3.2.1解一元一次方程——合并同类项
《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册
《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在学习一元一次方程时,掌握合并同类项与移项的基本方法。
通过实际操作,提高学生的计算能力和逻辑思维能力,为后续学习一元一次方程的解法打下坚实的基础。
二、作业内容本作业主要包括以下几个部分:1. 复习与巩固:要求学生回顾并复习一元一次方程的基本概念,包括合并同类项的定义和方法。
2. 实践操作:设计一系列练习题,让学生通过实际操作,掌握合并同类项的技巧。
练习题包括填空题、选择题和计算题等。
3. 移项练习:设计一系列关于移项的练习题,包括将常数项移至等式另一侧的练习,以及将未知数项移至等式另一侧的练习。
4. 实际问题应用:设计一些实际问题,让学生运用所学知识解决实际问题,如购物找零、行程问题等。
三、作业要求为确保学生能够有效地完成本作业,特提出以下要求:1. 学生在完成作业时,需按照步骤和顺序进行,先复习巩固基础知识,再逐一完成实践操作部分的练习题。
2. 学生在合并同类项时,应理解同类项的概念,准确判断同类项并进行合并。
在移项时,应正确运用移项的规则,确保等式两边的平衡。
3. 在实际问题应用部分,学生应理解问题的背景和要求,运用所学知识进行解答。
在解答过程中,应注重解题思路的清晰和解题步骤的规范。
4. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。
如有疑问或困难,可向老师或同学请教。
四、作业评价本作业的评价标准主要包括以下几个方面:1. 基础知识的掌握程度;2. 实践操作的准确性和熟练程度;3. 解题思路的清晰度和规范性;4. 实际问题的解决能力和应用能力。
五、作业反馈为确保学生能够及时了解自己的学习情况并加以改进,老师需在批改作业后进行以下反馈:1. 对学生的作业进行逐一评价,指出优点和不足;2. 对学生的解题思路和步骤进行点评和指导;3. 对学生的实际问题的解决能力进行评价和建议;4. 对学生的学习提出进一步的建议和要求。
人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案
3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。
2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。
3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。
【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。
(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。
2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。
这本书的拉丁文译本取名为《对消与原》。
“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。
二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。
分析:设前年购买计算机x台。
则去年购买计算机2x台,今年购买计算机4x台。
问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。
前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。
思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。
3.2.1解一元一次方程——合并同类项
根据问题中的相等关系: 前年购买量+去年购买量+今年购买量=140台
列得方程
x + 2x +4x = 140
x 2x 4x 140
合并同类项
7 x 140 x 20
根据等式的性质2
分析:解方程,就是把
系数化为1 方程变形,变为 x = a
(a为常数)的形式.
想一想:上面解方程中“合并同类项” 起了什么作用?
1 1 x x x 15 2 4
考考你
一个数,它的三分之二,它的一半,它的 七分之一,它的全部,加起来总共是33。 求这个数。
解:设这个数是x,则:
2 1 1 x x x x 33 3 2 7
1. 你今天学习的解方程有哪些步骤?
合并同类项 系数化为1 (等式性质2) 2:如何列方程?分哪些步骤?
一.设未知数: 二.分析题意找出等量关系: 三.根据等量关系列方程:
作业:
•P93 习题3.2第1题
点此播放教学视频
点此播放教学视频
在一卷公元前1600年左右遗留下来的古 埃及草卷中, 记载着一些数学问题.其中 一个翻译过来就是“啊哈,它的全部,它 的七分之一, 其和等于19”.你能求出问 题中的“它”吗?请你能根据题意列出 方程. 1 设 :“它”为x,列出方程: x+ x =19 7
请欣赏一首诗: 太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,共有多少请算清。 你能列出方程来解决这个问题吗?
(2)-3x 7 x
解:(1)3x 5x (3 5) x 2 x
问题1:
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?
人教版初中数学七年级上册精品教学课件 第3章一元一次方程 3.2 第1课时 合并同类项解一元一次方程
组的人数.
解: 由题意可设甲、乙、丙三个小组的人数分别为2x,3x,5x,则
2x+3x+5x=60,解得x=6.
答:甲、乙、丙三个小组的人数分别为12,18,30.
解:设这家商场第一季度共销售了x台LED电视,根据题意,得
x+2x+4x=2 800,
合并同类项,得7x=2 800,系数化为1,得x=400.
答:这家商场第一季度共销售400台LED电视.
快乐预习感知
1.下列变形中错误的是( C )
A.由3x-2x=1,得x=1
B.由2x-3x=8,得-x=8
C.由5x-2x+3x=12,得x=-2
C.2
1 3
x-2x=2 ,
1
1- 2
D.3
3 1 3
x=2 , 2x=2,x=3.
4.已知三个连续偶数的和为54,则中间的偶数为
18
.
解析:设中间的偶数为x,根据题意,得x-2+x+x+2=54,即3x=54,解得
x=18.
y=-3
5.方程-y-y=6的解为
.
快乐预习感知
6.如果5x-6x=-9+11,那么1-x=
合并同类项
,
互动课堂理解
1.合并同类项解一元一次方程
【例1】 解方程:2x+(-7x)=3-(-12).
分析:2x与-7x是同类项,3与-(-12)也是同类项,先把它们分别合并,
再把x的系数化为1,即可求解.
解:合并同类项,得-5x=15,
系数化为1,得x=-3.
互动课堂理解
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
3.通过实例分析,让学生理解合并同类项解一元一次方程的原理,并能熟练运用此方法解决实际问题。
4.掌握一元一次方程的标准化形式,即ax+b=0(a≠0)。
本节课将结合教材内容,以实用性为导向,旨在让学生掌握合并同类项解一元一次方程的方法,并能够灵活运用。
人教版七年级数学3.2.1解一元一次方程-合并同类项解一元一次方程教案
一、教学内容
本节课依据人教版七年级数学上册第三章《一元一次方程》中的3.2.1节“解一元一次方程-合并同类项解一元一次方程”进行设计。教学内容主要包括以下几部分:
1.掌握合并同类项法则,能够将含有一元一次方程的式子中的同类项进行合并。
二、核心素养目标
本节课的核心素养目标主要包括以下几方面:
1.培养学生的逻辑思维能力,使其能够运用合并同类项法则对一元一次方程进行合理变形,从而解决问题。
2.培养学生的数学运算能力,提高解题速度和准确性,熟练掌握移项、合并同类项等基本操作。
3.培养学生的分析问题和解决问题的能力,通过实际问题的引入和解决,让学生体会数学知识在实际生活中的应用。
4.培养学生的团队合作意识,通过小组讨论和交流,提高学生的沟通能力,增强合作解决问题的能力。
5.培养学生的创新意识,鼓励学生在解题过程中尝试不同的方法和思路,提高思维的灵活性。
三、教学难点与重点
1.教学重点
-理解并掌握合并同类项法则,能够将一元一次方程中的同类项进行有效合并。
-学会运用合并同类项法则解一元一次方程,包括移项、合并同类项等步骤。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解合并同类项的基本概念。合并同类项是指将含有相同字母和相同指数的项进行相加或相减。它是解一元一次方程的重要步骤,可以帮助我们简化方程,便于求解。
2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类
1.下列各方程合并同类项不正确的是( C )
A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=-10-2,合并同类项,得6x=-8.
D.由-7x+2x=5,合并同类项,得-5x=5
2.下列解为x=4方程是( B )
A.7x-3x=-4
B.x+x=5+3
7.若关于x的方程2mx-3m=3x+2的解是8,则m的值为( A )
A.2
B.8
C.-2
D.-8
8.关于x的方程3-x=2a与方程x+3x=28的解相同,则a的值为( B )
A.2
B.-2
C.5
D.-5
9. (长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百
七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大
C.x=-1+3
D.-2x=8
3.挖一条长1210m的水渠,由甲、乙两队从两头同时施工.甲队每天挖
130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则所列方
程正确的是( A )
A.130x+90x=1210
B.130+90x=1210
C.130x+90=1210
D.(130-90)x=1210
除以a
,从而得到x=
b a
.
自我诊断1. 方程2x+x=-6的解是( D )
A.x=0
B.x=1
C.x=2
D.x=-2
利用总分关系列方程
总量=各部分量的 和 .
自我诊断2. 若三个连续奇数的和是15,则它们的积为( A )
A.105
B.15
C.35
D.75
第三章一元一次方程课件3.2.1合并同类项
有一列数,按一定规律排列成 1,-3,9,-27,81,-243,·, · · 其中某三个相邻数的和是-1 701,
这三个数各是多少?
分析:后一个数是
前一个数的 - 3 倍
设所求三个数
分别是 x, -3x , 9x.
有一列数,按一定的规律排成 1,-3,9,-27,81,-243,· ·· · , 其中某三个相邻数的和是-1701, 这三个数各是什么?
船坐6人,如果减少一条船 ,正好每 条船坐9人,问:有多少条船?
阿尔·花拉米子(约780—约850) 中世纪阿拉伯数学家。出生波斯北部 城市花拉子模(现属俄罗斯),曾长 期生活于巴格达,对天文、地理、历 法等方面均有所贡献。它的著作通过 后来的拉丁文译本,对欧洲近代科学 的诞生产生过积极影响。
《对消与还原》
“还原”指的就是 “移项”。
“对消”指的就是 “合并同类项”
对应练习----解下列方程
(1) (2) (3) (4)
5x - 2x 9 x 3x 7 2 2 - 3x 0.5x 10 7x - 4.5x 7.5 - 5
x 3
x 3.5
x -4 x 1
设未知数
实际问题
列方程 一元一次方程
分析实际问题中的数量关系,利用其中 的相等关系列出方程,是解决实际问题的一 种数学方法.
每人分4本,需要______本,减去缺的25本, 4x
(4x 25) 这批书共____________本.
这批书的总数有几种表示法? 它们之间的关系有什么关系?
本题哪个相等关系可作为列方程的依据呢?
这批书的总数是一个定值,表示它的两 个式子应相等,即表示同一个量的两个不同
的式子相等.
解一元一次方程合并同类项与移项预习作业练习题
第三章 一元一次方程3.2 课时1 解一元一次方程—合并同类项【预习速填】1. 合并同类项:15x +4x -10x ;2. 某商品先按进价提高40%标价,再打八折销售.若每件的售价为1120元,则这种商品每件的进价为 .【自我检测】1.下列各组中两项不能够合并的是( ).A.2x 2与-x 2B. 12与- 12C. -x 2与2x 2D. 3x 2与3x 32.蜻蜓有6条腿,蜘蛛有8条腿,现有蜘蛛、蜻蜓若干只,他们一共有360条腿,且蜘蛛的数量是蜻蜓的数量的3倍.蜻蜓、蜘蛛分别有多少? 参考答案【预习速填】1.15x +4x -10x =[15+4+(-10)]x =9x.2.1000【自我检测】1. D2. 解:设蜻蜓有x 只,则蜘蛛有3x 只。
根据题意,得6x+3x×8=360,即30x=360,解得x=12所以3x=12×3=36答:蜻蜓有12只,蜘蛛有36只。
3.2 课时2 解一元一次方程—移项【预习速填】(结合教材第2-3页,完成下列问题)1. 若式子x-5与2x-1的值相等,则x 的值是 .2.七年级(3)班发作业,若每人发4本,则剩12本;若每人发5本,则少18本.那么该班有名学生.【自我检测】1.下列变形中,属于移项的是( ).A.由3x=-2,得x=-23=3,得x=6B.由x2C.由5x-7=0,得5x=7D.由-5x+2=0,得2-5x=02.学校分配学生住宿,如果每间住8人,还少12个床位;如果每间住9人,则空出两个房间.求房间数和学生人数.参考答案【预习速填】1.-4 2.30【自我检测】1.C2.解:设有x间房,根据题意,得 8x+12=9(x-2).解得x=30.8x+12=252. 答:有30间房,252名学生。
3.2.1解一元一次方程(一)----合并同类项与移项课件
系数化为1,得:
5x = 4
1.5x=-0.3
系数化为1,得:
X=4/5
X = - 0.2
(3) 3 x 1.3 x 5 x 2.7 x 12 3 6 4 解:合并同类项,得:
4x = - 60
系数化为1,得:
X = - 15
x 3x 7; (4) 2 2
解:合并同类项,得: 2X=7 系数化为1,得: X=7/2
合并同类项,得: 5x=25 系数化为1,得: X=5
[练习二] 解下列方程:
(1)x 2 3 x (2) x 1 2 x
5 5 3x (4) x 2 x 1 2 x (3) 3
(5) x 3x 1.2 4.8 5 x (6) 5x-200=2x+100
[思考]
[ 思 考 :方程 3x 20 ]
4 x 25 的两边都含有的项(3x与4 x )
和常数项( 20与 25),
怎样才能把它化成
x a (a为常数)的形式呢?
解:利用等式的性质1,得 3x+20-4x=4x+25-4x 3x+20 -4x =25 。 3x+20-4x-20=25-20 。 3x-4x=25 -20。
解:(1)合并同类项得: 两边除以4 ,得 ∴ X= 2; (2) 合并同类项得:
(1)9x—5 x =8 ; (2)4x-6x-x =-15;
4x=
=
8
x的系数化为1,得 ∴ X=
-3x
-15
5(1) 6x —x = 4 ;
解:合并同类项,得: (2)-4x + 6x-0.5x =-0.3; 解:合并同类项,得:
解一元一次方程 说课稿
解一元一次方程说课稿3.2.1解一元一次方程—合并同类项一、教材分析(一)(教材地位、作用本节课选自人教版《数学》七年级上?3.2节第1课时内容,是一堂探究用“合并同类项法”来解一元一次方程的探究活动课。
人们对方程的研究有悠久的历史,方程是重要的数学基本概念,它随着实践需要而产生,并且具有极其广泛的应用。
以方程为工具分析问题、解决问题,即根据问题中的等量关系建立方程模型是全章的重点,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本节乃至全章始终渗透的主要数学思想。
通过本节教学,使学生认识到方程是更方便、更有力的数学工具,体会解法中蕴涵的化归思想,这将为后面几节进一步讨论一元一次方程中的“移项”、“去括号”和“去分母”解法准备理论依据( 因此这节课是一节承上启下的课。
基与上面对教材与学情的分析,考虑到学生已有的认知结构、心理特征,结合新课改理念,结合《新课标》的要求,我确定以下教学目标、教学重点和难点:(二)、教学目标1、知识技能目标:会应用合并同类项法解一些简单的一元一次方程. 进一步探索方程的解法.2、情感态度目标:进一步认识解方程的基本变形,感悟解方程过程中的转化思想.3(能力目标(1)、通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和化归思想,使学生掌握研究问题的方法,从而学会学习。
(2)、通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。
会利用合并同类项的知识解决一些实际问题。
(3)、通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。
4(德育目标(1)、通过本节教学,可以培养学生由特殊到一般的思维认知规律。
(2)、通过具体情境的探索、交流等数学活动培养学生的团体合作精神和积极参与、勤于思考意识。
5(美育目标使学生们在学习中能明显地感觉到数学的形式美、简洁美,感悟到学数学是一种美的享受,爱学、乐学数学。
3.2.1 合并同类项
去括号后的符号变化,并且不要漏乘括号中的每一项 (2)去括号:
例:去括号 2X- 5 A、+(2X- 5)= ___________
- 2X+5 B、- (2X- 5)=__________
9X+3 C、3(3X+1)=___________
- 6X+10 D、-2(3X- 5)= _________
然后教师引导学生列出方程.
③x+2x+4x=140.
进一步提出问题: 怎样解这个方程?如何将方程向x=a的形式进行转化? 学生观察,讨论交流,教师引导学生说出将方程左边合 并同类项,向x=a的形式转化. 教师板演过程或用教材的框图表示过程.(过程略) 思考:本问题的解决过程中,合并同类项起到了什么作 用?
挑战记忆
1、什么是一元一次方程
(1)方程的两边都是整式(分母中不含未知数) (2)只含有一个未知数 (3)未知数的指数是一次.
练习:1.判断下列各式中哪些是一元一次方程?
(1) 5x=0 (4)x+y=5
√ ×
(2)1+3x
1 (5) X 4 X
×
(3)y² =4+y
×
× (6) 3m+2=1–m √
2.同步学习95页 自我尝试1
2.方程的解:
使方程左右两边相等的未知数的值
1 1、若x=2是方程ax+3=2x解,则a=_____ 2
-2 2、已知方程mx-4=2的解为x=-3,则m=____
练习:
方法点拨:把解代入方程
2Leabharlann 3.等式的性质:等式性质1:等式两边加(或减)同一个数(或式子), 结果仍相等。 等式性质2:等式的两边乘同一个数,或除以同一个 不为0 的数,结果仍相等。
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿
人教版七年级数学上册:3.2《解一元一次方程(一)——合并同类项与移项》说课稿一. 教材分析《人教版七年级数学上册》第三章第二节《解一元一次方程(一)——合并同类项与移项》是学生在学习了代数基础和方程概念之后,进一步深入研究一元一次方程的解法。
此节内容主要介绍了一元一次方程的解法——合并同类项与移项,是学生解决实际问题,提高解决实际问题能力的重要工具。
二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念有了初步的了解,但是解一元一次方程的方法和技巧还不够熟练,需要通过本节课的学习进一步提高。
同时,学生在这个阶段的学习中,需要培养抽象思维能力和逻辑推理能力。
三. 说教学目标1.知识与技能目标:理解合并同类项与移项的概念,学会运用合并同类项与移项解一元一次方程。
2.过程与方法目标:通过自主学习、合作交流,培养学生的抽象思维能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:合并同类项与移项的方法及应用。
2.教学难点:如何引导学生理解并掌握合并同类项与移项的原理和技巧。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习上节课的内容,引出本节课的主题——解一元一次方程。
2.自主学习:让学生自主探究合并同类项与移项的方法,引导学生发现解题规律。
3.合作交流:学生分组讨论,分享解题心得,互相学习,提高解题能力。
4.教师讲解:针对学生的疑问和难点,进行讲解和辅导,帮助学生掌握解题方法。
5.巩固练习:布置适量的练习题,让学生巩固所学知识,提高解题技巧。
6.课堂小结:总结本节课的学习内容,强化学生对合并同类项与移项的理解。
7.课后作业:布置相关的作业,让学生进一步巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
专题3.2 解一元一次方程(一)——合并同类项与移项
1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.2.移项:把等式一边的某项___________后移到另一边,叫做移项.3.合并同类项:把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.(1)合并同类项的实质是系数的合并,字母及其指数都不变.(2)含不同未知数的项不能合并.(3)系数是负数时,合并时注意不能丢了负号.4.实际问题列方程的基本步骤:(1)设未知数;(2)找相等关系;(3)列方程.K知识参考答案:1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号3.相加,不变K—重点(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.K—难点列方程解决实际问题.K —易错移项时要变号.一、解一元一次方程——合并同类项与移项1.解一元一次方程——合并同类项解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变. 2.解一元一次方程——移项移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边. 3.解一元一次方程——系数化为1 将形如ax =b (a ≠0)的方程化为x =a b 的形式,也就是求出方程的解x =ab的过程,叫做系数化为1. 系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数. 【例1】方程2x –3=5解是 A .x =4 B .x =5C .x =3D .x =6【答案】A【解析】方程移项合并得:2x =8,解得x =4,故选A . 【名师点睛】1.合并同类项的实质是系数的合并,字母及指数都不变;2.系数合并时要连同前面的“±”号,如–3x +2x =5应变成(–3+2)x =5,即–x =5; 3.系数合并的实质是有理数的加法运算;4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.二、列一元一次方程解决实际问题1.列一元一次方程解决实际问题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验→写出答案 2.常见的两种基本相等关系 (1)总量=各部分量的和;(2)表示同一个量的两个不同的式子相等.【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x 尺,以下列出的方程正确的是 A .x +2x =5B .x +2x +4x +6x +8x =5C .x +2x +4x +8x +16x =5D .x +2x +4x +16x +32x =5【答案】C【解析】设她笫一天织布为x 尺,可得x +2x +4x +8x +16x =5,故选C . 【名师点睛】1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______. 28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x -=的解是 A .14x =-B .4x =-C .14x =D .4x =35.马强在计算“41+x ”时,误将“+”看成“–”,结果得12,则41+x 的值应为A .29B .53C .67D .7036.方程|x –3|=6的解是A .9B .±9C .3D .9或–337.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181x x -=,则x = A .–1B .2C .3D .438.a ※b 是新规定的这样一种运算法则:a ※b =a +2b ,例如3※(–2)=3+2×(–2)=–1.若(–2)※x =2+x ,则x 的值是 A .1B .5C .4D .239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动? 40.若新规定这样一种运算法则:a *b =a 2+2ab ,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值; (2)若3*x =2,求x 的值;(3)(–2)*(1+x )=–x +6,求x 的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店 A . 不盈不亏 B . 盈利20元C . 亏损10元D . 亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-,合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x =3代入方程得:3a –4=a ,解得:a =2,故选B . 7.【答案】A【解析】把x =3代入2x –3m –12=0得6–3m –12=0,所以m =–2.故选A . 8.【答案】A【解析】a +3=0,移项得,a =–3.故选A . 9.【答案】B【解析】根据题意得:5x −7=4x +9,移项得:5x –4x =9+7, 合并同类项得:x =16,故选B . 10.【答案】D【解析】根据题意得:x –7−2x +2=0, 移项合并得:–x =5, 解得:x =−5, 故选D . 11.【答案】B【解析】方程移项得:2x =4+2, 合并得:2x =6, 解得:x =3, 故选B . 12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x =3. 故选A . 19.【答案】C【解析】移项得:x +x =2+2,合并同类项得:2x =4,解得:x =2.故选C .解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92.26.【答案】11 227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9,要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a ,移项合并得:3a =3,解得:a =1.故选B .32.【答案】A【解析】解第一个方程得:x =1,解第二个方程得:x =a −6,所以a −6=1,解得:a =7.故选A .33.【答案】A【解析】解方程220x +=,得1x =-,把1x =-代入253x a +=得253a -+=,解得 1.a =故选A .34.【答案】A 【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。
第三章 一元一次方程—合并同类项
3.2 解一元一次方程——合并同类项一、教学目标(一)知识与技能1、经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效模型。
2、学会合并同类项,会解“ax+bx=c”类型的一元一次方程。
(二)过程与方法1、通过观察、思考、类比、自主探究、交流与反思等教学活动,培养学生出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,使学生学会学习。
2、通过知识梳理培养学生归纳、概括的能力,表达能力和逻辑思维能力,并学会用方程解决实际问题,体会方程是刻画显示世界的有效教学模型。
(三)情感、态度与价值观初步体会生活处处有数学,体会方程的应用价值,感受数学文化之艺术。
通过学生之间相互交流,培养他们的合作意识。
二、教学重难点重点:会用合并同类项解一元一次方程,建立方程解决实际问题的思想方法。
难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
使学生逐步建立列方程解决实际问题的思想方法.。
三、教学方法:引导发现法,合作学习与自主探究相结合四、教学过程(一)温故知新,储备知识1、合并同类项:(1)3x -5x = ________;(2)-3x + 7x = ________;(3)y + 5y- 2y =________;2、用等式的性质解方程填空(1)若2x=4,根据________,则x = ________(2)若-3x=8,根据________,则x = ____【设计意图】由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫和知识储备,由抢答引入,能够更好的激发学生学习兴趣,调动学生学习的积极性让学生能够主动地参与到数学学习中。
利用练习2引出求方程的解时,要把系数化为1,并且引入如何利用等式的性质解复杂的一元一次方程。
(二)引入探究,激趣促思数字游戏同学们每人写下十以内的一个幸运数字,然后计算出本身与它的2倍,与它4倍的和。
将你的结果写在卡片上,举给老师看,老师就能说出你的幸运数。
3-2-1 一元一次方程的解法(一)合并同类项(教学设计)-(人教版)
3.2.1 一元一次方程的解法(一)合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章一元一次方程3.2.1 一元一次方程的解法(一)合并同类项,内容包括:运用合并同类项解形如ax+bx=c类型的一元一次方程.2.内容解析方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位,在小学阶段已经对方程进行了初步的研究,但尚未形成方程的概念,更未研究各类方程的解法,所以解方程既是本章的重点也是今后学习其它方程、不等式及函数的重要基础和基本技能.本节课的教学内容是《解一元一次方程》的第1课时用“合并同类项”法解方程,是以后系统学习“移项”、“去括号”和“去分母”法解一元一次方程中的重要基础,因此本节课具有承上启下的作用.基于以上分析,确定本节课的教学重点为:学会运用合并同类项解形如ax+bx=c类型的一元一次方程.二、目标和目标解析1.目标(1)学会运用合并同类项解形如ax+bx=c类型的一元一次方程,进一步体会方程中的“化归”思想.(2)能够根据题意找出实际问题中的相等关系,列出方程求解.2.目标解析会用合并同类项法解一些简单的一元一次方程;经历根据具体实际问题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力;通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想;通过具体情境的探索、交流等数学活动,培养学生的团队合作意识和积极参与、勤于思考的习惯.三、教学问题诊断分析七年级学生的理解能力和思维特征要求我的数学课堂要生动、有趣高效,因此我将整节课以观察、思考、讨论贯穿于整个教学环节之中采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、勤动脑、善钻研”的研讨式学习方法.教学中积极为学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,培养学生解决问题的能力.基于以上学情分析,确定本节课的教学难点为:会列一元一次方程解决实际问题.四、教学过程设计(一)复习回顾1.含有相同的_____,并且相同字母的_____也相同的项,叫做同类项;2.合并同类项时,把各同类项的_____相加减,字母和字母的指数_____.用合并同类项进行化简:(1)3x -5x=________; (2)-3x+7x=________;(3)y+5y -2y=________; (4)=-+y y y 23231_______. (二)情境引入约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程. 这本书的拉丁译本取名为《对消与还原》.对消与还原推动了古代数学的进步,为人们解方程问题提供了简便的方法.其实不管是对消与还原,还是合并同类项与移项,其目的都是为了化简方程.(三)自学导航问题1:某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买了x 台.可以表示出:去年购买计算机_____台,今年购买计算机_____台.你能找出问题中的相等关系吗?前年购买量+去年购买量+今年购买量=140台x+2x+4x=140思考:怎样解这个方程呢?下面的框图表示了解这个方程的流程:思考:上面解方程中“合并同类项”起了什么作用?解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.(四)考点解析例1.解下列方程:(1)6x -2x=28; (2)15x+25x=-1; (3)x -12x -14x=-5+8-6; (4)2x+1.5x -6.5x=9×2-4×3.(1)解:合并同类项,得4x=28.系数化为1,得x=7.(2)解:合并同类项,得35x=-1. 系数化为1,得x=-53.(3)解:合并同类项,得14x=-3. 系数化为1,得x=-12.(4)解:合并同类项,得-3x=6.系数化为1,得x=-2.【迁移应用】1.下列合并同类项不正确的是( )A.由5x -2x=9,得3x=9B.由12x+32x=7,得2x=7C.由-3x+0.5x=10,得-2.5x=10D.由3x -4x=-20-25,得x=-452.关于x 的方程4x -3m=2的解是x=m ,则m 的值是_______.3.解下列方程:(1)-2x+x 2=9; (2)23x -65x=-43; (3)x+0.75x=7.5-2.25.(1)解:合并同类项,得-32x=9. 系数化为1,得x=-6.(2)解:合并同类项,得-815x=-43. 系数化为1,得x=52. (3)解:合并同类项,得1.75x=5.25.系数化为1,得x=3.例 2.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻的数的和是-720,求这四个数中最大的数与最小的数的差.解:根据题意,可设这四个相邻的数分别为x ,-2x ,4x ,-8x ,则x -2x+4x -8x=-720,即-5x=-720,解得x=144.所以-2x=-288,4x=576,-8x=-1152.所以最大的数为576,最小的数为-1152.所以576-(-1152)=1728.答:这四个数中最大的数与最小的数的差为1728.【迁移应用】1.一个两位数,个位上的数是十位上的数的3倍,它们的和是12,那么这个两位数是_________.2.【古代数学问题】中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一天和第六天共走了( )A.102里B.126里C.192里D.198里3.有一列数,按一定规律排列成13,-1,3,-9,27,-81,…,若其中某三个相邻数的和是-567,求这三个数中的第一个数.解:设这三个数中的第一个数为x ,则另外两个数分别为-3x ,9x.依题意,得x -3x+9x=-567,解得x=-81.答:这三个数中的第一个数是-81.例3.(1)2x -1与3x+1的和为10,求x 的值;(2)规定|a b c d |=ad -bc ,当|x 2−x 12|时,求x 的值. 解:(1)根据题意,得2x -1+3x+1=10.合并同类项,得5x=10.系数化为1,得x=2.(2)根据题意,得x 2×2-(-x)×1=32,即x+x=32. 合并同类项,得2x=32. 系数化为1,得x=34. 【迁移应用】1.若4x 比9x 的值小10,则x 的值为( )A.1B.2C.-2D.32.规定一种新运算:a * b=ab+a+b.若3*x -3=24,求x 的值.解:根据题意,得3x+3+x -3=24.合并同类项,得4x=24.系数化为1,得x=6.例4.某学校计划购买一批篮球和排球,已知篮球和排球的单价之比为4:3,单价之和为84元,则篮球和排球的单价分别为多少元?解:设篮球和排球的单价分别为4x 元和3x 元.根据题意,得4x+3x=84,解得x=12.所以4x=48,3x=36.答:篮球的单价为48元,排球的单价为36元.【迁移应用】某种中成药需要用到甘草、党参、苏叶三种材料,其中甘草、党参、苏叶三种材料的质量之比为1:2:4.若生产210kg这种中成药,则需要用到甘草、党参、苏叶的质量分别是多少千克?解:设需要用到甘草、党参、苏叶的质量分别是xkg,2xkg,4xkg.根据题意,得x+2x+4x=210.解得x=30.所以2x=60,4x=120.答:需要用到甘草、党参、苏叶的质量分别是30kg,60kg,120kg.(五)小结梳理解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a,b是常数,“合并”的依据是逆用分配律.五、教学反思。
3.2.1合并同类项与移项(课时2)
解: (5) x =-2; (6) t =20; (7) x =-4; (8) x =2.
课后作业
练习册49页7题、50页5题 做在作业上
——
思学 考习 ,知 再识 思要 爱考善 因。于 斯思 坦考
,
Байду номын сангаас
2.解方程步骤 ①移项 ②合并同类项 ③系数化为1
移项要变号
等式的性质1 乘法分配律 等式的性质2
作业分析
作业中一些错误: ①运算问题:合并同类项时系数加错,定号算 数问题大,分数表示除法时分子分母颠倒 ②移项问题:移项不变号,没移动的项乱变号 ③书写不规范:不写解,-1X的错误写法 养成检验好习惯,看解是否正确
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5-8
D. 由x+9=3x-1,得3x-x=-1+9
3.如果2x与x-3的值互为相反数,那么x等于( B )
A.-1 B.1
C.-3
D.3
4.某中学七年级(5)班共有学生56人,该班男生的人 数是女生人数的2倍少1人.设该班有女生有x人,可列 方程为__2_x_-1__+_x_=_5_6___. 解得女生有 19 人.
5. 已知 2m-3=3n+1,则 2m-3n = 4 .
6. 如果
与
互为相反数,则m的值 为
1 12
.
7. 当x =_-__2__时,式子 2x-1 的值比式子 5x+6 的值小1.
解下列方程: (1) -2x + x =6;
(2) 6m-3m-4m =-3;
(3) 3y+2y =-2+6.
当堂练习
1. 下列方程合并同类项正确的是
3.2.1解一元一次方程-合并同类项教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2.1解一元一次方程-合并同类项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决几个相同物品数量相加的问题?”(如:我有2个苹果,又买了3个苹果,一共有多少个苹果)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
4.在探究、合作、交流过程中,发展学生的自主学习、团队合作和表达能力;
5.培养学生严谨、细致的数学态度,激发数学学习兴趣,树立自信心。
三、教学难点与重点
1.教学重点
(1)一元一次方程的概念:理解一元一次方程的定义及一般形式,明确方程中的未知数、常数和系数。
(举例:x + 3 = 7,其中x为未知数,3和7为常数,1为系数)
在讲解重点和难点时,我尽量用简洁明了的语言进行解释,并通过举例来帮助学生理解。但从课堂反馈来看,可能还需要进一步简化语言,让学生更容易消化吸收。同时,对于难点的讲解,我可以尝试用不同的方法进行阐述,以便学生们能够从多个角度理解问题。
最后,我觉得在课堂总结环节,可以让学生们自己来总结今天的学习内容,这样既能检验他们对知识点的掌握程度,也能提高他们的表达能力和自信心。此外,针对学生们在课堂上提出的疑问,我将在课后进行总结,并在下一次课上进行解答,确保他们能够真正掌握这些知识点。
3.2.1解一元一次方程-合并同类项教案
一、教学内容
本节课选自教材第三章第二节第一部分“3.2.1解一元一次方程-合并同类项”。教学内容主要包括以下两个方面:
3.2.1 一元一次方程的解法(一)合并同类项(分层作业)【解析版】
3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a -1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何解这个方程即把方程 转化成X=a的形式呢?
合并同类项
7 x 140
系数化为1
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.
x 20
想一想:上面解方程中“合并同类项” 起了什么作用? 合并同类项起到了“化简”的作用。
我会归纳:
解一元一次方程的步骤:
你能列出方程来解决这个问题吗?
1 1 x x x 15 2 4
1、你今天学习的解方程有哪些步骤?
合并同类项 系数化为1 (等式性质2)
2、如何列方程?分哪些步骤?
(1)审:审清题意并找出已知量和未知量 (2)设:设未知数 (3)找:分析题意找出相等关系 (4)列:根据相等关系列方程
× 8 7x=5
3、3x=4 解:系数化为1,得
- x= 3 系数化为1,得 × 所以原方程的解为-x= x=-3 3
x = x =3 4
3 4
×
解下列方程
16 x 9 x 9 37 1 2 x x 3x 7 2
1
5 3 x 0.5 x x 10 2
4x 台。 去年购买____ 2x 台,今年购买_____ 相等关系:
前年购买量+去年购买量+今年购买量=140台
列方程得: x + 2x +4x = 140
列一元一次方程解应用题的步骤: 1、审题:弄清题意和数量关系; 2、设未知数; 3、找相等关系; 4、根据相等关系列出方程; 5、解方程; 6、作答。
并同类合项,得
7 x 1701
x 243 系数化为1,得 9 x 2187 3x 729 所以 答:这三个数是-243,729,-2187。
挑战你的智力,相信你能行!
请欣赏一首诗: 太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,共有多少请算清。
-3x , 个数为x,那么它后面的两个数分别是______ 9x 。 ______
学以致用 相信你能行! 快马加鞭哦! 例2 有一列数,按一定规律排成1,-3,9,-27,
81,-243,…,其中某三个相邻数的和是-1701,
这三个数是什么? 解:设这三个相邻数中的第1个数为x,那么第2 9x 个数就是_____ 。 -3x ,第3个数就是___________ 依题意得: x 3 x 9 x 1701
3.2解一元一次方程
——合并同类项
温故而知新
考 考 你 的 记 忆 !
合并同类项
(1) x+2x+4x =(1+2+4)x =7x (2)5y-3y-4y =(5-3-4)y =-2y (3)4a-1.5a-2.5a =(4-1.5-2.5)a =0
探索新知
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机? 分析: 设前年购买了计算机x台,则
(4) 6m 1.5m 2.5m 3
学以致用 相信你能行! 快马加鞭哦! 例2 有一列数,按一定规律排成1,-3,9,-27, 81,-243,…,其中某三个相邻数的和是-1701,
这三个数是什么? 思考:1、问题中的相等关系是哪一句? 2、从符号和绝对值两方面看,这列数有什么规律? (- 3) (- ) (- 1× ____ =-3,-3× ___3) _=9,9× ___3_=-27 , (- 3) =81等,如果设三个相邻数中的第一 -27× ____
1、合并同类项 2、系数化为1
学以致用 相信你能行! 快马加鞭哦!
例1.解下列方程:
(1)
5 2x- x=6-8 2
(2) 7x-2.5x+3x-1.5x =-154-63
火眼金睛
辨一辨:
判断下列方程的部分解题过程是否正确: 1、x+3x+4x=5 解:合并同类项,得 2、3x+2x-6x=3 解:合并同类项,得