选修2-2数学模块综合检测
北师大版高中数学选修2-2模块综合测评
高中数学学习材料(灿若寒星精心整理制作)模块综合测评(时间150分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z=a+i的实部与虚部相等,则实数a=()A.-1B.1C.-2D.2【解析】z=a+i的虚部为1,故a=1,选B.【答案】 B2.已知复数z=11+i,则z·i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵z=11+i=1-i2,∴z=12+12i,∴z·i=-12+12i.【答案】 B3.观察:6+15<211, 5.5+15.5<211,4-2+17+2 <211,……,对于任意的正实数a,b,使a+b<211成立的一个条件可以是()A.a+b=22B.a+b=21C.ab=20D.ab=21【解析】由归纳推理可知a+b=21.故选B.【答案】 B4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)=()A.-eB.-1C.1D.e【解析】∵f(x)=2xf′(1)+ln x,∴f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,∴f′(1)=-1.【答案】 B5.由①y=2x+5是一次函数;②y=2x+5的图像是一条直线;③一次函数的图像是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是()A.②①③B.③②①C.①②③D.③①②【解析】该三段论应为:一次函数的图像是一条直线(大前提),y=2x+5是一次函数(小前提),y=2x+5的图像是一条直线(结论).【答案】 D6.已知函数y=f(x)的导函数y=f′(x)的图像如图1所示,则()图1A.函数f(x)有1个极大值点,1个极小值点B.函数f(x)有2个极大值点,2个极小值点C.函数f(x)有3个极大值点,1个极小值点D.函数f(x)有1个极大值点,3个极小值点【解析】 根据极值的定义及判断方法,检查f ′(x )的零点左右值的符号,如果左正右负,那么f (x )在这个点处取得极大值;如果左负右正,那么f (x )在这个点处取得极小值;如果左右都是正,或者左右都是负,那么f (x )在这个点处不是极值.由此可见,x 2是函数f (x )的极大值点,x 3是极小值点,x 1,x 4不是极值点.【答案】 A7.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )【导学号:94210089】A.94e 2B.2e 2C.e 2D.e 22【解析】 ∵f ′(x )=e x ,∴曲线在点(2,e 2)处的切线的斜率为k =f ′(2)=e 2,切线方程为y -e 2=e 2(x -2),即e 2x -y -e 2=0,切线与x 轴和y 轴的交点坐标分别为A (1,0),B (0,-e 2),则切线与坐标轴围成的△OAB 的面积为12×1×e 2=e 22.【答案】 D8.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( )A.a k +a k +1+…+a 2kB.a k -1+a k +…+a 2k -1C.a k -1+a k +…+a 2kD.a k -1+a k +…+a 2k -2【解析】 由归纳推理可知,第k 项的第一个数为a k -1,且共有k 项.故选D.【答案】 D9.函数f (x )=ax 3-x 在R 上为减函数,则( ) A.a ≤0 B.a <1 C.a <2D.a ≤13【解析】 由题意可知f ′(x )=3ax 2-1≤0在R 上恒成立,则a ≤0. 【答案】 A10.设a =⎠⎛10x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛10x 3d x ,则a ,b ,c 的大小关系( ) A .a>b>c B.b>a>c C .a>c>bD.b>c>a【解析】 由题意可得a =⎠⎛01x -13dx =32x 23⎪⎪⎪10=32;b =1-⎠⎛01x 12dx =1-23x 32⎪⎪⎪10=1-⎝ ⎛⎭⎪⎫23-0=13;c =⎠⎛01x 3dx =x 44⎪⎪⎪10=14.综上,a >b >c . 【答案】 A11.在数学归纳法的递推性证明中,由假设n =k 时成立推导n =k +1时成立时,f (n )=1+12+13+…+12n -1增加的项数是( )A.1B.2k +1C.2k -1D.2k【解析】 ∵f (k )=1+12+13+…+12k -1,又f (k +1)=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1.从f (k )到f (k +1)是增加了(2k +1-1)-2k +1=2k 项. 【答案】 D12.已知函数f (x )=x 3-ln (x 2+1-x ),则对于任意实数a ,b (a +b ≠0),则f (a )+f (b )a +b的值为( )A.恒正B.恒等于0C.恒负D.不确定【解析】 可知函数f (x )+f (-x )=x 3-ln (x 2+1-x )+(-x )3-ln (x 2+1+x )=0,所以函数为奇函数,同时,f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b =f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.复数3+ii 2(i 为虚数单位)的实部等于________. 【解析】 ∵3+ii 2=-3-i ,∴其实部为-3. 【答案】 -314.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,……,根据上述规律,第五个等式为________.【解析】 第n 个等式左边为1到n +1的立方和,右边为1+2+3+…+(n +1)的平方,所以第五个等式为13+23+33+43+53+63=212.【答案】 13+23+33+43+53+63=21215.曲线y =sin x (0≤x ≤π)与直线y =12围成的封闭图形的面积为__________.【导学号:94210090】【解析】 由于曲线y =sin x (0≤x ≤π)与直线y =12的交点的横坐标分别为x =π6及x =5π6,因此所求图形的面积为⎠⎜⎛π65π6⎝ ⎛⎭⎪⎫sin x -12dx =⎝ ⎛⎭⎪⎫-cos x -12x ⎪⎪⎪⎪5π6π6=3-π3.【答案】3-π316.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.【解析】 设x >0,则-x <0,f (-x )=e x -1+x .∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x . ∵当x >0时,f ′(x )=e x -1+1, ∴f ′(1)=e 1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为 y -2=2(x -1), 即2x -y =0. 【答案】 2x -y =0三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设复数z =(1+i )2+3(1-i )2+i ,若z 2+az +b =1+i ,求实数a ,b 的值.【解】 z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i2+i=(3-i )(2-i )5=5-5i5=1-i .因为z 2+az +b =(1-i )2+a (1-i )+b =-2i +a -ai +b =(a +b )-(2+a )i =1+i , 所以⎩⎨⎧a +b =1,-(2+a )=1,解得⎩⎨⎧a =-3,b =4.18.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围. 【解】 (1)当a =-2时,f (x )=x 3-32x 2+3x +1, f ′(x )=3x 2-62x +3.令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞, 2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1, 2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈(2,+∞)时, f ′(x )=3(x 2+2ax +1)≥3⎝ ⎛⎭⎪⎫x 2-52x +1=3⎝ ⎛⎭⎪⎫x -12(x -2)>0,所以f (x )在(2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,+∞.19.(本小题满分12分)设等差数列{a n }的公差为d ,S n 是{a n }中从第2n -1项开始的连续2n -1项的和,即S 1=a 1, S 2=a 2+a 3, S 3=a 4+a 5+a 6+a 7, ……S n =a 2n -1+a 2n -1+1+…+a 2n -1, ……若S 1,S 2,S 3成等比数列,问:数列{S n }是否成等比数列?请说明你的理由. 【解】 ∵S 1,S 2,S 3成等比数列,∴S 1=a 1≠0,且S 1·S 3=S 22,由S 1·S 3=S 22,得a 1(a 4+a 5+a 6+a 7)=(a 2+a 3)2,即a 1(4a 1+18d )=(2a 1+3d )2,2a 1d =3d 2.∴d =0或a 1=32d . 当d =0时,S n =2n -1a 1≠0,S n +1S n =2n a 12n -1a 1=2(常数),n ∈N +,{S n }成等比数列; 当a 1=32d 时,S n =a 2n -1+a 2n -1+1+a 2n -1=2n -1a 2n -1+2n -1(2n -1-1)2d=2n -1[a 1+(2n -1-1)d ]+2n -1(2n -1-1)2d=2n -1⎝⎛⎭⎪⎫32d ·2n -1+a 1-32d =32d ·4n -1≠0,S n +1S n =32d ·4n32d ·4n -1=4(常数),n ∈N +,{S n }成等比数列.综上所述,若S 1,S 2,S 3成等比数列,则{S n }成等比数列.20.(本小题满分12分)已知幂函数f (x )=x -m 2+2m +3(m ∈Z )为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f (x )的解析式;(2)设函数g (x )=14f (x )+ax 3+92x 2-b (x ∈R ),其中a ,b ∈R ,若函数g (x )仅在x =0处有极值,求a 的取值范围.【解】 (1)因为f (x )在区间(0,+∞)上是单调增函数, 所以-m 2+2m +3>0,即m 2-2m -3<0, 所以-1<m <3,又m ∈Z ,所以m =0,1,2. 而m =0,2时,f (x )=x 3不是偶函数,m =1时, f (x )=x 4是偶函数, 所以f (x )=x 4.(2)由(1)知g (x )=14x 4+ax 3+92x 2-b ,则g ′(x )=x (x 2+3ax +9),显然x =0不是方程x 2+3ax +9=0的根. 为使g (x )仅在x =0处有极值, 必须x 2+3ax +9≥0恒成立,即有Δ=9a 2-36≤0,解不等式得a ∈[-2,2]. 这时,g (0)=-b 是唯一极值,所以a ∈[-2,2].21.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想. 【解】 (1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1, 因为a n >0,所以a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0,所以a 2=2-1,由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3, 得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N +). 证明:①当n =1时, a 1=1-0=1,命题成立; ②假设n =k (k ≥1,k ∈N +)时, a k =k -k -1成立, 则n =k +1时, a k +1=S k +1-S k=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1 -12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0. 所以a k +1=k +1-k , 则n =k +1时,命题成立.则①②知,n ∈N +,a n =n -n -1.22.(本小题满分12分)设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(1)求a ,b ; (2)证明:f (x )>1.【解】 (1)函数f (x )的定义域为(0,+∞), f ′(x )=a e x ln x +a x e x -b x 2e x -1+bx e x -1.由题意可得f (1)=2,f ′(1)=e.故a =1,b =2. (2)证明:由(1)知,f (x )=e x ln x +2x e x -1, 从而f (x )>1等价于x ln x >x e -x -2e . 设函数g (x )=x ln x ,则g ′(x )=1+ln x . 所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e ,则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0; 当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h (x )在(0,+∞)上的最大值为h (1)=-1e . 综上,当x >0时,g (x )>h (x ),即f (x )>1.。
高中数学选修2-2综合测试试题及答案解析
高中数学选修2-2综合测试试题及答案解析时间120分钟,满分150分.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.曲线y =4x -x 3在点(-1,-3)处的切线方程是导学号 10510897( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -22.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在导学号 10510898( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是导学号 10510899( )4.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +b i ,z -为z 的共轭复数,且正实数a ,b 满足a +b =3,则z *z -的最小值为导学号 10510900( )A.92B.322C.32D .945.(2016·宜春高二检测)已知函数f (x )=sin x +e x +x 2015,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),则f 2016(x )=导学号 10510901( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x6.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是导学号 10510902( ) A.12 B .-1 C .0D .17.(2016·哈尔滨质检)在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos(x +π6);③y =e x -1;④y =x 2.其中为一阶格点函数的序号为导学号 10510903( ) A .①② B .②③ C .①③D .②④8.(2016·淄博高二检测)下列求导运算正确的是导学号 10510904( ) A .(2x )′=x ·2x -1 B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(xcos x )′=cos x -x sin x (cos x )29.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是导学号 10510905( )A .289B .1024C .1225D .137810.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标围成的三角形的面积为18,则a =导学号 10510906( )A .64B .32C .16D .811.(2016·全国卷Ⅲ理,12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有导学号 10510907( )A .18个B .16个C .14个D .12个12.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是导学号 10510908( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.导学号 1051090914.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.导学号 1051091015.对大于或等于2的自然数m 的n 次方幂有如下分解方式:导学号 10510911 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.16.(2016·全国卷Ⅱ理,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.导学号 10510912三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(2016·大连高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z -1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .导学号 10510913(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值范围.18.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.导学号 1051091419.(本题满分12分)已知A n (n ,a n )为函数y 1=x 2+1图象上的点,B n (n ,b n )为函数y 2=x 的图象上的点,设c n =a n -b n ,其中n ∈N *.导学号 10510915(1)求证:数列{c n }既不是等差数列也不是等比数列; (2)试比较c n 与c n +1的大小.20.(本题满分12分)设函数f (x )=x ln x .导学号 10510916 (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.21.(本题满分12分)(2016·贵州高二检测)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….导学号 10510917(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.22.(本题满分12分)(2016·北京文,20)设函数f (x )=x 3+ax 2+bx +c .导学号 10510918 (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.高中数学选修2-2综合测试试题答案解析1.[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.2. [答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i. ∴复数z 在复平面上的对应点在第二象限,故应选B.3. [答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限,∴-b2>0,∴b <0,排除C ,故选A.4.[答案] B[解析] 由题意可得z *z -=|a +b i|+|a -b i|2=a 2+b 2+a 2+(-b )22=a 2+b 2,∵正实数a ,b 满足a +b =3,∴b =3-a ,∴a 2+b 2=a 2+(3-a )2=2a 2-6a +9,由二次函数可知当a =32时,上式取最小值322.故选B.5.[答案] A[解析] f 1(x )=f ′(x )=cos x +e x +2015x 2014,f 2(x )=f 1′(x )=-sin x +e x +2015× 2014x 2013, f 3(x )=f 2′(x )=-cos x +e x +2015×2014×2013x 2012,…,∴f 2016(x )=sin x +e x .6.[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7. [答案] C[解析] 对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos(x +π6)不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图象经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选C.8.[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x)′=2x +1x 2;对于D ,(xcos x )′=cos x +x sin x (cos x )2;综上可知选B.9.[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·(n +1)2,图2中满足b n =n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.10.[答案] A[解析] y ′=-12x -32,∴k =-12a -32,切线方程是y -a -12=-12a -32(x -a ),令x =0,y =32a -12,令y =0,x =3a ,∴三角形的面积是S =12·3a ·32a -12=18,解得a =64.11. [答案] C[解析] 由题意可得a 1=0,a 8=1,a 2,a 3,…,a 7中有3个0、3个1,且满足对任意k ≤8,都有a 1,a 2,…,a k 中0的个数不少于1的个数,利用列举法可得不同的“规范01数列”有00001111,00010111,00011011,00011101,00100111,00101011,00101101,00110011,00110101,01000111,01001011,01001101,01010011,01010101,共14个.12.[答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x 3恒成立.令1x =t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x 3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2.综上知-6≤a ≤-2. 13. [答案]22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.14.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1, ∵f (x )≥0对任意实数x 都成立,∴Δ=4(a 1+a 2+…+a n )2-4n ≤0, ∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .15. [答案] 15[解析] 依题意得n 2=10×(1+19)2=100,∴n =10.易知m 3=21m +m (m -1)2×2,整理得(m -5)(m +4)=0,又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.16. [答案] 1-ln2[解析] 设y =kx +b 与y =ln x +2和y =ln(x +1)的切点分别为(x 1,ln x 1+2)和(x 2,ln(x 2+1)).则切线分别为y -ln x 1-2=1x 1(x -x 1),y -ln(x 2+1)=1x 2+1(x -x 2),化简得y =1x 1x +ln x 1+1,y =1x 2+1x -x 2x 2+1+ln(x 2+1),依题意,⎩⎨⎧1x 1=1x 2+1ln x 1+1=-x 2x 2+1+ln (x 2+1),解得x 1=12,从而b =ln x 1+1=1-ln2.17. [解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ), z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y i(x -3)2+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值范围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值范围是[0,8).18. [解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22,解之得x =π或x =3π2.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(3π2,2π),单调减区间为(π,3π2).f 极大(x )=f (π)=π+2,f 极小(x )=f (3π2)=3π2.19. [解析] (1)证明:依题意,a n =n 2+1,b n =n ,c n =n 2+1-n . 假设{c n }是等差数列,则2c 2=c 1+c 3,∴2(5-2)=2-1+10-3. ∴25=2+10,产生矛盾, ∴{c n }不是等差数列.假设{c n }是等比数列,则c 22=c 1c 3,即(5-2)2=(2-1)(10-3).有6=65-32-10,产生矛盾, ∴{c n }也不是等比数列.(2)解:∵c n +1=(n +1)2+1-(n +1)>0,c n =n 2+1-n >0, ∴c n +1c n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n(n +1)2+1+(n +1), 0<n 2+1<(n +1)2+1, 又0<n <n +1,∴n 2+1+n <(n +1)2+1+n +1, ∴0<n 2+1+n(n +1)2+1+(n +1)<1,∴c n +1c n<1,即c n +1<c n . 20. [解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e ,令f ′(x )>0,得x >1e ,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e ).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12,f (1e )=1e ln 1e =-1e , 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .21. [解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a(-2)n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a(-2)n -1. 方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a (-2)n -1成立. ②假设当n =k (k ≥1,k ∈N )时,a n =a (-2)n -1成立,即a k=a ·(-12)k -1, 则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a(-2)n -1成立. 由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22. [解析] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0,解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈(-2,-23),x 3∈(-23,0),使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈(0,3227)时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点. 当Δ=4a 2-12b =0时, f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时, f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增;当x ∈(x 0,+∞)时, f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增;所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高二数学选修2-2模块综合测试题!(含答案)
高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为150分)一.选择题(本大题有10小题,每小题5分,共50分)1.在“近似替代”中,函数)(x f 在区间],[1+i i x x 上的近似值( )(A )只能是左端点的函数值)(i x f (B )只能是右端点的函数值)(1+i x f (C )可以是该区间内的任一函数值()∈i i f ξξ(],[1+i i x x )(D )以上答案均正确2.已知22123i 4(56)i z m m m z m =-+=++,,其中m 为实数,i 为虚数单位,若120z z -=,则m 的值为 ( ) (A) 4(B) 1-(C) 6(D) 03.已知1,1x y <<,下列各式成立的是 ( )(A )2x y x y ++-> (B )221x y +< (C )1x y +< (D )1xy x y +>+ 4.设f (x )为可导函数,且满足0(1)(1)lim2x f f x x→--=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是( )(A )2 (B )-1 (C )12(D )-2 5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0” 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )必要条件 6.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在 7.1x y z ++=,则22223x y z ++的最小值为 ( )(A)1 (B)34 (C)611 (D)588. 曲线xy e =,x y e -= 和直线1x =围成的图形面积是 ( )(A)1e e -- (B) 1e e -+ (C) 12e e --- (D) 12e e -+-9.点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )(A) 1 (B)(C) 2 (D)10.设2()f x x ax b =++(,a b R ∈),当[]11,x ∈-时,()f x 的最大值为m ,则m 的最小值为 ( ) (A)12 (B) 1 (C) 32(D) 2 二.填空题(本大题有4小题,每小题5分,共20分) 11.定义运算a b ad bc c d=-,若复数z 满足112zzi-=,其中i 为虚数单位,则复数z = .12.如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角,记第(1)n n >行第2个数为()f n .根据表中上下两行数据关系, 可以求得当2n …时,()f n = .13.设函数f (x )=n 2x 2(1-x )n (n 为正整数),则f (x )在[0,1]上的最大值为 .14.设i a R +∈,i x R +∈,12,,i n =L ,且222121n a a a ++=L ,222121n x x x ++=L ,则1212,,,n na a a x x x L 的值中,现给出以下结论,其中你认为正确的是 .①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1三 解答题(本大题共6小题,共80分)15、(本小题12分)已知等腰梯形OABC 的顶点A B ,在复平面上对应的复数分别为12i +、26i -+,且O 是坐标原点,OA BC ∥.求顶点C 所对应的复数z .16(本小题满分14分) (1) 求定积分1222x dx --⎰的值;(2) (2)若复数12()z a i a R =+∈,234z i =-,且12z z 为纯虚数,求1z 1 2 23 4 3 4 7 7 4 … … …17(本小题满分12分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。
(完整版)新课改高二数学选修2-2模块综合测试题(含答案)
新课改高二数学选修2-2模块综合测试题(本科考试时间为120分钟,满分为100分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为30分,试卷Ⅱ分值为70分。
第I 卷一.选择题(本大题有10小题,每小题3分,共30分) 1.在“近似替代”中,函数在区间上的近似值( ))(x f ],[1+i i x x (A )只能是左端点的函数值(B )只能是右端点的函数值)(i x f )(1+i x f (C )可以是该区间内的任一函数值)(D )以上答案均正确()∈i i f ξξ(],[1+i i x x 2.已知,其中m 为实数,i 为虚数单位,若,则m 的22123i 4(56)i z m m m z m =-+=++,120z z -=值为 ( )(A) 4(B)(C) 6(D) 01-3.已知,下列各式成立的是 ( )1,1x y <<(A ) (B ) (C ) (D )2x y x y ++->221x y +<1x y +<1xy x y+>+4.设f (x )为可导函数,且满足=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是(1)(1)lim2x f f x x→--( )(A )2(B )-1(C )(D )-2125.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0”的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )必要条件6.函数在处有极值10, 则点为( )223)(a bx ax x x f +--=1=x ),(b a (A )(B )(C ) 或 (D )不存在)3,3(-)11,4(-)3,3(-)11,4(-7.,则的最小值为( )1x y z ++=22223x y z ++(A)1(B)(C)(D)34611588.曲线, 和直线围成的图形面积是 ( )xy e =xy e -=1x =(A)(B)(C)(D) 1e e --1e e -+12e e ---12e e -+-9.点是曲线上任意一点, 则点到直线的距离的最小值是( )P x x y ln 2-=P 2y x =-(A) 1 (B) (C) 2 (D) 10.设(),当时,的最大值为,则的最小值为2()f x x ax b =++,a b R ∈[]11,x ∈-()f x m m ( )(A) (B) 1 (C) (D) 21232第I 卷二.填空题(本大题有4小题,每小题4分,共16分)11.定义运算,若复数满足,其中为虚数单位,则复数a b ad bc c d =-z 112z zi-=i.z =12.如图,数表满足:⑴第行首尾两数均为;⑵表中递推关系类似杨辉三角,n n 记第行第2个数为.根据表中上下两行数据关系,(1)n n >()f n 可以求得当时, .2n …()f n =13.设函数f (x )=n 2x 2(1-x )n (n 为正整数),则f (x )在[0,1]上的最大值为.14.设,,,且,,则的i a R +∈i x R +∈12,,i n = 222121n a a a ++= 222121n x x x ++= 1212,,,n na a a x x x 值中,现给出以下结论,其中你认为正确的是 .①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于1三 解答题(本大题共5小题,共54分)15(本小题满分10分)(1)求定积分的值;(2)若复数,,1222x dx --⎰12()z a i a R =+∈234z i =-且为纯虚数,求12z z 1z12 234 34 7 7 4… … …16(本小题满分10分)现要制作一个圆锥形漏斗,其母线长为,要使其体积最大,求高为多少?l 17(本小题满分12分)已知函数11()ln()x f x x x =+-+(1)求的单调区间;()f x (2)求曲线在点(1,)处的切线方程;()y f x =1()f (3)求证:对任意的正数与,恒有.a b 1ln ln b a b a-≥-18(本小题满分10分)(提示:请从以下两个不等式选择其中一个证明即可,若两题都答以第一题为准)(1)设,,,且i a R +∈i b R +∈12,,i n = 12122n n a a a b b b ++=++= 求证:2221211221n n na a a ab a b a b +++≥+++ (2)设()求证:i a R +∈12,,i n = 21212222122334122()()n n n a a a a a a a a a a a a a a a ++≤++++++++ 19(本小题满分12分)设数列满足{}n a 211123,,,,,n n n a a na n +=-+= (1)当时,求,并由此猜想出的一个通项公式;12a =234,,a a a {}n a (2)当时,证明对所有,有13a ≥1n ≥ ①2n a n ≥+②1211111112n a a a ++≤+++新课改高二数学选修2-2模块综合测试题参考答案一 选择题1 C2 B3 D4 D5 A6 B7 C8 D9 B 10 A二 填空题11 1-i 1213 14 ③⑤222n n -+242()n n n ++三 解答题15 (1)(2)10316 当高时, h =3max V =17 (1)单调增区间 ,单调减区间0(,)+∞10(,)- (2)切线方程为 44230ln x y -+-=(3)所证不等式等价为10ln a bb a+-≥而,设则,由(1)结论可得,1111()ln()f x x x =++-+1,t x =+11()ln F t t t=+-由此,所以即011()(,)(,)F t +∞在单调递减,在单调递增,10min ()()F t F ==10()()F t F ≥=,记代入得证。
模块综合测评 人教A版数学选修2-2 全册测评
模块综合测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数5i2-i的对应点位于() A.第一象限B.第二象限C.第三象限D.第四象限解析:5i2-i=5i(2+i)(2-i)(2+i)=5i(2+i)5=-1+2i,其对应的点的坐标为(-1,2),位于第二象限,故选B.答案:B2.用反证法证明命题:“如果a>b,那么3a>3b”时,假设的内容应是()A.3a=3b成立B.3a<3b成立C.3a=3b或3a<3b成立D.3a=3b且3a<3b成立解析:用反证法证明命题时“大于”的否定为“小于或等于”,故选C. 答案:C3.曲线y =13x 3-2在点⎝⎛⎭⎫1,-53处切线的倾斜角为( ) A .1 B.π4C.5π4 D .-π4解析:∵y =13x 3-2,∴y ′=x 2,∴曲线y =13x 3-2在点⎝⎛⎭⎫1,-53处切线的斜率k =y ′|x =1=1,∴切线的倾斜角为π4,故选B. 答案:B4.对于命题“正三角形内任意一点到各边的距离之和为定值”推广到空间是“正四面体内任意一点到各面的距离之和为”( )A .定值B .变数C .有时为定值、有时为变数D .与正四面体无关的常数解析:设正四面体S -ABC 的棱长为a ,正四面体内任意一点O 到各面的距离分别为h 1,h 2,h 3,h 4,由体积关系得V S -ABC =13×24a 2·(h 1+h 2+h 3+h 4)=13×34a 2×63a .∴h 1+h 2+h 3+h 4=63a (63a 为正四面体的高),∴正四面体内任意一点到各面的距离之和为定值,故选A.答案:A5.设函数f (x )=2x +ln x ,则( )A .x =12是f (x )的极小值点B .x =2是f (x )的极小值点C .x =12是f (x )的极大值点D .x =2是f (x )的极大值点解析:f (x )=2x +ln x 的定义域为(0,+∞),且f ′(x )=-2x 2+1x =x -2x 2,由f ′(x )=0得x=2,当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0,∴x =2是函数f (x )的极小值点,故选B.答案:B6.已知z 1,z 2是复数,定义复数的一种运算“”为:z 1z 2=⎩⎪⎨⎪⎧z 1z 2(|z 1|>|z 2|)z 1+z 2(|z 1|≤|z 2|)若z 1=2+i 且z 1z 2=3+4i ,则复数z 2=( )A .2+iB .1+3iC .2+i 或1+3iD .条件不够,无法求出 解析:z 1=2+i ,且z 1z 2=3+4i ,若|z 1|>|z 2|,则z 1z 2=z 1z 2=(2+i)z 2=3+4i ,∴z 2=3+4i 2+i =(3+4i )(2-i )(2+i )(2-i )=10+5i5=2+i ,此时|z 1|=5,|z 2|=5,不满足|z 1|>|z 2|,舍;若|z 1|≤|z 2|,则z 1z 2=z 1+z 2=(2+i)+z 2=3+4i ,∴z 2=(3+4i)-(2+i)=1+3i ,此时|z 1|=5,|z 2|=10,满足|z 1|≤|z 2|.∴z 2=1+3i ,故选B. 答案:B7.如图阴影部分面积是( )A .e +1eB .e +1e -1C .e +1e -2D .e -1e解析:函数y =e x 与y =e -x 的图象都过点(0,1),所以阴影部分的面积为⎠⎛01(e x -e -x )d x =(e x +e -x )10=(e +e -1)-(1+1)=e +1e-2,故选C . 答案:C8.已知函数f(x)的导函数为f ′(x),f(x)=2x 2-3xf ′(2)+ln x ,则f ′(2)=( ) A .92 B .94 C .174 D .178解析:由f(x)=2x 2-3xf ′(2)+ln x ,∴f ′(x)=4x -3f ′(2)+1x ,令x =2,得f ′(2)=8-3f ′(2)+12,解得f ′(2)=178,故选D .答案:D9.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为n =(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比以上方法,在空间直角坐标系中,经过点A (1,2,3),且法向量为m =(-1,-2,1)的平面的方程为( )A .x +2y +z -2=0B .x -2y -z -2=0C .x +2y -z -2=0D .x +2y +z +2=0解析:由类比的方法,得此时平面的方程应为:(-1)×(x -1)+(-2)×(y -2)+1×(z -3)=0,整理得x +2y -z -2=0,故选C.答案:C10.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B .2 C.83 D.1623解析:因为抛物线方程为x 2=4y ,所以其焦点坐标为F (0,1),故直线l 的方程为y =1.如图所示,可知l 与C 围成的图形的面积等于矩形OABF 的面积与函数y =14x 2的图象和x轴正半轴及直线x =2围成的图形的面积的差的2倍(图中阴影部分的2倍),即S =4-2⎠⎛02x 24d x =4-2·x 31220=4-43=83.故选C .答案:C11.已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( ) A .ln 2 B .1C .1-ln 2D .1+ln 2解析:设切点为(x 0,x 0ln x 0),由y =x ln x ,得y ′=ln x +1,∴⎩⎪⎨⎪⎧ln x 0+1=k ,kx 0-2=x 0ln x 0.∴(ln x 0+1)·x 0-2=x 0ln x 0,解得x 0=2,∴k =ln 2+1,故选D . 答案:D12.函数f(x)是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x),且满足xf ′(x)+2f(x)>0,则不等式(x +2 019)f (x +2 019)5<5f (5)x +2 019的解集为( )A .{x|x>-2 014}B .{x|-2 019<x<-2 014}C .{x|0<x<2 014}D .{x|x<-2 014}解析:构造函数F(x)=x 2·f(x),依题意可知,当x>0时,F ′(x)=x[xf ′(x)+2f(x)]>0,故函数F(x)在(0,+∞)上为增函数.由于x>0,故所求不等式可化为(x +2 019)2·f(x +2 019)<52·f(5),所以0<x +2 019<5,解得-2 019<x<-2 014.故选B .答案:B第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知f(x)为偶函数,当x<0时,f(x)=ln (-x)+3x ,则曲线y =f(x)在点(1,-3)处的切线方程是______________.解析:因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x -3x ,所以f ′(x)=1x -3,则f ′(1)=-2.所以y =f(x)在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -114.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+142+…+120192<________.解析:根据不等式的左边规律是n +1个自然数倒数的平方和,右边分母的规律是以2为首项,1为公差的等差数列,分子是以3为首项,2为公差的等差数列,所以第n 个不等式应为:1+122+132+…+1(n +1)2<2n +1n +1,∴1+122+132+142+…+120192<40372019.答案:4037201915.若函数f(x)=x 3+ax 2+x -7在R 上单调递增,则实数a 的取值范围是________. 解析:若函数f (x )=x 3+ax 2+x -7在R 上单调递增,则f ′(x )≥0在R 上恒成立,又f ′(x )=3x 2+2ax +1,∴3x 2+2ax +1≥0,恒成立,∴Δ=(2a )2-4×3×1≤0,解得-3≤a ≤ 3.∴实数a 的取值范围是[-3,3]. 答案:[-3,3]16.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫ππ-x 2d x =π24. 解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c<3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z|=1,则由|z -i |≤|z|+|-i |=2,可得|z -i |的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫ππ-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知复数z =(1+2m)+(3+m)i (m ∈R ),i 为虚数单位. (1)若复数z 在复平面上所对应的点在第二象限,求m 的取值范围; (2)当m 为何值时,|z |最小,并求|z |的最小值.解析:(1)因为复数z =(1+2m )+(3+m )i(m ∈R )在复平面上所对应的点在第二象限,所以⎩⎪⎨⎪⎧1+2m <03+m >0,解得-3<m <-12,所以m 的取值范围是⎝⎛⎭⎫-3,-12. (2)因为|z |2=(1+2m )2+(3+m )2=5m 2+10m +10=5(m +1)2+5, 所以当m =-1时,|z |min = 5.18.(12分)已知函数f (x )=x 3-6x 2+9x +a . (1)求f (x )在区间[-2,2]上的最值;(2)若f (x )有且只有两个零点,求实数a 的值. 解析:(1)f ′(x )=3x 2-12x +9, 令f ′(x )=0,得x =1或x =3(舍去),∴f (x )在[-2,1)上单调递增,在(1,2]上单调递减, ∵f (1)=4+a ,f (-2)=-50+a ,f (2)=2+a , ∴在区间[-2,2]上,f (x )min =-50+a ,f (x )max =4+a .(2)令f(x)=x3-6x2+9x+a=0,可得a=-x3+6x2-9x,设g(x)=-x3+6x2-9x,则g′(x)=-3x2+12x-9,令g′(x)=0,得x=1或x=3,列表如下:x (-∞,1)1(1,3)3(3,+∞) g′(x)-0+0-g(x)递减有极小值-4递增有极大值0递减∴g(x)的大致图象如下:要使a=-x3+6x2-9x有且只有两个零点,只需直线y=a与g(x)的图象有两个不同的交点,∴实数a的值为-4或0.19.(12分)(1)当a>2时,求证:a+2+a-2<2a;(2)证明:2,3,5不可能是同一个等差数列中的三项.证明:(1)由题意得(a+2+a-2)2=2a+2a+2·a-2,∵a-2>0,a+2>0,且a+2≠a-2,∴要证a+2+a-2<2a,即证2a+2a+2·a-2<4a,即证a+2·a-2<a,即证a2-4<a2,即证-4<0,而-4<0显然成立,所以a +2+a -2<2a 得证.(2)假设2,3,5是同一个等差数列中的三项,分别设为a m ,a n ,a p , 则d =a m -a n m -n =2-3m -n为无理数,又d =a m -a p m -p =2-5m -p =-3m -p为有理数,矛盾.所以假设不成立,即2,3,5不可能是同一个等差数列中的三项.20.(12分)时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y (单位:千套)与销售价格x (单位:元/套)满足的关系式y =mx -2+4(x -6)2,其中2<x <6,m 为常数.已知销售价格为4元/套时,每日可售出套题21千套.(1)求m 的值;(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大(保留1位小数).解析:(1)因为x =4时,y =21,代入关系式y =m x -2+4(x -6)2,得m2+16=21,解得m=10.(2)由(1)可知,套题每日的销售量为y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)⎣⎢⎡⎦⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x 3-56x 2+240x -278(2<x <6),从而f ′(x )=12x 2-112x +240=4(3x -10)(x -6)(2<x <6).令f ′(x )=0,得x =103,且在⎝⎛⎭⎫2,103上,f ′(x )>0,函数f (x )单调递增;在⎝⎛⎭⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点, 所以当x =103≈3.3时,函数f (x )取得最大值. 故当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.21.(12分)已知函数f (x )=12x 2-a ln x (a ∈R ). (1)若f (x )在x =2处取得极值,求a 的值;(2)求f (x )的单调区间;(3)求证:当x >1时,12x 2+ln x <23x 3. 解析:(1)f ′(x )=x -a x,因为x =2是一个极值点, 所以2-a 2=0,所以a =4. (2)因为f ′(x )=x -a x,f (x )的定义域为x >0, 所以当a ≤0,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x, 令f ′(x )>0,得x >a ,所以函数f (x )的单调递增区间为(a ,+∞);令f ′(x )<0,得0<x <a ,所以函数f (x )的单调递减区间为(0,a ).(3)证明:设g (x )=23x 3-12x 2-ln x , 则g ′(x )=2x 2-x -1x, 因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0, 所以g (x )在(1,+∞)上是增函数.所以g (x )>g (1)=16>0. 所以当x >1时,12x 2+ln x <23x 3. 22.(12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *).(1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式.(2)用数学归纳法证明你的猜想,求并出a n 的表达式. 解析:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1.所以S 2=43,S 3=32=64,S 4=85, 猜想S n =2n n +1(n ∈N *). (2)证明:①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立, 即S k =2k k +1,当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1), 所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1, 所以n =k +1时等式也成立,得证. 所以根据①、②可知,对于任意n ∈N *,等式均成立.又因为a k +1=2(k +2)(k +1), 所以a n =2n (n +1).。
2020-2021学年人教A版数学选修2-2课时作业:模块综合评估2
模块综合评估(二)时间:120分钟 满分:150分一、选择题(每小题5分,共60分)1.1+3i 1-i=( B ) A .1+2i B .-1+2i C .1-2i D .-1-2i解析:1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i 2=-1+2i.故选B. 2.下列说法正确的是( B )A .2>2iB .2>(3i)2C .2+3i<3+3iD .2+2i>2+i解析:本题主要考查复数的性质.不全为实数的两个复数不能比较大小,故排除A ,C ,D ;而B 中(3i)2=-9<2,故选B.3.若复数z 满足z (1+i)=1-i(i 是虚数单位),则z 的共轭复数z =( C )A .-iB .-2iC .i D.2i解析:本题主要考查复数的运算及共轭复数的概念.因为z (1+i)=1-i ,所以z =1-i 1+i=-2i 2=-i ,所以z =i.故选C. 4.函数f (x )=e x sin x 的图象在点(0,f (0))处的切线的倾斜角α=( B )A .0 B.π4 C .1 D.3π2解析:本题主要考查导数的几何意义.函数f (x )=e x sin x 的图象在点(0,f (0))处的切线的斜率k =f ′(0)=e x(sin x +cos x )x =0=1,所以倾斜角α=π4.故选B.5.函数f (x )=cos x 2x 的导函数f ′(x )=( B )A.sin x -cos x 2xB .-sin x +ln2·cos x 2x C.sin x -ln2·cos x 2x D .-sin x +cos x 4x解析:f′(x)=(cos x)′·2x-cos x·(2x)′(2x)2=-sin x·2x-cos x·2x ln24x=-sin x+ln2·cos x2x.6.用反证法证明命题“若直线AB,CD是异面直线,则直线AC,BD 也是异面直线”的过程分为三步:①则A,B,C,D四点共面,所以AB,CD共面,这与AB,CD是异面直线矛盾;②所以假设错误,即直线AC,BD也是异面直线;③假设直线AC,BD是共面直线.则正确的顺序为(B)A.①→②→③B.③→①→②C.①→③→②D.②→③→①解析:本题主要考查反证法的步骤.反证法的步骤是:反设→归谬→结论.结合本题,知选B.7.由“边长为a的正三角形内任一点到三边的距离之和为32a”可类比猜想:棱长为a的正四面体内任一点到四个面的距离之和为(B)A.43a B.63a C.54a D.64a解析:将正三角形分割成以三条边为底的三个三角形,利用三个三角形面积的和等于正三角形的面积即可求得正三角形内任一点到三边的距离之和.类比可知,将正四面体分割成以各面为底的四个三棱锥,则四个三棱锥体积之和等于正四面体的体积,即可求得棱长为a的正四面体内任一点到四个面的距离之和为63a.故选B.8.设复数z满足|z-3+4i|=|z+3-4i|,则复数z在复平面上对应的点的轨迹是(C)A.圆B.半圆C.直线D.射线解析:复数z满足|z-3+4i|=|z+3-4i|,则复数z在复平面内对应的点是复平面内到点(3,-4),(-3,4)的距离相等的点,其轨迹为(3,-4),(-3,4)两点连线的中垂线.故选C.9.设f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1处均有极值,则下列各点一定在y 轴上的是( A )A .(b ,a )B .(a ,c )C .(c ,b )D .(a +b ,c )解析:本题主要考查导数的应用.f ′(x )=3ax 2+2bx +c ,由题意知1,-1是方程3ax 2+2bx +c =0的两根,则1-1=-2b 3a =0,所以b =0.故选A.10.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面内对应的点位于( B )A .第一象限B .第二象限C .第三象限D .第四象限解析:e 2i =cos2+isin2,它在复平面内对应的点为(cos2,sin2),由于π2<2<π,因此cos2<0,sin2>0,故点(cos2,sin2)在第二象限.11.已知函数f (x )(x ∈R )满足f (2)=3,且f (x )在R 上的导数满足f ′(x )-1<0,则不等式f (x 2)<x 2+1的解集为( C )A .(-∞,-2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)解析:本题主要考查导数的应用.令g (x )=f (x )-x ,则g ′(x )=f ′(x )-1<0,∴g (x )在R 上单调递减.由f (x 2)<x 2+1,得f (x 2)-x 2<1,即g (x 2)<1.又g (2)=f (2)-2=1,∴g (x 2)<g (2),∴x 2>2,解得x >2或x <- 2.故选C.12.已知函数y =f (x )对任意x ∈⎝ ⎛⎭⎪⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式中成立的是( A ) A.2f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫-π4 B.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4 C .f (0)>2f ⎝ ⎛⎭⎪⎫π3 D .f (0)>2f ⎝ ⎛⎭⎪⎫π4 解析:令g (x )=f (x )cos x ,x ∈⎝ ⎛⎭⎪⎫-π2,π2,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x .因为f ′(x )cos x +f (x )sin x >0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,所以g ′(x )>0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,所以g (x )=f (x )cos x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,所以g ⎝ ⎛⎭⎪⎫-π3<g ⎝ ⎛⎭⎪⎫-π4,即f ⎝ ⎛⎭⎪⎫-π3cos ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫-π4cos ⎝ ⎛⎭⎪⎫-π4,f ⎝ ⎛⎭⎪⎫-π312<f ⎝ ⎛⎭⎪⎫-π422,所以2f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫-π4.故选A. 二、填空题(每小题5分,共20分)13.曲线y =2cos x -π4在x =π4处的切线方程是x +y -1=0.解析:由题意知y ′=-2sin x ,所以切线的斜率k =y ′|x =π4=-1.易知切点为⎝⎛⎭⎪⎫π4,1-π4,所以切线方程为x +y -1=0. 14.复数z 1与z 2在复平面上所对应的点关于y 轴对称,且z 1(3-i)=z 2(1+3i),|z 1|=2,则z 1=1-i 或-1+i.解析:本题主要考查复数的运算与几何意义.设z 1=a +b i ,则z 2=-a +b i ,∵z 1(3-i)=z 2(1+3i),且|z 1|=2,∴⎩⎪⎨⎪⎧ (a +b i )(3-i )=(-a +b i )(1+3i )a 2+b 2=2,解得⎩⎪⎨⎪⎧ a =1b =-1或⎩⎪⎨⎪⎧a =-1b =1,∴z 1=1-i 或-1+i.15.观察下列各式:(1)(x 2)′=2x ;(2)(x 4)′=4x 3;(3)(cos x )′=-sin x .根据以上事实,由归纳推理可得,若定义在R 上的偶函数f (x )的导函数为g (x ),则g (0)=0.解析:在(x 2)′=2x 中,原函数为偶函数,导函数为奇函数;在(x 4)′=4x 3中,原函数为偶函数,导函数为奇函数;在(cos x )′=-sin x 中,原函数为偶函数,导函数为奇函数.我们可以推测,偶函数的导函数为奇函数.若定义在R 上的函数f (x )为偶函数,g (x )为f (x )的导函数,则g (x )为奇函数,故g (-x )+g (x )=0,即g (-0)=-g (0),g (0)=0.16.若函数f (x )=3a -x 2⎝⎛⎭⎪⎫1e ≤x ≤e ,e 为自然对数的底数与g (x )=2ln x的图象上存在关于x 轴对称的点,则实数a 的最小值是13.解析:由题意可得f (x )=-g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有解,即3a -x 2=-2ln x 在⎣⎢⎡⎦⎥⎤1e ,e 上有解,整理可得a =x 2-2ln x 3在⎣⎢⎡⎦⎥⎤1e ,e 上有解.令h (x )=x 2-2ln x 3,则h ′(x )=13⎝⎛⎭⎪⎫2x -2x ,易知h ′(x )在⎣⎢⎡⎦⎥⎤1e ,e 上单调递增,又h ′⎝ ⎛⎭⎪⎫1e =13×⎝ ⎛⎭⎪⎫2e -2e <0,h ′(1)=0,h ′(e)=13×⎝ ⎛⎭⎪⎫2e -2e >0,则h (x )min =h (1)=13,所以实数a 的最小值是13.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知复数z 1满足z 1·i =1+i(i 为虚数单位),复数z 2的虚部为2.(1)求z 1;(2)若z 1·z 2是纯虚数,求z 2.解:(1)因为z 1·i =1+i ,所以z 1=1+i i =-i (1+i )-i 2=1-i. (2)因为z 2的虚部为2,所以设z 2=m +2i(m ∈R ).因为z 1·z 2=(1-i)(m +2i)=(m +2)+(2-m )i 为纯虚数,所以m +2=0,且2-m ≠0,解得m =-2.所以z 2=-2+2i.18.(12分)(1)求证:当a >2时,a +2+a -2<2a ;(2)证明:2,3,5不可能是同一个等差数列中的三项.证明:(1)要证a +2+a -2<2a ,只需证(a +2+a -2)2<(2a )2,即证2a +2a +2·a -2<4a ,即证a +2·a -2<a ,只需证(a +2·a -2)2<a 2,即证a 2-4<a 2,显然成立,所以a +2+a -2<2a .(2)假设2,3,5是同一个等差数列中的三项,且该等差数列的公差为d ,显然d ≠0.令3=2+rd,5=2+sd (r ,s 为非零整数),则3-25-2=r s,等式左端为无理数,等式右端为有理数,矛盾,所以假设不成立,故2,3,5不可能是同一个等差数列中的三项.19.(12分)已知复数z 1=2+a i(其中a ∈R 且a >0,i 为虚数单位),且z 21为纯虚数.(1)求函数实数a 的值;(2)若z =z 11-i,求|z |. 解:(1)z 21=(2+a i)2=4-a 2+4a i ,因为z 21为纯虚数,所以⎩⎪⎨⎪⎧4-a 2=0,a ≠0,a >0,解得a =2.(2)由(1)得z 1=2+2i ,则z =2+2i 1-i =(2+2i )(1+i )(1-i )(1+i )=4i 2=2i ,|z |=2. 20.(12分)已知函数f (x )=x ln x +x .(1)求f (x )的图象在x =1处的切线方程并求函数f (x )的单调区间;(2)求证:e x >f ′(x ).解:(1)由题得f ′(x )=ln x +2,∴f ′(1)=2,又f (1)=1,∴所求切线方程为y =2x -1.令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2,故函数f (x )的单调递增区间为(e -2,+∞),单调递减区间为(0,e -2).(2)证明:设g (x )=e x -f ′(x )=e x -ln x -2,x >0.g ′(x )=e x-1x ,易知g ′(x )在(0,+∞)上单调递增,且g ′(1)=e -1>0,g ′⎝ ⎛⎭⎪⎫12=e 12 -2<0,∴存在唯一的t ,且12<t <1,使得g ′(t )=e t -1t =0,即e t=1t ,∴g (x )在(0,t )上单调递减,在(t ,+∞)上单调递增, ∴g (x )≥g (t )=e t-ln t -2=1t -ln 1e t -2=t +1t -2≥2-2=0,当且仅当t =1时等号成立,又12<t <1,∴上式等号不成立,∴g (x )>0,即e x >f ′(x ).21.(12分)已知函数f (x )=x 2+2cos x ,x ∈[0,+∞).(1)求f (x )的最小值;(2)证明:当x ≥0时,e x -1≥sin x -cos x +1.解:(1)f ′(x )=2(x -sin x ).设g (x )=x -sin x ,则g ′(x )=1-cos x ,当x ≥0时,g ′(x )≥0,即g (x )为增函数,则f ′(x )=2g (x )≥2g (0)=0, 所以f (x )在[0,+∞)上是增函数,因此f (x )min =f (0)=2.(2)证明:由(1)得,当x ≥0时,f ′(x )≥0,即sin x ≤x .又f (x )≥2,即1-cos x ≤x 22,所以sin x -cos x +1≤x +x 22.证明x +x 22≤e x -1成立即可证明原不等式成立.令h (x )=e x-x 22-x -1,则h ′(x )=e x -x -1, 令m (x )=e x -x -1,则m ′(x )=e x -1,当x ≥0时,e x -1≥0,所以h ′(x )是增函数,即h ′(x )≥h ′(0)=0,所以h (x )是增函数,即h (x )≥h (0)=0,可得e x-x 22-x -1≥0,即e x -1≥x 22+x ,所以原不等式成立.22.(12分)已知函数f (x )=38x 2-2x +2+ln x .(1)求函数f (x )的单调区间;(2)若函数f (x )在[e m ,+∞)(m ∈Z )上有零点,求m 的最大值. 解:(1)函数f (x )的定义域为(0,+∞).f ′(x )=34x -2+1x =(3x -2)(x -2)4x, 当f ′(x )>0时,x ∈⎝ ⎛⎭⎪⎫0,23∪(2,+∞);当f ′(x )<0时,x ∈⎝ ⎛⎭⎪⎫23,2, 所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,23和(2,+∞),单调递减区间为⎝ ⎛⎭⎪⎫23,2. (2)由(1)知y 极大=f ⎝ ⎛⎭⎪⎫23=56+ln 23>0,y 极小=f (2)=ln2-12>0.当x >0且x →0时f (x )<0,故f (x )在定义域上存在唯一零点x 0,且x 0∈⎝⎛⎭⎪⎫0,23. 若m ≥0,则e m ≥1,[e m,+∞)⊆⎝ ⎛⎭⎪⎫23,+∞,此区间内不存在零点,舍去,故m <0.当m =-1时,x ∈⎣⎢⎡⎭⎪⎫1e ,+∞,f ⎝ ⎛⎭⎪⎫1e =1+38e 2-2e >0, 又f (x )在⎝ ⎛⎭⎪⎫1e ,23上单调递增,此区间不存在零点,舍去. 当m =-2时,x ∈⎣⎢⎡⎭⎪⎫1e 2,+∞,f ⎝ ⎛⎭⎪⎫1e 2=1e 2⎝ ⎛⎭⎪⎫38e 2-2<0, 又f (x )在⎝ ⎛⎭⎪⎫1e 2,23上单调递增,且f ⎝ ⎛⎭⎪⎫23>0,故x 0∈⎝ ⎛⎭⎪⎫1e 2,23. 综上,m 的最大值为-2.。
(人教版)高中数学选修2-2检测模块综合检测A Word版含答案
模块综合检测()一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).复数=(为虚数单位)在复平面内对应的点所在象限为( ).第一象限.第二象限.第三象限.第四象限解析:∵====-,∴复数对应的点的坐标为,在第四象限.答案:.函数()=++的图象在=处的切线在轴上的截距为( )...-.-解析:′()=+,′()=,()=,-=(-),=时,=-.答案:.类比下列平面内的三个结论所得的空间内的结论成立的是( )①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交..①②③.①③.①.②③解析:类比①的结论为:平行于同一个平面的两个平面平行,成立;类比②的结论为:一个平面如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个平面与两个平行平面中的一个相交,则必与另一个相交,成立.答案:.函数=--(-<<)有( ).极大值,极小值-.极大值,极小值-.极大值,无极小值.极小值-,无极大值解析:′=--=,得=-,=,当<-时,′>;当>-时,′<.当=-时,极大值=,取不到,无极小值.答案:.函数=+的单调递增区间是( ).(,+∞) .(-∞,)..(,+∞)解析:令′=-=>,即(-)(++)>,且≠,得>.答案:.下列计算错误的是( ).=.))=.=.=解析:由微积分基本定理或定积分的几何意义易得结果.答案:.用数学归纳法证明++…+>(∈+)时,在验证=时,左边的代数式为( ) .++.+..解析:当=时,不等式左边为++=++.答案:.函数=-在(-∞,+∞)上的减区间是[-],则( ).=.=.=.≤解析:∈[-],′=-≤,且′=±=,∴=,=.答案:.若,∈,则+是( ).纯虚数.实数.虚数.不能确定解析:设=+,=+(,,,∈),则+=(+)(-)+(-)(+)=(+)∈.答案:.设=(--)+(-)(∈),若对应的点在直线-+=上,则的值是( ) .±..-.解析:(--)-(-)+=,=-,=,=±,而>,所以=.答案:.函数()的定义域为,(-)=,对任意∈,′()>,则()>+的解集为( ) .(-) .(-,+∞).(-∞,-) .(-∞,+∞)解析:设()=()-(+),。
选修2-2——模块综合检测
模块综合检测(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z =2-i2+i(i 为虚数单位)在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D.∵z =2-i 2+i =(2-i )2(2+i )(2-i )=4-4i -15=35-45i ,∴复数z 对应的点的坐标为⎝⎛⎭⎫35,-45,在第四象限. 2.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,1) C.⎝⎛⎭⎫12,+∞ D .(1,+∞) 解析:选C.令y ′=8x -1x 2=8x 3-1x 2>0,则⎩⎪⎨⎪⎧8x 3-1>0x ≠0,得x >12.3.已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A.因为(a +b i)2=a 2+2ab i -b 2=2i ,所以⎩⎪⎨⎪⎧a 2=b 2,2ab =2,解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.4.下列计算错误的是( ) A.⎠⎛-ππsin x d x =0B.⎠⎛01xdx =23C .∫π2-π2cos xdx =2∫π20cos xdxD.⎠⎛-ππsin 2xdx =0解析:选D.可由微积分基本定理或定积分的几何意义易得结果.5.函数y =x cos x -sin x ⎝⎛⎭⎫其中x ∈⎣⎡⎦⎤π3,4π3的最小值是( )A.π6-32 B .-π C .-π3+32 D .-5π3解析:选B.y ′=cos x -x sin x -cos x =-x sin x .∵x ∈⎣⎡⎦⎤π3,4π3,∴当x ∈⎣⎡⎦⎤π3,π时,y ′≤0,当x ∈⎣⎡⎦⎤π,4π3时,y ′≥0.∴当x =π时,y min =-π.6.设z =log 2(m 2-3m -3)+i log 2(m -3)(m ∈R ),若z 对应的点在直线x -2y +1=0上,则m 的值是( )A .±15 B.15 C .-15 D .15解析:选B.由题意知log 2(m 2-3m -3)-2log 2(m -3)+1=0,即log 2m 2-3m -3(m -3)2=-1,∴m 2-3m -3(m -3)2=12,∴m =±15, 而m >3,∴m =15. 7.(2015·福州高二检测)已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( )A .a k +a k +1+…+a 2kB .a k -1+a k +…+a 2k -1C .a k -1+a k +…+a 2kD .a k -1+a k +…+a 2k -2解析:选D.由归纳推理可知,该数列的第k 项有如下特征:①是k 项的和式,②按升幂排列后第一项的指数应为k -1次,最后一项的指数应为2k -2次.8.函数y =x 3-3x 2-9x (-2<x <2)有( )A .极大值5,极小值-27B .极大值5,极小值-11C .极大值5,无极小值D .极小值-27,无极大值解析:选C.∵y ′=3x 2-6x -9=0,得x =-1,x =3,当x <-1时,y ′>0;当-1<x <2时,y ′<0.所以x =-1时,y 极大值=5,x 取不到3,无极小值.9.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2解析:选B.设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0), 则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a,∴y ′|x =x 0=1x 0+a=1,即x 0+a =1.又y 0=ln(x 0+a ), ∴y 0=0.∴x 0=-1. ∴a =2.10.如图,抛物线y =-x 2+2x +1与直线y =1形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是( )A .1 B.43 C. 3D .2解析:选B.由⎩⎪⎨⎪⎧y =1y =-x 2+2x +1,知⎩⎪⎨⎪⎧x =0y =1或⎩⎪⎨⎪⎧x =2y =1.故所求面积S =⎠⎛02(-x 2+2x +1)d x -⎠⎛021d x =⎝⎛⎭⎫-13x 3+x 2+x ⎪⎪⎪20-x ⎪⎪⎪20=43.故选B . 11.定义复数的一种运算z 1*z 2=|z 1|+|z 2|2(等式右边为普通运算),若复数z =a +bi ,且正实数a ,b 满足a +b =3,则z*z 的最小值为( )A.92B.322C.32D.94解析:选B.z*z =|z|+|z|2=2a 2+b 22=a 2+b 2=(a +b )2-2ab ,又∵ab ≤⎝⎛⎭⎫a +b 22=94,∴-ab ≥-94,z*z ≥ 9-2×94=92=322.12.(2015·惠州高二检测)已知函数f (x )=x 3-ln (x 2+1-x ),则对于任意实数a ,b (a +b ≠0),f (a )+f (b )a +b的值为( )A .恒正B .恒等于0C .恒负D .不确定解析:选A .可知函数f (x )+f (-x )=x 3-ln (x 2+1-x )+(-x )3-ln (x 2+1+x )=0, 所以函数为奇函数,同时,f ′(x )=3x 2+1x 2+1>0,f (x )是递增函数,f (a )+f (b )a +b =f (a )-f (-b )a -(-b ),所以f (a )+f (b )a +b>0,所以选A .二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.复数3+ii2(i 为虚数单位)的实部等于________.解析:因为3+i i 2=3+i-1=-3-i ,所以实部为-3.答案:-314.已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n -1-1n=2⎝⎛⎭⎫1n +2+1n +4+…+12n 时,若假设当n =k (k ≥2,且k 为正偶数)时命题为真,则还需要用归纳假设再证当________时等式成立.解析:由要证的等式可得,若假设当n =k (k ≥2,且k 为正偶数)时命题为真,与k 相邻的下一个偶数为k +2,则还需要用归纳假设再证当n =k +2时等式成立.答案:n =k +215.若Rt △ABC 中两直角边为a ,b ,斜边c 上的高为h ,则1h 2=1a 2+1b2,如图,在正方体的一角上截取三棱锥P ABC ,PO 为棱锥的高,记M =1PO 2,N =1P A 2+1PB 2+1PC2,那么M ,N 的大小关系是________.解析:在Rt △ABC 中,c 2=a 2+b 2①,由等面积法得ch =ab ,∴c 2·h 2=a 2·b 2②,①÷②整理得1h 2=1a 2+1b2.类比得,S 2△ABC =S 2△PAB +S 2△PBC +S 2△PAC ③,由等体积法得S △ABC ·PO =12P A ·PB ·PC , ∴S 2△ABC ·PO 2=14P A 2·PB 2·PC 2④,③÷④整理得M =N . 答案:M =N 16.(2015·天津高二检测)若在曲线f (x ,y )=0上两个不同点处的切线重合,则称这条切线为曲线f (x ,y )=0的“自公切线”.下列方程:①x 2-y 2=1;②y =x 2-|x |;③y =3sin x +4cos x ;④|x |+1=4-y 2对应的曲线中存在“自公切线”的有________(只填序号).解析:①x 2-y 2=1是一个等轴双曲线,没有自公切线; ②y =x 2-|x |=⎩⎨⎧⎝⎛⎭⎫x -122-14,x >0,⎝⎛⎭⎫x +122-14,x <0, 在x =12和x =-12处的切线都是y =-14,故②有自公切线.③y =3sin x +4cos x =5sin(x +φ),cos φ=35,sin φ=45,此函数是周期函数,过图象的最高点的切线都重合,故此函数有自公切线.④由于|x |+1=4-y 2,即x 2+2|x |+y 2-3=0,结合图象可得(图略),此曲线没有自公切线.答案:②③三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)求下列函数的导数. (1)y =sin 2x ;(2)y =sin x x;(3)y =e x (x 4-3x 2-5x +6).解:(1)y =sin 2x =2sin x cos x , y ′=2(sin x )′cos x +2sin x (cos x )′ =2cos 2x -2sin 2x =2cos 2x .(2)y ′=(sin x )′x -sin x x 2=x cos x -sin x x 2.(3)y ′=(e x )′(x 4-3x 2-5x +6)+e x (x 4-3x 2-5x +6)′ =e x (x 4-3x 2-5x +6)+e x (4x 3-6x -5) =e x (x 4+4x 3-3x 2-11x +1).18.(本小题满分12分)已知复数z =(-1+3i )(1-i )-(1+3i )i,ω=z +a i (a ∈R ),当⎪⎪⎪⎪ωz ≤2时,求a 的取值范围. 解:z =(-1+3i )(1-i )-(1+3i )i=(2+4i )-(1+3i )i =1+i i =-i (1+i )1=1-i.因为ω=z +a i =1-i +a i =1+(a -1)i ,所以ωz =1+(a -1)i 1-i=[1+(a -1)i](1+i )2=2-a +a i 2.所以⎪⎪⎪⎪ωz =(2-a )2+a 22≤2,所以a 2-2a -2≤0,所以1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].19.(本小题满分12分)已知下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,求实数a 的取值范围.解:若方程没有一个有实根,则⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0,解得⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0,即-32<a <-1.故三个方程至少有一个方程有实根,实数a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≥-1或a ≤-32. 20.(本小题满分12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)若函数y =f (x )和函数y =g (x )在区间(a ,a +1)上均为增函数,求实数a 的取值范围; (2)若方程f (x )=g (x )+m 有唯一解,求实数m 的值.解:(1)f ′(x )=2x -8x =2(x +2)(x -2)x(x >0).当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 要使f (x )在(a ,a +1)上递增,必须a ≥2, g (x )=-x 2+14x =-(x -7)2+49,要使g (x )在(a ,a +1)上递增,必须a +1≤7,即a ≤6.由上得出,当2≤a ≤6时f (x ),g (x )在(a ,a +1)上均为增函数. (2)方程f (x )=g (x )+m 有唯一解 ⇔⎩⎪⎨⎪⎧y =m ,y =2x 2-8ln x -14x ,有唯一解. 设h (x )=2x 2-8ln x -14x ,h ′(x )=4x -8x -14=2x(2x +1)(x -4)(x >0),h ′(x ),h (由于在(0, 当m =-24-16ln 2时,方程f (x )=g (x )+m 有唯一解.21.(本小题满分13分)某厂生产产品x 件的总成本c (x )=1 200+275x 3(万元),已知产品单价P (万元)与产品件数x 满足:P 2=kx,生产100件这样的产品单价为50万元.(1)设产量为x 件时,总利润为L (x )(万元),求L (x )的解析式;(2)产量x 定为多少件时总利润L (x )(万元)最大?并求最大值(精确到1万元).解:(1)由题意有502=k100,解得k =25×104,∴P =25×104x =500x,∴总利润L (x )=x ·500x-1 200-2x 375=-2x375+500x -1 200(x >0).(2)由(1)得L ′(x )=-225x 2+250x ,令L ′(x )=0⇒250x =225x 2,令t =x ,得250t =225t 4⇒t 5=125×25=55,∴t =5,于是x =t 2=25,则x =25,所以当产量定为25时,总利润最大. 这时L (25)≈-416.7+2 500-1 200≈883.故产量x 定为25件时总利润L (x )最大,约为883万元. 22.(本小题满分13分)如图,设点P 在曲线y =x 2上,从原点向A (2,4)移动,记直线OP 与曲线y =x 2所围成的图形的面积为S 1,直线OP 、直线x =2与曲线y =x 2所围成的图形的面积为S 2.(1)当S 1=S 2时,求点P 的坐标;(2)当S 1+S 2有最小值时,求点P 的坐标及S 1+S 2的最小值.解:(1)设点P 的横坐标为t (0<t <2),则点P 的坐标为(t ,t 2),直线OP 的方程为y =tx .S 1=⎠⎛0t(tx -x 2)d x =t 36,S 2=⎠⎛t2(x 2-tx )d x =83-2t +t 36,因为S 1=S 2,所以t 36=83-2t +t 36,解得t =43,故点P 的坐标为⎝⎛⎭⎫43,169. (2)令S =S 1+S 2,由(1)知,S =t 36+83-2t +t 36=t 33-2t +83,则S ′=t 2-2,令S ′=0,即t 2-2=0,因为0<t <2,所以t =2, 又当0<t <2时,S ′<0;当2<t <2时,S ′>0. 故当t =2时,S 1+S 2有最小值,最小值为,此时点P 的坐标为(2,2).。
人教新课标版数学高二-选修2-2模块综合检测卷(三)
数学·选修2-2(人教A 版)模块综合检测卷(三)(测试时间:120分钟 评价分值:150分)一、选择题(本大题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题中要求的)1.(2013·江门二模)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( )A .- 3 B.3i C .±3i D .±3解析:设复数z 的虚部是为b ,要求已知复数z 的实部为1,且|z |=2,故有1+b 2=4,解得b =±3,故选D. 答案:D2. 若θ∈⎝⎛⎭⎪⎫0,π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:因为θ∈⎝ ⎛⎭⎪⎫0,π4,所以复数的实部cos θ+sin θ>0,虚部sin θ-cos θ<0,所以复数对应的点在第四象限.故选D.答案:D3.(2014·安徽池州一中月考)设x ∈R ,则“x 2=x ”成立的充分不必要条件是( )A .“x =1”B .“x (x -1)=0”C .“x (x +1)=0”D .“x (x 2-1)=0”解析:“x =1”是“x 2=x ”的充分不必要条件; “x (x -1)=0”是“x 2=x ”的充要条件; “x (x +1)=0” 是“x 2=x ”的不充分不必要条件;“x (x 2-1)=0”是“x 2=x ”的不充分不必要条件.故选A.答案:A4.已知函数f (x )=ax 2-1且f ′(1)=2,则实数a 的值为( ) A .1 B .2 C.2 D .a >0解析:∵f ′(x )=12(ax 2-1)-12·2ax =axax 2-1,∴f ′(1)=aa -1=2,∴a =2. 答案:B5.函数f (x )=ln x -12x 2的图象大致是( )答案:B6.由曲线xy =1,直线y =x ,x =3及x 轴所围成的曲边四边形的面积为( )A.116B.92C.12+ln 3 D .4-ln 3解析:由xy =1得y =1x ,由⎩⎪⎨⎪⎧y =x ,y =1x得x D =1,所以曲边四边形的面积为x d x +1x d x =+=12+ln 3,故选C.7.某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1 000元.如果团体的人数超过100人,那么每超过1人,每人平均收费降低5元,但团体人数不能超过180人(不到100人不组团).要使旅行社的收费最多,旅游团组团人数为() A.130 B.140 C.150 D.160解析:设参加旅游的人数为x,旅游团收费为y,则依题意有f(x)=1 000x-5(x-100)x(100≤x≤180),令f′(x)=1 500x-10x=0得x =150.又f(100)=100 000,f(150)=112 500,f(180)=108 000,所以当参加人数为150人时,旅游团的收费最高,可达112 500元,故选C.答案:C8.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上是单调函数,则实数a的取值范围是()A.(-∞,-3]∪[3,+∞) B.[-3,3]C.(-∞,-3)∪(3,+∞) D.(-3,3)解析:f′(x)=-3x2+2ax-1≤0在(-∞,+∞)恒成立,Δ=4a2-12≤0⇒-3≤a≤ 3.二、填空题(本大题共6小题,每小题5分,共30分;将正确答案填在题中的横线上)9.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________.解析:因为z +1=-3+2ii =2+3i ,所以z =1+3i ,故z 的实部是1.答案:110.(2013·江西卷)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.解析:设e x =t ,则x =ln t (t >0),所以f (t )=t +ln t ,所以f ′(t )=1+1t ,所以f ′(1)=2.答案:211.(2013·潮州二模改编)计算⎰e 1⎝⎛⎭⎪⎫3x -1x d x =________________.解析:因为⎝ ⎛⎭⎪⎫32x 2′=3x ,(ln x )′=1x ,=32e 2-32-(ln e -ln 1)=3e 2-52. 答案:3e 2-5212.函数f (x )=(x -3)e x 的单调递增区间是________.解析:f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x . 令f ′(x )>0,解得x >2,故单调递增区间为(2,+∞). 答案:(2,+∞)13.一同学在电脑中打出如下若干个圆,○●○○●○○○●○○○○●○○○○○●…若将此若干个圆依此规律继续下去,得到一系列的圆,那么在前100个圆中有________个●.解析:∴2+3+4+…+(n +1)<100,即n(n+3)2<100,则满足条件的n=12.答案:1214.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f4(x)=f(f3(x))=x15x+16,……根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))=____________________.解析:观察1,3,7,15,…,与对应项的关系,显然满足2n-1,观察2,4,8,16,…,与对应项的关系,显然满足2n,故f n(x)=x(2n-1)x+2n.答案:x(2n-1)x+2n三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)设|z |=1,且z ≠±i ,求证z1+z 2为实数.证明:由条件可知z ≠0,设z =x +y i(x ,y ∈R ,x ≠0),则z 2=x 2-y 2+2xy i ,且x 2+y 2=1,所以z 1+z 2=x +y i 1+x 2-y 2+2xy i =x +y i 2x 2+2xy i=12x ·x +y i x +y i =12x ∈R ,所以z 1+z2为实数.16.(本小题满分12分)已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3, 并推测a n 的表达式;解析:由S n +a n =2n +1得a 1=32, a 2=74, a 3=158,∴a n =2n +1-12n =2-12n .(2)用数学归纳法证明所得的结论.证明:①当n =1时, 左边=S 1+a 1=32+32=3,右边=2×1+1=3,∴结论成立. ②假设n =k (k ≥1,k ∈N *)时结论成立, 即a k =2-12k , 当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1, ∵a 1+a 2+…+a k =2k +1-a k,∴2a k +1=4-12k , ∴a k +1=2-12k +1成立.根据①②知对于任何自然数n ,结论成立.17.(本小题满分14分)设定义在(0,+∞)上的函数f (x )=ax +1ax +b (a >0).(1)求f (x )的最小值;解析:解法一 f (x )=ax +1ax +b ≥2ax ·1ax +b =b +2,当且仅当ax =1⎝ ⎛⎭⎪⎫x =1a 时,f (x )的最小值为b +2.解法二 f (x )的导数f ′(x )=a -1ax 2=a 2x 2-1ax 2,当x >1a 时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上递增;当0<x <1a 时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,1a 上递减.所以当x =1a 时,f (x )取得最小值2+b .(2)若曲线y =f (x )在点(1,f (1))处的切线方程y =32x ,求a ,b 的值.解析:由题意得:f (1)=32⇔a +1a +b =32, ①f ′(x )=a 2x 2-1ax 2⇒f ′(1)=a -1a =32, ② 由①②得:a =2,b =-1.18.(本小题满分14分)已知y =f (x )为定义在R 上奇函数,并且当x ∈(0,+∞)时,f (x )=2ln x -mx +12x 2.(1)求f (x )的解析式;解析:因为y =f (x )为定义在R 上奇函数, 所以设x ∈(-∞,0),有-x ∈(0,+∞),f (x )=-f (-x )=-⎣⎢⎡⎦⎥⎤2ln (-x )+mx +12x 2,即当x ∈(-∞,0),f (x )=-2ln(-x )-mx -12x 2.所以f (x )=⎩⎪⎨⎪⎧2ln x -mx +12x 2,x >0,0,x =0,-2ln (-x )-mx -12x 2,x <0.(2)若f (x )在[1,2]上单调递减,求m 的取值范围.解析:因为f (x )在[1,2]上单调递减,所以f ′(x )=2x -m +x =x 2-mx +2x≤0在[1,2]上恒成立. 设h (x )=x 2-mx +2,则有⎩⎨⎧h (1)≤0,h (2)≤0,解得m ≥3.19.(2013·河北唐山市一模)(本小题满分14分)已知函数f (x )=mx +nex 在x =1处取得极值e -1.(1)求函数f (x )的解析式,并求f (x )的单调区间;解析:f ′(x )=-mx +n -me x .依题意,f (1)=e -1,f ′(1)=0,即⎩⎨⎧(m +n )e -1=e -1,-n e -1=0,解得⎩⎨⎧m =1,n =0.所以f (x )=xe x ,f ′(x )=x -1e x .当x ∈(-∞,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.函数f (x )在(-∞,1)单调递增;在(1,+∞)单调递减.(2)当x >0时,试证:f (1+x )>f (1-x ).解析:设g (x )=f (1+x )-f (1-x )=1+x e 1+x -1+xe 1-x =(1+x )e -x -(1-x )e xe .设h (x )=(1+x )e -x -(1-x )e x =1+xex -(1-x )e x, 则h ′(x )=x (e 2x -1)e x>0,h (x )在(0,+∞)上单调递增,h (x )>h (0)=0,所以g (x )>0,从而f (1+x )>f (1-x ).20.(本小题满分14分)数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)求出a 2,a 3,a 4的值; 解析:(2)猜出a n 的表达式,并用数学归纳法证明.解析:猜想a n =1(n +1)(n +2),下面用数学归纳法给出证明.①当n =1时,a 1=16=1(1+1)(1+2),结论成立.②假设当n =k 时,结论成立,即a k =1(k +1)(k +2),则当n =k+1时,S k =k (k +1)2a k =k (k +1)2·1(k +1)(k +2)=k2(k +2),S k +1=(k +1)(k +2)2a k +1,即S k +a k +1=(k +1)(k +2)2a k +1.所以k2(k +2)+a k +1=(k +1)(k +2)2a k +1.所以a k +1=k2(k +2)(k +1)(k +2)2-1=kk (k +3)(k +2)=1(k +2)(k +3).当n =k +1时结论成立.由①②可知,对一切n ∈N *都有a n =1(n +1)(n +2).。
【高二数学】选修2-2综合测试含答案解析
选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。
人教版高中数学选修2-2模块综合检测 Word版含解析
模块综合检测(时间分钟满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).已知复数=+,=+,则在复平面内对应的点位于( ).第一象限.第三象限.第四象限.第二象限解析:选==-,对应点在第四象限..下面几种推理中是演绎推理的为( ).由金、银、铜、铁可导电,猜想:金属都可导电.猜想数列,,,…的通项公式为=(∈+).半径为的圆的面积=π,则单位圆的面积=π.由平面直角坐标系中圆的方程为(-)+(-)=,推测空间直角坐标系中球的方程为(-)+(-)+(-)=解析:选由演绎推理的概念可知正确..函数=( )的导数是( ).′= ·.′=( ).′=.′=( )解析:选′=[( )]′=( )·( )′=( )· ·=× · ··=· ·,故选..设()=,若′()=,则的值为( )..).解析:选由()=,得′()=+. 根据题意知+=,所以=,因此=..观察下列等式,+=++=+++=,根据上述规律,+++++=( )....解析:选归纳得+++++==..函数()的图象如图,则函数的单调递增区间是( ).(-∞,-].[-]解析:选由题图可知=.不妨取=,∵()=++,∴′()=++.由图可知′(-)=,′()=,∴-+=++=,∴=-,=-.∴=--,′=-. 当>时,′>,∴=--的单调递增区间为.故选..设曲线=上任一点(,)处切线的斜率为(),则函数=()的部分图象可以为( )解析:选根据题意得()=,∴=()=为偶函数.又=时,=,故选..设函数()在上可导,()=′()-,则(-)与()的大小关系是( ).(-)=() .(-)>().不确定.(-)<()解析:选因为()=′()-,所以′()=′()-,则′()=′()-,解得′()=,所以()=-,所以()=-,(-)=,故(-)>()..若不等式≥-+-对∈(,+∞)恒成立,则实数的取值范围是( ).(-∞,) .(-∞,].[,+∞).(,+∞)解析:选由≥-+-,得≤++,设()=++(>),则′()=.当∈()时,′()<,函数()单调递减;当∈(,+∞)时,′()>,函数()单调递增,所以()=()=.所以≤()=.故的取值范围是(-∞,]..定义在上的函数()满足:′()>()恒成立,若<,则()与()的大小关系为( ).()>().()<().()=()。
最新人教版高中数学选修2-2综合测试题及答案2套
最新人教版高中数学选修2-2综合测试题及答案2套最新人教版高中数学选修2-2综合测试题及答案2套模块综合检测(A)一、选择题1.复数z=2-i(i为虚数单位)在复平面内对应的点所在象限为()A。
第一象限B。
第二象限C。
第三象限D。
第四象限解析:∵z=2-i=(2.-1),在第四象限.∴复数z对应的点的坐标为(2.-1)。
答案:D2.函数f(x)=x^3+4x+5的图象在x=1处的切线在x轴上的截距为()A。
10B。
5/3C。
-1D。
-7/3解析:f′(x)=3x^2+4,f′(1)=7,f(1)=10,y-10=7(x-1),y=7(x-1)+10时,x=7/3.答案:D3.类比下列平面内的三个结论所得的空间内的结论成立的是()①平行于同一直线的两条直线平行;②一条直线如果与两条平行直线中的一条垂直,则必与另一条垂直;③如果一条直线与两条平行直线中的一条相交,则必与另一条相交。
A。
①②③B。
①③C。
①D。
②③解析:类比①的结论为:平行于同一个空间的两个平面平行,成立;类比②的结论为:一个空间如果与两个平行平面中的一个垂直,则必与另一个垂直,成立;类比③的结论为:如果一个空间与两个平行平面中的一个相交,则必与另一个相交,成立。
答案:A4.函数y=x^3-3x^2-9x(-2<x<2)有()A。
极大值5,极小值-27B。
极大值5,极小值-11C。
极大值5,无极小值D。
极小值-27,无极大值解析:y′=3x^2-6x-9=3(x-3)(x+1),得x=-1,x=3,当x0;当x>-1时,y′<0.当x=-1时,y极大值=5,x取不到3,无极小值。
答案:C5.函数y=4x^2+1/x的单调递增区间是()A。
(0,+∞)B。
(-∞,1)C。
(1,2)D。
(2,+∞)解析:令y′=8x-1/x^2=0,即x=1/2,y′(x)=8x-1/x^2>0,所以y=4x^2+1/x在(0,+∞)上单调递增。
(人教版)高中数学选修2-2检测模块综合检测B Word版含答案
模块综合检测()一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).已知复数的共轭复数=+(为虚数单位),则在复平面内对应的点位于( ).第一象限.第二象限.第三象限.第四象限解析:求出复数,再确定对应的点的坐标.∵=+,∴=-,∴在复平面内对应的点位于第四象限.答案:.已知函数=()的图象是下列四个图象之一,且其导函数=′()的图象如图所示,则该函数的图象是( )解析:根据导函数值的大小变化情况,确定原函数的变化情况.从导函数的图象可以看出,导函数值先增大后减小,=时最大,所以函数()的图象的变化率也先增大后减小,在=时变化率最大.项,在=时变化率最小,故错误;项,变化率是越来越大的,故错误;项,变化率是越来越小的,故错误.项正确.答案:.“因为指数函数=是增函数(大前提),而=是指数函数(小前提),所以函数=是增函数(结论)”,上面推理的错误在于( ).大前提错误导致结论错.小前提错误导致结论错.推理形式错误导致结论错.大前提和小前提错误导致结论错解析:推理形式没有错误,而大前提“=是增函数”是不正确的,当<<时,=是减函数;当>时,=是增函数.答案:.若复数=(∈,是虚数单位)是纯虚数,则复数的共轭复数是( )..-..-解析:因为===+是纯虚数,所以+=且-≠,解得=-.所以=-,则复数的共轭复数是.答案:.类比平面内正三角形“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是( )①棱长相等,同一顶点上的任意两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角相等;③各个面都是全等的正三角形,同一顶点上的任意两条棱的夹角都相等..①.②.③.①②③解析:三个性质都是正确的,但从“类比”角度看,一般是“线→面”、“角→二面角”.答案:.设函数()在上可导,其导函数为′(),且函数()在=-处取得极小值,则函数=′()的图象可能是( )解析:由题意知′(-)=,当<-时′()<,当>-时′()>,∴当<-时,·′()>,当-<<时,·′()<,当>时,·′()>.答案:.若=+且>,则实数的值是( )....解析:=(+)=+-=+,所以=.答案:。
高中数学 模块综合评价(二)(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试题
模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(1+i)16-(1-i)16=() A .-256B .256i C .0 D .256解析:(1+i)16-(1-i)16=[(1+i)2]8-[(1-i)2]8=(2i)8-(-2i)8=0. 答案:C2.已知函数f (x )=ln x -x ,则函数f (x )的单调递减区间是() A .(-∞,1) B .(0,1)C .(-∞,0),(1,+∞)D .(1,+∞)解析:f ′(x )=1x -1=1-xx,x >0.令f ′(x )<0,解得x >1.答案:D3.设f (x )=10x+lg x ,则f ′(1)等于( ) A .10 B .10ln 10+lg e C.10ln 10+ln 10 D .11ln 10解析:f ′(x )=10x ln 10+1x ln 10,所以f ′(1)=10ln 10+1ln 10=10ln 10+lg e. 答案:B4.若函数f (x )满足f (x )=e xln x +3xf ′(1)-1,则f ′(1)=() A .-e 2B .-e3C .-eD .e解析:由已知可得f ′(x )=e xln x +exx+3f ′(1),令x =1,则f ′(1)=0+e +3f ′(1),解得f ′(1)=-e2.答案:A5.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除解析:因为“至少有一个”的否定为“一个也没有”. 答案:B6.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:因为f ′(x )=12x 2-2ax -2b ,又因为在x =1处有极值,所以a +b =6,因为a >0,b >0,所以ab ≤⎝⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时取等号,所以ab 的最大值等于9.答案:D7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10B .14C .13D .100解析:设n ∈N *,则数字n 共有n 个,所以n (n +1)2≤100,即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.答案:B8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.故选D.答案:D8.某工厂要建造一个长方体的无盖箱子,其容积为48 m 3,高为3 m ,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为()A .900元B .840元C .818元D .816元解析:设箱底一边的长度为x m ,箱子的总造价为l 元,根据题意,得l =15×483+12×2⎝ ⎛⎭⎪⎫3x +48x =240+72⎝ ⎛⎭⎪⎫x +16x (x >0),l ′=72⎝ ⎛⎭⎪⎫1-16x 2.令l ′=0,解得x =4或x =-4(舍去).当0<x <4时,l ′<0;当x >4时,l ′>0.故当x =4时,l 有最小值816.因此,当箱底是边长为4 m 的正方形时,箱子的总造价最低,最低总造价为816元.答案:D10.证明不等式n 2+n ≤n +1(n ∈N *),某学生的证明过程如下: (1)当n =1时,12+1≤1+1,不等式成立;(2)假设n =k (k ∈N *且k ≥1)时,不等式成立,即 k 2+k ≤k +1,则当n =k +1时,(k +1)2+(k +1)= k 2+3k +2≤k 2+3k +2+(k +2)=(k +2)2=(k +1)+1.所以当n =k +1时,不等式成立.上述证法( ) A .过程全都正确 B .n =1时验证不正确 C .归纳假设不正确D .从n =k 到n =k +1的推理不正确解析:验证及归纳假设都正确,但从n =k 到n =k +1的推理中没有使用归纳假设,而是通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故应选D.答案:D11.已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A.13B.43 C .2D.83解析:由f ′(x )的图象知,f ′(x )=2x +2, 设f (x )=x 2+2x +c ,由f (0)=0知,c =0, 所以f (x )=x 2+2x ,由x 2+2x =0得x =0或x =-2. 故所求面积S =-∫0-2(x 2+2x )d x =-⎝ ⎛⎭⎪⎫13x 3+x 2|0-2=43.答案:B12.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值X 围为()A .(-1,2) B.⎝⎛⎭⎪⎫-1,12C.⎝ ⎛⎭⎪⎫12,2D .(-2,1) 解析:因为f (x )是奇函数,所以不等式xf ′(x )<f (-x )等价于xf ′(x )<-f (x ),即xf ′(x )+f (x )<0,即F ′(x )<0.当x ∈(-∞,0]时,函数F (x )单调递减;由于F (x )=xf (x )为偶函数,所以F (x )在[0,+∞)上单调递增.所以F (3)>F (2x -1)等价于F (3)>F (|2x -1|), 即3>|2x -1|,解得-1<x <2. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 解析:因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 答案:514.在△ABC 中,D 为边BC 的中点,则AO →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题:_______________.解析:将“△ABC ”类比为“四面体A BCD ”,将“D 为边BC 的中点”类比为“△BCD 的重心”,于是有类比结论:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →).答案:在四面体A BCD 中,G 为△BCD 的重心,则AG →=12(AB →+AC →+AD →)15.若函数f (x )=x 2+ax +1在x =1处取得极值,则a =____________.解析:f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,令f ′(x )=0,则x 2+2x -a =0,x ≠-1.又f (x )在x =1处取得极值,所以x =1是x 2+2x -a =0的根,所以a =3.答案:316.下列四个命题中,正确的为________(填上所有正确命题的序号). ①若实数a ,b ,c 满足a +b +c =3,则a ,b ,c 中至少有一个不小于1; ②若z 为复数,且|z |=1,则|z -i|的最大值等于2; ③对任意x ∈(0,+∞),都有x >sin x ; ④定积分∫π0π-x 2d x =π24.解析:①若实数a ,b ,c 满足a +b +c =3,则用反证法证明,假设a ,b ,c 都小于1,则a +b +c <3,与已知矛盾,故可得a ,b ,c 中至少有一个不小于1,故①正确;②若z 为复数,且|z |=1,则由|z -i|≤|z |+|-i|=2,可得|z -i|的最大值等于2,故②正确;③令y =x -sin x ,其导数为y ′=1-cos x ,y ′≥0,所以y =x -sin x 在R 上为增函数,当x =0时,x -sin x =0,所以对任意x ∈(0,+∞),都有x -sin x >0,故③正确.④定积分∫π0π-x 2d x 表示以原点为圆心,π为半径的圆的面积的四分之一,故④正确.答案:①②③④三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知a ∈R,问复数z =(a 2-2a +4)-(a 2-2a +2)i 所对应的点在第几象限?复数z 对应点的轨迹是什么?解:由a 2-2a +4=(a -1)2+3≥3. -(a 2-2a +2)=-(a -1)2-1≤-1. 知z 的实部为正数,虚部为负数, 所以复数z 的对应点在第四象限.设z =x +y i(x ,y ∈R),则⎩⎪⎨⎪⎧x =a 2-2a +4,y =-(a 2-2a +2), 因为a 2-2a =(a -1)2-1≥-1, 所以x =a 2-2a +4≥3,消去a 2-2a ,得y =-x +2(x ≥3), 所以复数z 对应点的轨迹是一条射线, 其方程为y =-x +2(x ≥3). 18.(本小题满分12分)设函数f (x )=1x +2,a ,b ∈(0,+∞). (1)用分析法证明:f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23;(2)设a +b >4,求证:af (b ),bf (a )中至少有一个大于12.证明:(1)要证明f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23,只需证明1a b+2+1b a+2≤23, 只需证明b a +2b +ab +2a ≤23,即证b 2+4ab +a 22a 2+5ab +2b 2≤23,即证(a -b )2≥0,这显然成立,所以f ⎝ ⎛⎭⎪⎫a b +f ⎝ ⎛⎭⎪⎫b a ≤23.(2)假设af (b ),bf (a )都小于或等于12,即a b +2≤12,b a +2≤12,所以2a ≤b +2,2b ≤a +2,两式相加得a +b ≤4, 这与a +b >4矛盾,所以af (b ),bf (a )中至少有一个大于12.19.(本小题满分12分)已知函数f (x )=ex +2(x 2-3).(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数y =f (x )的极值. 解:(1)函数f (x )=e x +2(x 2-3),则f ′(x )=ex +2(x 2+2x -3)=ex +2(x +3)(x -1),故f ′(0)=-3e 2,又f (0)=-3e 2,故曲线y =f (x )在点(0,f (0))处的切线方程为y +3e 2=-3e 2(x -0),即3e 2x +y +3e 2=0.(2)令f ′(x )=0,可得x =1或x =-3, 如下表:↗↘↗所以当x =-3时,函数取极大值,极大值为f (-3)=e ,当x =1时,函数取极小值,极小值为f (1)=-2e 3.20.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在[1,e]上的最大值,最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3图象的下方.解:(1)由f (x )=12x 2+ln x 有f ′(x )=x +1x ,当x ∈[1,e]时,f ′(x )>0,所以f (x )max =f (e)=12e 2+1.f (x )min =f (1)=12.(2)设F (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x,当x ∈[1,+∞)时,F ′(x )<0,且F (1)=-16<0故x ∈[1,+∞)时F (x )<0,所以12x 2+ln x <23x 3,得证.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ); (3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0.解:(1)f (x )的定义域为(0,+∞),由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -ax=(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则令f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )- [12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ).所以g ′(x )=2-a a +x -aa -x =2x2x 2-a 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0.故当0<x <a 时,f (a +x )<f (a -x ).(3)由(1)可知,当a ≤0时,函数f (x )至多有一个零点, 故a >0,从而f (x )的最小值为f (a ),且f (a )<0. 不妨设0<x 1<x 2,则0<x 1<a <x 2,所以0<a -x 1<a . 由(2)得f (2a -x 1)<f (x 1)=0=f (x 2), 从而x 2>2a -x 1,于是x 1+x 22>a .由(1)知,f ′⎝⎛⎭⎪⎫x 1+x 22>0.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且a 1=1,S n =n 2a n (n ∈N *). (1)试求出S 1,S 2,S 3,S 4,并猜想S n 的表达式; (2)用数学归纳法证明你的猜想,并求出a n 的表达式. 解:(1)因为a n =S n -S n -1(n ≥2) 所以S n =n 2(S n -S n -1),所以S n =n 2n 2-1S n -1(n ≥2) 因为a 1=1,所以S 1=a 1=1. 所以S 2=43,S 3=32=64,S 4=85,猜想S n =2n n +1(n ∈N *). (2)①当n =1时,S 1=1成立.②假设n =k (k ≥1,k ∈N *)时,等式成立,即S k =2k k +1, 当n =k +1时,S k +1=(k +1)2·a k +1=a k +1+S k =a k +1+2k k +1, 所以a k +1=2(k +2)(k +1),所以S k +1=(k +1)2·a k +1=2(k +1)k +2=2(k +1)(k +1)+1.所以n =k +1时等式也成立,得证.所以根据①、②可知,对于任意n ∈N *,等式均成立. 由S n =n 2a n ,得2n n +1=n 2a n ,所以a n =2n (n +1).。
数学选修2-2模块综合模块测试 含解析 精品
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,满分70分) 1.若f (x )=sin α-cos x (α是常数),则f ′(α)=__________. 2.复数1-2i3+4i 在复平面内对应的点位于第__________象限.3.函数y =x 2(x -3)的减区间是__________.4.若a 为实数,2+a i1+2i =-2i ,则a 等于__________.5.设y =tan x ,则y ′等于__________.6.曲线y =cos x (0≤x ≤3π2)与坐标轴围成的面积是__________.7.若△ABC 内切圆半径为r ,三边长为a ,b ,c ,则△ABC 的面积S =12r (a +b +c ),类比到空间,若四面体内切球半径为R ,四个面的面积为S 1、S 2、S 3、S 4,则四面体的体积V =__________.8.已知对任意实数x ,有f (-x )=-f (x ),且g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时,f ′(x )__________0,g ′(x )__________0.9.已知函数f (x )=3x 1+x 2,当x =__________时,函数取得极大值__________.10.观察下列数的特点1,2,2,3,3,3,4,4,4,4,…中,第100项是__________. 11.设函数f (x )=ax 2+b (a ≠0),若⎠⎛02f (x )d x =2f (x 0),x 0>0,则x 0=__________.12.非空集合G 关于运算满足: (1)对任意a ,b ∈G ,都有ab ∈G ;(2)存在e ∈G ,使得对一切a ∈G ,都有a e =e a =a ,则称G 关于运算为“融洽集”.现给出下列集合和运算:①G ={非负整数},为整数的加法; ②G ={偶数},为整数的乘法; ③G ={平面向量},为平面向量的加法; ④G ={虚数},为复数的乘法.其中G 关于运算为“融洽集”的是__________.(写出所有“融洽集”的序号) 13.对于函数f (x ),在使f (x )≥M 恒成立的所有常数M 中,我们把M 中的最大值称为函数f (x )的“下确界”,则函数f (x )=x 2+1(x +1)2的下确界为__________.14.设γ,θ为常数(θ∈(0,π4),γ∈(π4,π2)),若sin(α+γ)+sin(γ-β)=sin θ(sin α-sin β)+cos θ(cos α+cos β)对一切α,β∈R 恒成立,则tan θtan γ+cos (θ-γ)sin 2(θ+π4)=__________.二、解答题(本大题共6小题,满分90分)15.(12分)已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,求a 的取值范围.16.(14分)已知圆柱形金属饮料罐的容积为54π cm 3,请问当它的高与底面半径各为多少时,才能使所用材料最省?17.(16分)已知函数f (x )=12x 2-a ln x (a ∈R ),(1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值;(2)若函数f (x )在(1,+∞)为增函数,求a 的取值范围.18.(16分)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,你能归纳出什么结论?并证明你的结论.19.(16分)如图所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax (a >1)交于点O 、A ,直线x =t (0<t ≤1)与曲线C 1、C 2分别交于点D 、B ,连结OD ,DA ,AB .(1)求证:曲边四边形ABOD (阴影部分)的面积S =f (t )的函数表达式为f (t )=16t 3-at 2+a 2t (0<t ≤1);(2)求函数S =f (t )在区间(0,1]上的最大值.20.(16分)已知函数f (x )=a ln x -bx 2图象上一点P (2,f (2))处的切线方程为y =-3x +2ln2+2.(1)求a ,b 的值;(2)若方程f (x )+m =0在[1e ,e]内有两个不等实根,求m 的取值范围(其中e 为自然对数的底,e ≈2.7);(3)令g (x )=f (x )-nx ,如果g (x )图象与x 轴交于A (x 1,0),B (x 2,0)(x 1<x 2),AB 中点为C (x 0,0),求证:g ′(x 0)≠0.参考答案1.sin α 解析:∵f ′(x )=sin x ,∴f ′(α)=sin α.2.三 解析:1-2i 3+4i =(1-2i )(3-4i )(3+4i )(3-4i )=-5-10i 25=-15-25i.3.(0,2) 解析:y ′=3x 2-6x ,由y ′<0,得0<x <2. 4.-2 解析:∵2+a i =(1+2i)(-2i)=2-2i , ∴a =- 2. 5.1cos 2x 解析:(tan x )′=(sin x cos x )′=(sin x )′cos x -sin x (cos x )′cos 2x =1cos 2x. 6.3 解析:S =3∫π20cos x d x =3.7.13R (S 1+S 2+S 3+S 4) 8.> < 解析:当x <0时,-x >0.∴f ′(-x )>0,g ′(-x )>0. ∵f (x )=-f (-x ),∴f ′(x )=f ′(-x )>0. 又∵g (x )=g (-x ),∴g ′(x )=-g ′(-x )<0.9.1 32 解析:f ′(x )=3(1+x 2)-2x (3x )(1+x 2)2=3(1-x 2)(1+x 2)2,令f ′(x )=0,解得x =-1或x =1.列表:↘↗↘由表可知,当x =1时,函数取得极大值f (1)=32.10.14 解析:设第100项的数字为n ,则(1+n )n2≥100,经检验知n =14.11.233 解析:∵⎠⎛02f (x )d x =⎠⎛02(ax 2+b )=(13ax 3+bx )|20=83a +2b =2(ax 20+b ), ∴83a =2ax 20,x 20=43, x 0=±233(负值舍去).12.①③ 解析:①对任意a ,b ∈G ={非负整数},为整数的加法,则有a b ∈G ,存在0∈G ,使得对一切a ∈G ,都有a =a =a ,因此G ={非负整数}关于运算为“融洽集”;②对任意a ,b ∈G ={偶数},为整数的乘法,都有a b ∈G ,但不存在e ∈G ,使得对一切a ∈G ,都有a e =e a =a ,因此G ={偶数}不是关于运算的“融洽集”;③对任意a ,b ∈G ={平面向量},为平面向量的加法,则有a b ∈G ,且存在0∈G ,使得对一切a ∈G ,都有a=a =a ,因此G ={平面向量}关于运算为“融洽集”; ④对任意a ,b ∈G ={虚数},为复数的乘法,不妨设a =i ,b =2i ,则有a b =-2∉G ,因此G ={虚数}不是关于运算的“融洽集”.13.12 解析:当x <-1时,∵x 2+1>x 2+2x +1=(x +1)2>0,∴x 2+1(x +1)2>1. 当x >-1时,f ′(x )=2x (x +1)2-(x 2+1)·2(x +1)(x +1)4=2(x -1)(x +1)3, ∵x ∈(-1,1)时,f ′(x )<0;x =-1时,f ′(x )=0;x ∈(1,+∞)时,f ′(x )>0,∴当x =1时,f (x )有最小值12.综上所述:f (x )≥12,∴M ≤12,∴M 的最大值为12.14.2 解析:∵sin αcos γ+cos αsin γ+sin γcos β-cos γsin β=sin αsin θ+cos αcos θ+cos θcos β-sin θsin β对一切α,β∈R 恒成立,∴⎩⎪⎨⎪⎧cos γ=sin θ,sin γ=cos θ∴γ+θ=π2,r =π2-θ.∴tan θtan γ+cos (θ-γ)sin 2(θ+π4)=tan θ·tan (π2-θ)+cos (2θ-π2)1-cos (2θ+π2)2=1+sin2θ1+sin2θ2=2.15.解:由题意得z 1=-1+5i1+i =2+3i ,于是|z 1-z 2|=|4-a +2i|=(4-a )2+4, |z 1|=13.(4-a )2+4<13,得a 2-8a +7<0,1<a <7.16.解:设圆柱的高为h (cm),底面半径为r (cm),表面积为S (cm 2). 则54π=πr 2h ,h =54r2S =2πrh +2πr 2=2πr ·54r 2+2πr 2=108πr +2πr 2,S ′=-108πr 2+4πr =4π(r 3-27)r 2=0,得r =3.∵r ∈(0,3)时,S ′<0;r ∈(3,+∞)时,S ′>0. ∴当r =3时,S 有最小值,此时h =5432=6.∴当圆柱的高为6 cm ,底面半径为30 cm 时,才能使所用材料最省. 17.解:(1)因为f ′(x )=x -ax (x >0),又f (x )在x =2处的切线方程为y =x +b ,所以⎩⎪⎨⎪⎧2-a ln2=2+b ,2-a 2=1,解得a =2,b =-2ln2.(2)若函数f (x )在(1,+∞)上恒成立,则f ′(x )=x -ax ≥0在(1,+∞) 上恒成立,即:a ≤x 2在(1,+∞)上恒成立.所以有a ≤1. 18.解:1+122+132+…+1n 2<2-1n (n ∈N *,n ≥2).(1)当n =2时,命题显然成立.(2)假设当n =k (k ∈N *,k ≥2)时,命题成立,即1+122+132+…+1k 2<2-1k .则当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2. ∵k 2+2k +1>k 2+2k ,∴(k +1)2>k (k +2)=k [(k +1)+1],∴1k +1+1(k +1)2<1k,∴1k -1(k +1)2>1k +1, ∴2-1k +1(k +1)2<2-1k +1,∴当n =k +1时命题也成立,从而原命题获证. 19.解:(1)证明:由⎩⎪⎨⎪⎧y =x 2,y =-x 2+2ax 得点O (0,0),A (a ,a 2). 又由已知得B (t ,-t 2+2at ),D (t ,t 2),故S =⎠⎛0t (-x 2+2ax )d x -12·t ·t 2+12(-t 2+2at -t 2)·(a -t )=16t 3-at 2+a 2t ,∴S =f (t )=16t 3-at 2+a 2t (0<t ≤1).(2)f ′(t )=12t 2-2at +a 2,令f ′(t )=0,即12t 2-2at +a 2=0,解得t =(2-2)a 或t =(2+2)a (由t ≤1,舍去).若(2-2)a ≥1即a ≥2+22时,∵0<t ≤1,∴f ′(t )≥0,∴f (t )在区间(0,1]上单调递增,S 的最大值是f (1)=a 2-a +16.若(2-2)a ≤1即a ≤2+22时,∵0<t ≤1,∴当0<t <(2-2)a 时,f ′(t )>0, ∴f (t )在区间(0,(2-2)a ]上单调递增;当(2-2)a <t ≤1时,f ′(t )<0,∴f (t )在区间[(2-2)a,1]上单调递减. ∴f (t )的最大值是f [(2-2)a ]=23(2-1)a 3.综上所述[f (t )]max=⎩⎪⎨⎪⎧a 2-a +16,a ≥2+22,23(2-1)a 3,1<a <2+22.20.解:(1)f ′(x )=a x -2bx ,f ′(2)=a2-4b ,f (2)=a ln2-4b .∴a2-4b =-3,且a ln2-4b =-6+2ln2+2.解得a =2,b =1. (2)f (x )=2ln x -x 2,令h (x )=f (x )+m =2ln x -x 2+m ,则h ′(x )=2x -2x =2(1-x 2)x ,令h ′(x )=0,得x =1(x =-1舍去).在[1e ,e]内,当x ∈[1e ,1)时,h ′(x )>0,∴h (x )是增函数; 当x ∈(1,e]时,h ′(x )<0,∴h (x )是减函数.则方程h (x )=0在[1e,e]内有两个不等实根的充要条件是⎩⎪⎨⎪⎧h (1e)≤0,h (1)>0,h (e )≤0,即1<m ≤e 2-2.(3)证明:g (x )=2ln x -x 2-nx ,g ′(x )=2x-2x -n .假设结论成立,则有⎩⎪⎨⎪⎧2ln x 1-x 21-nx 1=0, ①2ln x 2-x 22-nx 2=0, ②x 1+x 2=2x 0, ③2x 0-2x 0-n =0. ④①-②,得2ln x 1x 2-(x 21-x 22)-n (x 1-x 2)=0.∴n =2lnx 1x 2x 1-x 2-2x 0.由④得n =2x 0-2x 0,∴lnx 1x 2x 1-x 2=1x 0,即lnx 1x 2x 1-x 2=2x 1+x 2,即ln x 1x 2=2x 1x 2-2x 1x 2+1.⑤令t =x 1x 2,u (t )=ln t -2t -2t +1(0<t <1),则u ′(t )=(t -1)2t (t +1)2>0.∴u (t )在0<t <1上是增函数.u (t )<u (1)=0,∴⑤式不成立,与假设矛盾. ∴g ′(x 0)≠0.。
数学选修2-2 模块综合测评
模块综合测评(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是正确的)1.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( ) A .1 B .0 C .-1D .-1或1B [由题意知⎩⎪⎨⎪⎧m (m +1)=0m 2-1≠0,∴m =0.]2.演绎推理“ 因为对数函数y =log a x (a >0且a ≠ 1)是增函数,而函数y =log 12x 是对数函数,所以y =log 12x 是增函数” 所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .大前提和小前提都错误A [对数函数y =log a x (a >0,且a ≠1),当a >1时是增函数,当0<a <1时是减函数,故大前提错误.]3.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是 ( )A .1B .1+2C .1+2+3D .1+2+3+4D [当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.] 4.用反证法证明命题“a ,b ∈N ,如果ab 可以被5整除,那么a ,b 至少有1个能被5整除.”假设的内容是( )A .a ,b 都能被5整除B .a ,b 都不能被5整除C .a 不能被5整除D .a ,b 有1个不能被5整除B [用反证法证明时,要假设所要证明的结论的反面成立,本题中应反设a ,b 都不能被5整除.]5.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a =( )A .-2B .-12C .12D .2A [y ′=-2(x -1)2,y ′|x =3=-12, ∵⎝ ⎛⎭⎪⎫-12·(-a )=-1,∴a =-2.] 6.已知复数z 1=2+i ,z 2=1+i ,则z 1z 2在复平面内对应的点位于( )A .第一象限B .第三象限C .第二象限D .第四象限D [z 1z 2=2+i 1+i=32-i 2,对应点⎝ ⎛⎭⎪⎫32,-12在第四象限.]7.函数y =f (x )的导函数y =f ′(x )的图象如图1所示,则函数y =f (x )的图象可能是( )图1D[观察导函数f′(x)的图象可知,f′(x)的函数值从左到右依次为小于0,大于0,小于0,大于0,∴对应函数f(x)的增减性从左到右依次为减、增、减、增.观察选项可知,排除A、C.如图所示,f′(x)有3个零点,从左到右依次设为x1,x2,x3,且x1,x3是极小值点,x2是极大值点,且x2>0,故选项D正确.故选D.]8.用数学归纳法证明不等式1n+1+1n+2+…+1n+n>12(n>1,n∈N*)的过程中,从n=k到n=k+1时左边需增加的代数式是()A.12k+2B.12k+1-12k+2C.12k+1+12k+2D.12k+1B[从n=k到n=k+1左边增加了12k+1+12k+2减少了1k+1,∴需增加的代数式为12k+1+12k+2-1k+1=12k+1-12k+2.]9.已知结论:“在正三角形ABC中,若D是BC的中点,G是三角形ABC的重心,则AGGD=2”. 若把该结论推广到空间,则有结论:在棱长都相等的四面体A-BCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则AOOM等于()A.1 B.2 C.3 D.4C[面的重心类比几何体的重心,平面类比空间,AGGD =2类比AOOM=3,故选C.]10.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩D[由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.]11.如图2,第n个图形是由正n+2边形“扩展”而来(n=1,2,3,…),则第n个图形中顶点个数为()图2A.(n+1)(n+2) B.(n+2)(n+3)C.n2D.nB [第一个图形共有12=3×4个顶点,第二个图形共有20=4×5个顶点,第三个图形共有30=5×6个顶点,第四个图形共有42=6×7个顶点,故第n 个图形共有(n +2)(n +3)个顶点.]12.已知可导函数f (x )(x ∈R )满足f ′(x )>f (x ),则当a >0时,f (a )和e a f (0)的大小的关系为( )A .f (a )<e a f (0)B .f (a )>e a f (0)C .f (a )=e a f (0)D .f (a )≤e a f (0)B [令g (x )=e -x f (x ),则g ′(x )=e -x [f ′(x )-f (x )]>0.所以g (x )在(-∞,+∞)上为增函数,g (a )>g (0).e -a f (a )>e 0f (0),即f (a )>e a f (0),故选B.]二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则|a +b i|=________. [解析] 由(a +i)(1+i)=a -1+(a +1)i =b i ,得⎩⎪⎨⎪⎧a -1=0,a +1=b ,解方程组,得a=1,b =2,则a +b i =1+2i.∴|a +b i|=1+4= 5.[答案]514.由抛物线y =12x 2,直线x =1,x =3和x 轴所围成的图形的面积是 ________.[解析] 如图所示,S =[答案] 13315.观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74,……照此规律,第五个不等式为________.[解析]左边的式子的通项是1+122+132+…+1(n+1)2,右边式子的分母依次增加1,分子依次增加2,还可以发现右边分母与左边最后一项分母的关系,所以第五个不等式为1+122+132+142+152+162<116.[答案]1+122+132+142+152+162<11616.设x3+ax+b=0,其中a,b均为实数.下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①a=-3,b=-3;②a=-3,b=2;③a=-3,b>2;④a=0,b=2;⑤a=1,b=2.[解析]令f(x)=x3+ax+b,求导得f′(x)=3x2+a,当a≥0时,f′(x)≥0,所以f(x)单调递增,且至少存在一个数使f(x)<0,至少存在一个数使f(x)>0,所以f(x)=x3+ax+b必有一个零点,即方程x3+ax+b=0仅有一根,故④⑤正确;当a<0时,若a=-3,则f′(x)=3x2-3=3(x+1)(x-1),易知,f(x)在(-∞,-1),(1,+∞)上单调递增,在[-1,1]上单调递减,所以f(x)极大=f(-1)=-1+3+b=b+2,f(x)极小=f(1)=1-3+b=b-2,要使方程仅有一根,则f(x)极大=b+2<0或者f(x)极小=b-2>0,解得b<-2或b>2,故①③正确.所以使得三次方程仅有一个实根的是①③④⑤.[答案]①③④⑤三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知a >0,b >0用分析法证明:a +b 2≥2aba +b .[证明] 因为a >0,b >0, 要证a +b 2≥2ab a +b,只要证,(a +b )2≥4ab ,只要证(a +b )2-4ab ≥0, 即证a 2-2ab +b 2≥0,而a 2-2ab +b 2=(a -b )2≥0恒成立, 故a +b 2≥2ab a +b成立.18.(本小题满分12分)已知z ∈C ,且|z |-i =z +2+3i(i 为虚数单位),求复数z 2+i的虚部.[解] 设z =x +y i(x ,y ∈R ),代入方程|z |-i =z +2+3i , 得出x 2+y 2-i =x -y i +2+3i =(x +2)+(3-y )i ,故有⎩⎪⎨⎪⎧x 2+y 2=x +23-y =-1,解得⎩⎪⎨⎪⎧x =3y =4,∴z =3+4i ,复数z2+i =3+4i 2+i=2+i ,虚部为1.19.(本小题满分12分)设函数f (x )=-13x 3+x 2+(m 2-1)x (x ∈R ),其中m >0.(1)当m =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)求函数f (x )的单调区间与极值. [解] (1)当m =1时,f (x )=-13x 3+x 2,f ′(x )=-x 2+2x ,故f ′(1)=1.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为1. (2)f ′(x )=-x 2+2x +m 2-1.令f ′(x )=0,解得x =1-m 或x =1+m . 因为m >0,所以1+m >1-m .当x 变化时,f ′(x ),f (x )的变化情况如下表:函数.函数f (x )在x =1-m 处取得极小值f (1-m ), 且f (1-m )=-23m 3+m 2-13.函数f (x )在x =1+m 处取得极大值f (1+m ), 且f (1+m )=23m 3+m 2-13.20.(本小题满分12分) 某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则当该商品零售价定为多少元时利润最大,并求出利润的最大值.[解] 设商场销售该商品所获利润为y 元,则 y =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), 则y ′=-3p 2-300p +11 700.令y ′=0得p 2+100p -3 900=0,解得p =30或p =-130(舍去). 则p ,y ,y ′变化关系如下表:故当又y =-p 3-150p 2+11 700p -166 000在[20,+∞)上只有一个极值,故也是最值.所以该商品零售价定为每件30元,所获利润最大为23 000元.21.(本小题满分12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为 f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此a 的取值范围是(0,1).22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n . (1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想.[解] (1)由S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1得a 21=1, ∵a n >0,∴a 1=1.由S 2=a 1+a 2=12⎝ ⎛⎭⎪⎫a 2+1a 2得a 22+2a 2-1=0.∴a 2=2-1.由S 3=a 1+a 2+a 3=12⎝ ⎛⎭⎪⎫a 3+1a 3得a 23+22a 3-1=0.∴a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *).证明如下:①n =1时,a 1=1-0命题成立. ②假设n =k 时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k , 即a k +1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12k -k -1+1k -k -1=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ∴a 2k +1+2ka k +1-1=0.∴a k +1=k +1-k .即n =k +1时,命题成立, 由①②知,n ∈N *,a n =n -n -1.11。
人教版高中数学选修2-2模块综合检测卷
模块综合检测卷(: 120 分价分:150分)一、 (本大共12 小,每小 5 分,共 60 分;在每小出的四个中,只有一是切合目要求的)1. (2014 高·考天津卷 )i 是虚数位,复数7+i= (A) 3+ 4iA . 1- i B.- 1+ i17+ 3117+ 25C.2525iD.-77i( 7+i )( 3- 4i)25-25i= 1- i,故 A.分析:7+i=25=3+ 4i252. i 是虚数位,在复平面上复数2-i的点到原点的距离是 (D) 1+ i25A. 2B. 2610C. 2D. 22- i( 2- i)( 1- i )1- 3i2- i13分析:1+ i=2=2,所以复数1+i在复平面上的点2,-2,它到原点的距离123210(2)+(-2)=2 .故 D.3. (2015 广· 江研 )i是虚数位, (311+32i- )(-2i) = (D)22A . 1B .-1+3i 2213D .-1-3C. -2i22i2分析:3i-11+33i-3+1-313i.故 D. 22-2i =-4444i=--2224.数列 2, 5,11, 20, x, 47,⋯中的 x 等于 (B)A.28B. 32C. 33D. 27分析:由中数字可:2+ 3= 5, 5+ 6=11,11+ 9= 20,故 20+ 12= 32.5.(2015 海·南省海南中学 5 月模改 )已知直 y= 2x+1 与曲 y= x3+ ax+ b 相切于点(1 , 3),数 b 的 (C)A.1B.- 3C. 3D.- 1分析:y′=3x2+a,所以有1+ a+b= 3,解得a=-1,应选C.3+ a=2,b= 3.6.(2014 ·考山东卷高 )用反证法证明命题“设a,b为实数,则方程x2+ax+ b= 0 起码有一个实根”时,要做的假定是(A)A .方程 x2+ ax+b= 0 没有实根B.方程 x2+ ax+b= 0 至多有一个实根C.方程 x2+ ax+b= 0 至多有两个实根D.方程 x2+ax+ b= 0 恰巧有两个实根分析:反证法的步骤第一步是假定命题反面建立,而“起码有一个根”的否认是“没有”,应选 A.7.在复平面内,若复数z 知足 |z+ 1|= |1+ iz|,则 z 在复平面内对应点的轨迹是(A)A .直线B .圆C.椭圆D.抛物线分析:设 z= x+ yi(x、 y∈ R), |x+ 1+ yi|=(x+1)2+ y2,|1+ iz|= |1+ i(x+ yi)| =(y- 1)2+ x2,则( x+ 1)2+y2=( y- 1)2+ x2.∴复数 z= x+ yi 对应点 (x, y)的轨迹为到点 (-1, 0)和 (0, 1)距离相等的直线.8.如图,暗影部分面积为(B)分析:29.一个物体的运动方程为s= 1-t + t ,此中 s 的单位是米, t 的单位是秒,那么物体在3 秒末的瞬 速度是 (C)A .7 米 /秒B .6 米/秒C .5 米/秒D .8 米/秒分析: s ′(t)= 2t - 1,s ′ (3) = 2×3- 1= 5.10.(2015 安·徽江淮十校4 月 考 )二次函数 f(x)的 像 点0, 3 ,且 f ′(x)=- x - 1,2不等式 f(10x )>0 的解集 (D)A .(-3,1)B . (- lg3 , 0)1 , 1D . (- ∞, 0)C.1000分析:由 f ′(x)=- x -1233,即 f(x)=-1 2知 f(x)=- x - x + m ,又 f(0)=,所以 m = x - x22 2+ 3, f( x)=- 1x 2- x + 3>0? - 3< x<1,所以 10x <1, x<0 ,故 D.22211.(2014 高·考新 全国Ⅰ卷 )已知函数 f(x)= ax3-3x 2+ 1,若 f(x)存在独一的零点 x 0,且 x 0 >0, a 的取 范 是 (C)A . (2,+ ∞)B . (1,+ ∞ )C .( -∞,- 2)D . (- ∞,- 1)分析:当 a = 0 , f(x)=- 3x 2+ 1,函数 f(x)有两个零点3和-3,不 足 意, 舍去;3 3当 a>0 ,f ′(x)= 3ax 2- 6x ,令 f ′(x)=0 ,得 x = 0 或 x = 2,x ∈ (-∞,0) ,f ′ (x)>0 ;x ∈ 0,2a a, f ′ (x)<0 ;x ∈2,+ ∞ , f ′ (x)>0,且 f(0)>0 ,此 在 x ∈ (- ∞, 0)必有零点,故不a22足 意,舍去;当a<0 , x ∈ - ∞,a, f ′ (x)<0,x ∈ a , 0 , f ′( x)>0;x ∈ (0,+ ∞) , f ′(x)<0 ,且 f(0)>0 ,要使得 f( x)存在独一的零点 x 0,且 x 0>0 ,只要 f 2>0 ,即 a 2>4 ,a a<- 2, C.12.若数列 { a n } 是等差数列, 数列{ b n } b n = a 1+ a 2+ ⋯ + a n也 等差数列. 比 一n性 可知,若正 数列 { c n } 是等比数列,且 { d n } 也是等比数列,d n 的表达式 (D)c 1+ c 2+ ⋯ + c 12A . d n =nB .d n =c 1· c 2·⋯· c nnnc n 1+c n 2+⋯ + c n nC .d n =nD . d n = nc 1· c 2·⋯· c nn ( n - 1)分析:若 { a n } 是等差数列,a 1+a 2 +⋯ + a n = na 1+d ,∴ b n = a 1+(n - 1)d = d n + a 1- d,即 { b n } 等差数列; 222若 { c n } 是等比数列,c 1·c 2·⋯· c n = c 1n · q 1+ 2+ ⋯+(n - 1)= c 1n · qn ( n - 1)2,n - 1∴ d n = nc 1· c 2·⋯· c n = c 1· q 2 ,即 {d n } 等比数列,故 D. 二、填空 (本大 共 4 小 ,每小 5 分,共 20 分;将正确答案填在 中的横 上)13.分析:答案:1214.已知函数 f(x)= 3x - x 3,当 x = a 获得极大 b , a + b 等于 ______________.分析:由f ′(x)= 3- 3x 2= 0,解得 x =±1,当 x <- 1,f ′ (x)< 0;当- 1< x <1, f ′ (x)>0;当 x > 1, f ′ (x)< 0.故 f(x)在 x = 1 获得极大 ,所以a =1,b = 3×1- 13= 2,所以 a+ b = 3.答案: 315.若数列 { a n } 的通 公式1*), f(n) =(1 -a 1)(1 - a 2) ⋯ (1- a n ),a n =( n + 1)2(n ∈N 通 算 f(1), f(2) ,f(3) 的 ,推 出 f(n)= ________.1 1 ⋯[1-1 2] =分析: f(n)= 1- 21- 2 ( n + 1)2311 11⋯(1-111×3× 2× 4× 3×⋯×n ×n + 2=1- 2 1+ 2 1- 3 1+ 3n + 1)(1 + n + 1)=2 2 33 4 n + 1 n + 1n + 2.n + 2答案:16. 察下 中各正方形 案,每条 上有n(n ≥ 2)个点,第 n 个 案中 点的 数是S n .n = 2,S 2= 4,n = 3,S 3= 8,n = 4,S 4 =12,⋯,按此 律,推出 S n 与 n 的关系式 ________.分析:依 的结构 律能够看出:S 2= 2×4- 4, S 3= 3×4- 4,S 4= 4×4- 4(正方形四个 点重复 算一次, 减去).⋯⋯猜想: S n =4n - 4(n ≥2, n ∈ N * ). 答案: S n =4n - 4(n ≥2, n ∈ N * )三、解答 (本大 共6 小 ,共 70 分;解答 写出必需的文字 明、 明 程及演算步 )z217. (本小 分 11 分 )已知 z 是复数, z + 2i ,均 数,且 (z + ai) 的 点在第一象限,求 数a 的取 范 .分析: z = x + yi(x , y ∈ R).z + 2i = x + (y +2)i 数,∴ y =- 2.又= z =x - 2i = 1(x - 2i) (2·+ i) = 1 (2x + 2)+ 1 (x - 4)i 数, 2- i 2- i 5 5 5 ∴ x = 4,∴ z = 4- 2i.又∵ (z + ai) 2= (4- 2i + ai) 2= (12+4a - a 2)+ 8(a - 2)i 在第一象限,12+ 4a - a 2>0, ∴解得 2<a<6, 8(a - 2) >0,∴ 数 a 的取 范 是(2, 6).18.(本小 分11 分 )a 数,函数f(x)= x 3-x 2- x + a ,若函数 f(x) 点 A(1,0),求函数在区 [ - 1, 3]上的最 .分析:因 函数 点A(1,0),代入函数的分析式得a = 1;f ′(x)= 3x 2- 2x - 1.当 x 化 , f ′ (x), f(x)的 化状况 下表:所以 f(x)的最大值是 f(3)= 16,最小值是 f(- 1)=f(1)= 0.19. (本小题满分 12x - 2分 )已知函数 f(x)= a x + (a>1) .x + 1(1)证明:函数 f(x)在 (- 1,+ ∞)上为增函数; (2)用反证法证明方程f(x)= 0 没有负根.证明: (1)f ′(x)=a xln a +x + 1-( x - 2)ln a +32,由于 a >1,所以 ln a > 0, ( x + 1) 2= a x1)( x +所以 f ′(x)> 0 在 (- 1,+ ∞)上恒建立,即f(x)在 (- 1,+ ∞)上为增函数.(2)设存在 x 0< 0(x 0≠- 1)知足 f(x 0)= 0,x 0 -2则 ax 0=- x 0 +1,且 0<ax 0<1.x 0- 21所以 0<- x 0+ 1<1,即 2< x 0< 2,与假定 x 0< 0 矛盾. 故方程 f(x)= 0 没有负数根.31320.(本小题满分 12 分 )已知 f(x)=- x + ax ,此中 a ∈ R ,g(x)=-2x2,且 f(x)< g(x)在 (0,1]上恒建立.务实数 a 的取值范围.313分析:设 F(x)= f(x)- g(x)=- x +ax + 2x2,∵ f(x)< g(x)在 (0, 1]上恒建立; F(x)<0 在 (0, 1]上恒建立,211∴ a<x - 2x2,这样,要求 a 的取值范围,使得上式在区间(0,1]上恒建立,只要求函数211h(x)= x - 2x2 在(0, 1]上的最小值.∵ h ′ (x)= 2x - ( 2 x - 1)( 4x + 2 x + 1)1 = 4 x ,由 h ′(x)= 0,(2 x - 1)(4x + 2 x +1)4 x =0.1 1 1∵ 4x +2 x +1>0 ,∴ 2 x - 1=0,x = 4.又∵ x ∈ 0, 4 时,h ′ (x)<0,x ∈ 4, 1 时,h ′(x)>0 ,1 1 3 3∴x = 4时, h(x)有最小值 h 4 =- 16,∴ a<- 16.21. (本小 分 12 分 ) f(x)= 3ax 2+ 2bx + c ,若 a + b +c = 0, f(0) ·f(1)>0 ,求 :(1) 方程 f(x)=0 有 根;b(2)- 2<a <- 1;(3) 3 2 x 1, x 2 是方程 f(x)= 0 的两个 根, ≤ |x 1- x 2|< .33明: (1)若 a = 0, b =- c , f(0) ·f(1)= c(3a + 2b + c)=- c 2≤0,与已知矛盾,所以a ≠0.方程 3ax 2+2bx + c = 0 的判 式= 4(b 2 - 3ac) , 由 条 件a +b +c = 0 , 消 去 b , 得= 4(a 2 + c 2 - ac) =4 123 2 >0.( a -c ) + c24故方程 f(x)= 0 有 根.(2)由 f(0) f(1)>0· ,得 c(3a + 2b +c)>0.由条件 a + b + c =0,消去 c ,得 (a + b)(2a + b)<0.2bbb∵ a >0,∴ 1+ a 2+a <0.故- 2<a <- 1. (3)由条件,知 x 1+ x 2=-2b, x 1x 2=c=-a + b,3a3a 3a224 b3 2 1∴ (x 1- x 2) = (x 1+ x 2) -4x 1x 2 = 9 a+2 + 3.∵- b 1 ≤ 2 4322< <- 1,∴ 3(x 1-x 2) < .故≤ |x 1- x 2|< .a9 33x分12 分 )(2015 佛·山一模 ) 函数 f(x) = e的 函数 f ′(x)(a 常数, e x - a=2.71828 ⋯是自然 数的底数 ) .(1) 函数 f(x)的 性;(2) a 3+ 6a 2+ 12a + 7.求 数 a ,使曲 y = f(x)在点 (a + 2, f(a +2)) 的切 斜率 -4分析: (1) 函数 f(x)的定 域是 (- ∞,a)∪ (a ,+ ∞), f(x)求 得: f ′(x)=e x ( x - a -1),( x + a ) 2由 f ′(x)>0 得 x>a + 1;由 f ′(x)<0 得 x<a 或 a<x<a + 1,所以 f(x)在 (- ∞, a), (a , a + 1)上 减,在(a + 1,+ ∞)上 增.ea +2(2)由 (Ⅰ )得 f ′(a + 2)=,4a +232+ 12a + 7ea+ 6a+2324 =-a令 4得 e + a + 6a + 12a +7= 0⋯⋯⋯①令 a +2= t , 有 e t +t 3- 1=0,t3t2令 h(t) =e+ t - 1,则 h′(t)= e +3t>0,故 h(t) 是 R 上的增函数,又 h(0)= 0,所以 0 是 h(t)的独一零点,即- 2 是方程①的独一实数解,故存在独一实数a=- 2 知足题设条件.。
(完整版)高二数学选修2_2模块综合检测试题
高二数学理科选修2-2试卷(2)命题人:仉晓莹一.选择题(本大题有10小题,每小题5分,共50分) 1.设)(x f 是可导函数,且='=∆-∆-→∆)(,2)()2(lim0000x f xx f x x f x 则( ) A .21 B .-1 C .0 D .-22.已知22123i 4(56)i z m m m z m =-+=++,,其中m 为实数,i 为虚数单位,若120z z -=,则m 的值为 ( )(A) 4(B) 1-(C) 6(D) 03.已知1,1x y <<,下列各式成立的是 ( )(A )2x y x y ++-> (B )221x y +< (C )1x y +< (D )1xy x y +>+ 4.设f (x )为可导函数,且满足0(1)(1)lim2x f f x x→--=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是 ( ) (A )2 (B )-1 (C )12(D )-2 5.若a 、b 、c 是常数,则“a >0且b 2-4ac <0”是“对任意x ∈R ,有ax 2+bx +c >0” 的 ( )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )必要条件 6.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在 7.511x y +=,则2223x y +的最小值为 ( ) (A)1 (B)34 (C)611(D)588. 曲线xy e =,xy e -= 和直线1x =围成的图形面积是 ( )(A)1e e -- (B) 1e e -+ (C) 12e e --- (D) 12e e -+- 9.点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )(A) 1(C) 2(D) 10.设2()f x x ax b =++(,a b R ∈),当[]11,x ∈-时,()f x 的最大值为m ,则m 的最小值为 ( ) (A)12 (B) 1 (C) 32(D) 2 二.填空题(本大题有5小题,每小题5分,共25分) 11.定义运算a b ad bc c d=-,若复数z 满足112zzi-=,其中i 为虚数单位,则复数z = .12.如图,数表满足:⑴第n 行首尾两数均为n ;⑵表中递推关系类似杨辉三角,记第(1)n n >行第2个数为()f n .根据表中上下两行数据关系, 可以求得当2n …时,()f n = .13.设函数f (x )=n 2x 2(1-x )n(n 为正整数),则f (x )在[0,1]上的最大值为 .14.设i a R +∈,i x R +∈,12,,i n =L ,且222121n a a a ++=L ,222121n x x x ++=L ,则1212,,,n na a a x x x L 的值中,现给出以下结论,其中你认为正确的是 . ①都大于1②都小于1③至少有一个不大于1④至多有一个不小于1⑤至少有一个不小于115.关于x 的不等式20()mx nx p m n p R -+>∈、、的解集为(1 2)-,,则复数m pi +所对应的点位于复平面内的第________象限.1 2 23 4 3 4 7 7 4 … … …三 解答题(本大题共6小题,共75分)16.(本小题满分12分)一物体沿直线以速度()23v t t =-(t 的单位为:秒,v 的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?17.(1)求定积分1222x dx --⎰的值;(2)若复数12()z a i a R =+∈,234z i =-, 且12z z 为纯虚数,求1z18(本小题满分12分) 已知函数11()ln()x f x x x =+-+ (1)求()f x 的单调区间;(2)求曲线()y f x =在点(1,1()f )处的切线方程; (3)求证:对任意的正数a 与b ,恒有1ln ln b a b a-≥-.19(本小题满分12分)(Ⅰ)已知复数z=1﹣i (i 是虚数单位),若z 2+a +b=3﹣3i ,求实数a ,b 的值.(Ⅱ)求二项式(+)10展开式中的常数项.20(本小题满分13分)由下列不等式:1>,1++>1,1+++…+>,1+++…+>2,…,你能得到一个怎样的一般不等式?并加以证明.21.(本小题满分14分)已知函数()ln f x x =(0)x ≠,函数1()()(0)()g x af x x f x '=+≠'⑴当0x ≠时,求函数()y g x =的表达式;⑵若0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值;⑶在⑵的条件下,求直线2736y x =+与函数()y g x =的图象所围成图形的面积.高二数学理科选修2-2试卷(2)参考答案一. 选择题1 B2 B3 D4 D5 A6 B7 C8 D9 B 10 A二. 填空题 11、 1-i12、 222n n -+13、 242()n n n ++ 14 、 ③⑤15 、 二三 解答题 1、6解:∵当302≤≤t 时,()230≤v t t =-; 当352≤≤t 时,()230≥v t t =-.∴物体从时刻t=0秒至时刻 t=5秒间运动的路程352302(32)(23)S t dx t dx =-+-⎰⎰=9929(10)442++=(米)17 、(1) 13+ (2)10318、(1)单调增区间0(,)+∞ ,单调减区间10(,)- (2)切线方程为 44230ln x y -+-= (3)所证不等式等价为10ln ab b a+-≥而1111()ln()f x x x =++-+,设1,t x =+则11()ln F t t t =+-,由(1)结论可得,011()(,)(,)F t +∞在单调递减,在单调递增,由此10min ()()F t F ==,所以10()()F t F ≥=即110()ln F t t t=+-≥,记a t b=代入得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模 块 综 合 检 测(时间:120分钟;满分:150分)一、选择题(本大题共12题.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知实数x 满足(-1+2i)x -x 2=3m -i ,则实数m 应取值为( )A .m =-112B .m >112C .m <112D .m =112解析:选D.由-x 2-x +2x i =3m -i ⇒⎩⎪⎨⎪⎧x 2+x =-3m 2x =-1⇒⎩⎨⎧x =-12,m =112.2.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体( )A .各正三角形内的点B .各正三角形某高线上的点C .各正三角形的中心D .各正三角形各边的中心 答案:C3.如图所示,阴影部分面积为( )A.∫b a [f (x )-g (x )]d xB.∫ca [g (x )-f (x )]d x +∫bc [f (x )-g (x )]d xC.∫ca [f (x )-g (x )]d x +∫bc [g (x )-f (x )]d x D.∫c a [g (x )-f (x )]d x解析:选B.S =S 1+S 2=∫c a [g (x )-f (x )]d x +∫bc [f (x )-g (x )]d x .故选B.4.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( )A .a k +a k +1+…+a 2kB .a k -1+a k +…+a 2k -1C .a k -1+a k +…+a 2kD .a k -1+a k +…+a 2k -2解析:选D.根据前四项归纳得:第k 项是以a k -1开始,共有k 项,所以选D. 5.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-3,1)上y =f (x )是增函数B .在(1,3)上y =f (x )是减函数C .在(4,5)上y =f (x )是增函数D .在x =2时y =f (x )取到极小值解析:选C.由图象知y =f (x )在(-3,-32)上是减函数,在(-32,1)上是增函数,知A 错;由y =f (x )在(1,2)上是增函数,在(2,3)上是减函数,知B 错;(-32,2)上f ′(x )>0,(2,4)上f ′(x )<0知,y =f (x )在x =2处取得极大值,知D 错;由y =f (x )在(4,5)上f ′(x )>0知,C 正确,故选C.6.已知z ∈C ,|z -2|=1,则|z +2+5i|的最大值和最小值分别是( ) A.41+1和41-1 B .3和1 C .52和34 D.39和3解析:选A.令z =x +y i(x ,y ∈R ). 则|z -2|=1,即:(x -2)2+y 2=1, ∴|z +2+5i|=|(x +2)+(y +5)i| =(x +2)2+(y +5)2,表示圆(x -2)2+y 2=1上任一点到点(-2,-5)的距离,设圆心(2,0)到点(-2,-5)的距离为d ,分析知所求最大值为d +1,最小值为d -1,故选A.7.函数f (x )定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点解析:选C.因为若f ′(x )>0,则f (x )为增函数,若f ′(x )<0,则f (x )为减函数.根据导函数f ′(x )图象,作出y =f (x )的大致图象,如图,由图象可知,函数f (x )有两个极大值点,两个极小值点.故选C.8.下列推理过程是类比推理的是( )A .人们通过大量试验得出掷硬币出现正面的概率为12B .科学家通过研究老鹰的眼睛发明了电子鹰眼C .通过检测溶液pH 值得出溶液的酸碱性D .数学中由周期函数的定义判断某函数是否为周期函数 解析:选B.A 是归纳推理,C 、D 均为演绎推理,故选B.9.观察下列各等式:55-4+33-4=2,22-4+66-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n (8-n )-4=2 B.n +1(n +1)-4+(n +1)+5(n +1)-4=2 C.nn -4+n +4(n +4)-4=2 D.n +1(n +1)-4+n +5(n +5)-4=2 解析:选A.各等式可化为:55-4+8-5(8-5)-4=2,22-4+8-2(8-2)-4=2,77-4+8-7(8-7)-4=2,1010-4+8-10(8-10)-4=2, 可归纳得一般等式:n n -4+8-n (8-n )-4=2.故选A. 10.观察如图中各正方形图案,每条边上有n (n ≥2)个圆点,第n 个图案中圆点的总数是S n ,按此规律推断出S n 与n 的关系式为( )A .S n =2nB .S n =4nC .S n =2nD .S n =4n -4解析:选D.当n =2时,S 2=4, 当n =3时,S 3=8, 当n =4时,S 4=12, 验证可得S n =4n -4.11.若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( )A .0个根B .1个根C .2个根D .3个根解析:选B.设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ), 当x ∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1×(83-4a +1)=113-4a <0,f (x )=0在(0,2)上恰好有1个根,故选B.12.在数列{a n }中,a n =1-12+13-14+…+12n -1-12n,则a k +1=( )A .a k +12k +1B .a k +12k +2-12k +4C .a k +12k +2D .a k +12k +1-12k +2解析:选D.a 1=1-12,a 2=1-12+13-14,…,a n =1-12+13-14+…+12n -1-12n,a k =1-12+13-14+…+12k -1-12k ,所以,a k +1=a k +12k +1-12k +2. 二、填空题(本小题共4小题.把正确答案填在题中横线上) 13.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是________.解析:∵a 1=3,a 2=5,a 3=7,a 4=9,…, ∴可以猜想a n =2n +1. 答案:a n =2n +114.曲线y =x 3+3x 2+6x +10的切线中,斜率最小的切线方程为________.解析:y ′=3x 2+6x +6=3(x +1)2+3≥3,此时x =-1,y =6.∴y ′|x =-1=3,∴切线方程为y -6=3(x +1),即3x -y +9=0. 答案:3x -y +9=015.计算∫20f (x )d x (其中f (x )=⎩⎪⎨⎪⎧x +1(x ≤1),2x 2(x >1))的结果为________.解析:∫20f (x )d x =∫10(x +1)d x +∫212x 2d x =376. 答案:37616.如图,对于函数f (x )=x 2(x >0)图象上任意两点A (a ,a 2),B (b ,b 2),线段AB 必在弧AB 上方,设点C 分AB →的比为λ,则由图象中C 在C 1上方可得不等式a 2+λb 21+λ>(a +λb 1+λ)2,请分析函数f (x )=ln x (x >0)的图象,类比上述不等式可以得到________.解析:如图所示,由图象可知,C 在C 1的下方,因此类比题中结论可得.答案:ln a +λln b 1+λ<ln a +λb 1+λ三、解答题(本大题共6小题.解答应写出文字说明、证明过程或演算步骤)17.用分析法和综合法证明:1log 519+1log 319+1log 219<2.证明:法一:(分析法)要证1log 519+1log 319+1log 219<2成立.即证log 195+log 193+log 192<log 19192,即log 1930<log 19192只需证30<192,又30<192恒成立.∴原不等式成立.法二:(综合法)∵1log 519+1log 319+1log 219=log 195+log 193+log 192 =log 1930<log 19192=2.18.证明:在复数范围内,方程|z 2|+(1-i)z ]-(1+i)z =5-5i2+i(i 为虚数单位)无解.证明:原方程化简为|z |2+(1-i)z ]-(1+i)z =1-3i , 设z =x +y i(x ,y ∈R ),代入上述方程得 x 2+y 2-2x i -2y i =1-3i , ∴⎩⎪⎨⎪⎧x 2+y 2=1,①2x +2y =3,② 将②代入①,整理得8x 2-12x +5=0, ∵Δ=-16<0,∴方程无实数解,原方程在复数范围内无解.19.某银行准备新设一种定期存款业务,经预测:存款量与存款利率的平方成正比,比例系数为k (k >0),贷款的利率为4.8%,又银行吸收的存款能全部放贷出去,试确定当存款利率为多少时,银行可获得最大利益?解:设存款利率为x ,则应有x ∈(0,0.048),依题意:存款量是kx 2,银行应支付的利息是kx 3,贷款的收益是0.048kx 2,所以银行的收益是y =0.048kx 2-kx 3,由于y ′=0.096kx -3kx 2,令y ′=0,得x =0.032或x =0(舍去),又当0<x <0.032时,y ′>0;当0.032<x <0.048时,y ′<0,所以当x =0.032时,y 取得最大值,即当存款利率定为3.2%时,银行可获得最大收益.20.已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+11+a n与1的大小,并说明理由. 解:∵f ′(x )=x 2-1,a n +1≥f ′(a n +1), ∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[1,+∞)上单调递增,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而得:a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.以下用数学归纳法证明这个猜想:①当n =1时,a 1≥21-1=1结论成立; ②假设n =k (k ≥1,k ∈N +)时结论成立, 即a k ≥2k -1,则 当n =k +1时,由g (x )=(x +1)2-1在区间[1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k-1≥2k +1-1,即n =k +1时,结论也成立.由①②知,对任意n ∈N +,都有a n ≥2n -1.即1+a n ≥2n ,∴11+a n ≤12n ,∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-(12)n <1.21.已知函数f (x )=axx 2+b在x =1处取得极值2.(1)求函数f (x )的解析式;(2)m 满足什么条件时,区间(m,2m +1)为函数f (x )的单调增区间;(3)若P (x 0,y 0)为f (x )=axx 2+b图象上的任意一点,直线l 与f (x )的图象切于P 点,求直线l 的斜率的取值范围.解:(1)已知函数f (x )=axx 2+b,∴f ′(x )=-ax 2+ab(x 2+b )2.又∵f (x )在x =1处取得极值2,∴⎩⎪⎨⎪⎧f ′(1)=0,f (1)=2,即⎩⎪⎨⎪⎧-a +ab(1+b )2=0,a 1+b =2,解得⎩⎪⎨⎪⎧a =4,b =1,∴f (x )=4xx 2+1.(2)由f ′(x )>0得-1<x <1,∴函数f (x )的单调递增区间为(-1,1). 若(m,2m +1)为f (x )的单调增区间,则有⎩⎪⎨⎪⎧m ≥-1,2m +1≤1,解得-1<m ≤0.2m +1>m ,(3)f ′(x )=4(x 2+1)-4x ·2x (x 2+1)2, ∴直线l 的斜率为k =f ′(x 0)=4(x 20+1)-8x 2(x 20+1)2=4[2(x 20+1)2-1x 20+1]. 令t =1x 20+1,t ∈(0,1],则直线l 的斜率k =4(2t 2-t ),t ∈(0,1],∴k ∈[-12,4],即直线斜率的取值范围是[-12,4].22.已知函数f (x )=x -sin x ,数列{a n }满足:0<a 1<1,a n +1=f (a n ),n =1,2,3,….求证:(1)0<a n +1<a n <1;(2)a n +1<16a 3n.证明:(1)用数学归纳法证明. 0<a n <1,n =1,2,3,….①当n =1时,由已知,知结论成立.②假设当n =k (k ≥1,k ∈N +)时,结论成立, 即0<a k <1.因为0<x <1时,f ′(x )=1-cos x >0, 所以f (x )在(0,1)上是增函数. 又f (x )在[0,1]上连续,从而f (0)<f (a k )<f (1),即0<a k +1<1-sin 1<1. 故当n =k +1时,结论成立.由①②可知0<a n <1对一切正整数都成立. 又因为0<a n <1时,a n +1-a n =a n -sin a n -a n =-sin a n <0,所以a n +1<a n ,综上所述0<a n +1<a n <1.(2)设函数g (x )=sin x -x +16x 3,0<x <1.由(1)知,当0<x <1时,sin x <x .从而g ′(x )=cos x -1+x 22=-2sin 2x 2+x 22> -2(x 2)2+x22=0.所以g (x )在(0,1)上是增函数.又g (x )在[0,1]上连续,且g (0)=0,所以当0<x <1时,g (x )>0成立.于是g (a n )>0,即sin a n -a n +16a 3n >0.故a n +1<16a 3n .。