化工分离过程重点
化工分离过程
化工分离过程1. 引言化工分离过程是化学工程中的一个重要环节,用于将混合物中的组分分离出来,以获得纯净的产品。
它在化工生产中起着至关重要的作用,广泛应用于石油、化肥、制药、食品等行业。
本文将介绍化工分离过程的基本原理、常见的分离方法和设备,并探讨其在实际应用中的一些问题和挑战。
2. 分离过程的基本原理化工分离过程基于物质之间的差异性,通过改变条件使得混合物中的组分发生相变或物理/化学反应,从而实现组分之间的分离。
常见的差异性包括沸点、溶解度、密度、挥发性等。
3. 常见的分离方法和设备3.1 蒸馏法蒸馏法是一种基于沸点差异进行分离的方法。
它利用混合物中不同组分的沸点差异,在加热后使其中一个或多个组分汽化,并通过冷凝转变为液体,从而实现组分之间的分离。
常见的蒸馏设备包括塔式蒸馏柱、换热器和冷凝器。
3.2 萃取法萃取法是一种基于溶解度差异进行分离的方法。
它利用两种不同溶剂之间的亲疏性差异,将混合物中的组分分配到不同的溶剂相中,通过提取和分离来实现组分之间的分离。
常见的萃取设备包括萃取塔、搅拌槽和分液漏斗。
3.3 结晶法结晶法是一种基于溶解度差异进行分离的方法。
它利用溶液中某个组分的溶解度随温度变化而改变的特性,通过控制温度使其中一个或多个组分结晶出来,从而实现组分之间的分离。
常见的结晶设备包括结晶器和过滤器。
3.4 吸附法吸附法是一种基于吸附性差异进行分离的方法。
它利用固体吸附剂对混合物中不同组分的选择性吸附能力,通过吸附和解吸来实现组分之间的分离。
常见的吸附设备包括吸附塔和吸附柱。
3.5 膜分离法膜分离法是一种基于分子大小或分子间作用力差异进行分离的方法。
它利用特殊的膜材料将混合物中的组分分离开来,常见的膜分离设备包括膜反应器、膜过滤器和膜渗透器。
4. 实际应用中的问题和挑战化工分离过程在实际应用中面临着一些问题和挑战。
不同组分之间的物理/化学性质差异可能很小,导致难以实现有效的分离。
某些组分可能具有毒性或易燃性,需要采取特殊措施进行处理。
第三章 多组分精馏和特殊精馏(化工分离过程)
3.1.3 最少理论板数(Nm)和组分分配
全回流对应最少理论板数,但全回流下无产品采出, 因此正常生产中不会采用全回流。 什么时候采用全回流呢?
1、开车时,先全回流,待操作稳定后出料。 2、在实验室设备中,研究传质影响因素。 3、工程设计中,必须知道最少板数。
最少理论板数的计算
Fenske(芬斯克)方程推导前提: 1、塔顶采用全凝器,(若采用分凝器,则分凝器为第1块塔板) 2、所有板都是理论板。
一、关键组分(Key Components)
Na=串级数(2)+分配器(1)+侧线采出
F
(0)+传热单元(2) = 5
已被指定的可调变量: (1)进料位置;(2)回流比; (3)全凝器饱和液体回流或冷凝 器的传热面积或馏出液温度。
余下的2个可调设 计变量往往用来指 定组分在馏出液和 釜液中的浓度。
两组分精馏 指定馏出液中一个组分的浓度,就确定了馏 出液的全部组成;指定釜液中一个组分的浓 度,也就确定了釜液的全部组成。
下面通过实例分别对二组分精馏和多组分精馏过 程分析进行比较。
二组分精馏实例:苯-甲苯
图3-1 二组分精馏流率、温度、浓度分布
三组分精馏实例:苯(LK)-甲苯(HK)-异丙苯
图3-2 三组分精馏流量分布 图3-3 三组分精馏温度分布
四组分精馏实例:苯-甲苯(LK)-二甲苯(HK)-异丙苯
图3-6 四组分精馏液相组成分布
⎜⎜⎝⎛
yA yB
⎟⎟⎠⎞ 2
= ⎜⎜⎝⎛
xA xB
⎟⎟⎠⎞1
代入(3-2)式:
⎜⎜⎝⎛
yA yB
⎟⎟⎠⎞1
= α1 ⎜⎜⎝⎛
xA xB
⎟⎟⎠⎞1
=
⎜⎜⎝⎛
化工中的分离技术
化工中的分离技术化工行业是基础工业和现代工业的重要组成部分,它涉及到很多领域,比如石油、化肥、冶金、医药等。
其中,分离技术是化工行业中最重要的技术之一,它涉及到许多关键的过程。
本文将着重探讨一下化工行业中的分离技术,包括其原理、应用以及未来发展方向。
一、分离技术的原理分离技术的本质就是利用不同物质之间的不同性质,将它们分离开来。
在化工行业中,常用的分离技术有蒸馏、萃取、结晶、吸附、离子交换、膜分离等。
这些分离技术的原理和应用都有所不同,但大体上可以归为以下几类:1.物理分离:物理分离是通过物质的物理性质差异来实现分离,常见的包括蒸馏、结晶、干燥等。
例如,蒸馏是利用不同物质的沸点差异来分离的,而结晶则是将溶解在一起的固体物质通过溶液的降温或浓缩而分离。
2.化学分离:化学分离是通过物质间的化学反应来实现分离。
例如,酸碱中和反应可以用来分离一些带有酸性或碱性基团的物质。
3.生物分离:生物分离是通过利用生物体自身的特殊性质进行分离。
例如,酵母发酵和细胞培养就是常见的生物分离方法。
二、分离技术的应用在化工行业中,分离技术被广泛应用于各个领域。
下面将简单介绍一下几个比较典型的应用:1.石油化工行业:石油化工行业涉及到油、气、液体等物质的分离,例如炼油装置中就需要利用分馏列进行原油分离,从而得到各种不同重量的石油产品。
2.化学制药行业:在制药过程中,通常需要对化合物进行分离,例如通过萃取或溶剂析出获得纯的药品原料等。
3.环境保护行业:在环境保护工作中,分离技术也发挥着重要作用,例如利用各种吸附剂和离子交换树脂来除去水中的有害物质。
三、分离技术的未来发展方向目前,化工行业中的分离技术已经相对成熟,但在实践中仍存在一定的局限性,比如能源消耗、环境污染等问题。
因此,未来的分离技术发展主要会集中在以下几点:1. 身体分离技术的发展:生物分离技术是未来的发展方向之一,其具有高效、环保、低能耗等优点。
2. 膜分离技术的应用:膜分离技术因其高效、方便、低能耗等特点,受到了化工行业的青睐,未来会应用于更广泛的场合。
化工分离工程复习必备
化工分离工程复习必备(简答题与名词解释)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--萃取精馏中,萃取剂在何处加入为何在进料板之上,与塔顶保持有若干块塔板。
溶剂的沸点比被分离组分高,那样可以使塔内维持较高的溶剂浓度,及起回收溶剂的作用。
从热力学角度和工艺角度简述萃取精馏中萃取剂的选择原则?热力学角度:溶剂的沸点要足够高,以避免与系统中任何组分形成共沸物;萃取剂应能使的体系的相对挥发度提高,即与塔顶组分形成正偏差,与塔底组分形成负偏差或者理想溶液。
工艺角度:溶剂与被分离物系有较大的相互溶解度;溶剂在操作中是热稳定的;溶剂与混合物种任何组分不反应;溶剂比不得过大;无毒、不腐蚀、价格低廉、易得。
吸收塔中每级汽、液流量为什么不能视为恒摩尔流?吸收过程是气相中的某些组分溶到不挥发吸收剂中去的单向传递过程。
吸收剂吸收了气体中的溶质而流量不断增加,气体的流量则相应的减少,塔中气相和液相总流率向下都是增大的。
吸附质被吸附剂吸附—脱附机理?①吸附质从流体主体通过分子扩散和对流扩散传递到吸附剂的外表面;②吸附质通过孔扩散从吸附剂的外表面传递到微孔结构的内表面;③吸附质沿孔表面扩散并被吸附在孔表面上;④吸附质从吸附剂的内表面脱附;⑤吸附质沿径向扩散传递到吸附剂的外表面;⑥吸附质从吸附剂的外表面扩散到流体主体。
精馏过程全回流操作特点?①不进料也不出料;②无精馏段与提馏段之分;③两板之间任一截面上上升蒸汽组成与下降液相组成相等;④达到指定分离程度所需的理论板数最少。
在萃取精馏中,由相对挥发度表达式分析,为什么加入萃取剂后会提高原溶液的相对挥发度?在萃取精馏中,原溶液,112≈α汽相为理想气体,液相为非理想溶液,,1212112≈⨯γγ=αsspp对于特定物系,sspp21不可改变,要使,112>α只有21γγ增加,加S后可使)()(2121γγ>γγs。
所以加入萃取剂后会提高原溶液的相对挥发度。
“化工分离过程”考资料资料精
“化工分离过程”考资料1. 陈洪钫. 基本有机化工分离工程. 北京: 化学工业出版社, 1981.2. 陈洪钫, 刘家祺. 化工分离过程. 北京: 化学工业出版社, 1995.3. 刘家祺, 姜忠义, 王春艳. 分离过程与技术. 天津: 天津大学出版社, 2001.4. 刘家祺. 分离过程. 北京: 化学工业出版社, 2002.5. 李淑芬, 姜忠义. 高等制药分离工程. 北京: 化学工业出版社,2004.6. 刘家祺. 传质分离过程. 北京: 高等教育出版社, 2005.7. 刘家祺. 分离过程与模拟. 北京: 清华大学出版社, 2007.8. 史季芬. 多级分离过程——蒸馏、吸收、萃取、吸附. 北京: 化学工业出版社, 1991.9. 吴俊生, 邓修等. 分离工程. 上海: 华东化工学院出版社, 1992.10. 郁浩然. 化工分离工程. 北京: 中国石油出版社, 1992.11. 蒋维钧. 新型传质分离技术. 北京: 化学工业出版社, 1992.12. (日)大矢晴彦著,张瑾译. 分离的科学与技术. 北京: 中国轻工业出版社 1999.13. 邓修,吴俊生. 化工分离工程. 北京: 科学出版社, 2000.14. 耿信笃. 现代分离科学理论导引. 北京: 高等教育出版社, 2001.15. (美)塞德等,分离过程原理. 北京: 化学工业出版社,2002.16. 袁惠新. 分离工程. 北京: 中国石化出版社, 2002.17. 伍钦. 传质与分离工程. 广州: 华南理工大学出版社, 2005.18. 陈欢林. 新型分离技术. 北京: 化学工业出版社, 2005.19. 宋海华. 多级分离理论(一)精馏模拟. 天津: 天津大学出版社, 2005.20. 丁玉明. 现代分离方法与技术. 北京: 化学工业出版社, 2006.21. 郁浩然. 化工分离工程,北京: 中国石化总公司情报研究所出版社, 2006.22. 胡小玲, 管萍. 化学分离原理与技术. 北京: 化学工业出版社, 2006.23. 蒋维均, 余立新. 新型传质分离技术(第二版). 北京: 化学工业出版社, 2006.24. 西德尔, 亨利著; 朱开宏, 吴俊生译. 分离过程原理. 上海: 华东理工大学出版社, 2007.25. 袁惠新. 分离过程与设备. 北京: 化学工业出版社, 2008.26. 小岛和夫著; 傅良译. 化工过程设计的相平衡. 北京: 化学工业出版社, 1985.27. 张建侯, 许锡恩. 化工过程分析与计算机模拟. 北京: 化学工业出版社, 1989.28. 时钧, 汪家鼎, 余国琮, 陈敏恒. 化学工程手册. 第二版. 北京: 化学工业出版社, 1996.29. 倪进方. 化工过程设计, 北京: 化学工业出版社, 2001.30. 杨志才. 化工生产中的间歇过程-原料、工艺及设备. 北京: 化学工艺出版社, 2001.31. 武汉大学编写组. 化学工程基础, 北京: 高等教育出版社, 2002.32. 顾觉奋. 分离纯化工艺原理. 北京: 中国医药科技出版社, 2002.33. (美)吉科利斯著,齐鸣斋译. 传递过程与分离过程原理. 上海: 华东理工大学出版社, 2007.34. 刘茉娥. 膜分离技术. 北京: 化学工业出版社, 1998.35. 王湛. 膜分离技术基础. 北京: 化学工业出版社, 2000.36. 时钧, 袁权, 高从堦. 膜技术手册. 北京: 化学工业出版社, 2001.37. 徐南平, 邢卫红, 赵宜江. 无机膜分离技术与应用. 北京: 化学工业出版社, 2003.38. 任建新. 膜分离技术及其应用. 北京: 化学工业出版社,2003.39. 于丁一,宋澄章,李航宇. 膜分离工程及典型设计实例. 北京: 化学工业出版社, 2005.40. 许振良, 马炳荣. 微滤技术与应用. 北京: 化学工业出版社, 2005.41. 王湛, 周翀. 膜分离技术基础(第二版) . 北京: 化学工业出版社, 2006.42. 陈观文. 分离膜应用与工程案例. 北京: 国防工业出版社, 2007.43. 高自立, 孙思修, 沈静兰. 溶剂萃取化学. 北京: 科学出版社, 1991.44. 陈维枢. 超临界流体萃取的原理和应用. 北京: 化学工业出版社, 1998.45. 张镜 . 超临界流体萃取. 北京: 北京化学工业出版社, 2000.46. 朱自强. 超临界流体技术—原理和应用. 北京: 北京化学工业出版社, 2000.47. 汪家鼎, 陈家镛. 溶剂萃取手册. 北京: 北京化学工业出版社, 2001.48. 戴猷元. 新型萃取分离技术的发展及应用. 北京: 化学工业出版社, 2007.49. 孙彦. 生物分离工程. 北京: 化学工业出版社, 1998.50. 毛忠贵. 生物工业下游技术. 北京: 中国轻工业出版社, 1999.51. 欧阳平凯. 生物分离技术. 北京: 化学工业出版社, 1999.52. 严希康. 生化分离工程 . 北京: 化学工业出版社, 2000.53. 严希康. 生化分离工程. 北京: 化学工业出版社, 2001.54. 孙彦. 生物分离工程(第二版. 北京: 化学工业出版社, 2005.55. 卢鲜花. 中药有效成分提取分离技术. 北京: 化学工业出版社, 2005.56. 刘小平, 李湘南,徐海星. 中药分离工程. 北京: 化学工业出版社, 2005.57. 曹学君. 现代生物分离工程. 上海: 华东理工大学出版社, 2007.58. 谭天伟. 生物分离技术. 北京: 化学工业出版社, 2007.59. 辛秀兰. 生物分离与纯化技术. 北京: 科学出版社, 2008.60. 田瑞华. 生物分离工程. 北京: 科学出版社, 2008.61. 丁绪淮, 谈遒. 工业结晶. 北京: 化学工业出版社, 1985.62. 冯霄, 李勤凌. 化工节能原理与技术. 北京: 化学工业出版社, 1998.63. 褚良银等. 旋转流分离理论. 北京: 冶金工业出版社, 2002.65. 陈翠仙, 韩宾兵, 朗宁威 . 渗透蒸发和蒸气渗透. 北京: 化学工业出版社, 2004.66. (英])什顿,沃德, 霍尔迪奇著; 朱企新译. 固液两相过滤及分离技术(第2版) . 北京: 化学工业出版社, 2005.67. 蒋培华. 反应与分离工程基础. 北京: 中国石化出版社, 2008 .68. King C J. Separation Processes, 2nd. New York : McGraw Hill, 1980.69. Henley E J, Seader J D. Equilibrium Stage Separation in Chemical Engineering. New York : John Wiley&Sons, 1981.70. Rousseau R W. Handbook of Separation Process Technology. New York: John Wiley & Sons, 1987.71. Wankat P C. Equilibrium-Stage Separations in Chemical Engineering. New York : Elsevier, 1988.72. Wankat P C. Rate-Controlled Separations. New York : Elsevier Applied Science, 1990.73. Schweitzer P. Handbook of Separation Technique for Chemical Engineers, 3rd ed. New York : McGraw Hill, 1997.74. Seader J D, Henley E J. Separation Process Principles. New York : John Wiley & Sons, 1998.75. Clifton E. Meloan. Chemical Separations: Principles, Techniques and Experiments (Techniques in Analytical Chemistry) . Wiley-Interscience, 1999.76. Christie John Geankoplis. Transport Processes and Separation Process Principles (Includes Unit Operations) (4th Edition) . New Jersey, 2003.77. Phillip C. Wankat,Separation Process Engineering (2nd Edition). Prentice Hall PTR,2006.78. Michael E. Prudich, Huanlin Chen, Tingyue Gu, Ram B. Gupta, Keith P. Johnston, Herb Lutz, Guanghui Ma, Zhiguo Su . Perry's Chemical Engineers' Handbook 8/E Section 20:Alternative Separation Processes . McGraw-Hill Professional, 2007.79. Robinson C S, Gilliland E R. Elements of Fractional Distillation, 4th ed. New York : McGraW-Hi11, 1950.80. Smith B D. Design of Equilibrium Stage Processes. New York : McGraw-Hill, 1963.81. McCade W L, Smith J C. Unit Operation of Chemical Engineering. New York : McGram Hill, 1976.82. Broul M, Nyvlt K, Sohnel O. Solubilities in Binary Aqueous Solution. Prague : Academia, 1981.83. Lo T C, Baird M I, Hanson C. Handbook of Solvent Extraction. New York : John Wiley&Sons, 1983.84. Walas S M. Phase Equilibria in Chemical Engineering. Boston : Butterworths, 1985.85. Yang R T. Gas Separation by Adsorption Processes. Boston : Butterworths, 1987.86. Duong D D. Adsorption Analysis: Equilibria and Kineties. New York : Lmperial College Press, 1988.87. Myerson A S. Handbook of Industrial Crystallization. Boston : Butterworth-Heinemann, 1992.88. Thornton J D. The Science and Practice of Liquid-Liquid Extraction. Oxford : Oxford Press, 1992.89. Garside J. Separation Technology: The Next Ten Years. London : Institution of Chemical Engineers, 1994.90. Ruthven D M, Farooq S, Kanebel K S. Pressure Swing Adsorption. New York : VCH, 1994.91. Diwekar M U. Batch Distillation. US: Taylor&Francis, 1995.92. Michael C. Flickinger. Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. New York : John Wiley&Sons, 1999.93. Antonio A. Garcia, Mathew R. Bonen. Bioseparation Process Science. Blackwell Science Inc, 1999.94. Seider W D, Seader J D, Lewin D R. Process design principles:synthesis, analysis,and evaluation. 北京: 化学工业出版社, 2002.95. Jones A G. Crystallization Process Systems. Boston : Butterworth-Heinemann, 2002.96. David Baldacci ,Split Second,艺州出版社, 2004.97. J.M. Smith, Hendrick C Van Ness, Michael Abbott. Introduction to Chemical Engineering Thermodynamics. McGraw-Hill, 2004.98. Richard M. Felder, Ronald W. Rousseau. Elementary Principles of Chemical Processes. Wiley, 2004.99. F. B. Petlyuk. Distillation Theory and its Application to Optimal Design of Separation Units . Cambridge University Press, 2004.100. J. D. Seader , Ernest J. Henley. Separation Process Principles,Wiley, 2005.101. Wallace,Woon-Fong Leung. Centrifugal Separations in Biotechnology. Academic Press, 2007.102. Henry Z. Kister, Paul Mathias, D. E. Steinmeyer, W. R. Penney, B. B. Crocker,James R. Fair. Equipment for Distillation, Gas Absorption, Phase Dispersion, and Phase Separation . McGraw-Hill Professional, 2007.网上资源:1. 泡露点及闪蒸过程计算Free Software about bubble point and dew point1.1 Flash Calculator/chemsim.htm#FTTech("FLSC") is a self-contained, easy-to-use product for getting single flash solutions and bubble or dew points. It contains Digital Analytics' vapor-liquid equilibrium database and modelling methodology which includes Peng-Robinson EOS, UNIFAC, and Wilson methods.1.2 ThermoSolver/education/Thermosolver/ThermoSolver is a software program which accompanies the textbook Engineering and Chemical Thermodynamics by Milo Koretsky. This software allows students to perform complex thermodynamics calculations, and explore thermodynamics for systems which would be impossible to solve without a significant investment in programming.•Thermodynamic properties for 350+ compounds are provided.•Saturation pressure calculator can be used with 338 species in the database. •Solver for the Peng-Robinson and Lee-Kesler equations of state is provided. •Fugacity coefficients can be solved for pure species or mixtures.•Models for Gibbs energy can be fit to isobaric or isothermal vapor-liquid equilibrium data. Sample data sets are provided. The results can be plotted.•Bubble-point and dew-point calculations can be made.•Equilibrium constant (KT) solver is provided.•General chemical reaction equilibria solver is provided.•Equations used in the calculation process can be viewed.1.3 BR AET Calculation Shareware/fractional-distillation/shareware.htmlThis program is a useful utility when estimating boiling points at reduced pressures. It allows the calculation of AET (Atmospheric Equivalent Temperature) by entering the actual temperature and pressure. The actual temperature can be calculated by entering the AET and the actual pressure.2.精馏过程计算2. Free Software about distillation2.1 /McCabe-Thiele.html2.2 Online Calculation of a Binary Distillation Column2.3 Pressure Swing Adsorption Calculator by James Ritter at the University of South CarolinaAdsorption and Chromatography Software at the University of Bath Basic programs and MS Excel spreadsheets employing the tanks in series modelNumerical Simulation of Nonlinear Multicomponent Chromatography Quattro Pro spreadsheet developed by D. D. Frey at UMBC. It's more sophisticated and accurate than the U. of Bath and UMCP software. Assorted online calculators for engineering problems3.膜分离过程计算3. Free Software about Membrane Separation3.1 Membrane Simulator Version 2.0/koros/index.php?do=resources3.2 Membrane Simulation 2.0/Default.asp?Category=Simulation4. 美国麻省理工学院“分离”开放课程网站(1) /OcwWeb/Chemical-Engineering/10-32Spring-2005/CourseHome/(2)/OcwWeb/Chemical-Engineering/10-445Summer-2005/CourseHome/。
化工分离过程相关知识
化工分离过程相关知识简介化工分离过程是化学工业中常见的一种操作,主要用于分离和纯化化学物质。
这些过程常常涉及将混合物分离为纯净的组分,以满足特定的要求和应用需求。
本文将介绍化工分离过程的常见类型、原理以及在工业中的应用。
分离过程的类型化工分离过程可分为物理分离过程和化学分离过程两种类型。
物理分离过程物理分离过程是指通过利用物质间的物理性质差异,将混合物中的组分分离出来。
常见的物理分离过程包括:1.蒸馏:依靠混合物中各组分的沸点差异,通过加热混合物并收集和冷凝产生的蒸馏液,实现组分的分离。
2.结晶:通过溶解度差异,使混合物中的某些组分结晶出来,然后进行分离。
3.吸附:利用不同物质对吸附剂的选择性吸附,实现混合物中组分的分离。
4.萃取:利用溶剂间的互溶性差异,通过将混合物与不同溶剂接触,使组分在不同溶剂中分配不同,从而实现分离。
化学分离过程化学分离过程是指通过利用化学反应原理来实现混合物分离的过程。
常见的化学分离过程包括:1.中和反应:通过加入适量的酸或碱来使混合物中的酸性或碱性组分发生中和反应,从而实现分离。
2.氧化还原反应:利用化合物的氧化还原性质,通过适当氧化剂或还原剂的添加,将混合物中的某些组分氧化或还原,从而分离出来。
3.沉淀反应:通过加入适量的沉淀剂,使混合物中的某些组分生成沉淀,然后进行分离。
4.酯化反应:通过酯交换反应,将混合物中的脂肪酸或脂肪醇与酸酐反应生成酯,从而进行分离。
分离过程的原理化工分离过程的原理基于物质的性质和相互作用。
以下是一些常见的分离原理:1.沸点差异:蒸馏过程利用不同组分的沸点差异,通过加热混合物使其沸腾,然后通过冷凝收集产生的蒸馏液,从而分离出各组分。
2.溶解度差异:结晶过程利用混合物中某些组分的溶解度差异,在适当的溶剂中溶解并结晶出来,然后进行分离。
3.亲疏性差异:吸附过程利用混合物中组分对吸附剂的亲疏性差异,实现组分在吸附剂上的选择性吸附和分离。
4.分配系数差异:萃取过程利用混合物中组分在不同溶剂中的分配系数差异,通过溶液与溶剂的接触使组分在不同溶剂中分配不同,从而进行分离。
《化工分离过程》
《化工分离过程》化工分离过程的基本原理是根据化合物之间的性质差异,利用不同的分离原理将混合物分离成纯净的组分。
常见的分离原理包括物理性质差异(如沸点、沸点、相对分子质量等)和化学性质差异(如酸碱性、溶解度等)。
混合物中的化合物可以是液体、气体或固体,分离过程需要根据不同的化合物性质选择合适的分离技术。
常见的分离技术有蒸馏、萃取、吸附、结晶等。
蒸馏是利用液体化合物的不同沸点将其分离的技术。
一般情况下,液体化合物的沸点在常压下不同,通过加热混合物,将低沸点物质汽化并后冷凝得到纯净的组分。
萃取是利用液体-液体的分配系数差异将化合物分离的技术。
在两个不相溶的溶剂中,将其中一种组分转移到另一相中,从而实现分离。
吸附是利用固体吸附剂与化合物之间的亲和力差异而实现分离的技术。
结晶是利用溶解度差异将化合物从溶液中析出的技术。
除了上述常见的分离技术,还有一些特殊分离技术被广泛应用于化工过程中。
例如,渗透膜分离技术可以通过选择性渗透膜将混合物中的成分分离出来。
通过渗透膜的孔径大小和化合物的分子量来选择性地分离,并可应用于气体、液体和固体的分离。
固体相变分离技术是利用化合物在不同温度下的相变特性分离的技术。
通过控制温度,使其中一化合物发生相变,并利用相变后的物性差异进行分离。
化工分离过程在工业生产中有着广泛应用。
例如,在石油化工领域,蒸馏技术被用于石油的提炼和馏分分离。
在制药工业中,萃取、溶剂结晶等技术被应用于药物的提取和纯化。
在化肥生产中,吸附分离技术被用于气体的纯化和脱硫。
化工分离过程的应用也涉及到食品、化妆品、环境保护等领域。
总之,化工分离过程是化学工程中的重要课题,通过合理选择分离技术,可以将混合物中的化合物分离出来,得到纯净的组分。
理解和应用化工分离过程对于提高化工工艺的效率和产品质量具有重要意义。
化工分离过程(总复习)
▪ 2 考试题型
▪ 3 自由交流环节
2
1.1 绪论
分离过程的分类
分离过程分为机械分离过程和传质分离过程两类。 传质分离过程用于各种均相混合物的分离,分为平
衡分离过程和速率分离过程。
平衡分离过程——借助分离媒介(如热能、溶剂或吸附 剂)使均相混合物系统变成两相系统,再以混合物中各 组分在处于平衡两相中的不等同的分配为依据而实现分
综合两种试算结果,只有TB<T< TD成立, 才能构成闪蒸问题。
16
1.2 单级平衡过程
闪蒸过程计算的基本关系:
物料平衡关系: Fzi Lxi Vyi
(2-63)
F LV
(2-64)
汽液相平衡关系: yi Ki xi
(2-44)
Ki Ki (T , P, x, y)
热平衡关系: FH F Q LH L VHV
c
P泡 PiS xi iL i 1
12
1.2 单级平衡过程
(3)平衡常数与组成无关的露点温度计算
c
露点方程: yi / Ki 1.0 i 1
目标函数形式:
c
f (T ) yi / Ki 1 0
i
c
f (P) yi / Ki 1 0
i
13
1.2 单级平衡过程
露点计算方法同于泡点计算: 1.试差; 2.用αiK计算; 3.电算。
设T 给定P 由P-T-K图查Ki
N
调整T
f(T)>0,T设偏低,提高T。
f(T)<0,T设偏高,降低T。
c
yi / Ki 1
i 1
Y
xi, T
结束
14
1.2 单级平衡过程
化工分离过程(总复习)
蒸馏分离广泛应用于石油、化工、食品等领域,如石油工业中的原油分馏、酒精工业中的酒 精提纯等。
萃取分离
萃取分离是利用混合物中各组分在两 种不互溶溶剂中的溶解度不同,使其 中一种组分从一种溶剂转移到另一种 溶剂中,从而实现分离的方法。
萃取分离可以分为单级萃取、多级萃 取和逆流萃取等。单级萃取是将原料 液加入到有机溶剂中,经过充分混合 后进行分离;多级萃取是将单级萃取 的有机溶剂和原料液多次循环接触, 以提高萃取效果;逆流萃取则是采用 两股逆向流动的液体,使原料液和有 机溶剂在接触过程中不断更新,提高 传质效率。
萃取分离在化工、环保、食品等领域 有广泛应用,如工业废水处理中的重 金属离子去除、天然产物提取等。
再沸器
再沸器的作用是为蒸馏塔提供热源, 使液体混合物沸腾汽化。
萃取设备
混合澄清槽
混合澄清槽是实现液液萃取过程 的常用设备,通过搅拌使两种液 体充分混合,再通过沉降分离出
萃取相和萃余相。
离心萃取器
离心萃取器利用离心力的作用, 使两种液体在旋转中分离,实现
液液萃取。
萃取塔
萃取塔是实现连续液液萃取过程 的设备,通过填料或塔盘使两种 液体逆流接触,达到萃取的目的。
超滤膜组件
超滤膜组件是实现超滤分离过程的设备,通过半透膜使水 分子和部分溶质透过,而大分子溶质被截留,达到净化或 分离的目的。
纳滤膜组件
纳滤膜组件是实现纳滤分离过程的设备,通过半透膜使不 同分子量的溶质被截留,达到净化或分离的目的。
04
分离过程操作与控制
化工分离工程知识点
1.什么叫相平衡?相平衡常数的定义是什么?由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。
热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。
Ki=yi/xi2.简述分离过程的特征?什么是分离因子,叙述分离因子的特征和用途。
答:分离过程的特征:分离某种混合物成为不同产品的过程,是个熵减小的过程,不能自发进行,因此需要外界对系统作功(或输入能量)方能进行。
分离因子表示任一分离过程所达到的分离程度。
定义式:i j ij i jy y x x α=3.请推导活度系数法计算汽液相平衡常数的关系式。
汽液相平衡关系:L i V i f f ˆˆ= 汽相:P y f i V i V i φˆˆ= 液相:OL ii i L i f x f γ=ˆ 相平衡常数:P f x y K V iOLi i i i i φγˆ==4.请写出活度系数法计算汽液相平衡常数的关系式,并指出关系式中各个物理量的含义5.什么是设计变量,如何通过各单元设计变量确定装置的设计变量。
在设计时所需要指定的独立变量的数目,即设计变量。
① 在装置中某一单元以串联的形式被重复使用,则用r N 以区别于一个这种单元于其他种单元的联结情况,每一个重复单元增加一个变量。
② 各个单元是依靠单元之间的物流而联结成一个装置,因此必须从总变量中减去那些多余的相互关联的物流变量数,或者是每一单元间物流附加(C+2)个等式。
6. 什么叫清晰分割法,什么叫非清晰分割法?什么是分配组分与非分配组分?非关键组分是否就一定是非分配组分?答:清晰分割法指的是多组分精馏中馏出液中除了重关键组分(HK)之外,没有其它重组分;釜液中除了轻关键组分(LK)之外,没有其它轻组分。
非清晰分割表明各组分在顶釜均可能存在。
在顶釜同时出现的组分为分配组分;只在顶或釜出现的组分为非分配组分。
一般情况下,LK 、HK 和中间组分为分配组分;非关键组分可以是分配组分,也可以是非分配组分,所以非关键组分不一定是非分配组分。
化工分离工程复习题及答案
化工分离过程试题库(复习重点)第一部分填空题1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。
2、分离因子是根据(气液相平衡)来计算的。
它与实际分离因子的差别用(板效率)来表示。
3、汽液相平衡是处理(汽液传质分离)过程的基础。
相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。
4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。
5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。
6、在塔顶和塔釜同时出现的组分为(分配组分)。
7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。
8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。
9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。
10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。
11、为表示塔传质效率的大小,可用(级效率)表示。
12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。
13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。
14、新型的节能分离过程有(膜分离)、(吸附分离)。
15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。
16、分离剂可以是(能量)和(物质)。
17、Lewis 提出了等价于化学位的物理量(逸度)。
18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 )19、设计变量分为(固定设计变量)与(可调设计变量)。
20、温度越高对吸收越(不利)21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。
22、用于吸收过程的相平衡关系可表示为(V = SL)。
23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。
化工分离过程重点
化工分离过程重点1、相平衡:指混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态,从热力学上看,整个物系的自由焓处于最小的状态;从动力学看,相间表观传递速率为零。
2、区域熔炼:是根据液体混合物在冷凝结晶过程中组分重新分布的原理,通过多次熔融和凝固,制备高纯度的金属、半导体材料和有机化合物的一种提纯方法。
3、独立变量数:一个量改变不会引起除因变量以外的其他量改变的量。
4、反渗透:是利用反渗透膜选择性地只透过溶剂(通常是水)的性质,对溶液施加压力克服溶液的渗透压,使溶剂从溶液中透过反渗透膜而分离出来的过程。
5、相对挥发度:溶液中的易挥发组分的挥发度与难挥发组分的挥发度之比。
6、理论板:是一个气、液两相皆充分混合而且传质与传热过程的阻力皆为零的理想化塔板。
7、清晰分割:若馏出液中除了重关键组分外没有其他的重组分,而釜液中除了轻关键组分外没有其他轻组分,这种情况为清晰分割。
8、全塔效率:完成给定任务所需要的的理论塔板数与实际塔板数之比。
默弗里板效率:实际板上的浓度变化与平衡时应达到的浓度变化之比。
9、泡点:在一定压力下,混合液体开始沸腾,即开始有气泡产生时的温度。
露点:在一定压力下,混合气体开始冷凝,即开始出现第一个液滴时的温度。
10、设计变量:设计分离装置中需要确定的各个物理量的数值,如进料流率,浓度、压力、温度、热负荷、机械工的输入(或输出)量、传热面大小以及理论塔板数等。
这些物理量都是互相关联、互相制约的,因此,设计者只能规定其中若干个变量的数值,这些变量称设计变量。
简答题:1、分离操作的重要意义答:分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或者催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物起着分离提纯的作用,已得到合格的产品,并使未反应的反应物得以循环利用。
此外,分离操作在环境保护和充分利用资源方面起着特别重要的作用。
2、精馏塔的分离顺序答:确定分离顺序的经验法:1)按相对挥发度递减的顺序逐个从塔顶分离出各组分;2)最困难的分离应放在塔序的最后;3)应使各个塔的溜出液的摩尔数与釜液的摩尔数尽量接近;4)分离很高回收率的组分的塔应放在塔序的最后;5)进料中含量高的组分尽量提前分出。
化工分离过程第六章
化工分离过程第六章第六章:化工分离过程的优化1.引言2.化工分离过程的优化目标3.化工分离过程的优化方法(1)操作条件的优化操作条件是影响化工分离过程效率的重要因素之一、通过调整温度、压力、流量和反应时间等操作条件,可以改变混合物的相平衡和物性,从而达到更好的分离效果。
例如,温度对多组分混合物的沸点差有着重要的影响,可以通过提高或降低温度来实现分离。
(2)设备结构的优化化工分离过程的设备结构对分离效果和经济性有着重要的影响。
通过改进设备结构,可以提高传质和传热效率,减少流体阻力和能耗。
例如,在蒸馏过程中,可以采用更高效的塔板结构或填料结构,来增加有效传质面积和提高分馏效果。
(3)工艺流程的优化化工分离过程的工艺流程是一系列操作步骤的组合,对整个过程的效率和经济性有着重要的影响。
通过优化工艺流程,可以减少操作步骤、简化设备结构、提高单位操作强度和降低单位产品能耗。
例如,在提取过程中,可以通过改进溶剂的循环流程和回收利用,来减少溶剂的消耗和废物排放。
4.化工分离过程的优化技术(1)真空技术真空技术是化工分离过程中常用的技术之一,它可以通过减少操作压力来改变相平衡条件,实现混合物的分离。
例如,在蒸馏过程中,通过减少操作压力可以降低混合物的沸点,从而提高分馏效果。
真空技术还可以用于降低冷凝温度、提高萃取效率和脱水效果等。
(2)膜分离技术膜分离技术是化工分离过程中较新的技术之一,它通过特殊材料的膜结构对混合物进行分离。
膜分离技术具有操作简单、节能环保和分离效率高等优点,广泛应用于分离、浓缩和纯化过程中。
例如,膜蒸馏可以用于替代传统蒸馏过程,实现低温分离和混合物纯化。
(3)超临界流体技术超临界流体技术是一种将超临界流体应用于分离过程中的技术,超临界流体具有较高的溶解性和较低的粘度,可以在较温和的条件下实现多组分的分离。
例如,超临界萃取可以用于提取金属离子、有机物和天然产物等。
5.结论化工分离过程的优化是实现高效、经济和环保生产的重要手段。
《化工传质与分离过程》第一章传质过程基础
主体
组分A的主体流动质量通量
流动 通量
Au
A[
1
(
Au
A
BuB
)]
aA
(nA
nB
)
组分B的主体流动质量通量
BuaB (n A nB )
三、传质的速度与通量
组分A的主体流动摩尔通量
cAum
cA[
1 C
(cAuA
cBuB )]
xA(N
A
NB
)
组分B的主体流动摩尔通量
cBum xB (N A NB )
主体 NxA um
流动 NxB
NA NB 0
动现象。
示例:用水吸收空气 中的氨
JB
NA
J
A
Nx
A
NB
J
B
Nx
B
0
J Nx
B
B
第一章 传质过程基础
1.1 质量传递概论与传质微分方程 1.1.1 质量传递概论 1.1.2 传质微分方程
一、传质微分方程的推导
1.质量守恒定律表达式 采用欧拉方法推导
混合物的主体流动速度即为平均速度
u= uf (um= uf )
三、传质的速度与通量
组分A的扩散速度
udA = uA- u udA = uA- um
组分B的扩散速度
udB = uB- u udB = uB- um
质量基准 摩尔基准
质量基准 摩尔基准
三、传质的速度与通量
组分A的扩散质量通量
j A A (u A u)
第一章 传质过程基础
1.1 质量传递概论与传质微分方程 1.1.1 质量传递概论
一、混合物组成的表示方法 二、质量传递的基本方式 三、传质的速度与通量 1. 传质速率与传质通量 2. 传质速度的表示方法
化工传质与分离过程
化工传质与分离过程化工传质与分离过程指的是在化工行业中,通过传质过程和分离过程实现物质的转移和分离操作。
传质过程是指物质在不同相(包括气相、液相和固相)之间的传递过程,分离过程则是将混合物中的不同组分进行分离的过程。
本文将对传质与分离过程的基本原理以及常用的传质与分离技术进行详细介绍。
一、传质过程传质过程主要包括质量传递和能量传递两个方面,其中质量传递是指物质在不同相之间的传递过程,能量传递是指通过传质过程实现能量的转移。
传质过程的基本原理为溶质在物理力场的作用下从高浓度处向低浓度处传递,经典的传质过程有扩散、对流和反应等。
1.扩散:扩散是指溶质由高浓度处向低浓度处自发传递的过程,其主要原理是在浓差梯度作用下,溶质由高浓度区域经过空间的携带和碰撞,向低浓度区域移动,直到达到平衡。
扩散过程可以分为分子扩散、界面扩散和体扩散等。
2.对流:对流是指溶质在流体介质中由于流场的存在而引起的传递过程。
对流传质主要分为强迫对流和自然对流两种类型。
强迫对流是通过外加的外力使得流体产生不均匀速度场,从而引起的传质;自然对流则是由于温度和密度的差异,引起流体的密度变化,进而形成流体的自然循环。
3.反应:反应传质是指传质过程中 beginspace 同时 Beginspace 进行化学反应的传质过程。
在反应传质过程中,溶质通过扩散或对流到达反应界面,参与反应之后再分散到溶液中。
传质过程的研究对于理解物质转移和分离过程的机理、改进传质分离过程的性能和优化操作条件具有重要的意义。
二、分离过程分离过程是指将混合物中的不同组分分离出来的操作过程,常用的分离技术有凝固、蒸馏、萃取、吸附和膜分离等。
以下将详细介绍其中的几种分离技术。
1.凝固:凝固是指物质由液体状态转变为固体状态的过程。
这种分离方法常用于分离固体颗粒和溶液之间的混合物,通过凝固可以将溶液中的固体颗粒分离出来。
2.蒸馏:蒸馏是一种利用物质的沸点差异进行分离的方法。
通过加热混合液体,使其中沸点较低的组分先从液体中蒸发出来,然后再冷凝成液体,从而实现分离不同沸点组分的目的。
化工分离工程重点
化工分离工程复习题第一章1、求解分子传质问题的基本方法是什么1)分子运动理论2)速率表示方法(绝对、平均)3)通量2、漂流因子与主体流动有何关系p/p BM反映了主体流动对传质速率的影响,定义为“漂流因子”。
因p>p BM,所以漂流因数p/p BM>1,这表明由于有主体流动而使物质A的传递速率较之单纯的分子扩散要大一些。
3、气体扩散系数与哪些因素有关一般来说,扩散系数与系统的温度、压力、浓度以及物质的性质有关。
对于双组分气体混合物,组分的扩散系数在低压下与浓度无关,只是温度及压力的函数。
4、如何获得气体扩散系数与液体扩散系数测定二元气体扩散系数的方法有许多种,常用的方法有蒸发管法,双容积法,液滴蒸发法等。
液体中的扩散系数亦可通过实验测定或采用公式估算。
5、描述分子扩散规律的定律是费克第一定律。
6、对流传质与对流传热有何异同同:传质机理类似;传递的数学模型类似;数学模型的求解方法和求解结果类似。
异:系数差异:传质:分子运动;传热:能量过去7、提出对流传质模型的意义是:对流传质模型的建立,不仅使对流传质系数的确定得以简化,还可以据此对传质过程及设备进行分析,确定适宜的操作条件,并对设备的强化、新型高效设备的开发等作出指导。
8、停滞膜模型、溶质渗透模型和表面更新模型的要点是什么各模型求得的传质系数与扩散系数有何关系,其模型参数是什么停滞膜模型要点:①当气液两相相互接触时,在气液两相间存在着稳定的相界面,界面两侧各有一个很薄的停滞膜,溶质A经过两膜层的传质方式为分子扩散。
②在气液相界面处,气液两相出于平衡状态。
③在两个停滞膜以外的气液两相主体中,由于流体的强烈湍动,各处浓度均匀一致。
关系:液膜对流传质系数k°G=D/(RTz G),气膜对流传质系数k°L=D/z L对流传质系数可通过分子扩散系数D和气膜厚度z G或液膜厚度z L来计算。
模型参数:组分A通过气膜扩散时气膜厚度为模型参数,组分A通过液膜扩散时液膜厚度为模型参数。
化工分离过程
化工分离过程离心是利用离心力将混合物中的固体颗粒或悬浊液与液体分离的一种方法。
离心机是常用的离心设备,它通过旋转将混合物中的组分按密度和粒径大小分离开。
离心过程中,离心力使颗粒沉淀到离心管底部,形成固体层和上清液层。
离心分离可以用于去除悬浊液中的固体颗粒、分离混合物中的沉淀物等。
蒸馏是利用液体成分的沸点差异将混合物中的挥发性组分分离的一种方法。
蒸馏可以分为常压蒸馏和减压蒸馏两种。
常压蒸馏是在大气压下进行的,适用于沸点差异较大的混合物分离。
减压蒸馏是在降低压力的条件下进行的,适用于沸点差异较小的混合物分离。
蒸馏过程中,液体在加热后汽化,然后在冷凝器中冷凝回液体,从而实现组分的分离。
吸附是利用固体表面对气体或液体成分的吸附性能将混合物中的组分分离的一种方法。
吸附分离常用的吸附剂有活性炭、硅胶等。
吸附过程中,混合物通过与吸附剂接触,被吸附剂上的吸附剂亲和力吸附,从而实现组分的分离。
结晶是利用溶液中溶质溶解度差异将混合物中的溶质分离的一种方法。
结晶过程主要包括溶解、结晶和过滤等步骤。
结晶分离常用的设备有结晶槽、结晶罐等。
结晶过程中,通过调节溶液的温度、浓度等条件,使其中的溶质逐渐结晶出来,并通过过滤将结晶物与母液分离。
萃取是利用溶解度差异将混合物中的组分分离的一种方法。
萃取可以是液液萃取,也可以是固液萃取。
液液萃取是通过两种互不溶的液体之间的分配系数差异进行的,而固液萃取是通过溶剂与固体之间的溶解度差异进行的。
萃取过程中,通过选择适当的溶剂和操作条件,将混合物中的有机物或无机物物质分离出来。
化工分离过程的选择与设计要考虑多个因素,包括物性、混合物组分、分离效果、操作难易程度以及成本等。
在分离过程中,合理选择分离方法和设备,优化操作条件,能够提高分离效率,减少能耗和资源消耗。
因此,化工分离过程的研究和应用具有重要的意义。
总之,化工分离过程是化工生产中不可或缺的一部分。
它涉及离心、蒸馏、吸附、结晶、萃取等各种操作步骤,通过这些过程将混合物中的不同组分进行有效分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、相平衡:指混合物或溶液形成若干相,这些相保持着物理平衡而共存的状态,从热力学上看,整个物系的自由焓处于最小的状态;从动力学看,相间表观传递速率为零。
2、区域熔炼:是根据液体混合物在冷凝结晶过程中组分重新分布的原理,通过多次熔融和凝固,制备高纯度的金属、半导体材料和有机化合物的一种提纯方法。
3、独立变量数:一个量改变不会引起除因变量以外的其他量改变的量。
4、反渗透:是利用反渗透膜选择性地只透过溶剂(通常是水)的性质,对溶液施加压力克服溶液的渗透压,使溶剂从溶液中透过反渗透膜而分离出来的过程。
5、相对挥发度:溶液中的易挥发组分的挥发度与难挥发组分的挥发度之比。
6、理论板:是一个气、液两相皆充分混合而且传质与传热过程的阻力皆为零的理想化塔板。
7、清晰分割:若馏出液中除了重关键组分外没有其他的重组分,而釜液中除了轻关键组分外没有其他轻组分,这种情况为清晰分割。
8、全塔效率:完成给定任务所需要的的理论塔板数与实际塔板数之比。
默弗里板效率:实际板上的浓度变化与平衡时应达到的浓度变化之比。
9、泡点:在一定压力下,混合液体开始沸腾,即开始有气泡产生时的温度。
露点:在一定压力下,混合气体开始冷凝,即开始出现第一个液滴时的温度。
10、设计变量:设计分离装置中需要确定的各个物理量的数值,如进料流率,浓度、压力、温度、热负荷、机械工的输入(或输出)量、传热面大小以及理论塔板数等。
这些物理量都是互相关联、互相制约的,因此,设计者只能规定其中若干个变量的数值,这些变量称设计变量。
简答题: 1、分离操作的重要意义答:分离操作一方面为化学反应提供符合质量要求的原料,清除对反应或者催化剂有害的杂质,减少副反应和提高收率;另一方面对反应产物起着分离提纯的作用,已得到合格的产品,并使未反应的反应物得以循环利用。
此外,分离操作在环境保护和充分利用资源方面起着特别重要的作用。
2、精馏塔的分离顺序答:确定分离顺序的经验法:1)按相对挥发度递减的顺序逐个从塔顶分离出各组分;2)最困难的分离应放在塔序的最后;3)应使各个塔的溜出液的摩尔数与釜液的摩尔数尽量接近;4)分离很高回收率的组分的塔应放在塔序的最后;5)进料中含量高的组分尽量提前分出。
3、精馏过程的不可逆答:精馏过程热力学不可逆性主要由以下原因引起:1、通过一定浓度梯度的动量传递;2、通过一定温度梯度的热量传递或不同温度物流的直接混合;3、通过一定温度梯度的质量传递或者不同化学位物流的直接混合。
4、填料塔的选择板式塔与填料塔的选择应从下述几方面考虑1)系统的物性:A当被处理的介质具有腐蚀性时,通常选用填料塔;B对于易发泡的物系,填料塔更适合;C对热敏性物质或真空下操作的物系宜采用填料塔;D进行高粘度物料的分离宜用填料塔;E 分离有明显吸热或放热效应的物系以采用板式塔为宜;2)塔的操作条件;3)塔的操作方式。
5、填料种类的选择:A填料的传质效率要高;B填料的通量要大,在同样的液体负荷条件下,填料的泛点气速要高;C具有同样的传质效能的填料层压降要低;D单位体积填料的表面积要大,传质的表面利用率要高;E填料应具有较大的操作弹性;F 填料的单位重量强度要高;G填料要便于塔的拆装、检修,并能重复利用。
(简述)6.进料板位置的选择:答:从上往下计算时,如果SjHKjLKRjHKjLKyyyy⎪⎪⎭⎫⎝⎛<⎪⎪⎭⎫⎝⎛++++1,1,1,1,,式中下标R和S分别表示用精馏段和提馏段操作线计算的结果,则第j级不是进料级,继续做精馏段的逐级计算;如果SjHKjLKRjHKjLKyyyy⎪⎪⎭⎫⎝⎛>⎪⎪⎭⎫⎝⎛++++1,1,1,1,,则第j级是进料级。
由精馏段操作线确定yi,j,再由平衡关系求出xi,j,而下一级的yi,j+1应由提馏段操作线计算;当从下往上逐级计算时,进料位置的确定方法是:如果SjHKjLKRjHKjLKxxxx⎪⎪⎭⎫⎝⎛<⎪⎪⎭⎫⎝⎛,,,,和SjHKjLKRjHKjLKxxxx⎪⎪⎭⎫⎝⎛>⎪⎪⎭⎫⎝⎛++++1,1,1,1,则第j级是适宜进料位置,xi,j+1应换成平恒精馏段操作线计算。
第一章2、分离过程可以分为机械分离和传质分离两大类,传质分离又可分为平衡分离过程和速率分离过程。
3、分离媒介可以是能量媒介(ESA)或物质媒介(MSA)。
4、当分离组分间隔相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分离时,就要考虑萃取精馏。
5、如果由精馏塔顶引出的气体不能完全冷凝,可从塔顶加入吸收剂作为回流,这种单元操作叫做吸收蒸出(或精馏吸收)。
6、能形成最低共沸物的系统,采用一般精馏是不合适的,常常采用共沸精馏。
7、离子交换也是一种重要的单元操作,采用离子交换树脂,有选择性的除去某组分,而树脂本身能够再生。
第二章1、相平衡热力学是建立在化学位概念基础上的,lewis提出了等价于化学位的物理量——逸度。
3、Φi s为校正处于饱和蒸汽压下的蒸汽对理想气体的偏离,指数校正项也称普瓦廷因子,是校正压力偏离饱和蒸汽压的影响。
4、若按照所设温度T和求得∑K i X i>1,标明K i值偏大,所设温度偏高。
根据差值大小降低温度重算;若∑K i X i<1,则重设较高温度。
第三章 1、设计分离装置就是要求确定各个物理量的数值,如进料流率、浓度、压力、温度、热负荷、机械功的输入量、传热面大小、理论塔板数等。
2、N v是描述系统的独立变量数,N c是约束关系数,设计变量数N i,则有N i=N v-N c。
3、约束关系式包括:1)、能量平衡式;2)、物料平衡式;3)、相平衡关系式;4)、化学平衡关系式;5)、内在关系式。
4、设计变量数N i可进一步区分为固定设计变量数N x e和可调设计变量数N a e。
5、不同装置的变量数尽管不同,其中固定设计变量的确定原则是共同的,只与进料物流数和系统内压力等级数有关。
6、轻关键组分:关键组分中相易挥发的那个组分;重关键组分:不易挥发的关键组分。
7、多组分精馏与二组分精馏在浓度分布上的区别可归纳为:a、在多组分精馏中,关键组分的浓度分布有极大值;b、非关键组分通常是非分配的,因此重组分仅出现在釜液中,轻组分仅出现在流出液中;c、重、轻非关键组分分别在进料板上下形成几乎恒浓的区域;d、全部组分均存在于进料板上,但进料板浓度不等于进料浓度,塔内各组分的浓度分布曲线在进料板是不连续的。
8、由于分离作用主要取决于液汽比L/V,流量相当大的变化对液汽比的影响不大,而对分离效果影响也小。
级间饿两流量越接近于相等,即操作越接近于全回流,则流量变化对分离的影响也越小。
10、在精馏塔中,温度分布主要反映物流的组成,而总的级间流量分布则主要反映了热衡算的限制。
11、在两组分混合物精馏中,当平衡线无异常情况时,在最小回流比下,将在进料板上下出现恒浓区域或称夹点区。
12、逆行分馏效应:整个精馏塔的作用是使轻、重关键组分的摩尔分率比从再沸器中的较低值提到冷凝器中的较高值,但在某一区域随着蒸汽的逐渐上升此比值反而下降甚至有部分被抵消的效应。
13、推导恩特伍德公式的假设:1、塔内汽相和液相为恒摩尔流率;2、各组分的相对挥发度均为常数。
14.芬斯克方程的精确度明显取决于相对挥发度数据的可靠性;由芬斯克公式还可看出,最少理论板数与进料组成无关,只决定于分离要求。
15.适宜进料位置的确定原则是:在操作回流比下精馏段与提馏段理论板数之比,等于在全回流条件下用芬斯克公式分别计算得到的精馏段与提馏段理论板数之比。
16.在化工生产中常常会遇到欲分离组分之间的相对挥发度近与1或形成共沸物的系统,应用一般的精馏方法分离这种系统或在经济上是不合理的,或在技术上是不可能的;这类既加入能量分离剂又加入质量分离剂的精馏过程称为特殊精馏。
17.αs/α定义为溶剂的选择性,选择性是衡量溶剂效果的一个重要标志;对于一个具体的萃取精馏过程,溶剂对原溶液关键组分的相互作用和稀释作用是同时存在的,均应对相对挥发度的提高有贡献。
18.当形成溶液时仅有氢键生成则呈现负偏差,若仅有氢键断裂,则呈现正偏差.19.用常规的气液平衡测定方法筛选溶剂是昂贵的,因此常用气相色谱法快迅速测定方法关键组分在溶剂中无限稀释活度系数和选择性。
20.吸收操作可分为以下三种类型:(1)物理吸收;(2)带有可逆反应的吸收过程;(3)进行不可逆反应的吸收过程.21.吸收过程则是气相中某些组分溶到不挥发吸收剂中去的单向传质过程。
22.难溶组分即轻组分一般只在靠近塔顶的几级被吸收,而在其余级上变化很小,易挥发组分即重组分主要是在塔底附近的若干级上被吸收,而关键组分才在全塔范围内被吸收。
23.一般说来,吸收放热使液体温度升高,故相平衡常数增大,过程的推动力减小,另一方面,由于吸收放热,气体和液体之间产生温差,这就使得在相间传质的同时发生相间传热。
24.哈顿—富兰克林方程关联了吸收率、吸收因子和理论板数。
第四章 1.严格计算法的核心是联立求解物料衡算式、相平衡和热量衡算式;围绕平衡级j能写出组分物料衡算(M),相平衡关系(E)、每相中各组分的摩尔分率加和式(H)共四组方程,简称MESH方程。
2、对窄沸程进料的分离塔,推荐使用泡点法(即BP法),对于宽沸程或溶解度有较大差别的进料,泡点法不易收敛,故使用流率加和法(SR法)。
3、适宜进料位置的近似确定方法是以轻、重关键组分的浓度之比作为精馏效果的准则;按清晰分割处理,对于只有轻非关键组分的物系,溜出液浓度可以估计的比较精确,应选择从塔顶开始逐级计算;反之,对于只有重非关键组分的物系,塔釜浓度可以估计得比较准确,逐级计算可从塔釜开始。
4、三对角线矩阵法以方程解离法为基础,将MESH 方程按类型分成三组,即修正的M—方程,S—方程和H—方程,然后分别求解。
5、在泡点法计算程序中,除用修正的M—方程计算液相组成外,在内层循环用S—方程计算级温度,而在外层循环中用H—方程迭代气相流率。
第五章 1.气液传质设备的处理能力的影响因素:液泛、雾沫夹带、压力降、停留时间。
3.塔板上液层愈厚,气泡愈分散,表面湍动程度愈高,点效率愈高。
4.在与板上液流总方向平行的和垂直的方向上都会发生液体混合现象,前者称为纵向混合,后者称为横向混合。
(名词解释)。
5.液相纵向不完全混合对板效率起明显的有利影响;不均流动,尤其是环流会产生不利影响;横向混合能消弱液相不均匀流动的不利影响;(判断题)。
第六章 1.实际过程所需的功一定大于可逆过程的值。
2.分离的最小功表示了分离过程耗能的最低限;最小分离功的大小标志着物质分离的难易程度。
3.对于与理想情况表现正偏差的溶液,过剩焓的变化是正的,即混合过程是吸热的。
4.把任何分离过程中系统有效能的改变与过程所消耗的净功之比,定义为分离过程的热力学效率。