点,当 ∠DAC=30°时,则PE+PD 的最小值是 .三、解答题(本题共9个小题,满分72分)17.计算:(每小题4分,共8分)(1) 2918-(2) 12)2434(÷- 18.(5分)已知12,12-=+=y x ,试求22y xy x +-的值.19.(6分)如图在△ABC 中,D 为BC 边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD 的长.20.(7分)如图,已知过点)0,1(B 的直线1l 与直线2l :42+=x y 相交于点),1(a P -.(1)求直线1l 的解析式;(2)求四边形PAOC 的面积.yl 2l 1P C21.(8分)为了解学生的课外阅读情况,某校随机抽查了部分学生阅读课外书册数的情况,并绘制出如下两幅不完整的统计图.(1)抽查了________名学生了解阅读课外书册数的情况,阅读书册数的众数是______,中位数是_____________;(2)补全条形统计图;(3)若学校又补查了部分同学的课外阅读情况,得知这部分同学中课外阅读最少的是6册,将补查的情况与之前的数据合并后发现中位数并没有改变,试求最多补查了多少人?22.(8分)疫情过后地摊经济迅速兴起,小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?23.(8分)如图,矩形ABCD中,AB=8,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.24. (10分)去年我县某学校计划租用6辆客车送240名师生到县学生实训基地参加社会实践活动.现有甲、乙两种客车,它们的载客量和租金如下表.设租用甲种客车x辆,租车总费用为y元.甲种客车乙种客车载客量(人/辆)30 45租金(元/辆)200 280(1) 求出y(元)与x(辆)之间函数关系式;(2) 求出自变量的取值范围;(3) 选择怎样的租车方案所需的费用最低?最低费用多少元?25.(12分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动。
八年级下学期数学期中模拟试卷及答案-百度文库
八年级下学期数学期中模拟试卷及答案-百度文库一、选择题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB=CD ,AD=BC ;③AO=CO ,BO=DO ;④AB ∥CD ,AD=BC .其中一定能判断这个四边形是平行四边形的条件共有A .1组B .2组C .3组D .4组 2.满足下列条件的四边形,不一定是平行四边形的是( ) A .两组对边分别平行B .两组对边分别相等C .一组对边平行且相等D .一组对边平行,另一组对边相等3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定4.下列成语故事中所描述的事件为必然发生事件的是( ) A .水中捞月 B .瓮中捉鳖 C .拔苗助长 D .守株待兔5.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .4039 6.若分式5x x -的值为0,则( ) A .x =0 B .x =5 C .x ≠0 D .x ≠57.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数 100 200 300 400 500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8008.从某市5000名初一学生中,随机抽取100名学生,测得他们的身高数据,得到一个样本,则这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是()A.平均数B.中位数C.众数D.方差9.某种商品原价200元,连续两次降价a%后,售价为148元.下列所列方程正确的是()A.200(1+ a%)2=148 B.200(1- a%)2=148C.200(1- 2a%)=148 D.200(1-a2%)=148⊥交AB于点F,若10.如图所示,在矩形ABCD中,E为AD上一点,EF CE=,求AE的长( )DE=,矩形ABCD的周长为16,且CE EF2A.2B.3C.4D.6二、填空题11.如图,菱形ABCD的对角线AC、BD相交于点O,∠OBC=30°,则∠OCD=_____°.12.如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为_____.13.如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=________度.14.若关于x 的一元二次方程x 2+(2k +4)x +k 2=0没有实数根,则k 的取值范围是_____.15.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积()3m V 的反比例函数,其图像如图所示.则其函数解析式为_________.16.如图,在 ABCD 中,若∠A =2∠B ,则∠D =________°.17.如图,在矩形ABCD 中,AC 、BD 交于点O ,DE ⊥AC 于点E ,若∠AOD =110°,则∠CDE =________°.18.若点()23,在反比例函数k y x =的图象上,则k 的值为________. 19.如图,反比例函数y =xk (x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.20.已知1x ,2x ,…,10x 的平均数是a ;11x ,12x ,…,30x 的平均数是b ,则1x ,2x ,…,30x 的平均数是_________.三、解答题21.先化简:22241a a a a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a 的值代入求值.22.已知:如图,在平行四边形ABCD 中,点E 、F 在AD 上,且AE=DF求证:四边形BECF 是平行四边形.23.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?24.如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .(1)求证: △ABE ≌△CDF ;(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.25.如图,在△ABC 中,AB =AC ,点D 是边AB 的点,DE ∥BC 交AC 于点E ,连接BE ,点F 、G 、H 分别为BE 、DE 、BC 的中点.(1)求证:FG =FH ;(2)当∠A 为多少度时,FG ⊥FH ?并说明理由.26.计算:242933x x x x x ----- 27.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?28.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】如图,(1)∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形;(2)∵AB ∥CD ,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD ,∴∠BAD+∠ABC=180°,∴AD ∥BC ,∴四边形ABCD 是平行四边形;(3)∵在四边形ABCD 中,AO =CO ,BO =DO ,∴四边形ABCD 是平行四边形;(4)∵在四边形ABCD 中,AB ∥CD ,AD =BC ,∴四边形ABCD 可能是等腰梯形,也可能是平行四边形;综上所述,上述四组条件一定能判定四边形ABCD 是平行四边形的有3组.故选C.2.D解析:D【分析】根据平行四边形的判定分别对各个选项进行判断,即可得出结论.【详解】A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵两组对边分别相等的四边形是平行四边形,∴选项B不符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,另一组对边相等的四边形可能是等腰梯形或平行四边形,∴选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.3.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.4.B解析:B【解析】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件.解:A、水中捞月是不可能事件,故A错误;B 、瓮中捉鳖是必然事件,故B 正确;C 、拔苗助长是不可能事件,故C 错误;D 、守株待兔是随机事件,故D 错误;故选B .考点:随机事件.5.A解析:A【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x =中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x …2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x =, 得:1y 、2y 、3y …2020y 202040392019.52y ==, 故选:A .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 6.B解析:B【分析】直接利用分式的值为零则分子为零,分母不等于0,进而得出答案.【详解】 解:∵分式5x x-的值为0, ∴x ﹣5=0且x ≠0,解得:x =5.故选:B .【点睛】 本题考查了分式,掌握“分式值为0”时的做题方法及分式有意义的条件是解题关键.7.C解析:C【分析】随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.【详解】观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,⨯=次,故选C.所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近10000.5500【点睛】本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.8.C解析:C【解析】【分析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.【详解】由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.故选(C)【点睛】本题考查统计量的选择,解题的关键是区分平均数、中位数、众数和方差的概念与意义进行解答;9.B解析:B【分析】根据题意可得出两次降价后的售价为200(1- a%)2,列方程即可.【详解】解:根据题意可得出两次降价后的售价为200(1- a%)2,∴200(1- a%)2=148故选:B.【点睛】本题主要考查增长率问题,找准题目中的等量关系是解此题的关键.10.B解析:B【分析】易证△AEF≌△ECD,可得AE=CD,由矩形的周长为16,可得2(AE+DE+CD)=16,可求AE的长度.【详解】∵四边形ABCD为矩形,∴∠A=∠D=90°,∵EF⊥CE,∴∠CEF=90°,∴∠CED+∠AEF=90°,∵∠CED+∠DCE=90°,∴∠DCE=∠AEF ,在△AEF 和△DCE 中,A D AEF DCE EF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DCE(AAS),∴AE=DC ,由题意可知:2(AE+DE+CD)=16,DE=2,∴2AE=6,∴AE=3;故选:B .【点睛】本题考查了矩形的性质,全等三角形的性质和判定以及直角三角形的性质等知识,熟练掌握矩形的性质,证明三角形全等是解题的关键.二、填空题11.60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴AC⊥BD,∠DBC=∠BDC=30°,∴∠DOC=90°解析:60【分析】根据菱形的性质:对角线互相垂直以及平分每一组对角解答即可.【详解】解:∵菱形ABCD 的对角线AC 、BD 相交于点O ,∴AC ⊥BD ,∠DBC =∠BDC =30°,∴∠DOC =90°,∴∠OCD =90°﹣30°=60°,故答案为:60.【点睛】本题主要考查菱形的性质,熟练掌握菱形的性质是解题的关键.12.10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM=ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=,所以正方解析:10【分析】过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,易得△OCM≌△OAN;由CM=ON,OM=ON;设点C坐标(a,b),可求得A(2a﹣5,﹣a),则a=3,可求OC=10,所以正方形面积是10.【详解】解:过点C作CM⊥x轴于点M,过点A作AN⊥y轴于点N,∵∠COM+∠MOA=∠MOA+∠NOA=90°,∴∠NOA=∠COM,又因为OA=OC,∴Rt△OCM≌Rt△OAN(ASA),∴OM=ON,CM=AN,设点C(a,b),∵点A在函数y=2x﹣5的图象上,∴b=2a﹣5,∴CM=AN=2a﹣5,OM=ON=a,∴A(2a﹣5,﹣a),∴﹣a=2(2a﹣5)﹣5,∴a=3,∴A(1,﹣3),在直角三角形OCM中,由勾股定理可求得OA=10,∴正方形OABC的面积是10,故答案为:10.【点睛】本题考查了一次函数与正方形的综合,涉及全等三角形的证明,勾股定理的应用,函数的相关计算等,熟知以上知识是解题的关键.13.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC,所以∠BA′C=∠BCA′=1801804522CBD-∠-==67.5°.故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.14.k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<解析:k<﹣1【分析】根据判别式的意义得到△=(2k+4)2﹣4k2<0,然后解不等式即可.【详解】∵关于x的一元二次方程x2+(2k+4)x+k2=0没有实数根,∴△=(2k+4)2﹣4k2<0,解得k<﹣1.故答案为:k<﹣1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴.故答案为:解析:96 PV =【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V和气压p的函数解析式.【详解】设kPV=,那么点(1.6,60)在此函数解析式上,则k=1.6×60=96,∴96PV =.故答案为:96PV =.【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.16.60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解析:60【分析】根据平行四边形的基本性质可知,平行四边形的邻角互补,由已知可得,∠A=2∠B且是邻角,故可得∠B的度数,然后由“平行四边形的对角相等”的性质可得∠D=∠B,即可得出答案.【详解】解:∵四边形ABCD是平行四边形,∴∠B+∠A=180°,又∵∠A=2∠B,∴3∠B=180°,∴∠B=60°,又∵∠D=∠B,∴∠D=60°,故答案为:60.【点睛】本题主要是考查了平行四边形的性质,掌握平行四边形的相邻内角互为补角,相对内角相等是解答本题的关键.17.35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是解析:35【分析】先根据三角形外角的性质和矩形的性质得到∠OCD的度数,再根据DE⊥AC即可得到∠CDE 的度数.【详解】∵∠AOD=110°,∴∠ODC+∠OCD=110°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=∠OCD=55°,又∵DE⊥AC,∴∠CDE=180°-∠OCD-∠DEC=180°-55°-90°=35°,故答案为:35.【点睛】本题考查了矩形的性质,三角形内角和,三角形外角的性质,掌握知识点是解题关键.18.6【详解】解:由题意知:k=3×2=6故答案为:6解析:6【详解】解:由题意知:k=3×2=6故答案为:619.4【分析】设D 的坐标是,则B 的坐标是,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是,则B 的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.20.【分析】利用平均数的定义,利用数据x1,x2,…,x10的平均数为a ,x11,x12,…,x30的平均数为b ,可求出x1+x2+…+x10=10a,x11+x12+…+x30=20b,进而即可求 解析:1(1020)30a b + 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案.【详解】解:因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a ,因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b ,∴x 1,x 2,…,x 30的平均数=()1102030a b + 故答案为:1(1020)30a b +. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数. 三、解答题21.1a 2--,当1a =-时,原式1=3【分析】 本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题.【详解】 原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠,即当0a =、1、2、2-时原分式无意义,故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.22.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC ,设对角线交于点O .∵四边形ABCD 是平行四边形,∴OA=OD ,OB=OC .∵AE=DF ,OA ﹣AE=OD ﹣DF ,∴OE=OF .∴四边形BEDF 是平行四边形.23.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论.【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元, 依题意,得:10012010.8x x-=, 解得:x =5, 经检验,x =5是原方程的解,且符合题意.答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元).全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元).答:可以盈利37.5元.【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键.24.(1)见解析;(2)2AC AB =时,四边形EGCF 是矩形,理由见解析.【分析】(1)由平行四边形的性质得出AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,由平行线的性质得出∠ABE=∠CDF ,证出BE=DF ,由SAS 证明△ABE ≌△CDF 即可;(2)证出AB=OA ,由等腰三角形的性质得出AG ⊥OB ,∠OEG=90°,同理:CF ⊥OD ,得出EG ∥CF ,由三角形中位线定理得出OE ∥CG ,EF ∥CG ,得出四边形EGCF 是平行四边形,即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB=OD ,OA=OC ,∴∠ABE=∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF=12OD , ∴BE=DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩()ABE CDF SAS ∴≅(2)当AC=2AB 时,四边形EGCF 是矩形;理由如下:∵AC=2OA ,AC=2AB ,∴AB=OA ,∵E 是OB 的中点,∴AG ⊥OB ,∴∠OEG=90°,同理:CF ⊥OD ,∴AG ∥CF ,∴EG ∥CF ,∵EG=AE ,OA=OC ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∴EF ∥CG ,∴四边形EGCF 是平行四边形,∵∠OEG=90°,∴四边形EGCF 是矩形.【点睛】本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.25.(1)见解析;(2)当∠A =90°时,FG ⊥FH .【分析】(1)根据等腰三角形的性质得到∠ABC =∠ACB ,根据平行线的性质、等腰三角形的判定定理得到AD =AE ,得到DB =EC ,根据三角形中位线定理证明结论;(2)延长FG 交AC 于N ,根据三角形中位线定理得到FH ∥AC ,FN ∥AB ,根据平行线的性质解答即可.【详解】(1)证明:∵AB =AC .∴∠ABC =∠ACB ,∵DE ∥BC ,∴∠ADE =∠ABC ,∠AED =∠ACB ,∴∠ADE =∠AED ,∴AD =AE ,∴DB =EC ,∵点F 、G 、H 分别为BE 、DE 、BC 的中点,∴FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FG =12BD ,FH =12CE , ∴FG =FH ;(2)解:延长FG 交AC 于N ,∵FG 是△EDB 的中位线,FH 是△BCE 的中位线,∴FH ∥AC ,FN ∥AB ,∵FG ⊥FH ,∴∠A =90°, ∴当∠A =90°时,FG ⊥FH .【点睛】本题考查的是三角形中位线定理的应用、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.26.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案.【详解】解:原式22242969(3)3333x x x x x x x x x x --+-+-====----; 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题.27.商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【分析】设售价为x 元,则销售量为10200100.5x -⎛⎫-⨯ ⎪⎝⎭件,根据利润=数量⨯每件的利润,每天所得利润为640元列出方程,再根据利润率不得超过60%,即可得出结果.【详解】解;设售价为x 元,据题意得10(8)200106400.5x x -⎛⎫--⨯= ⎪⎝⎭ 化简得2281920x x -+=,解得112x =,216x =又8860%x -<⨯12.8x ∴≤16x ∴=不合题意,舍去12x ∴=, ∴1210200101600.5--⨯=(件). 答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.【点睛】本题考查了销售问题的数量关系的运用,不等式的性质的运用,熟悉相关性质是解题的关键.28.(1)证明见解析;(2)5AP =;(3)图见解析,7AP =,∠CAB=120°.【分析】(1)只需借助等边三角形的性质证明△ACP ≌△QBP 即可得出结论;(2)利用(1)中的全等和等边三角形的性质可求得90ABQ ∠=︒,再借助勾股定理即可求得AQ ,即AP 的值;(3)当AQ 最长时,AP 最长,此时Q 在QB 的延长线,由此得解.【详解】解:(1)证明:∵CBP ∆和APQ ∆为等边三角形,∴AP=PQ ,CP=BP ,∠CPN=∠APQ=60°,∴∠CPA=∠BPQ ,∴△ACP ≌△QBP (SAS )∴AC=BQ ;(2)∵△ACP ≌△QBP ,∴3BQ AC ==,CAP BQP ,AP AQ =, ∵APQ ∆为等边三角形,∴60PAQ AQP , ∵30CAB ∠=︒ ∴BAQ AQBCAQ CAB AQP BQP 603060CAP BQP 90=︒∴90ABQ ∠=︒, ∴2222435APAQ AB BQ ; (3)如下图,当等边△APQ 的AQ 边在AB 的延长线上时,AQ 有最大值,即AP 有最大值,由(1)得△ACP≌△QBP,∴BQ=CA=3,∠CAP=∠Q,∵△APQ为等边三角形,∴∠CAP=∠Q=60°,AP=AQ=AB+BQ=7.∴∠CAB=120°,AP=,此时∠CAB=120°.故AP最大值时,7【点睛】本题考查等边三角形的性质,全等三角形的性质和判定,三角形内角和定理,勾股定理.(1)中熟练掌握等边三角形的性质,得出∠CPA=∠BPQ是解题关键;(2)中能求得∠=︒是解题关键;(3)中能想到AQ有最大值,即AP有最大值是解题关键.ABQ90。
2021-2022学年度八年级数学下册模拟测试卷 (4083)
2021-2022学年度八年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线互相平分的四边形是平行四边形C.四条边相等的四边形是菱形D.对角线互相垂直且相等的四边形是正方形3.下列四边形中既是轴对称图形,又是中心对称图形的是()A.梯形B.等腰梯形C.平行四边形D.矩形4.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是()A.0.1 B.0.2 C.0.3 D.0.75.为了了解本校初三年级学生的体能情况,随机抽查了其中30名学生,测试1分钟仰卧起坐的次数,并将其绘制成如图所示的频数分布直方图.那么仰卧起坐次数在25~30次的频率是()A.0.4 B.0.3 C.0.2 D.0.16.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分()A.10组B.9组C.8组D.7组7.如图所示,已知AB∥CD且与MN、PQ相交,那么有()A .∠l=∠2B .∠2=∠3C .∠l=∠4D .∠3=∠48.下列方程中是一元二次方程的是( ) A .2x +1=0B .y 2+x=1C .x 2+1=0D .112=+x x9.据《武汉市2002年国民经济和社会发表统计公报》报告:武汉市2002年国内生产总值达l493亿元,比2001年增长11.8%,下列说法: ①2001年国内生产总值为l493(1-11.8%)亿元; ②2001年国内生产总值为1493111.8%-亿元;③2001年国内生产总值为1493111.8%+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是 ( ) A .③④B .②④C .①④D .①②③10.已知213y x x =-,226y x =-,当12y y =时,x 的值为( ) A .2x =或3x =B .1x =或6x =C .1x =-或6x =D .2x =-或3x =-11.2963a a a -+=-,则a 与3的大小关系是( ) A .3a <B .3a ≤C .3a >D .3a ≥12.当m <0时,2m 的结果是( )A .-1B .1C .mD .-m13.下列各式中不是二次根式的是( ) A .12+x B .4-C .0D .()2b a -评卷人 得分二、填空题14.如图,在三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C落在△ABC 内,若∠1=20°,则∠2的度数为________. 15.一元二次方程2980y -=的根是 . 16.方程25(1)40x x -+=,24b ac -的值是 .17.请你写出一个有一根为0的一元二次方程: .18.如图,直线AB ∥CD ,EF 交AB 于点M ,过点M 作EF 的垂线MN 交CD 于点N . 若∠BME=110°,则∠MND= .19.某养猪场400头猪质量的频率分布直方图如图所示,其中数据不在分点上.由图可知,质量在55.5 kg ~60.5 kg 这个组的猪最多,有 头,质量在60.5 kg 以上的猪有 头.20.在相同条件下,对30辆同一型号的汽车进行耗油1 L 所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L 所行驶路程在13.8~14.3 km 范围内的汽车共有 辆.30辆汽车耗油1 L 所行驶路程的频数分布直方图21.若某数的一个平方根是54,则这个数的另一个平方根是 . 22.在Rt △ABC 中,D 是斜边AB 上的中点, AC=1,3,则CD= . 23.已知a 是方程210x x --=的一个根,则代数式3222a a --的值为 .24.已知一个四边形的边长依次分别为a ,b ,c ,d ,且a 2+b 2+c 2+d 2=2ac+2bd ,•则此四边形为 .25.如图所示,把一个面积为1的正方形等分成两个面积为12的矩形,接着把一个面积为12的矩形等分成两个面积为14的矩形,再把一个面积为14的矩形等分成两个面积为18的矩形,如此进行下去.试利用图形揭示的规律计算:11111111248163264128256+++++++= .解答题(共40分)26.在矩形ABCD 中,对角线AC ,BD 交于点O ,∠AOB=60°,AB=3,•则•BC=.27.如图,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)28.如图,由四个全等的直角三角形拼成“赵爽弦图”.Rt ABF △中,90AFB ∠=,3AF =,AB=5.四边形EFGH 的面积是.29.把命题“两个奇数的和必为偶数”改写成“如果…那么…”的形式为___________________.30.已知四边形的三个内角的度数如图所示,则图中∠α= .评卷人 得分三、解答题31.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为 130元时,每天可销售70件,当每件商品售价高于130元时,每涨价 1 元,日销售量就减少 1件. 据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利额是多 少?(2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日AB CDE FG 12盈利可达到1600元(提示:盈利=售价-进价)?32.如图,在四边形ABCD 中,AD ∥BC ,BE ⊥AC ,DF ⊥AC ,E ,F 分别为垂足,且∠CDF=∠ABE ,试说明四边形BEDF 是平行四边形.33.填空:已知:如图,AD ⊥BC 于D ,EF ⊥BC 于F ,交AB 于G ,交CA 延长线于E ,∠1=∠2. 求证:AD 平分∠BAC ,(填写分析和证明中的空白).分析:要证明AD 平分∠BAC ,只要证明 = ,而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC 的两条垂线可推出 ∥ ,这时再观察这两对角的关系已不难得到结论.证明:∵AD ⊥BC ,EF ⊥BC (已知) ∴ ∥ ( )∴ _= __(两直线平行,内错角相等), _= _(两直线平行,同位角相等) ∵ (已知)∴ ,即AD 平分∠BAC ( )34.菱形的一边与它的两条对角线所构成的两角之比为5:4,求菱形的各内角.35.如图,在Rt △ABC 中,∠C=90°,D 为AB 边的中点,DE ⊥AC 于E ,DF ⊥BC 于F ,连结EF ,求证:EF=12AB .36.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.37.如图,在□ABCD 中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由38.如图所示.AC是□ABCD的对角线,△ABC按什么方向平移多少距离,才能得到四边形 ACED?这时四边形ACED是怎样的四边形?为什么?39.判断命题“有两边长分别为3和4的等腰三角形的周长是l0”的真假,并说明理由.40.判断命题“等腰三角形的角平分线平分对边”的真假,并给出证明.41.如图所示,□ABCD的对角线交于点0,直线l绕0点旋转与一组对边相交于E,F 点,求:(1)线段BE与DF的关系;(2)直线l把□ABCD分成的两部分的面积关系.42.如图所示,平行四边形内有一圆,请你画一直线,同时将圆和平行四边形的周长二等分(只需保留画图痕迹).43.用配方法说明,无论 x 取何值,代数式2x x-+-的值小于 0.281244.如图,张村有一片呈四边形的池塘,在它的四个角A,B,C,D处均种有一棵大树.村民准备开挖池塘建鱼池,想使池塘面积扩大一倍,又想保持大树不动,并要求扩建后的池塘成平行四边形形状,请问张村的村民能否实现这一设想?若能,•请你设计并画出图形;若不能,请说明理由.45.如图,李村有一个呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,李村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问李村能否实现这一设想?若能,请设计并画出图形;若不能,请说明理由.【参考答案】一、选择题1.D2.D3.D5.A 6.A 7.B 8.C 9.A 10.A 11.B 12.A 13.B二、填空题14.无15.无16.无17.无18.无19.无20.无22.无23.无24.无25.无26.无27.无28.无29.无30.无三、解答题31.无32.无33.无34.无35.无36.无37.无38.无39.无40.无41.无42.无43.无44.无45.无。
2021-2022学年度八年级数学下册模拟测试卷 (八一五五)
2021-2022学年度八年级数学下册模拟测试卷题号一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、选择题1.如图,在□ABCD 中,AB=BC ,对角线AC ,BD 相交于点0,E 为BC 的中点,则下列式子中 一定成立的是( )A .AC=20EB .BC=20EC .AD=DED .OB=OE2. 22(11)|11|11---,正确的结果是( )A .-11B .11C . 22D .-223.(-2)2 的结果是( )A .2B .-2C .±2D .44.计算:3÷6的结果是( )A .12B .62C .32D .2 5.将二次三项式244p p --进行配方,其结果正确的是( )A .2(2)p -B .2(2)4p -+C .2(2)4p --D . 2(2)8p --6.若24410y y x y +++-=,则xy 的值等于( )A .-6B .-2C .2D .67.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x (x+1)=2550B .x (x-1)=2550C .2x (x+1)=2550D .x (x-1)=2550×2 8.若01322=-+-p x px 是关于x 的一元二次方程则( )A .p=1B .p>0C .p ≠0D .p 为任意实数9.下列命题是假命题的有( )①两边及其夹角对应相等的两个三角形全等.②两条直线被第三条直线所截,同位角相等.③如果a>b ,b>0,那么a>0.④若两个三角形周长相等,则它们全等.A .1个B .2个C .3个D .4个10.用反证法证明“2是无理数”时,最恰当的假设是( ) A .2是分数 B .2是整数 C .2是有理数 D .2是实数11.菱形的周长为16,两邻角度数的比为1:2,则此菱形的面积为( )A .43B .83C .103D .12312.如图,DE 是△ABC 的中位线,F 是DE 的中点,BF 的延长线交AC 于点H ,则AH:HE 等于( )A .1:1B .2:1C .1:2D .3:213.如图,□ABCD 中,BC=7,CD=5,∠D=50°,BE 平分∠ABC ,则下列结论中,不.正确..的( ) A . ED= 2 B . AE= 5 C . ∠C= 130° D . ∠BED= 130°14.连结等腰梯形各边中点所得四边形是( )A .梯形B .矩形C .菱形D .正方形15.如图,梯形ABCD 的周长为60cm ,AD ∥BC ,若AE ∥DC 交BC 于E ,AD=7.5cm ,则△ABE 的周长是( )A .55cmB .45cmC .35cmD .25cm16.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( )A .4B .6C .16D .5517.顺次连接等腰梯形四边中点所得四边形是( )A .菱形B .正方形C .矩形D .等腰梯形18.如图,若将正方形分成k 个全等的长方形,其中上下各横排两个,中间竖排若干个,则k 的值为( )A .6B .8C .10D .1219.方程29x =的解是( )A .9x =B .19x =,29x =-C .3x =D .13x =,23x =-20.中字母a 的取值范围( )A . 3a <B .3a ≤C .3a >D .3a ≥ 21.下列方程中,属于一元二次方程是( )A .10x y --=B .2110x x+-= C .210x -= D .310y -= 22.下列多边形中不能够镶嵌平面的是( ) A .矩形B .正三角形C .正五边形D .正方形二、填空题 23.已知□ABCD 中,∠A 比∠B 的3倍大20°,则∠C= ,∠D= .24.用计算器探索:已知按一定规律的一组数:1,12,13,……,119,120,如果从中选出若干个数,使它们的和大于3,那么至少要选 个数.25.===,…将你猜想到的规律用一个式子来表示: .解答题26. 当2x =-时,二次三项式224x mx ++的值等于 18,那么当2x =时,这个二次三项式的值为 .27.一元二次方程(x -1)(x -2)=0的两个根为x 1,x 2,且x 1>x 2,则x 1-2x 2=_______.28.一次体检,七(1)班24名男生有2人是1.48 m ,7人身高在1.50 m 到1.60 m 之间,ll 人身高在1.60 m 至1.70 m 之问,有4人身高超过1.70 m ,最高的身高已达1.79 m ,则七(1)班男生身高的极差是 .29.为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后画出如图所示的频数分布直方图,已知图中从左到右前三个小组的频数分别是5,15,20,第—小组的频率为0.1,则参加这次测试的学生有 人,第四小组的频率是 .30.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.31.在□ABCD 中,∠A 的外角与∠B 互余,则∠D 的度数为 . 32.在12x x --中,字母x 的取值范围是 . 33.如图所示,平行四边形ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE= .34.定理“等腰三角形的两底角相等”的逆命题是 ,它是 命题(填“真或假”).35.已知□ABCD 的两条对角线相交于直角坐标系的原点.点A ,B 的坐标分别为(-1,-5),(-1,2).则C ,D 的坐标分别为 .36.△ABC 中,AB=AC ,∠A=∠C ,则∠B=_______°.37.如图,已知点E 在面积为4的平行四边形ABCD 的边上运动,若ABE △的面积为1,则点E 的准确位置是 .38.如图,在四边形ABCD 中,AD BC ∥,90D ∠=,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是 .(写出一种情况即可)39.若P(a b +,3)与P ′(-7,3a b -)关于原点对称,则关于x 的方程2202b x ax --=的解是 .40.在△ABC 和△DEF 中,①AB=DE ,②BC=EF ,③AC=DF ,④∠A=∠D ,从这四个条件中选取三个条件能判定△ABC ≌△DEF 的共有 种.评卷人得分 三、解答题41. 如图,已知 BE ⊥AD ,CF ⊥AD ,且BE=CF. 请你判断 AD 是△ABC 的中线还是角平分线?并说明理由.42.某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.(1)第五个小组的频数是多少? 图中第四个小组和第五个小组的频率各是多少?(2) 50名学生的成绩的中位数在哪一组?(3)这次测验中,八年级全体学生成绩在59.5~69.5中的人数约是多少?(4)试估计这次测验中,八年级全体学生的平均成绩?43.求证(填空):两条直线被第三条直线所截.如果同旁内角不互补,那么这两条直线不平行.已知:如图,直线12,l l 被3l 所截,∠1+∠2 180°.求证:12l l 与 .证明:假设12____l l ,则∠1+∠2 180°( )这与矛盾,故不成立.所以.44.下列定理中,哪些有逆定理?如果有逆定理,说出逆定理.(1)两组对边分别相等的四边形是平行四边形;(2)三角形的外角和等于360°;(3)等腰三角形顶角平分线、底边上的中线、底边上的高互相重合.45.如图,在四边形ABCD中,E,F,G。
2021-2022学年度八年级数学下册模拟测试卷 (八一五一)
2021-2022学年度八年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.矩形具有而一般的平行四边形不具有的特征是()A.四个角都是直角B.对边相等C.对角相等D.对角线互相平分2.下面的计算中错误..的是()A0.03± B.0.07=±C015=-=⋅D.0.133.|11|-,正确的结果是()A.-11 B.11 C. 22 D.-224.将方程2440++=的左边配成完全平方后得()y yA.2y+=D.2(2)0(2)0y-= y+=B.2(4)0(4)0y-=C.25.不解方程,判别方程22340+-=的的根情况是()x xA.有两个相等实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:57.等腰△ABC,AB=AC,AD是角平分线,则①AD⊥BC,②BD=CD,③∠B=∠C,④∠BAD=∠CAD中,正确的个数是()A.1个B.2个C.3个D.4个8.命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A .垂直 B .两条直线C .同一条直线D .两条直线垂直于同一条直线9.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.3 10.下列命题中,是假命题的为 ( ) A .任何多边形的外角和都为360°B .若△ABC 中,E ,F 分别在AB ,AC 上,且EF=12BC ,则EF ∥BC C .能单独镶嵌平面的正多边形只有正三角形,正方形,正六边形D .若在△ABC 所在的平面上有一点P ,满足PA=PB=PC ,则点P 是AABC 三边中垂线的交点11.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ) A .1B .-1C .1或-1D .2112.菱形的两条对角线长分别为6 cm ,8 cm ,那么这个菱形的周长为 ( ) A .40 cmB .20 cmC .10 cmD .5 cm13.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( ) A .150人B .300人C .600人D .900人14.样本频数分布反映了( )A .样本数据的多少B .样本数据的平均水平C .样本数据的离散程度D .样本数据在各个小范围内数量的多少 15.下列图形中,中心对称图形的是( ) A .B .C .D .16.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等 C .对角线互相平分D .对角线互相垂直17.如图,在菱形ABCD 中,对角线AC ,BD 分别等于8和6,将BD 沿CB 的方向平移,使D 与A 重合,B 与CB 延长线上的点E 重合,则四边形AECD 的面积等于( ) A .36B .48C .72D .9618.如图,在梯形ABCD 中,AD BC ∥,AB a DC b ==,,DC 边的垂直平分线EF 交BC 边于E ,且E 为BC 边的中点,又DE AB ∥,则梯形ABCD 的周长等于( )A .22a b +B .3a b +C .4a b +D .5a b + 19.在对2006个数据进行整理的频数分布表中,各组频数之和与频率之和分别等于( ) A .2006,1B .2 006,2 006C .1,2 006D .1,120.一个凸多边形的外角和等于它的内角和的一半,那么这个多边形的边数为 ( ) A .4 B . 5C .6D .7评卷人 得分二、填空题21.如果菱形的周长为24 cm ,一条较短的对角线长是6 cm ,那么两相邻内角分别为 、 .22.一块正方形钢板上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .23.将l00个数据分成8个组,如下表: 组号 l234b678频数11 14 12 13 13 x12 10则第6组的频数为 .24.已知一个样本容量为40的样本,把它分成七组,第一组到第五组的频数分别为5,12,8,5,6,第六组的频率为0.05,第七组的频率为 .25.如图,已知CD ⊥AB ,垂足为D ,∠l=30°,∠2=60°,则AC 与DE 的位置关系是 .26.在△ABC 与△ADC 中,下列3个论断:①AB=AD ;②∠BAC=∠DAC ;③BC=DC .将两个论断作为条件,另一个论断作为结论,构成一个命题,写出一个真命题: .27.能单独镶嵌平面的正多边形有 种,它们是 .28.若a ,b ,c 分别表示镶嵌平面图中公共顶点处的正多边形的内角的个数,且“a×90 °+b×120°+c×150°=360°,则a= ,b= ,c= . 29.22a aa a =--成立,则a 的取值范围是 .30.若直角三角形中两边的长分别是3和5,则斜边上的中线长是 .31.平行四边形ABCD 两条对角线交于点0. 若△BOC 的面积为 6,AB=3,则AB ,CD 间的距离为 .32.“平行四边形的对角相等”的逆命题是 ,是 命题(填“真”“假”).33.2002年上海市二月下旬每日最高气温分别为(单位:℃):13,13,12,9,11,16,12,10.则二月下旬气温的极差为 ℃.34.对某班同学的身高进行统计(单位:厘米),频数分布表中165.5~170.5这一组学生人数是10,频率为0.25,则该班共有_________名同学.35.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm 至165cm 之间的学生大约有 人.36.将两个全等的三边各不相等的三角形按不同的方式拼接成各种四边形,其中平行四边形有________个.37.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .38. 在□ABCD 中,若添加一个条件 , 则四边形ABCD 是矩形;若添加一个条件 , 则四边形ABCD 是菱形.39.观察分析,然后填空:- 2 , 2, - 6 ,2 2 ,-10 ,…,________(第n 个数). 40.平行四边形在日常生活和生产实际中有许多应用,如衣帽架,可伸缩的遮阳篷等都是根据平行四边形的 制作的. 评卷人 得分三、解答题41. 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm ,矩形ABCD 的周长为32cm ,求AE 的长.42.如图,在△ABC中,AB=AC,D是BC上的一点,以CA,CD为边作□7ACDE,连结AD,BE,试判断四边形ADBE的形状,并说明理由.43.如图,□ABCD中,E是DC中点,EA=EB,求证:四边形ABCD是矩形.44.将一块长方形木板锯掉一个角,求锯掉后剩下的多边形的内角和.45.用反证法证明“三角形三个内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是ΔABC的内角.求证:∠A,∠B,∠C中至少有一个小于或等于60º.证明:假设求证的结论不成立,即__________ ____.∴∠A+∠B+∠C>___ ____.这与三角形________________________相矛盾.∴假设不成立∴.46.写出“等腰三角形的顶角平分线垂直于底边”的逆命题,若逆命题为真,请给出证明, 若为假,请举反例说明理由.47.已知x =1是一元二次方程2400ax bx +-=的一个解,且a b ≠,求ba b a 2222--的值.48.解下列方程:(1)0252=--x x ; (2)0)52(4)32(922=--+x x (3)3)76(2)76(222=---x x x x49. 用配方法解方程: (1)2450x x +-=; (2)(1)(21)3m m -+=50.已知正方形和圆的面积均为s .求正方形的周长1l 和圆的周长2l (用含s 的代数式表示),并指出它们的大小.【参考答案】一、选择题1.A2.A3.B4.C5.B6.C7.D8.D9.C10.B11.B12.B13.B14.D15.B16.C17.A19.A 20.C二、填空题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无31.无32.无33.无34.无36.无37.无38.无39.无40.无三、解答题41.无42.无43.无44.无45.无46.无47.无48.无49.无50.无。
【3套试卷】新人教版八年级(下)期末模拟数学试卷及答案
A.x=-1或x=1 B.x=0 C.x=1 D.x=-12.点M为数轴上表示-2的点,将点M沿数轴向右平移5个单位到点N,则点N表示的数是()A.3 B.5 C.-7 D.3或-73.已知a,b.c均为实数,a<b,那么下列不等式一定成立的是()A.a-b>0 B.-3a<-3bC.a|c|<b|c| D.a(c2+1)<b(c2+1)4.计算(-2)100+(-2)99的结果是()A.2 B.-2 C.-299D.2995.已知点P(2a+1,1-a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.A.B C.3 D.47.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.1010202x x-=B.1010202x x-=C.1010123x x-=D.1010123x x-=8.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S316.如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.17.如图,已知直线y=kx-3经过点M,直线与x轴,y轴分别交于A,B两点.(1)求A,B两点坐标;(2)结合图象,直接写出kx-3>1的解集.18.阅读:分解因式x2+2x-3解:原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:分解因式:x2-y2-8x-4y+12.19.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?20.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.21.旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?初步应用:(2)如图2,在△ABC纸片中剪去△CDE,得到四边形ABDEA,∠1=130°,则∠2-∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可接使用,不需说明理由.)参考答案与试题解析1.【分析】直接利用分式的值为0,则分子为0,分母不能为0,进而得出答案.【解答】解:∵分式211xx-+的值为零,∴x2-1=0,x+1≠0,解得:x=1.故选:C.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.2.【分析】根据在数轴上平移时,左减右加的方法计算即可求解.【解答】解:由M为数轴上表示-2的点,将点M沿数轴向右平移5个单位到点N可列:-2+5=3,故选:A.【点评】此题主要考查点在数轴上的移动,知道“左减右加”的方法是解题的关键.3.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a<b,∴a-b<0,故本选项错误;B、∵a<b,∴-3a>-3b,故本选项错误;C、当c=0时,a|c|=b|c|,故本选项错误;D、∵a<b,c2+1>0,∴a(c2+1)<b(c2+1),故本选项正确.故选:D.【点评】本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.【分析】根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.【解答】解:原式=(-2)99[(-2)+1]=-(-2)99=299,故选:D.【点评】本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.5.【分析】根据点在坐标系中位置得关于a的不等式组,解不等式组求得a的范围,即可判断.【解答】解:根据题意,得:21010aa+-⎧⎨⎩>①>②,解不等式①,得:a>-12,解不等式②,得:a<1,∴该不等式组的解集为:-12<a<1,故选:C.【点评】本题考查的是解一元一次不等式组,根据题意准确列出不等式组,求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【分析】根据平行四边形的性质可知,OA=OC,OB=OD,由AC:BD=2:3,推出OA:OB=2:3,设OA=2m,OB=3m,在Rt△AOB中利用勾股定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AC:BD=2:3,∴OA:OB=2:3,设OA=2m,BO=3m,∵AC⊥BD,∴∠BAO=90°,∴OB2=AB2+OA2,∴9m2=5+4m2,∴m=±1,∵m>0,∴m=1,∴AC=2OA=4.故选:D.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,学会设未知数,把问题转化为方程去思考,属于中考常考题型.7.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,1010123 x x-=,故选:C.【点评】本题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.8.分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=12(a+c)(a-c)=12a2-12c2,∴S2=S1-12S3,∴S3=2S1-2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1-2S2=4S1.故选:A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.9.【分析】已知等式左边通分并利用同分母分式的加法法则计算,再利用分式相等的条件求出A与B的值,代入原式计算即可得到结果.【解答】解:已知等式整理得:(2)(1)34(1)(2)(1)(2)A xB x xx x x x-+--=----,可得(A+B)x-2A-B=3x-4,即324 A BA B+=⎧⎨+=⎩,解得:A=1,B=2,则3A+2B=3+4=7.故答案为:7【点评】此题考查了分式的加减法,以及分式相等的条件,熟练掌握运算法则是解本题的关键.10.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2-1)=a(a+1)(a-1),故答案为:a(a+1)(a-1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.【分析】根据代数式3x−14的值不大于代数式13x-2的值,即可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,取期内的最大整数值,此题得解.【解答】解:由已知得:3x−14≤13x-2,解得:x≤-21 32.∵-1<-2132<0,故答案为:-1.【点评】本题考查了一元一次不等式的整数解,解题的关键是根据代数式3x−14的值不大于代数式13x-2的值得出关于x 的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.12. 【分析】两个阴影图形可以平移到一个长方形中去,故根据长方形面积公式计算. 【解答】解:两个阴影图形可以平移组成一个长方形,长为15-2=13,宽为8, 故阴影部分的面积=13×8=104.【点评】本题主要考查平移的性质,把复杂的问题化简单.13. 【分析】先根据平行四边形的性质,求得∠C 的度数,再根据四边形内角和,求得∠EAF 的度数.【解答】解:∵平行四边形ABCD 中,∠B=50°, ∴∠C=130°,又∵AE ⊥BC 于E ,AF ⊥CD 于F ,∴四边形AECF 中,∠EAF=360°-180°-130°=50°, 故答案为:50°.【点评】本题主要考查了平行四边形的性质,解题时注意:平行四边形的邻角互补,四边形的内角和等于360°.14. 【分析】根据f (x )求出f (1x ),进而得到f (x )+f (1x )=1,原式结合后,计算即可求出值.【解答】解:∵x >0,规定()1xf x x =+, ∴111111x f x x x⎛⎫== ⎪+⎝⎭+,即1111()1,(1)1112x x f x f f x x x x +⎛⎫+=+=== ⎪+++⎝⎭,则原式=1111(2019)(2018)(2)(1)20182019201822f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫++++⋯+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦,故答案为:201812.【点评】此题考查了分式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.15. 【分析】根据分式的加法和除法可以化简题目中的式子,然后在0,-1,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:2344111a a a a a -+⎛⎫-+÷ ⎪++⎝⎭=23(1)(1)11(2)a a a a a --++⋅+-=2(2)(2)11(2)a a a a a +-+⋅+- =22a a +--, 当a=0时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 16. 【分析】(1)根据平行四边形的性质得出AB=CD ,AB ∥CD ,根据平行线的性质得出∠ADE=∠CBF ,求出∠AED=∠CFB=90°,根据AAS 推出△ADE ≌△CBF 即可; (2)证出AE ∥CF ,即可得出结论.【解答】证明:(1)∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∴∠ADE=∠CBF , ∵AE ⊥BD ,CF ⊥BD , ∴∠AED=∠CFB=90°, 在△ADE 和△CBF 中,ADE CBF AED CFB AD CB ∠∠∠∠⎧⎪⎨⎪⎩===, ∴△ADE ≌△CBF (AAS ), ∴AE=CF .(2)∵AE ⊥BD ,CF ⊥BD , ∴AE ∥CF ,由(1)得AE=CF,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;熟练掌握平行四边形的性质,解此题的关键是证明△ADE≌△CBF.17.【分析】(1)把点M的坐标代入直线y=kx-3,求出k的值.然后让横坐标为0,即可求出与y轴的交点.让纵坐标为0,即可求出与x轴的交点;(2)利用函数图象进而得出kx-3>1的解集.【解答】解:根据图示知,直线y=kx-3经过点M(-2,1),∴1=-2k-3,解得:k=-2;∴当x=0时,y=-3;当y=0时,x=-32,则A(-32,0),B(0,-3);(2)kx-3>1的解集为:x<-2.【点评】本题考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征,正确利用函数图象分析是解题关键.18.【分析】仿照阅读材料中的方法将原式变形,分解即可.【解答】解:x2-y2-8x-4y+12=(x2-8x+16)-(y2+4y+4)=(x-4)2-(y+2)2=(x-4+y+2)(x-y-y-2)=(x+y-2)(x-2y-2).【点评】此题考查了因式分解-十字相乘法,运用公式法,以及分组分解法,熟练掌握因式分解的方法是解本题的关键.19.【分析】(1)可设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,根据第二批这种衬衫单价贵了10元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【解答】解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有132002880010+=,2x x解得x=120,经检验,x=120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件.(2)3x=3×120=360,设每件衬衫的标价y元,依题意有(360-50)y+50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元.【点评】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.20.【分析】(1)由于∠PCB=∠BCQ=45°,故有∠PCQ=90°.(2)由等腰直角三角形的性质知,,根据已知条件,可求得AP,PC的值,再由勾股定理求得PQ的值.(3)由于△PBQ也是等腰直角三角形,故有PQ2=2PB2=PA2+PC2.【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CBQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有,,∴PQ==.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有2PB2=PA2+PC2.【点评】本题利用了旋转的性质,等腰直角三角形的性质,勾股定理求解.21.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)延长BA、CD相交于点Q,先用∠Q表示出∠P,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°-∠ABC+180°-∠ACB=360°-(∠ABC+∠ACB)=360°-(180°-∠A)=180°+∠A;(2)∵∠1+∠2=∠180°+∠C,∴130°+∠2=180°+∠C,∴∠2-∠C=50°;(3)∠DBC+∠ECB=180°+∠A,∵BP、CP分别平分外角∠DBC、∠ECB,∴∠PBC+∠PCB=12(∠DBC+∠ECB)=12(180°+∠A),在△PBC中,∠P=180°-12(180°+∠A)=90°-12∠A;即∠P=90°-12∠A;故答案为:50°,∠P=90°-12∠A;(4)延长BA、CD于Q,则∠P=90°-12∠Q,∴∠Q=180°-2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°-2∠P,=360°-2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.最新八年级下学期期末考试数学试题(答案)一、选择题(本大题共10小题,每小题3分,共30分,每小题中均有四个结论供选择,其中只有一个结论是正确的,请将你选择的结果涂在答题卡上对应位置)1.如果直线y=kx+b经过一、二、四象限,则有()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<02.下列计算正确的是()=A=B.3C2=D=3.下列长度的三条线段,能成为一个直角三角形的三边的一组是()A B.1,2C.2,4D.9,16,254.为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同的条件下各射靶10次,为了比较两人的成绩,制作了如下统计表:若想选拔一位成绩稳定的选手参赛,则表中几个数据应该重点关注的是()A.中位数B.平均数C.方差D.命中10环的次数5.如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是()A.x<-2 B.x>-2 C.x<-4 D.x>-46.如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是()A.B.C.D.7.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为()A.10cm B.13cm C.15cm D.24cm8.如图,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分线分别交AB、AC于点D、E.则以下AE与CE的数量关系正确的是()A.CE B.C.AE=32CE D.AE=2CE9.某灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡.它们的使用寿命如下表所示:这批灯泡的平均使用寿命是()A.1120小时B.1240小时C.1360小时D.1480小时10.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A B C.D.二、填空题(每小题3分,共15分,请将结果写在答题卡上对应位置)y=x的取值范围是.11.函数12.点A(-1,y1),B(2,y2)均在直线y=-2x+b的图象上,则y1y2(选填“>”<”=”)13.为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:则这10双运动鞋尺码的众数和中位数分别为.14.如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为.15.已知:如图,正方形ABCD中,对角线AC和BD相交于点O.E、F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为cm.三、解答题(共8小题,75分,请将解题过程写在答题卡上对应位置)16.17.一次函数y=-2x+2分别交x轴、y轴于点A、B,画图并求线段AB的长.18.如图,在平行四边形ABCD中,点E,F分别是边AD,BC上的点,且AE=CF,求证:AF=CE.19.如图,已知直线l1的解析式为y1=-x+b,直线l2的解析式为:y2=kx+4,l1与x轴交于点B,l1与l2交于点A(-1,2).(1)求k,b的值;(2)求三角形ABC的面积.20.为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为;(2)扇形统计图中植树为1株的扇形圆心角的度数为;(3)该班同学植树株数的中位数是(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识,判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果21.直线AB:y=-x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.(1)求点B的坐标.(2)求直线BC的解析式.(3)直线EF的解析式为y=x,直线EF交AB于点E,交BC于点F,求证:S△EBO=S△FBO.22.如图,矩形ABCD中,点E,F分别在边AB与CD上,点G、H在对角线AC上,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)若EG=EH,AB=8,BC=4.求AE的长.23.某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过7500元,且其中A种服装不少于65件,它们的进价和售价如表.其中购进A种服装为x件,如果购进的A、B两种服装全部销售完,根据表中信息,解答下列问题.(1)求获取总利润y元与购进A种服装x件的函数关系式,并写出x的取值范围;(2)该商场对A种服装以每件优惠a(0<a<20)元的售价进行优惠促销活动,B种服装售价不变,那么该商场应如何调整A、B服装的进货量,才能使总利润y最大?2018-2019学年河南省许昌市长葛市八年级(下)期末数学试卷参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分,每小题中均有四个结论供选择,其中只有一个结论是正确的,请将你选择的结果涂在答题卡上对应位置)1.【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选:C.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A A选项错误;B、原式,所以B选项错误;C、原式C选项错误;D、原式=D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A2+)2≠(2,∴不能构成直角三角形,故本选项错误;B、∵12+2=22,∴能构成直角三角形,故本选项正确;C、∵22+)2≠42,∴不能构成直角三角形,故本选项错误;D、∵92+162≠252,∴不能构成直角三角形,故本选项错误.故选:B.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.4.分析】方差是反映一组数据的波动大小,比较甲、乙两人的成绩的方差作出判断.【解答】解:∵S甲=3.7<S乙=5.4,∴应选择甲去参加比赛,故选:C.【点评】本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.5.【分析】以交点为分界,结合图象写出不等式kx<ax+b的解集即可.【解答】解:函数y=kx和y=ax+b的图象相交于点P(-4,-2).由图可知,不等式kx<ax+b的解集为x<-4.故选:C.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.6.【分析】根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.【解答】解:由题意和图形可知,从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,故选:C.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以10cmAC==,因为菱形ABCD的面积为120cm2,所以212024cm10BD⨯==,所以菱形的边长13cm=.故选:B.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.8.【分析】首先连接BE,由在△ABC中,∠C=90°,∠A=30°,可求得∠ABC的度数,又由AB的垂直平分线交AB于点D,交AC于点E,根据线段垂直平分线的性质,可得AE=BE,继而可求得∠CBE的度数,然后由含30°角的直角三角形的性质,证得AE=2CE.【解答】解:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE,故选:D.【点评】此题考查了线段垂直平分线的性质、直角三角形的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.【分析】先用每组的组中值表示这组的使用寿命,然后根据加权平均数的定义计算.【解答】解:根据题意得:1100(800×30+1200×30+1600×40)=1100×124000=1240(h).则这批灯泡的平均使用寿命是1240h.故选:B.【点评】本题考查了加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.10.【分析】如图,作EH⊥x轴于H,连接CE.利用全等三角形的性质证明∠ECH=45°,推出点E在直线y=x-3上运动,作OE′⊥CE,求出OE′的长即可解决问题;【解答】解:如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在直线y=x-3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=3,∴,.∴OE的最小值为2故选:A.【点评】本题考查旋转变换,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,垂线段最短,一次函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.二、填空题(每小题3分,共15分,请将结果写在答题卡上对应位置)11.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1>0,解得x>-1.故答案为:x>-1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】函数解析式y=-2x+b知k<0,可得y随x的增大而减小,即可求解.【解答】解:y=-2x+b中k<0,∴y随x的增大而减小,∵-1<2,∴y1>y2,故答案为>.【点评】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.13.【分析】本题考查统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:数据26出现了3次最多,这组数据的众数是26,共10个数据,从小到大排列此数据处在第5、6位的数都为26,故中位数是26.故答案为:26,26.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.14.【分析】只要证明∠EAD=90°,想办法求出∠FAD即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠ADC=66°,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠EAD=90°,∵EF=FD,∴FA=FD=EF,∵∠EDC=44°,∴∠ADF=∠FAD=22°,∴∠EAF=90°-22°=68°,故答案为68°【点评】本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】连接EF,根据条件可以证明△OED≌△OFC,则OE=OF,CF=DE=3Ccm,则==.AE=DF=4,根据勾股定理得到5cm【解答】解:连接EF,∵OD=OC,∵OE⊥OF∴∠EOD+∠FOD=90°∵正方形ABCD∴∠COF+∠DOF=90°∴∠EOD=∠FOC而∠ODE=∠OCF=45°∴△OFC≌△OED,∴OE=OF,CF=DE=3cm,则AE=DF=4,根据勾股定理得到=5cm.故答案为5.【点评】根据已知条件以及正方形的性质求证出两个全等三角形是解决本题的关键.三、解答题(共8小题,75分,请将解题过程写在答题卡上对应位置)16.【分析】直接利用乘法公式以及二次根式的性质分别计算得出答案.【解答】解:原式-(5-3)=3-2=1.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.17.【分析】先分别求出A、B两点的坐标,再过A、B两点画直线,得出一次函数y=-2x+2的图象,然后根据勾股定理求出线段AB的长.【解答】解:∵y=-2x+2,∴y=0时,-2x+2=0,解得x=1,x=0时,y=2,∴A(1,0),B(0,2),一次函数y=-2x+2的图象如图所示:∵OA=1,OB=2,∴【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-kx,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了勾股定理.18.【分析】根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵AE=CF,∴四边形AECF为平行四边形,∴AF=CE.【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.19.【分析】(1)利用待定系数法求出k,b的值;(2)先根据两个函数解析式计算出B、C两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵l1与l2交于点A(-1,2),∴2=-k+4,2=1+b,解得k=2,b=1;(2)当y=0时,2x+4=0,解得x=-2,。
2021-2022学年度八年级数学下册模拟测试卷 (50)
2021-2022学年度八年级数学下册模拟测试卷 考试范围:八年级下册数学;满分:100分;考试时间:100分钟;出题人;数学教研组题号一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分 一、选择题1.已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ( )A .总是奇数B .总是偶数C .有时是奇数,有时是偶数D .有时是有理数,有时是无理数 2.下列说法中错误的是( )A .同一底上两个角相等的梯形是等腰梯形B .对角线相等的四边形是等腰梯形C .是轴对称图形的梯形一定是等腰梯形D .直角梯形一定不是等腰梯形3.如图,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A=125°,则∠BCE=( )A .55°B .35°C .25°D .30°4.矩形具有而一般的平行四边形不具有的特征是( )A .四个角都是直角B .对边相等C .对角相等D .对角线互相平分5.如图,在□ABCD 中,AB=BC ,对角线AC ,BD 相交于点0,E 为BC 的中点,则下列式子中 一定成立的是( )A .AC=20EB .BC=20EC .AD=DED .OB=OE6.如图所示,△ABC中,D,E分别是边BC,AC的中点,若DE=3,则AB等于()A.32B.6 C.9 D.947.下列命题属于假命题的个数是()①如果a是实数,那么20a>;②直角都相等;③三角形三内角之和等于180°;④关于x的方程ax b=的根是bxa =;⑤在同一平面内不相交的两条直线必平行.A.1个B.2个C.3个D.4个8.已知样本10.8.6,10,8,13,ll,10,1 2,7,9, 8,12,9,11,12,9,10,11,10,那么在频数分布表中,频率为0.3的组是()A.5.5~11.5 B.7.5~9.5 C.9.5~11.5 D.11.5~l3.5 9.方程22410x x-+=的根是()A.22+B.22+22-C22-D232±10.已知222y y+-的值为 3,则2421y y++的值为()A.1O B.11 C.10 或 11 D.3 或 1111.方程2850x x-+=的左边配成完全平方后所得的方程是()A.2(6)11x-=B.2(4)11x-=C.2(4)21x-=D.以上答案都不对12.82的结果是()A6B.2D. 1.413.小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm,再展开后,在纸上形成的两条折痕之间的距离是()A .0.5cmB .1cmC .1.5cmD .2cm14.如图,当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE =( )A .60︒B .67.5︒C .72︒D .75︒ 评卷人得分 二、填空题15.等腰直角三角形一条直角边的长为1cm ,那么它斜边上的高长是________cm .16.一元二次方程2980y -=的根是 .17. 关于x 的方程22220x ax a b ++-=的根为 . 18. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac - 0)19.在实数范围内定义运算“☆”,其规则为:a ☆b=22a b -,则方程(4☆3)☆x=13的解为x= .20.□ABCD 中,∠A :∠B8:∠C=2:3:2,则∠D= .21. 已知1x =是一元二次方程2210x mx -+=的一个根,则 m= .22.已知菱形的一个内角为120°,且平分这个内角的一条对角线长为4 cm ,则这个菱形的面积为 .23.如果一个三角形的三边长分别为1,k ,3,化简7-4k 2-36k +81 -∣2k -3∣的结果是 .24.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式 .25.在四边形ABCD 中,若∠A =∠C =90°,∠B =60°,则∠D = °.26.如图,四边形ABCD 是各边长都大于2,分别以它的顶点为圆心,1为半径画弧(弧的端点分别在四边形的相邻两边上),则这四条弧长的和是_________.27.写出“在一个三角形中,等边对等角”命题的逆命题 .28.五边形的内角和等于 度.29.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是__________(•填一个你认为正确的条件).30.四边形ABCD 中,∠A=70°,欲使此四边形为平行四边形,那么∠B= ,∠C= .三、解答题31.判断命题“两边及第三边上的高分别对应相等的两个三角形全等”的真假,并给出证明.32.物体自由下落时,下落距离 h(m)可用公式25h t =来估计,其中 t(s)表示物体下落所经过的时间,一个物体从 120 m 的塔顶自由下落,落到地面需多长时间 (精确到0.1 s)?33.已知n m ,是实数,且155+-+-=n n m ,求n m 32-的值.34.一个两位数,十位上的数字与个位上的数字之和为5,把这个两位数的十位上的数字与个位上的数字对调后,所得的新的两位数与原来的两位数的积是736,求原来的两位数.35.一个直角三角形的三边长是连续整数,求这三条边的长.36.已知关于x 的方程01)1(22=+-++-m m x x m 有一个根为-1,分析根的情况,并求出方程所有的根.37.某单位于“三·八”妇女节期间组织女职工到温泉“星星竹海”观光旅游,下面是领队与旅行社导游就收费标准的一段对话:领导:组团去“星星竹海”旅游每人收费是多少?导游:如果人数不超过25人,人均旅游费用为100元.领导:超过25人怎样优惠呢?导游:如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览“星星竹海”结束后,共支付给旅行社2700元.请你根据上述信息,求该单位这次到“星星竹海”观光旅游的共有多少人?38.解下列方程(1)9)12(2=-x (2)0732=-x x(3)3x 2+2x -4=039.某商店在销售中发现:某品牌童装平均每天可售出20件,每件赢利40元.为了迎“六一”儿童节,商场决定适当地降价,以扩大销售量,增加赢利,经市场调查发现,如果每件童装每降低l 元,那么平均每天就可多售出2件,要想平均每天在销售这种童装上赢利1200元,那么每件童装应降价多少元?40.举反例说明下列命题是假命题:(1)一个锐角与一个钝角的和等于一个平角;(2)若一个数能被2整除,则这个数也能被4整除.41.如图,在矩形ABCD中,AB=4 cm,BC=8 cm,将图形折叠,使点C与点A重合,折痕为EF.判断四边形AECF的形状,并说明理由.42.已知:a是有理数,且a=0,b是无理数,求证:ab是无理数.43.用两种不同的瓷砖密铺地面,请你设计三种不同的铺设方案.画出示意图.44.如图①所示,已知AE是△ABC的高,F是AE上的任意一点,G是E点关于F的对称点,过点G作BC的平行线与AB交于点H,与AC交于点I,连结IF并延长交BC于点J,连结HF并延长交BC于点K.(1)请你在图②中再画出一个满足条件的四边形HJKI(点F的位置与图①不同);(2)请你判断四边形HJKl是怎样的四边形?并对你得到的结论予以证明(图②供思考用).45.如图,在△ABC中,D为BC延长线上一点,且DA⊥BA于A,AC=12 BD.求证:∠ACB=2∠B.46.如图,菱形OABC的边长为4,∠AOC=60°,点A在x轴负半轴上,求菱形各顶点的坐标.47.某生产车间40名工人的日加工零件数(件)如下:30,26,42,41,36,44,40,37,43,35,37,25,45,29,43,31,36,49,34,47, 33,43,48,42,32,25,30,4奄,29,34,38,46,43,39,35,40,48,33,27,28.(1)根据以上数据分成如下5组:25~30,30~35,35~40,40~45,45~50,绘制频数分布表、频数分布直方图和折线图;(2)求工人的平均日加工零件数(取整数).48.已知□ABCD中,AC,BD交于点O,EF经过点O,与AB交于点E,与CD交于点F.G,H分别是AO和CO的中点,求证:四边形EHFG是平行四边形.49.如图,对角线是宽的两倍的同样大小的两个矩形拼成L型图案.求∠AFH,∠DCH,∠FHD的度数.50.如图,已知∠1=∠2,求证:AB∥CD.【参考答案】一、选择题1.无2.B3.B4.A5.B6.B7.B9.B 10.B 11.B 12.C 13.无14.无二、填空题15.无16.无17.无18.无19.无20.无21.无22.无23.无24.无26.无27.无28.无29.无30.无三、解答题31.无32.无33.无34.无35.无36.无37.无38.无39.无40.无41.无42.无43.无44.无45.无46.无47.无48.无49.无50.无。
2021-2022学年度八年级数学下册模拟测试卷 (1355)
2021-2022学年度八年级数学下册模拟测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.已知四边形ABCD 的四边分别是a ,b ,c ,d ,其中a ,c 是对边,且222222a b c d ac bd +++=+,则四边形ABCD 是( )A .平行四边形B .对角线相等的四边形C .任意四边形D .对角线互相垂直的四边形2.已知等腰三角形的腰长为 3,则此等腰三角形的面积为( )A .2B .4C .2D .43.某商场的营业额2002年比2001年上升10%,2003年比2002年又上升l0%,而2004年和2005年连续两年平均每年比上年降低10%,那么2005年的营业额比2001年的营业额 ( ) A .降低了2%B .没有变化C .上升了2%D .降低了l .99%4.若12+x 与12-x 互为倒数,则实数x 为( ) A .±21B .±1C .±22D .±25.在①正三角形;②平行四边形;③长方形;④等腰三角形中既是轴对称图形又是中心对称图形的是 ( ) A .①②④B .③C .③④D .②④6.下列图形中,既是中心对称图形又是轴对称图形的是( )7.若化简︱1-x ︱- 1682+-x x 的结果是2x -5,则的取值范围是( ) A .x 为任意实数B .1≤x ≤4C .x ≥1D .x ≤18.若一个三角形的一个外角等于其中的一个内角,则这个三角形是( ) A .等腰三角形B .正三角形C .直角三角形D .不存在9.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小 组的4位同学拟定的方案,其中正确的是( ) A .测量对角线是否相互平分 B .测量两组对边是否分别相等 C .测量两组对角线是否垂直 D .测量其中三个角是否都为直角10.四边形ABCD 的对角线AC ,BD 相交于点0,能判断它是矩形的是 ( ) A .A0=C0,BO=DOB .AB=BC ,AO=CO C .A0=C0,B0=D0,AC ⊥BDD .AO=BO=CO=D011.将100个数据分成8个组,如下表:组号 1 2 3 4 5 6 7 8 频数1114121313x1210则第六组的频数为( ) A .12B .13C .14D .1512.□ABCD 的四个内角度数的比∠A :∠B :∠C :∠D 可以是( ) A .2:3:3:2B .2:3:2:3C .1:2:3:4D .2:2:1:113.如图,在等腰梯形ABCD 中,AD ∥BC ,AC ,BD 相交于点0. 有下列四个结论:①AC=BD ;②梯形ABCD 是轴对称图形;③∠ADB=∠DAC ;④△AOD ≌△ABO. 其中正确的是( ) A . ①③④B . ①②④C . ①②③D . ②③④14.下列计算中正确的是( )A .2 3 +3 2 =5 5B . 2 ·(-2)×(-4) =-4 ×-4 =(-2)×(-2)=4C . 6 ÷( 3 -1)= 6 ÷ 3 - 6 ÷1= 2 - 6D .(10 +3)2(10 -3)=10 +315.有下列四个命题:⑴对顶角相等;⑵同位角相等;⑶有两边和其中一边的对角对应相等的两个三角形全等;⑷平行于同一条直线的两直线平行.其中真命题有( ) A .1个B .2个C .3个D .4个16.下列命题中,属于假命题的是( )①如果两个三角形的面积不相等,那么这两个三角形不可能全等; ②如果两个三角形不全等,那么这两个三角形面积一定不相等;③如果两个三角形的三个角对应相等,并且其中一个三角形的两条边与另一个三 角形的两条边分别相等,那么这两个三角形全等;④有一条边和一个角分别相等的两个直角三角形全等. A .① B .①②④C .②③④D .②④二、填空题17.已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成 组. 18.已知:251,251+=-=y x ,求2xyy x ++的值. 19.|3|0b -=,那么以a ,b 为边长的等腰三角形的周长为 . 20. 已知-1 是关于x 的方程221030x mx m --=的一个根,则m= .21. 在实数范围内定义一种运算“*”,其规则为22a b a b *=-,根据这个规则,方程(2)50x +*=的解为 .22.阅读材料:设一元二次方程20ax bx c ++=的两根为1x ,2x ,则两根与方程系数之间有如下关系:12bx x a+=-,a c x x =⋅21.根据该材料填空:已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为 .23.为了了解某中学九年级250名学生升学考试的数学成绩,从中抽取了50名学生的数学成绩进行分析,下面是50名学生数学成绩的频数分布表. 频数分布表根据题中给出的条件回答下列问题:(1)在这次抽样分析的过程中,样本是;(2)补全频数分布表中的空白之处;(3)在这次升学考试中,该校九年级数学成绩在90.5~100.5分范围内的人数约为人.24.如图,∠3=∠时,AF∥BE,理由是.∠2=∠时,FC∥DE,理由是.25.平行四边形ABCD的两条对角线AC与BD相交于点0,已知AB=8 cm,BC=6 cm,△AOB的周长是l8 cm,那么△AOD的周长是.26.如图,正方形ABCD经平移后成成为正方形CEFG,则该图形为对称图形,对称中心为,D点的对称点为,C点的对称点为,图中三点在一直线上的有.27.在直角坐标系内.点 P(-2,26到原点的距离为.28.Rt△ABC中,AB=AC,∠A=90°,D是BC的中点,AD=2,则AC= .29.在一组数据中,最大值为 99,最小值是28. 据的极差为 .30.在△ABC和△DEF中,①AB=DE;②BC=EF;③AC=DF;④∠A=∠D.从这四个条件中选取三个条件能判定△ABC≌△DEF的方法共有种.解答题31.在□ABCD中,∠A比∠B大20°,则∠C为度.32.如图,已知点E 在面积为4的平行四边形ABCD 的边上运动,若ABE △的面积为1,则点E 的准确位置是 .33.在□ABCD 中,∠A :∠B :∠C=2:3:2,则∠D= .34.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边形的周长为 .35.已知□ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =2,DE =1,则□ABCD 的周长等于______.36.已知正方形的边长为a ,则正方形内任意一点到四边的距离之和为 .37.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C ,D 分别落在C D '',的位置上,EC '交AD 于点G .已知∠EFG=58°,那么∠BEG= °.38.命题“等腰三角形是轴对称图形”的逆命题是 (真或假)命题. 39.已知□ABCD 中,∠A 比∠B 的3倍大20°,则∠C= ,∠D= . 评卷人 得分三、解答题40.如图,在直角梯形ABCD 中,AD ∥BC ,∠C= 90°,BC=16,DC= 12,AD=21. 动点P 从点D 出发,沿射线DA 的方向以每秒 2个单位长度的速度运动,动点 Q 从点C 出发,在线段CB 上以每秒 1个单位长度的速度向点 B 运动,点P ,Q 分别从点D ,C 同时出发,当点Q 运动到点B 时,点P 随之停止运动. 设运动的时间为t (s). (1)当 t =2s 时,求△BPQ 的面积;(2)若点A ,B ,Q ,P 构成的四边形为平行四边形,求运动时间 t ; (3)当 t 为何值时,以B ,P ,Q 三点为顶点的三角形是等腰三角形?41.如图,菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,AE=ED ,求∠EBF 的度数.42.求证:顺次连结四边形各边中点所得的四边形是平行四边形.43.如图,AB∥DE.(1)猜测∠A,∠ACD,∠D有什么关系,并证明你的结论;(2)若点 C向右移动到线段AD 的右侧,此时∠A,∠ACD,∠D之间的关系,仍然满足(1)中的结论吗?若符合,请你证明;若不符合,请你写出正确的结论并证明(要求:画出相应的图形).44.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.45.如图所示,在□ABCD中,对角线AC,BD交于点0,BD=2AD,E,F,G分别是OA,OB,DC的中点.求证:(1)DE ⊥AC;(2)EF=EG.46.如图,折叠矩形的一边AD,使D落在BC边上的点F处,已知AB=8 cm,BC=10 cm,求EC的长.47.如图所示,四边形ABCD中,对角线AC和BD相交于点0,且OA=0C,BA⊥AC,DC⊥AC,垂足分别为A,C.求证:四边形ABCD是平行四边形.48.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):数据段(km)频数频率30~40100.0540~503650~600.3960~7070~80200.10总计1注:30~40为时速大于等于30 km而小于40 km,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此地汽车时速不低于60 km即为违章,则违章车辆共有多少辆?49.某乡计划修一条横断面为等腰梯形的水渠,横断面面积为l0.5 m2,上口比底宽3 m ,比深多2 m,求上口应挖多宽.50.选用适当的方法解下列方程:(1)(1)(65)0+-=;x x(2)2430--=;x x(3)2+=+;x x x2(5)(5)2x-243220【参考答案】一、选择题1.A2.B4.C 5.B 6.A 7.B 8.C 9.D 10.D 11.D 12.B 13.C 14.D 15.B 16.D二、填空题17.无18.无19.无21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无31.无32.无33.无34.无35.无36.无37.无38.无39.无三、解答题40.无41.无42.无43.无44.无45.无46.无47.无48.无49.无50.无。
【人教版】初二数学下期末一模试卷带答案
一、选择题1.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是( ) A .15,15B .15,15.5C .15,16D .16,152.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定4.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”5.在平面直角坐标系中,横坐标和纵坐标都是整数的点叫整点,已知直线()1:20l y mx m =+<与直线2:4l y x =-,若两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,则m 的取值范围是( ) A .21m -<<- B .21m -≤<- C .322m -≤<-D .322m -<≤-6.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④7.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y (米)与甲出发后步行的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有( )A .1个B .2个C .3个D .4个 8.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣39.如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠10.如图为实数a ,b 在数轴上的位置,则222()()()b a a b +---=( )A .-aB .bC .0D .a-b11.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .304 12.下列各组线段中,不能构成直角三角形的是( )A .3,4,5B .5,12,13C .8,16,17D .7,24,25二、填空题13.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.14.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 15.在平面直角坐标系中,Rt ABO 的顶点B 在x 轴上,90∠=︒ABO ,AB OB =,点()10,8C 在AB 边上,D 为OB 的中点,P 为边OA 上的动点(不与,O A 重合).下列说法正确的是________(填写所有正确的序号).①当点P 运动到OA 中点时,点P 到OB 和AB 的距离相等; ②当点P 运动到OA 中点时,APC DPO ∠=∠;③当点P 从点O 运动到点A 时,四边形PCBD 的面积先变大再变小;④四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫⎪⎝⎭.16.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.17.已知菱形的面积为962cm ,两条对角线之比为3∶4,则菱形的周长为__________. 18.计算13112|13|()23----+的值是_____19.已知Rt ABC ,90C ∠=︒,4cm AC =,3cm BC =,若PAB △与ABC 全等,PC ________.20.《九章算术》是我国传统数学中重要的著作之一,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》“勾股”一章记载:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?”大意:有一扇形状是矩形的门,它的高比宽多6尺8寸,它的对角线长1丈,那么门的高为_____尺.(1丈=10尺,1尺=10寸)三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是 ;中位数是 ; (2)求这组成绩的方差;22.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a 、b 、c 的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?23.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A .(1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.24.如图,点E 在ABCD 内部,//,//AF BE DF CE .(1)求证:BCE ADF ≅∆;(2)求证:AEDF 1S 2ABCDS =四边形25.计算: (1)362⨯ (2)327-412+8 (3)()201535π---(4)()()()23132233223+-+-26.有一块四边形草地ABCD (如图),测得10AB AD ==m ,26CD =m ,24BC =m ,60A ∠=︒. (1)求ABC ∠的度数;(2)求四边形草地ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据众数和中位数的定义求解即可. 【详解】解:这组数据按从小到大顺序排列为:14,14,14,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18, 则众数为:15,中位数为:(15+16)÷2=15.5. 故答案为B . 【点睛】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是掌握众数和中位数的定义.2.B解析:B 【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可. 【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁, ∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙. 故选B . 【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.3.B解析:B 【分析】根据方差的意义求解可得. 【详解】∵乙的成绩方差<甲成绩的方差, ∴乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.C解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上”故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.D解析:D 【分析】由1l 过(1,0)时区域内由两个整点求出m=-2,由1l 过(2,-1)时区域内有三个整点求出32m =-,综合求出区域内有三个整点可求出322m -<≤-.【详解】当()1:20l y mx m =+<过(1,0)时区域内由两个整点, 此时m+2=0,m=-2,当()1:20l y mx m =+<过(2,-1)时区域内有三个整点, 此时122m -=+,32m =-, 两直线与y 轴围成的三角形区域内(不含三角形的边)有且只有三个整点,322m -<≤-.故选择:D .【点睛】本题考查数形结合思想求区域整点问题,掌握利用区域三角形边界整点来解决问题是关键.6.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC的解析式为y=kx+b(k≠0),∵经过点A(0,6),B(30,12),∴30126k bb+=⎧⎨=⎩,解得156kb⎧=⎪⎨⎪=⎩,所以,直线AC的解析式为165y x=+(0≤x≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.7.D解析:D【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】 解:由图可得,甲步行的速度为:180360÷=米/分,故①正确,乙走完全程用的时间为:1800(12609)22.5÷⨯÷=(分钟),故②正确, 乙追上甲用的时间为:1239-=(分钟),故③正确,乙到达终点时,甲离终点距离是:1800(322.5)60270-+⨯=米,故④正确, 故选:D . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答8.D解析:D 【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答. 【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数, ∴k 2﹣9=0,且k ﹣3≠0, 解得:k =﹣3, 故选:D. 【点睛】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.9.B解析:B 【分析】根据全等三角形的判定和性质以及平行四边形的判定定理分别判断即可. 【详解】解:A 、∵AE CF =, ∴AO=CO ,由于四边形ABCD 是平行四边形,则BO=DO , ∴四边形DEBF 是平行四边形; B 、不能证明四边形DEBF 是平行四边形; C 、∵四边形ABCD 是平行四边形, ∴AD=BC ,∠DAE=∠BCF ,又∠ADE=∠CBF , ∴△DAE ≌△BCF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形;D、同C可证:△ABE≌△CDF(ASA),∴AE=CF,同A可证四边形DEBF是平行四边形;故选:B.【点睛】本题考查了平行四边形的判定定理,对角线互相平分的四边形是平行四边形,熟练掌握平行四边形的判定定理是解题的关键.10.C解析:C【分析】由数轴可得a、b和a-b的正负,再由二次根式性质去根号、合并同类项即可.【详解】根据实数a、b在数轴上的位置得知:-1<a<0<b<1,∴a-b<0,则原式=b-a-(b-a)=b-a-b+a=0.故选:C.【点睛】考查了数轴及二次根式的化简,解题关键是由数轴得出a、b和a-b的正负情况.11.B解析:B【分析】由题意可证四边形AECF是平行四边形,可得AO=CO,EO=FO=12EF=6,由勾股定理可求AO=10,可得AC=20,由阴影分的面积=S正方形ABCD-S▱AECF可求解.【详解】解:连接AC,∵AE⊥EF,CF⊥EF,∴AE∥CF,且AE=CF,∴四边形AECF是平行四边形,∴AO=CO,EO=FO=12EF=6,∴AO10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.12.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、32+42=52,故是直角三角形,故本选项不符合题意;B 、52+122=132,故是直角三角形,故本选项不符合题意;C 、82+162≠172,故不是直角三角形,故本选项符合题意;D 、72+242=252,故是直角三角形,故本选项不符合题意;故选:C .【点睛】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.二、填空题13.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点14.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6, ∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.15.①④【分析】①根据等腰直角三角形的性质可得BP 是∠ABO 的平分线从而可得结论;②可判断出∠DPO=45゜∠进而可得结论;③设P 点坐标为得出再根据一次函数的性质进行判断即可;④作点关于的对称点M 连接M 解析:①④【分析】①根据等腰直角三角形的性质可得BP 是∠ABO 的平分线,从而可得结论;②可判断出∠DPO=45゜,∠45APC <︒,进而可得结论;③设P 点坐标为(,)x x ,得出3402PCBD S x =-+四边形,再根据一次函数的性质进行判断即可;④作点D 关于OA 的对称点M ,连接MC ,交OA 于P ,可知当且仅当,,M P C 三点共线时四边形PCBD 的周长最小,求出直线MC 和OA 的交点坐标即可解决问题.【详解】解:①当点P 运动到OA 中点时,连接BP ,如图所示,∵,OB AB OP AP ==∴BP 平分∠ABO∴点P 到OB 和AB 的距离相等,故①正确②当点P 运动到OA 中点时,∵,90OB AB ABO =∠=︒∴∠45A =︒∵点D 是OB 的中点∴//PD AB∴∠45OPD A =∠=︒∵(10,8)C∴∠45APC <︒∴∠APC DPO ≠∠故②错误;③∵(10,8)C∴(10,0),(10,10),B A∴(5,0)D∴5,2OD AC ==∵点P 从点O 运动到点A ,OA 平分第一象限角∴设P 点坐标为(,)x x∴PCBD AOB POD ACP S S S S ∆∆∆=--四边形 = 111101052222x ⨯⨯-⨯⋅-⨯(10)x ⨯- 550102x x =--+ 3402x =-+∵302-< 可以发现当点P 从点O 运动到点A 时,四边形PCBD 的面积一直变小,故③错误. ④作点D 关于OA 的对称点M ,连接MC ,交OA 于P ,此时,PD PM =∴=PCBD C PC PD BD BC +++四边形PC PM BD CB =+++58PC PM =+++58PC PM =+++∴当且仅当,,M P C 三点共线时四边形PCBD 的周长最小,∵OA 平分第一象限角∴点(5,0)D 关于OA 的对称点M 落在y 轴上,M 点坐标为(0,5)设直线MC 的解析式为y kx b =+,则有5108b k b =⎧⎨+=⎩,解得,3105k b ⎧=⎪⎨⎪=⎩ ∴3510y x =+ ∵直线OA 的解析式为y=x联立3510y x y x ⎧=+⎪⎨⎪=⎩,解得507507x y ⎧=⎪⎪⎨⎪=⎪⎩,即5050(,)77P 故四边形PCBD 的周长最小时,点P 的坐标为5050,77⎛⎫ ⎪⎝⎭,故④正确. ∴正确的是①④,故答案为:①④.【点睛】此题考查了三角形与一次函数的综合题,熟练掌握角平分线的性质以及一次函数的性质是解答此题的关键.16.(20)-1【分析】(1)解析式变形为y=k(x﹣2)即可得到无论k取何值y1=kx﹣2k(k是常数)的图象都经过点(20);(2)由题意可知y1的图象始终在y2上方得到两函数不相交平行即可得出k=解析:(2,0) -1【分析】(1)解析式变形为y=k(x﹣2),即可得到无论k取何值,y1=kx﹣2k(k是常数)的图象都经过点(2,0);(2)由题意可知,y1的图象始终在y2上方,得到两函数不相交,平行,即可得出k=﹣1.【详解】解:(1)∵y=kx﹣2k=k(x﹣2),∴当x=2时,y=0,∴这个点的坐标是(2,0),故答案为(2,0);(2)∵无论x取何值,y1>y2,∴y1的图象始终在y2上方,∴两个函数平行,∴k=﹣1,故答案为﹣1.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,难度适中.17.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:1x x ,解得:x=±4(负值舍去)34962∴对角线长分别为12cm、16cm,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长,则菱形的周长为40cm.故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.18.【分析】直接利用二次根式的性质绝对值以及负整数指数幂的性质分别化简得出答案【详解】故答案为:【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质正确掌握相关运算法则是解题关键解析:3【分析】直接利用二次根式的性质,绝对值以及负整数指数幂的性质分别化简得出答案.【详解】1112|13|()23----+ 233231=-+-+3=.故答案为:3.【点睛】本题主要考查了二次根式的混合运算以及负整数指数幂的性质,正确掌握相关运算法则是解题关键.19.5cm 或cm 或cm 【分析】利用勾股定理列式求出AB 然后分①点P 与点C 在AB 的两侧时AP 与BC 是对应边时四边形ACBP 是矩形然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时根据对称性可知AB ⊥P解析:5cm 或245cm 或75cm . 【分析】利用勾股定理列式求出AB ,然后分①点P 与点C 在AB 的两侧时,AP 与BC 是对应边时,四边形ACBP 是矩形,然后利用勾股定理列式计算即可得解;AP 与AC 是对应边时,根据对称性可知AB ⊥PC ,再利用三角形的面积列式计算即可得解;②点P 与点C 在AB 的同侧时,利用勾股定理求出BD ,再根据PC=AB-2BD 计算即可得解.【详解】解:在Rt ABC 中,90C ∠=︒,4cm AC =,3cm BC =,由勾股定理得,2222435AB AC BC cm =+=+=,如图,①点P 与点C 在AB 的两侧时,若AP 与BC 是对应边,则四边形ACBP 1是矩形,∴P 1C=AB=5cm ,若AP 与AC 是对应边,则△ABC 和△ABP 关于直线AB 对称,∴AB ⊥PC设AB 与P 2C 相交于点D ,则S △ABC =12×5•CD=12×3×4, 解得CD=125, ∴P 2C=2CD=2×125=245, ②点P 3与点C 在AB 的同侧时,由勾股定理得,22221293()55BD BC CD =-=-=, 过点P 3作P 3E ⊥AB ,垂足E ,连接P 3C ,如图,则有12×5•P 3E=12×3×4, ∴P 3E=125∴P 3E=CD 又P 3E ⊥AB ,CD ⊥AB ,∴P 3E//CD ,∴四边形P 3CDE 是平行四边形,又∠CDE=90°∴四边形P 3CDE 是矩形,∴P 3C=DE∵3P AB △≌ABC∴P 3A=BC ,∠P 3AB=∠CBA又∠P 3EA=∠CDB=90°∴△P 3AE ≌△CBD∴AE=BD∴P 3C=AB-2BD=5-2×95=75, 综上所述,PC 的长为5cm 或245cm 或75cm . 故答案为:5cm 或245cm 或75cm .【点睛】本题考查了全等三角形的对应边相等的性质,勾股定理,轴对称性,难点在于分情况讨论,作出图形更形象直观.20.6【分析】设长方形门的宽x 尺则高是(x+68)尺根据勾股定理即可列方程求解【详解】解:设长方形门的宽x 尺则高是(x+68)尺根据题意得x2+(x+68)2=102解得:x =28或﹣96(舍去)则宽是解析:6.【分析】设长方形门的宽x 尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【详解】解:设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺;故答案为:9.6.【点睛】本题考查了勾股定理的应用,根据勾股定理列方程是关键.三、解答题21.(1)10,9(2)87 【分析】(1)根据众数的定义:一组数据中出现次数最多的数和中位数的定义:按照顺序排列的一组数据中居于中间位置的数,结合统计图得到答案;(2)先求出这组数的平均数,再求出这组成绩的方差.【详解】解:(1)由折线统计图可知第1次:10环;第2次:7环;第3次:10环;第4次:10环;第5次:9环;第6次:8环;第7次:9环10出现的次数最多,所以众数为10;这7次成绩从小到大排列为:7,8,9,9,10,10,10,故中位数为9.(2)这组成绩的平均数为:()1107101098997++++++=, 这组成绩的方差为:()()()()2222181093992897977⎡⎤-⨯+-⨯+-+-=⎣⎦ 【点睛】本题考查了折线统计图,中位数,众数及方差.掌握中位数,众数及方差的定义是解题的关键.22.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.23.(1)16,2y x y x =-+=;(2)存在,11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭ 【分析】(1)利用待定系数法即可求出直线AC 和OA 的函数解析式;(2)根据(1)求出OAC 的面积,然后将OMC 的面积用含有M 坐标的式子表示出来,即可求出M 坐标.【详解】(1)设直线AB 的解析式是y kx b =+, 根据题意得:426k b b +=⎧⎨=⎩解得:16k b =-⎧⎨=⎩则直线的解析式是:6y x =-+,设OA 的解析式是y mx =,则42m =, 解得:12m =, 则直线的解析式是:12y x =;(2)∵当OMC ∆的面积是OAC ∆的面积的14时, ∴14OMC S OAC ∆=∆, 即111242M C OC x OC x ⨯⨯=⨯⨯⨯, ∴1414M x =⨯=, 当1M x =时,12M y =, 当1M x =-时,12M y =-时, ∴M 的坐标为11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭. 【点睛】本题重点在于利用待定系数法求函数解析式,以及利用未知数表示三角形面积,依次求出点坐标.24.(1)见解析;(2)见解析【分析】(1)先证明CBE DAF ∠=∠,BCE ADF ∠=∠,然后利用ASA 证明:△BCE ≌△ADF ; (2)根据点E 在ABCD 内部,可知:S △BEC +S △AED =12S ▱ABCD ,可得结论. 【详解】解:()1四边形ABCD 是平行四边形, ,//AD BC AD BC =,180,ABC BAD ∴∠+∠=//,AF BE180,EAB BAF ∴∠+∠=︒,CBE DAF ∴∠=∠同理得,BCE ADF ∠=∠()BCE ADF ASA ∴∆≅∆()2点E 在ABCD 内部, ∴12BEC AED ABCD S S S ∆∆+=,由()1知: ,BCE ADF ∆≅∆BCE ADF S S ∆∆∴=∴AEDF 1S 2ADF AED BEC AED ABCD S S S S S ∆∆∆∆=+=+=四边形.【点睛】 此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.25.(1)3;(2)3;(31;(4)2【分析】(1)先进行二次根式的乘法运算,然后进行二次根式的除法运算即可;(2)先把立方根、二次根式化简,然后合并即可;(3)先计算零指数幂和二次根式的除法,再计算加减法即可;(4)利用平方差公式和完全平方公式计算后再合并.【详解】解:(13=;(2=342-⨯+=3-=3;(3))0π=1-=12-=1;(4))(21-=31(1812)+--=2【点睛】本题考查了二次根式的混合运算:先计算乘除,再计算加减,掌握运算法则及乘法公式是关键.26.(1)150°;(2)(m 2)【分析】(1)连接BD ,可得∆ABD 是等边三角形,利用勾股定理的逆定理得∠DBC=90°,进而即可求解;(2)过点A 作AP ⊥BD 于点P ,可得AP=53,结合三角形的面积公式,即可求解. 【详解】 (1)连接BD ,∵10AB AD ==m ,∠A=60°∴∆ABD 是等边三角形,∴∠ABD=∠A=60°,BD=10AB AD ==m ,∵26CD =m ,24BC =m ,∴BD 2+BC 2=CD 2,∴∠DBC=90°,∴∠ABC=90°+60°=150°;(2)过点A 作AP ⊥BD 于点P ,则BP=DP=12BD=5m ,AP=2253AD DP -=, ∴四边形草地ABCD 的面积=S ∆ABD +S ∆CBD =12BD∙AP+12BC∙BD=12×10×53+12×10×24=253+120(m 2).【点睛】本题主要考查等边三角形的判定和性质以及勾股定理的逆定理,添加辅助线,构造直角三角形和等边三角形,是解题的关键.。
初二数学模拟试卷答案下册
一、选择题(每题3分,共30分)1. 下列选项中,不是同类项的是()A. 2x^2yB. 3xy^2C. 4x^2D. 5y^3答案:B解析:同类项是指字母相同且相同字母的指数也相同的项,选项B中,y的指数为2,而其他选项中y的指数均为1,故选B。
2. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b < 0C. -a + b > 0D. -a - b < 0答案:C解析:由于a > 0,b < 0,所以-a < 0,-b > 0,因此-a + b > 0,故选C。
3. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 32cm^2B. 40cm^2C. 48cm^2D. 64cm^2答案:A解析:等腰三角形的面积可以用底边乘以高除以2来计算。
由于是等腰三角形,所以高是底边上的中线,长度为底边长度的一半,即4cm。
所以面积为8cm × 4cm÷ 2 = 32cm^2,故选A。
4. 若a = 3,b = -2,则代数式2a^2 - 3ab + 4b^2的值是()A. 10B. 14C. 18D. 22答案:B解析:将a和b的值代入代数式中,得2 × 3^2 - 3 × 3 × (-2) + 4 × (-2)^2 = 18 + 18 + 16 = 52,故选B。
5. 下列函数中,图象经过第二、三、四象限的是()A. y = x + 1B. y = -x - 1C. y = x - 1D. y = -x + 1答案:B解析:函数图象经过第二、三、四象限,说明函数在x < 0时,y < 0。
选项B中,当x < 0时,-x - 1 < 0,故选B。
二、填空题(每题3分,共30分)6. 2^3 × 2^2 = ______答案:16解析:指数相乘,底数相同,指数相加,得2^(3+2) = 2^5 = 32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省晋中市榆社县2018~2018学年度八年级上学期期末数学试卷一、选择题:本大题共10个小题,每小题3分,共30分,把每小题的正确选项填写在下面的表格内1.计算的结果是()A.B.C. D.32.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠ACB=65°,则∠1的度数是()A.25°B.35°C.50°D.65°3.下列说法错误的是()A.B.C.2的平方根是D.4.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三现象C.y随x的增大而增大D.函数图象与x轴交点坐标是(,0)5.我们这样来探究二次根式的结果,当a>0时,如a=3,则=2,此时的结果是a本身;当a=0时,=0.此时的结果是零;当a<0时,如a=﹣3,则=﹣(﹣3)=3,此时的结果是a的相反数.这种分析问题的方法所体现的数学思想是()A.分类讨论 B.数形结合 C.公理化D.转化6.已知是方程组的解,则a+b=()A.2 B.﹣2 C.4 D.﹣47.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2018那么关于这户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是548.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2)C.(,1)D.(1,)9.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.510.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分,将正确答案填写在下面对应题号的横线上11.16的算术平方根是.12.如图,已知OA=OP,则数轴上点P所表示的数是.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是.14.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.15.方程kx+3y=5有一组解是,则k=.16.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为.三、解答题:满分72分,解答应写出必要的文字说明、证明过程17.计算下列各题:(1)(﹣)×+3(2)﹣×.18.解下列方程组:(1)(2).19.如图:AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2等于多少度?20.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作﹣﹣《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常镜筒,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,2018~2018学年度高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.21.某初中学校欲向2018~2018学年度高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?22.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.23.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?24.综合与探究:如图,A、B两点分别位于原点左右两侧的x轴上,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6.(1)求△COP的面积;(2)求点A的坐标及m的值;(3)若△AOP与△BOP的面积相等,求直线BD的函数表达式.山西省晋中市榆社县2018~2018学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分,把每小题的正确选项填写在下面的表格内1.计算的结果是()A.B.C. D.3【考点】二次根式的乘除法.【专题】计算题.【分析】根据二次根式的乘法运算法则进行运算即可.【解答】解:•=,故选:B.【点评】本题主要考查二次根式的乘法运算法则,关键在于熟练正确的运用运算法则,比较简单.2.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠ACB=65°,则∠1的度数是()A.25°B.35°C.50°D.65°【考点】平行线的性质.【分析】先根据直角三角形的性质求出∠ABC的度数,再由平行线的性质即可得出结论.【解答】解:∵AC⊥AB,∠ACB=65°,∴∠ABC=90°﹣65°=25°.∵直线a∥b,∴∠1=∠ABC=25°.故选A.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.下列说法错误的是()A.B.C.2的平方根是D.【考点】平方根.【分析】A、利用平方根的定义即可判定;B、利用立方根的定义即可判定;C、利用平方根的定义即可判定;D、,并不等于,且这种写法也是错误.【解答】解:A、,故选项正确;B、=﹣1,故选项正确;C、2的平方根为±,故选项正确;D、,并不等于,且这种写法也是错误的,故选项错误.故选D.【点评】此题主要考查了平方根和立方根定义,利用它们的定义即可解决问题.4.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三现象C.y随x的增大而增大D.函数图象与x轴交点坐标是(,0)【考点】一次函数的性质.【分析】A、把点的坐标代入关系式,检验是否成立;B、根据系数的性质判断,或画出草图判断;C、根据一次项系数判断;D、可根据函数图象判断,亦可解不等式求解.【解答】解:A、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C、∵﹣2<0,∴y随x的增大而减小,故错误;D、画出草图.∵当x>时,图象在x轴下方,∴y<0,故正确.故选D.【点评】本题主要考查了一次函数的性质以及一次函数与方程、不等式的关系.常采用数形结合的方法求解.5.我们这样来探究二次根式的结果,当a>0时,如a=3,则=2,此时的结果是a本身;当a=0时,=0.此时的结果是零;当a<0时,如a=﹣3,则=﹣(﹣3)=3,此时的结果是a的相反数.这种分析问题的方法所体现的数学思想是()A.分类讨论 B.数形结合 C.公理化D.转化【考点】二次根式的性质与化简.【分析】根据二次根式的性质,可得答案.【解答】解:这样来探究二次根式的结果,当a>0时,如a=3,则=2,此时的结果是a本身;当a=0时,=0.此时的结果是零;当a<0时,如a=﹣3,则=﹣(﹣3)=3,此时的结果是a的相反数.这种分析问题的方法所体现的数学思想是分类讨论,故选:A.【点评】本题考查了二次根式的性质,对于不同情况进行分类解决是分类讨论,注意分类是不能重复,不能遗漏.6.已知是方程组的解,则a+b=()A.2 B.﹣2 C.4 D.﹣4【考点】二元一次方程组的解.【分析】将代入方程组中的两个方程,得到两个关于未知系数的一元一次方程,解答即可.【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选B.【点评】解答此题,需要对以下问题有一个深刻的认识:①使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解;②二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.7.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2018,下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54【考点】方差;加权平均数;中位数;众数.【专题】常规题型.【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.【解答】解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.【点评】考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.8.如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是()A.(2,1)B.(1,2)C.(,1)D.(1,)【考点】等边三角形的性质;坐标与图形性质.【分析】首先过点A作AC⊥OB于点C,由△AOB是等边三角形,若B点的坐标是(2,0),可求得OA=OB=2,OC=1,然后由勾股定理求得AC的长,则可求得答案.【解答】解:过点A作AC⊥OB于点C,∵B点的坐标是(2,0),∴OB=2,∵△AOB是等边三角形,∴OA=OB=2,OC=OB=1,在Rt△OAC中,AC==,∴A点的坐标是:(1,).故选:D.【点评】此题考查了等边三角形的性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.9.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5【考点】翻折变换(折叠问题).【专题】几何图形问题.【分析】设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN 中,根据勾股定理可得关于x的方程,解方程即可求解.【解答】解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.10.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.二、填空题:本大题共6个小题,每小题3分,共18分,将正确答案填写在下面对应题号的横线上11.16的算术平方根是4.【考点】算术平方根.【专题】计算题.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.12.如图,已知OA=OP,则数轴上点P所表示的数是﹣.【考点】实数与数轴;勾股定理.【分析】根据勾股定理,可得扇形的半径长,根据圆的性质,可得答案.【解答】解:由勾股定理,得扇形的半径长是=,P点的坐标是﹣,故答案为:﹣.【点评】本题考查了实数与数轴,利用勾股定理得出扇形的半径长是解题关键.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是小李.【考点】方差;折线统计图.【分析】根据图中的信息找出波动性大的即可.【解答】解:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李;故答案为:小李.【点评】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【专题】几何图形问题.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.方程kx+3y=5有一组解是,则k=1.【考点】二元一次方程的解.【分析】根据二元一次方程解的定义直接把代入方程kx+3y=5,得到2k+3=5,即可求解.【解答】解:把代入方程kx+3y=5,得2k+3=5,解得k=1.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数k为未知数的方程,再求解.16.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为(3,2).【考点】一次函数图象上点的坐标特征;正方形的性质.【专题】压轴题;规律型.【分析】根据直线解析式先求出OA1=1,求得第一个正方形的边长,再求出第二个正方形的边长为2,即可求得B2的坐标.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴A2C1=C1C2=2,∴OC2=OC1+C1C2=1+2=3,∴B2(3,2).故答案为(3,2).【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;求出第一个正方形、第二个正方形的边长是解决问题的关键.三、解答题:满分72分,解答应写出必要的文字说明、证明过程17.计算下列各题:(1)(﹣)×+3(2)﹣×.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)先进行二次根式的乘除运算,然后化简后合并即可.【解答】解:(1)原式=﹣+=6﹣6+=6﹣5;(2)原式=+1﹣=2+1﹣2=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解下列方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①×3﹣②×2得:y=2,把y=2代入①得:x=3,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=28,即y=7,把y=7代入①得:x=5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图:AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2等于多少度?【考点】平行线的性质.【分析】先根据平行线的性质得出∠BEF的度数∠2=∠BEG,再由EG平分∠BEF即可得∠BEG的度数,进而得出结论.【解答】解:∵AB∥CD,∠1=72°,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,即∠2=54°.【点评】本题考查的是平行线的性质,熟知两直线平行,内错角相等;同旁内角互补是解答此题的关键.20.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作﹣﹣《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常镜筒,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,2018~2018学年度高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.【考点】勾股定理的应用.【分析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是:勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【点评】本题考查了勾股定理的应用,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.21.某初中学校欲向2018~2018学年度高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.投票结果统计如图一:请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2:5:3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?【考点】加权平均数;扇形统计图;条形统计图.【分析】(1)由图1可看出,乙的得票所占的百分比为1减去“丙+甲+其他”的百分比;(2)由题意可分别求得三人的得票数,甲的得票数=200×34%,乙的得票数=200×30%,丙的得票数=200×28%;(3)由题意可分别求得三人的得分,比较得出结论.【解答】解:(1)(2)甲的票数是:200×34%=68(票),乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票);(3)甲的平均成绩:,乙的平均成绩:,丙的平均成绩:,∵乙的平均成绩最高,∴应该录取乙.【点评】本题考查了条形统计图、扇形统计图以及加权平均数的求法.重点考查了理解统计图的能力和平均数的计算能力.22.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣1,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.【考点】一次函数综合题.【专题】综合题.【分析】易找到点B关于第一、三象限角平分线的对称点B′的坐标为(3,5),再结合已知的点A 的坐标,我们不难猜想点C′坐标是(5,﹣2),然后找到点C′,可以发现CC′被第一、三象限角平分线垂直且平分,由此可以推想到坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(b,a),即它们纵、横坐标互换位置.【解答】解:(1)如图:B′(3,5),C′(5,﹣2);(2)(b,a);(3)由(2)得,D(1,﹣3)关于直线l的对称点D′的坐标为(﹣3,1),连接D′E交直线l于点Q,此时点Q到D、E两点的距离之和最小.设过D′(﹣3,1)、E(﹣1,﹣4)直线的解析式为y=kx+b,则∴∴直线D′E的解析式为:y=﹣x﹣由得∴所求Q点的坐标为(,).【点评】本题的解答经历了实验﹣﹣猜想﹣﹣验证﹣﹣推广的思维过程,这也是我们认识事物规律的一般方法,主要考查一次函数的性质和图象,中等难度.23.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?【考点】一元一次方程的应用.【专题】应用题;经济问题;压轴题.【分析】若设甲服装的成本为x元,则乙服装的成本为(500﹣x)元.根据公式:总利润=总售价﹣总进价,即可列出方程.【解答】解:设甲服装的成本为x元,则乙服装的成本为(500﹣x)元,根据题意得:90%•(1+50%)x+90%•(1+40%)(500﹣x)﹣500=157,解得:x=300,500﹣x=200.答:甲服装的成本为300元、乙服装的成本为200元.【点评】注意此类题中的售价的算法:售价=定价×打折数.24.综合与探究:如图,A、B两点分别位于原点左右两侧的x轴上,点P(2,m)在第一象限内,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6.(1)求△COP的面积;(2)求点A的坐标及m的值;(3)若△AOP与△BOP的面积相等,求直线BD的函数表达式.【考点】两条直线相交或平行问题.【分析】(1)已知P的横坐标,即可知道△OCP的边OC上的高长,利用三角形的面积公式即可求解.(2)求得△AOC的面积,即可求得A的坐标,利用待定系数法即可求得AP的解析式,把x=2代入解析式即可求得m的值.(3)根据S△AOP=S△BOP,可以得到OB=OA,则A的坐标可以求得B的坐标,根据B、P坐标利用待定系数法即可求得BD的解析式.【解答】解:(1)作PE⊥y轴于E,∵P的横坐标是2,则PE=2,∴S△COP=OC•PE=×2×2=2.(2)∴S△AOC=S△AOP﹣S△COP=6﹣2=4,∴S△AOC=OA•OC=4,即×OA×2=4,∴OA=4,∴A的坐标是(﹣4,0).设直线AP的解析式是y=kx+b,则,解得:,则直线的解析式是y=x+2,当x=2时,y=3,即m=3;(3)∵S△AOP=S△BOP,∴OB=OA=4,则B的坐标是(4,0),设直线BD的解析式是y=mx+n,则,解得,则BD的解析式是:y=﹣x+6.【点评】本题考查了用待定系数法求一次函数的方法、三角形的面积、中线的性质等知识,正确理解点与函数的关系是解题关键.。