§8.7 用z变换解差分方程

合集下载

Z变换和差分方程

Z变换和差分方程
t z 1
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k

n 0
n 1
f (nT ) z n

f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节

差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。

信号与系统§8.7 Z域系统函数及其应用

信号与系统§8.7 Z域系统函数及其应用
X (z)
2.已知系统差分方程,求取单边Z变换,当
n 0 时,y(n) 0, x(n) 0, 从而求得H (z)o 3.已知系统单位函数响应 h(n) ,求其Z变换。
系统函数H(z)零极点分布与h(n)的关 系
(n)
h(n)
系统
若xn δn,则X z 1
Zhn Hz
由Hz求hn: hn Z 1 Hz
系统的零状态响应:
yzs n hn xn Yz H z X z
离散系统的稳定性
(1)定义: 对于稳定系统,只要输入是有界的,输出必 定是有界的(BIBO)。
(2)稳定性判据
判据1:离散系统稳定的充要条件:单位样值响应绝对
k 0
r 0
M
所以
Hz
Y z X z

br z r
r0
N
ak z k
k 0
H (z只) 与系统的差分
方程的系数、结 构有关,描述了 系统的特性。
系统函数H(z)的解法
一般情况下可以通过以下方法求解系统函数 H(z)
1.已知激励信号及其零状态响应,根据定 义式求取 H (z) Y (z)
z 2. h(n) 和H (z) 为一对 变换对
Zhn Hz
系统函数H(z)的定义
线性时不变离散系统由线性常系数差分方程 描述,一般形式为
N
M
ak yn k br xn r
k 0
r 0
上式两边取z变换得
N
M
Y z ak zk X z br zr

极点
收敛域
临界稳定的极 点
H(s)的极点全 H(z)的极点全
部在左半平面 部在单位圆内

差分方程的求解

差分方程的求解

计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )

Z变换及差分方程的求解

Z变换及差分方程的求解

Z变换及差分⽅程的求解第⼆讲离散时间动态经济系统运动分析及稳定性分析2.1离散时间函数与Z变换⽬的要求:通过本节的学习使学⽣掌握离散时间函数及Z变换的概念,会使⽤Z变换的性质解决问题,掌握差分⽅程及离散时间系统的运动分析⽅法。

教学内容:我们经常会遇到利⽤离散时间函数表⽰的差分⽅程或差分⽅程组,这在经济管理中经常遇到。

现介绍离散时间函数,差分⽅程后⾯介绍。

⼀、离散时间函数例1 ⼈⼝离散时间函数设全国⼈⼝普查每年进⾏⼀次。

每年的7⽉1⽇凌晨零点的⼈⼝数代表该年的⼈⼝数。

我们以t=0 代表1990年7⽉1⽇凌晨的这个时刻,那么t=1,2,3,……分别表⽰1991年、1992年、1993年等各年度7⽉1⽇凌晨零点。

各年度普查的实际⼈⼝数如下表所⽰中国实际⼈⼝数据(亿⼈)x(0)=11.4333, x(1)=11.5823, x(2)=11.7171,x(3)=11.8517, x(4)=11.9850, x(5)=12.1121,x(6)=12.2389, x(7)=12.3626,……由于在离散时间离取值,故称之为离散时间函数例2 国民⽣产总值GNP(gross national product)离散时间函数。

则,GNP(t)表⽰第t年的GNP数值。

GNP(O)=33560.5, GNP(1)=46670.0, GNP(2)=57494.9,……例3 企业⽉产量离散时间函数。

表为电视机⼯⼚⽣产⽉报表(万台)则,Y(0)=1.5, Y(1)=2, Y(2)=1.8,……可以看出,经济管理实践中基本上采⽤离散时间函数来表达各种变量的变化,并该函数没有解析表达式,只有图象、列表表达式。

其⾃变量为离散时间。

⼆、Z 变换及其逆变换导⾔:Z 变换是怎么发明出来的?⽜顿、莱布尼兹等发明了微积分,之后发明了常系数微分⽅程及⽅程组。

在求解⽅程时总结经验,简化计算,如⽤符号s 表⽰微分运算s=d/dt,即s 〃f(t)=df(t)/dt 。

matlab用z变换求解差分方程

matlab用z变换求解差分方程

matlab用z变换求解差分方程Z变换是一种非常重要的信号分析工具,在MATLAB中,可以使用Symbolic Math Toolbox进行Z变换的计算和求解差分方程。

Z变换是一种将离散时间信号从时间域转换到复平面域的方法。

它与拉普拉斯变换的关系类似,但适用于离散时间信号的分析。

在MATLAB 中,使用syms函数创建符号变量来表示Z变换的变量,然后使用ztrans函数进行Z变换的计算和求解差分方程。

下面将通过一个简单的例子来说明如何使用MATLAB进行Z变换求解差分方程。

假设有一个差分方程:y[n]-0.5y[n-1]+0.25y[n-2]=x[n]首先,使用syms函数创建符号变量:syms z定义输入信号和初始条件:x=z^2;%输入信号y0=1;%初始条件y[-1]y1=0;%初始条件y[-2]然后,使用ztrans函数进行Z变换计算:Y = ztrans(y[n], n, z);X = ztrans(x, n, z);差分方程中的Y和X分别表示Y(z)和X(z),因此可以写出差分方程的Z变换方程:Y-0.5*z^(-1)*Y+0.25*z^(-2)*Y=X然后,将方程转化为Y(z)的表达式:Y = solve(Y - 0.5*z^(-1)*Y + 0.25*z^(-2)*Y == X, Y);至此,Z变换方程求解完成,可以使用ilaplace函数从Z域转换回时间域,以获得Y[n]的表达式:y = ilaplace(Y, z, n);最后,可以将结果绘制出来:n=-10:10;%时间范围y_n = subs(y, n, n); % 计算y[n]的值stem(n, y_n); % 绘制离散时间信号综上所述,我们可以使用MATLAB的Symbolic Math Toolbox进行差分方程的Z变换求解,这对于信号分析和系统设计非常有用。

差分方程的Z变换解

差分方程的Z变换解
ห้องสมุดไป่ตู้
其中: 其中:

14
实验步骤与方法
用ztrans、iztrans求实验内容1和2。在命令窗口求解 ztrans、iztrans求实验内容 求实验内容1 即可。 即可。 在例3 计算的是前向差分方程。但实验内容3 (a)是 在例3中,计算的是前向差分方程。但实验内容3 (a)是 后向差分方程。所以要仿照例3的程序和Z 后向差分方程。所以要仿照例3的程序和Z变换求解后 向差分方程的原理编写用z 向差分方程的原理编写用z变换计算前向差分方程的零 输入响应,零状态响应,全响应的程序。 输入响应,零状态响应,全响应的程序。 仿照例3的方法,完成实验内容3的编程。 仿照例3的方法,完成实验内容3的编程。上机调试程 序,与理论计算结果比较。 与理论计算结果比较。 由于实验内容4有复数极点, 由于实验内容4有复数极点,用符号运算的方法就不能 计算。这需要用部分分式法和Z 计算。这需要用部分分式法和Z变换解差分方程的原理 来完成实验内容4的编程。(提高实验) 来完成实验内容4的编程。(提高实验) 。(提高实验
4
实验原理与说明
3、差分方程的Z变换解 差分方程的Z 若线性常系数差分方程描述的系统为: 若线性常系数差分方程描述的系统为:
(1)已知零输入初始值 对上式两边取 变换有: 变换有:

上式的第一项为零输入响应,第二项为零状态响应。 上式的第一项为零输入响应,第二项为零状态响应。
5
实验原理与说明
(2)已知系统初始值 对原方程式两边取
10
实验内容 1
求下列序列的变
(a) (b)
换,并注明收敛域。 并注明收敛域。
(c) (d)
11
实验内容 2
求下列

Z域变换分析方法

Z域变换分析方法
[1 0.7 z 0.1z ]Y ( z) 0.7 y(1) 0.1z y(1) 0.1y(2)
1 2 1
第8章 Z变换
(2 z 2.6)z 代入初始条件,整理得 : Y ( z ) 2 z 0.7 z 0.1 Y ( z) (2 z 2.6) 12 10 z ( z 0.2)(z 0.5) ( z 0.5) ( z 0.2)
例8-10: 已知某离散LTI系统的单位阶跃响应为:
s[n] (2 3 5 10)u[n]
n n
(1)求系统单位抽样响应 (2)求此二阶差分方程
解: ( 1)
h[n] s[n] s[n 1] 1 n 12 n ( 2 5 )u[n] 11.1 [n] 2 5稳定系统全部极点就一定是位于单位圆内的呢?
第8章 Z变换
三、由极点分布决定系统稳定性 系统稳定的充要条件是单位样值响应绝对可和。即:
n
h( n )

因果稳定系统的充要条件为 :h(n)是单边的而且是有 界的。即: 因果
稳定
h(n) h(n)u (n) 非因果也 可以稳定 h( n) a<1 n
一、系统函数的求取 定义一:系统单位样值响应h[n]的Z变换
激励与单位样值响应的卷积为系统零状态响应
y[n] x[n] h[n]
由卷积定理
Y ( z) X ( z)H ( z)
Y ( z) H ( z) X ( z)
H ( z ) h[n]z
n 0

n
第8章 Z变换
定义二:系统零状态响应的Z变换与输入的Z变换之比 若x(n)是因果序列, 则在系统零状态下:

利用z变换解差分方程

利用z变换解差分方程

于是
Y(z) =
br z−r ∑ ak z−k ∑
k= 0 M r= 0 N
M
X(z)

H(z) =
∑b z
r r= 0 N k= 0
−r
ak z−k ∑

Y(z) = X (z)H(z)
−1
此时对应的序列为 y(n) = F [X(z)H(z)]
差分方程为 例:若描述离散系统的 1 1 y(n) + y(n −1) − y(n − 2) = x(n) 2 2 x(n) = 2n u(n) , y( 已知激励 初始状态 −1) =1, y(−2) = 0, 求系统的零输入响应、 零状态响应和全响应。 求系统的零输入响应、 零状态响应和全响应。
ak z−k [Y(z) = ∑br z−r [X(z) + ∑x(m)z−m] ∑
k= 0 r= 0 m=−r N M −1
如果激励x(n)为因果序列, 如果激励x(n)为因果序列,上式可以写成 x(n)为因果序列
ak z−k [Y(z) = ∑br z−r X(z) ∑
k= 0 r= 0 N M
8.5节已经给出利用 节已经给出利用z 在8.5节已经给出利用z变换解差分方程的简 单实例,本节给出一般规律。 单实例,本节给出一般规律。这种方法的原 理是基于z变换的线性和位移性, 理是基于z变换的线性和位移性,把差分方程 转化为代数方程,从而使求解过程简化。 转化为代数方程,从而使求解过程简化。
k= 0 l =−k r= 0 m=−r −1
若激励x(n)=0,即系统处于零输入状态,此时 若激励x(n)=0,即系统处于零输入状态, x(n)=0,即系统处于零输入状态 差分方程( 差分方程(1)成为齐次方程∑a y(n −源自) =0k=0 kN

Z变换和差分方程

Z变换和差分方程

• 引入变量: 引入变量:
z=e
Ts
sT s
或者写成: s = 1 ln z 或者写成:
S: 拉普拉斯变换的算子; Ts:采样周期; 拉普拉斯变换的算子; Ts:采样周期 采样周期; 一个复变量, 平面上, 变换算子, Z:一个复变量,定义在 Z 平面上,称为 Z 变换算子, 记为:采样信号的Z变换: 记为:采样信号的Z变换:Z[f*(t)] = F(z) 变换, F (z)是采样脉冲序列的 Z变换, 它只考虑了采样时刻的信号值。 它只考虑了采样时刻的信号值。
y ( 0 ) = 0 , y (1) = 2 , 激励 f ( k )= 2 k ε ( k ),
求: y (k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, 以外的各项都移到等号右边, • 得: y (k ) = −3 y (k − 1) − 2 y (k − 2) + f (k ) • 对于 k = 2, 将已知初始值y (0) = 0, y (1) = 2代入上式,得:
s z 1 z R2 = lim ( s + jω ) = sT s → − jω ( s − jω )( s + jω ) z − e 2 z − e − jωT
例8—6 求
解:
f ( t ) = t 的Z变换
两阶重极点!! 两阶重极点!!
1 F (s) = 2 s
d z d z Tz 2 1 R = lim (s − 0) 2 = lim = sT sT 2 s →0 ds s →0 ds z − e s z −e ( z − 1)
c ( k ) = (1 − T ) k c ( 0 ) + T

利用z变换解差分方程 ppt课件

利用z变换解差分方程 ppt课件

利用z变换解差分方程
6
于是 令 则
M
br z r
Y(z)
r=0 N
X (z)
ak zk
k=0
M
br z r
H (z)
r=0 N
ak zk
k=0
Y(z)X(z)H (z)
此时对应的序列为 F y(n) 1[X(z)H (z)]
利用z变换解差分方程
7
例: 已知系统的差分方达程式表为
y(n)0.9y(n1) 0.05u(n) 若边界条y件(1) 1,求系统的完全响应。
5
若系统的起始状态y(l)=0(-N≤l≤-1),即系统处于 零起始状态,此时式(2)变成
N
M
1
a kz k[Y (z)b rz r[X (z) x (m )z m ]
k = 0
r= 0
m r
如果激励x(n)为因X(z)
k= 0
r= 0
利用z变换解差分方程
3
线性常系数差分一方般程形的式为
N
M
ak y(nk) brx(nr)
k0
r0
(1)
将 等 式 两 边 取 换单 ,边 利z用变z 变性换得位 移 特
N
1
M
1
akzk[Y(z) y(l)zl] brzr[X(z) x(m)zm] (2)
k=0
lk
r=0
mr
利用z变换解差分方程
§7.7 利用z变换解差分方程
• 主要内容
•z变换解差分方程的一般步骤 •举例说明
• 重点:利用z变换解差分方程的一般步骤
利用z变换解差分方程
1
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法

用单边Z变换解差分方程

用单边Z变换解差分方程


n
h( n)
15

可以稳定
x ( n)
h( n)
k
y(n) x(n) * h(n)
h(k ) x(n k )


x(n) M
y ( n)
k
h ( k ) x ( n k ) M h( k )
k
k x ( k ) z

1 m k k z x ( k ) z x ( k ) z k m k 0 1 m k z X ( z ) x(k ) z k m
4
(4)对于因果序列x(n)

k m k x ( k ) z 0 1
1 2 2
10 z Y ( z ) 0.1z [Y ( z ) zy (1)] 0.02 z [Y ( z ) z y (2) zy (1)] z 1 10 z (1 0.1z 1 0.02 z 2 )Y ( z ) 0.08 z 1 0.28 z 1
2 1
yss (n) B sin[n 2 ( )]
28
Y (e ) H (e ) j X (e )
j
j
H (e ) H (e ) e B H (e ) A
j
j
j
j ( )
B j[ 2 ( ) 1 ( )] e A
( ) 2 ( ) 1 ( )
§8.7 用单边Z变换解差分方程
解差分方程的方法: (1)时域经典法 (2)卷积和解法 (3)Z变换解法
1
(一)复习Z变换的位移特性
若x(n)分别是双边序列、双边左移序列、 双边右移序列时,它们的双边和单边Z变 换是不同的: (1)双边序列的双边Z变换(p79-p83)

z变换 积分 差分

z变换 积分 差分

z变换积分差分全文共四篇示例,供读者参考第一篇示例:【z变换积分差分】是信号与系统分析中常用的三种重要方法,它们在数字信号处理和控制系统中起到关键作用。

本文将介绍和比较这三种方法的原理、特点和应用。

1. z变换z变换是一种离散时间信号的分析方法,它类似于拉普拉斯变换用于连续时间信号的分析。

z变换将离散信号变换为z域中的函数,其中z是一个复数变量。

通过z变换可以将差分方程表示为代数方程,从而方便进行信号的频域分析和系统设计。

在z变换中,信号x(n)的z变换定义为:X(z) = Σ(x(n) * z^(-n)), n = 0, 1, 2, ...其中X(z)是信号x(n)的z变换,n是离散时间序列。

z变换的性质包括线性性、时移性、频率移位性、共轭性等。

通过这些性质,可以方便地对信号和系统进行分析。

z变换在数字信号处理中应用广泛,例如数字滤波、频域分析、数字控制系统等都离不开z变换的支持。

2. 积分在信号与系统中,积分是一种对信号进行求和的操作,可以将连续信号或离散信号进行积分得到一个新的信号。

积分在信号处理和系统控制中有着重要的作用,能够实现信号的平滑、去噪和特征提取等功能。

对于连续信号,积分的定义为:∫f(t)dt积分算子常用于信号的平滑和去噪处理,可以消除信号中的高频组分和噪声,提取信号的低频特征。

在控制系统中,积分常用于实现系统的稳定性、误差消除和跟踪功能,是PID控制器中的一个重要组成部分。

3. 差分f(n+1) - f(n)差分算子常用于信号的导数计算、特征提取和系统建模等领域,可以实现信号的变化率和变化趋势的分析。

在数字信号处理中,差分算子也被广泛应用于信号去噪、特征提取、运动检测等领域,是数字图像处理和视频处理中的重要工具。

z变换、积分和差分是信号与系统分析中常用的三种方法,它们在数字信号处理和控制系统中有着重要作用。

通过对这三种方法的深入理解和灵活运用,可以实现信号处理和系统设计的高效和精确。

z变换到差分方程

z变换到差分方程

z变换到差分方程z变换(Z-transform)是一种在数字信号处理中广泛应用的数学工具,用于将离散时间域中的信号转换为连续时间域中的信号,从而更方便地对信号进行分析与处理。

通常情况下,我们可以将差分方程(difference equation)通过Z变换来求解,从而得到其对应的Z变换函数(Z-transform function)。

具体地说,对于给定的差分方程:y(n) + a1*y(n-1) + a2*y(n-2) + ... + ak*y(n-k) = b0*x(n) + b1*x(n-1) + b2*x(n-2) + ... + bm*x(n-m)其中,y(n)和x(n)分别表示输出和输入信号在时间点n的取值,a1、a2、…、ak和b0、b1、…、bm为常数系数,k和m为差分方程的阶数。

我们可以通过将差分方程中的所有项进行变换,得到其对应的Z变换函数:Y(z) + a1*Y(z)*z^{-1} + a2*Y(z)*z^{-2} + ... + ak*Y(z)*z^{-k} =b0*X(z) + b1*X(z)*z^{-1} + b2*X(z)*z^{-2} + ... + bm*X(z)*z^{-m}其中,Y(z)和X(z)分别表示输出和输入信号的Z变换函数,z^{-n}表示Z域中的时间延迟,也可以将其视为离散时间域中的退化因子,它对应的函数形式为z^{-n} = e^{-jwn},其中w为频率。

通过对上述等式进行变换和整理,我们可以将Y(z)和X(z)表示为如下形式:Y(z) = [b0*X(z) + b1*X(z)*z^{-1} + b2*X(z)*z^{-2} + ... +bm*X(z)*z^{-m}] / [1 + a1*z^{-1} + a2*z^{-2} + ... + ak*z^{-k}]X(z) = [X(z) + X(z)*z^{-1} + X(z)*z^{-2} + ... + X(z)*z^{-m}] / [m0 + b1*z^{-1} + b2*z^{-2} + ... + bm*z^{-m}]其中,Y(z)表示差分方程的输出信号的Z变换函数,X(z)表示差分方程的输入信号的Z变换函数。

z变换 零极点 与差分方程

z变换 零极点 与差分方程

z变换零极点与差分方程零极点与差分方程一、引言在信号处理与控制系统中,零极点是一种重要的概念。

它们描述了系统的动态特性,并且在分析和设计系统时起着关键作用。

差分方程是描述离散时间系统行为的重要工具。

本文将探讨零极点与差分方程的基本概念、性质和应用。

二、零极点的概念1. 零点在z变换中,零点是使得系统的传递函数为零的根。

零点可以是实数或复数,反映了系统对输入信号的特定频率成分的响应情况。

零点的位置和数量决定了系统的频率特性。

2. 极点与零点类似,极点是使得系统的传递函数无穷大的根。

极点可以是实数或复数,反映了系统的稳定性和频率响应。

极点的位置和数量决定了系统的动态特性。

三、差分方程的定义与性质1. 差分方程的定义差分方程是描述离散时间系统行为的数学表达式。

它以递推方式表示系统的输入和输出之间的关系。

差分方程可以通过将连续时间系统的微分方程进行离散化得到。

2. 差分方程的性质差分方程具有线性性、时不变性、因果性和稳定性等基本性质。

线性性表明系统对输入信号具有叠加性质;时不变性表示系统的行为与时间无关;因果性要求系统的输出仅依赖于当前和过去的输入;稳定性要求系统的输出有界。

四、零极点与差分方程的关系1. 零极点与系统的传递函数系统的传递函数是描述系统输入和输出之间关系的函数。

它可以通过系统的零极点来表示。

零点对应传递函数的分子部分,极点对应传递函数的分母部分。

传递函数的零极点决定了系统的频率响应和稳定性。

2. 差分方程与系统的传递函数差分方程可以转化为z变换形式,从而得到系统的传递函数。

通过z变换,可以将差分方程中的差分算子转化为复变量z的函数。

这样,差分方程与零极点的关系就能够建立起来。

五、零极点与差分方程的应用1. 系统分析与设计通过分析系统的零极点分布,可以得到系统的频率响应和稳定性。

这对于系统的分析与设计非常重要。

例如,在控制系统设计中,可以通过调整零极点的位置来改变系统的动态特性和稳定性。

2. 信号处理与滤波在信号处理中,滤波是一种常见的应用。

z变换求解差分方程步骤

z变换求解差分方程步骤

z变换求解差分方程步骤嘿,咱今儿就来讲讲这用 z 变换求解差分方程的步骤哈。

这可就像是解开一道神秘的谜题呢!你想想,差分方程就像是一个调皮的小精灵,藏着好多秘密等我们去发现。

而 z 变换呢,就是那把神奇的钥匙啦。

首先呢,得把差分方程给它表示清楚咯,可不能模模糊糊的。

就像你要找东西,总得先知道要找啥样的不是?然后对这个差分方程进行 z 变换,这就好比给它施了个魔法,一下子就变得不一样啦。

在这个过程中啊,你得细心点儿,可别弄错啦。

这就跟走迷宫似的,一步错步步错呀。

接着呢,就会得到一个关于 z 的表达式,这可就是我们前进的线索呢。

然后呢,咱得把这个表达式给它化简化简,把那些复杂的东西都去掉,就像给苹果削皮一样,让它露出最精华的部分。

这时候可就考验咱的本事啦,得有耐心,还得有那么点儿小技巧。

再接下来呀,就得求解啦!这就像是终于找到了宝藏的位置,要把它挖出来一样。

把 z 的值求出来,这可不容易呢,但咱不能怕呀,要勇往直前!等求出了 z 的值,可别以为就大功告成咯。

还得把它变回原来的世界,也就是反变换回去。

这就像是把变了形的东西再变回来,可神奇啦。

哎呀,你说这过程是不是挺有意思的?就好像是一场冒险,每一步都充满了挑战和惊喜。

你要是能熟练掌握这 z 变换求解差分方程的步骤,那可就厉害咯,就像是拥有了超能力一样!你想想,以后遇到那些复杂的差分方程,别人都抓耳挠腮不知道咋办的时候,你就能轻松搞定,那多牛呀!这就好比别人还在走路,你都开上小汽车啦,一下子就把他们甩在后面啦。

所以呀,可得好好学这 z 变换求解差分方程的步骤哦,别偷懒,多练练,肯定能掌握得牢牢的。

到时候,不管啥样的难题都难不倒你啦!这多棒呀,是不是?。

8.07 用z变换解差分方程

8.07 用z变换解差分方程

x n
1 E

3
1 E 1 E
y n
2
yn xn xn 1 3 yn 1 2 yn 2
(2)用z变换求解需要 y 1 , y 2 , 用 y 1 , y 0 由方 程迭代出 1 5 y 1 , y 2 2 4
§8.7 用z 变换解差分方程
序言
描述离散时间系统的数学模型为差分方程。求解 差分方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: •时域方法——第七章中介绍,烦琐 •z变换方法 •差分方程经z变换→代数方程; •可以将时域卷积→频域(z域)乘积; •部分分式分解后将求解过程变为查表; •求解过程自动包含了初始状态(相当于0-的 条件)。
yn 3 yn 1 2 yn 2 xn xn 1
(3)差分方程两端取z变换,利用右移位性质
Y z 3 z 1Y z y 1 2 z 2Y z z 1 y 1 y 2 z z 1 x 1 0 1 z z2 z2
z z Y z 0.5 0.45 z 1 z 0.9
A1 A2 Y z z z 1 z 0.9
yn 0.5 0.45 0.9
n
n 0
例8-7-2
已知系统框图
列出系统的差分方程。 2n n 0 , y 0 y 1 0, x n 0 n0 求系统的响应 y(n)。 解: (1) 列差分方程,从加法器入手
Yzi z 1 3z 1 2z 2 2z 1 y 1 3 y 1 2 y 2
z z 1 3z 2z Yzi z z 2z 1 z 2 z 1 零输入响应为

利用z变换解差分方程(精选)共15页文档

利用z变换解差分方程(精选)共15页文档

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
利用z变换解为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y ( n) = 0.5 +0.45×( 0.9)
n
( n ≥ 0)

例8-7-2
已知系统框图 列出系统的差分方程。 列出系统的差分方程。
n
6 页
x(n)
1 E
+ + +
−3
1 E 1 E
y(n)
(− 2) n ≥ 0 x(n) = , y(0) = y(1) = 0, 0 n<0
求系统的响应 y(n)。 。 解: (1) 列差分方程,从加法器入手 ) 列差分方程,

一.应用z变换求解差分方程步骤
一.步骤
(1)对差分方程进行单边 变换(移位性质); 对差分方程进行单边 变换(移位性质) 对差分方程进行单边z变换 (2)由z变换方程求出响应 由 变换方程求出响应 变换方程求出响应Y(z) ; (3) 求Y(z) 的反变换,得到 的反变换,得到y(n) 。
3 页
0.9y ( −1) z 0.05z2 Y ( z) = + ( z −1)( z − 0.9) z − 0.9
z −1
Y ( z) A A2 1 = + z z −1 z − 0.9
第 5 页
Y ( z) A A2 1 = + z z −1 z − 0.9
A = 0.5 1
A2 = 0.45
z z Y ( z) = 0.5 + 0.45 z −1 z − 0.9
§8.7 用z变换解差分方程

序言
2 页
描述离散时间系统的数学模型为差分方程。 描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: 求解线性时不变离散系统的差分方程有两种方法: •时域方法 时域方法 •z变换方法 变换方法 •差分方程经 变换→代数方程; 差分方程经z变换 代数方程; 差分方程经 变换→ •可以将时域卷积→频域(z域)乘积; 可以将时域卷积→ 可以将时域卷积 频域( 域 乘积; •部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表; 部分分式分解后将求解过程变为查表 •求解过程自动包含了初始状态(相当于0-的 求解过程自动包含了初始状态( 求解过程自动包含了初始状态 相当于0 条件)。 条件)。
8 页
[
]

Yzi (z) ↔ yzi (n) = −3(− 2) + 2(− 1)
n
n
n≥ 0

c. 全响应
y ( n) + 3y ( n −1) + 2y ( n − 2) = x( n) + x( n −1)
n
9 页
x ( n) = ( −2) u(n)
Y ( z) +3z−1Y ( z) + y ( −1) +2 z−2Y ( z) + z−1 y ( −1) + y ( −2) z z −1 = + z z +2 z +2 2z 2z Y ( z) = z +1)( z + 2) 2 (
−2
x(n) + x(n − 1) − 3y(n − 1) − 2y(n − 2) = y(n) 所以 y(n) + 3y(n −1) + 2y(n − 2) = x(n) + x(n −1)
(2) z变换求解需要 (−1), y(− 2),用y(1), y(0)由方程迭代出页7 ) y 用 1 5 y(− 1) = − , y(− 2) = 2 4 变换, (3)差分方程两端取 变换,利用右移位性质 )差分方程两端取z变换 n y ( n) + 3y ( n −1) + 2y ( n − 2) = x( n) + x( n −1) x ( n) = ( −2) u(n)
y ( n) = 2( −1) −2( −2)n+n( −2)n
n
( n ≥ 0)
Y ( z) A B B2 2 1 1 = = + + 2 z z +1 z + 2 ( z + 2)2 ( z +1)( z + 2)
A = 2, B = −2, B2 = −2 1 1
第 10 页
所以
Y (z) 2 −2 −2 = + + z z + 1 z + 2 (z + 2)2 z z z Y(z) = 2 −2 −2 2 z +1 z+2 (z + 2)
Y ( z) +3z−1Y ( z) + y ( −1) +2 z−2Y ( z) + z−1 y ( −1) + y ( −2) z z −1 = + z ( x( −1) = 0) z +2 z +2 a.由激励引起的零状态响应 由激励引起的零状态响应 z z −1 −1 −2 Yzs ( z) 1+ 3z + 2z == + z z +2 z +2 2 z 即 Yzs (z) = (z + 2)2 零状态响应为

例8-7-1
已知系统的差分方程表 达式为 y(n) − 0.9 y(n − 1) = 0.05u(n) y 求系统的完全响应。 若边界条件 (−1) = 1,求系统的完全响应。 解: 方程两端取z变换 方程两端取 变换
4 页
Y ( z) −0.9 z−1Y ( z) + y ( −1) = 0.05 z
Yzs (z) ↔ yzs (n) = (n + 1)(− 2) u(n)
n


引起的零输入响应 n 都成立)
Yzi (z) 1 + 3z−1 + 2z−2 = −2z−1 y(− 1) − 3y(− 1) − 2y(− 2)
2z − z(z − 1) − 3z Yzi (z) = = + (z + 2)(z + 1) z + 2 z + 1 零输入响应为
相关文档
最新文档