空间几何体的结构及其三视图和直观图[高考数学总复习][高中数学课时训]
空间几何体的结构及其三视图和直观图
提 素 养 误 区 分 析
切 脉 搏 核 心 突 破
柱与一个圆柱的组合体的俯视图; C 图是一个底面为等腰直 角三角形的三棱柱与一个四棱柱的组合体的俯视图,采用排 除法,故选 D.
【答案】 (1)D (2)D
菜 单
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
菜 单
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习· 数学(理)
提 素 养 误 区 分 析
④若四棱柱有两个过相对侧棱的截面都垂直于底面,则
研 动 向 考 纲 考 向
该四棱柱为直四棱柱; ⑤存在每个面都是直角三角形的四面体. 其中正确命题的序号是( A.①②③④ ) B.②③④⑤ D.①②③④⑤
根据常见几何体的结构特征或举反例逐
切 脉 搏 核 心 突 破
C.③④⑤
【思路点拨】 一进行辨析.
演 实 战 沙 场 点 兵
课 时 提 升 练
菜
单
高三总复习· 数学(理)
提 素 养 误 区 分 析
【解析】 ①不正确,如长方体的侧面不一定全等.
研 动 向 考 纲 考 向
②不正确,截面与底面不一定平行. ③正确,由面面垂直的判定及性质可知该命题正确. ④正确, 因为两个过相对侧棱的截面的交线平行于侧棱, 又垂直于底面.
切 脉 搏 核 心 突 破
【答案】 B
课 时 提 升 练
菜
单
高三总复习· 数学(理)
提 素 养 误 区 分 析
4. (2013· 四川高考)一个几何体的三视图如图 713 所示,
研 动 向 考 纲 考 向
则该几何体的直观图(如右图)可以是(
高考数学大一轮复习配套课时训练:第七篇 立体几何 第1节 空间几何体的结构及三视图和直观图(含答案)
第七篇立体几何(必修2)第1节空间几何体的结构及三视图和直观图课时训练练题感提知能【选题明细表】A组一、选择题1.(2013山东烟台模拟)如图是底面半径为1,母线长均为2的圆锥和圆柱的组合体,则该组合体的侧(左)视图的面积为( C )(A)8π(B)6π(C)4+(D)2+解析:该组合体的侧(左)视图为其中正方形的边长为2,三角形为边长为2的三角形,所以侧(左)视图的面积为22+×22×=4+,故选C.2.(2013山东莱州模拟)一个简单几何体的正(主)视图,侧(左)视图如图所示,则其俯视图不可能为①长方形;②直角三角形;③圆;④椭圆.其中正确的是( C )(A)①(B)② (C)③ (D)④解析:当该几何体的俯视图为圆时,由三视图知,该几何体为圆柱,此时,正(主)视图和侧(左)视图应相同,所以该几何体的俯视图不可能是圆,其余都有可能.故选C.3.(2013韶关市高三调研)某几何体的三视图如图所示,根据图中标出的数据,可得这个几何体的表面积为( B )(A)4+4 (B)4+4(C) (D)12解析:由三视图知该几何体为正四棱锥P ABCD,底面边长为2,高PO=2,如图所示,取CD的中点E,连接OE、PE,则PE==,因此几何体的表面积为2×2+×2×4×=4+4,故选B.4.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( A )(A)2+(B)(C)(D)1+解析:由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+,所以原图上、下底分别为1,1+,高为2的直角梯形.所以面积S=(1++1)×2=2+.故选A.5.(2013北京东城区模拟)已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( D )(A)1 (B)2 (C)3 (D)4解析:由题意可知,几何体是三棱锥,其放置在长方体中形状如图所示,利用长方体模型可知,此三棱锥A BCD的四个面中,全部是直角三角形.故选D.6.(2013广州市毕业班测试(二))一个圆锥的正(主)视图及其尺寸如图所示,若一个平行于圆锥底面的平面将此圆锥截成体积之比为1∶7的上、下两部分,则截面的面积为( C )(A)π(B)π (C)π(D)4π解析:由题意知,该几何体是底面半径为3,高为4的圆锥.由截面性质知截面圆半径为×3=,故截面的面积为π·()2=,故选C.7.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若过两个相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中真命题为( D )(A)①②(B)①③(C)②③(D)②④解析:对于①,平行六面体的两个相对侧面与底面垂直且互相平行,而另两个相对侧面可能与底面不垂直,则不是直棱柱,故①假;对于②,两截面的交线平行于侧棱,且垂直于底面,故②真;对于③,作正四棱柱的两个平行菱形截面,可得满足条件的斜四棱柱(如图(1)所示),故③假;对于④,四棱柱一个对角面的两条对角线,恰为四棱柱的对角线,故对角面为矩形,于是侧棱垂直于底面的一条对角线,同样侧棱也垂直于底面的另一条对角线,故侧棱垂直于底面,故④真.故选D.二、填空题8.如图所示的Rt△ABC绕着它的斜边AB旋转一周得到的图形是.解析:过Rt△ABC的顶点C作线段CD⊥AB,垂足为D,所以Rt△ABC绕着它的斜边AB旋转一周后应得到的是以CD作为底面圆的半径的两个圆锥的组合体.答案:两个圆锥的组合体9.一个几何体的正(主)视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:显然①②⑤均有可能;当三棱柱放倒时,其正(主)视图可能是三角形,所以③有可能,④不可能.答案:①②③⑤10.如图,点O为正方体ABCD A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是(填出所有可能的序号).解析:空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现投影为④的情况.答案:①②③11.(2013山东烟台模拟)如图,三棱柱的侧棱长为2,底面是边长为2的正三角形,AA1⊥面A1B1C1,正(主)视图是边长为2的正方形,俯视图为正三角形,则侧(左)视图的面积为.解析:因为俯视图为正三角形,所以俯视图的高为,侧视图为两直角边分别为2、的矩形,所以侧(左)视图的面积为2.答案:2三、解答题12.(2013西工大附中模拟)已知四棱锥P ABCD的三视图如图所示,求此四棱锥的四个侧面的面积中最大值.解:由三视图可知该几何体是如图所示的四棱锥,顶点P在底面的射影是底面矩形的顶点D.底面矩形边长分别为3,2,△PDC是直角三角形,直角边为3与2,所以S△PDC=×2×3=3.△PBC是直角三角形,直角边长为2,,三角形的面积为×2×=.△PAB是直角三角形,直角边长为3,2;其面积为×3×2=3.△PAD也是直角三角形,直角边长为2,2,三角形的面积为×2×2=2. 所以四棱锥P ABCD的四个侧面中面积最大的是前面三角形的面积为3.13.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角为45°,求这个圆台的高、母线长和底面半径.解:圆台的轴截面如图.设圆台的上、下底面半径分别为x cm和3x cm,延长AA1交OO1的延长线于点S.在Rt△SOA中,∠ASO=45°,则∠SAO=45°.所以SO=AO=3x,OO1=2x.又×(6x+2x)×2x=392,解得x=7.所以圆台高OO母线长l=OO1=14 cm,底面半径分别为7 cm和21 cm.B组14.(2013广州高三调研)已知四棱锥P ABCD的三视图如图所示,则四棱锥P ABCD的四个侧面中面积最大的是( C )(A)3 (B)2(C)6 (D)8解析:四棱锥如图所示,PM=3,×4×=2,S△PDC=S△PAB=×4×3=6,S△PBC=S△PAD=×2×3=3,故四个侧面中面积最大的是6.15.(2013北京西城检测)三棱锥D ABC及其三视图中的正视图和侧视图如图所示,则棱BD的长为.解析:取AC的中点E,连结BE,DE,由正(主)视图可知BE⊥AC,BE⊥DE.DC⊥平面ABC且DC=4,BE=2,AE=EC=2.所以BC====4,即BD====4.答案:416.三棱锥V ABC的底面是正三角形,顶点在底面ABC上的射影为正△ABC的中心,其三视图如图所示:(1)画出该三棱锥的直观图;(2)求出侧(左)视图的面积.解:(1)直观图如图所示.(2)根据三视图间的关系可得BC=2,作AM⊥BC于M,连结VM,过V作VO⊥AM于O,过O作EF∥BC交AB,AC于F、E,则△VEF即侧(左)视图.由=,得EF=.又VA=4,AM==3.则AO=2,VO===2.××2=4.所以S即侧(左)视图的面积为4.。
高考数学一轮复习: 专题8.1 空间几何体的结构及其三视图和直观图(讲)
第01节空间几何体的结构及其三视图和直观图【考纲解读】年考查三视图、几何体1与立体几何数学应用的【知识清单】1.空间几何体的结构特征一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.对点练习:有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1 B.2C.3 D.4【答案】A2空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.对点练习:一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()【答案】D3.空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.对点练习:某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)B)C)D)2【答案】B【解析】【考点深度剖析】三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.【重点难点突破】考点1:空间几何体的结构特征【1-1】如图几何体中是棱柱的有()A.1个B.2个C.3个D.4个【答案】C【1-2】下列命题中正确的有__________.①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;②存在一个四个侧面都是直角三角形的四棱锥;③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;④圆台的任意两条母线所在直线必相交;【答案】②④【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;故③错误④根据圆台的定义和性质可知,命题④正确.所以答案为②④【领悟技法】系或增加线、面等基本元素,然后再依据题意判定.三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【触类旁通】【变式1】一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D .每个侧面都是全等矩形的四棱柱 【答案】C【解析】A ,B 两选项中侧棱与底面不一定垂直,D 选项中底面四边形不一定为正方形,故选C.【变式2】已知长方体1111ABCD A BC D 的所有顶点在同一个球面上,若球心到过A 点的三__________.考点2空间几何体的直观图【2-1】利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号). ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 【答案】①②④【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.【2-2】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________cm 2.【答案】矩形8【领悟技法】按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=直观图. 【触类旁通】【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A .212 C.22+D .1【答案】A【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+1,12的直角梯形.所以面积S =12(12故选A.【变式2】如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形【答案】C【解析】将直观图还原得▱OABC ,如图, ∵O ′D ′=2O ′C ′=22(cm),OD =2O ′D ′=42(cm),C ′D ′=O ′C ′=2(cm),∴CD =2(cm), OC =CD 2+OD 2=22+422=6(cm),OA =O ′A ′=6(cm)=OC ,故原图形为菱形.综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.考点3空间几何体的三视图【3-1】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】(1)D(2)D【解析】(1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥OABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D.(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.【3-3】如图,点,M N 分别是正方体1111ABCD A BC D 的棱1111,A B A D 的中点,用过点,,A M N 和点1,,D N C 的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为()A.①③④B.②④③C.①②③D.②③④ 【答案】D【领悟技法】三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别.揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线. 【触类旁通】【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为()【答案】C【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是().【答案】D【变式3】【武汉市部分学校2019届高三调研】)一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为()......①长方形;②正方形;③圆;④椭圆.中的A.①②B.②③C.③④D.①④【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【易错试题常警惕】易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【错解】①②⑤【错因】忽视几何体的不同放置对三视图的影响,漏选③.【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.故正确答案为①②③⑤.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例】如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45 ,过圆柱的轴的平面截该几何体所得的四边形''AA将其侧面剪开,ABB A为矩形,若沿'其侧面展开图形状大致为()A. B. C.D.【答案】A。
理科数学笔记空间几何体的结构及其三视图与直观图
考点28 空间几何体的结构及其三视图与直观图一、空间几何体的结构1.多面体棱柱:①底面互相平行②侧面都是平行四边形③每相邻两个平行四边形的公共边互相平行.棱锥:①底面是多边形.② 侧面都是三角形.③侧面有一个公共顶点.棱台:① 上、下底面互相平行,且是相似图形.② 各侧棱的延长线交于一点.③各侧面为梯形. 可用一个平行于棱锥底面的平面去截棱锥2.旋转体圆柱:① 圆柱有两个大小相同的底面,这两个面互相平行,且底面是圆面而不是圆.② 圆柱有无数条母线,且任意一条母线都与圆柱的轴平行,所以圆柱的任意两条母线互相平行且相等.③ 平行于底面的截面是与底面大小相同的圆面,过轴的截面( 轴截面) 是全等的矩形.圆锥:①底面是圆面.② 有无数条母线,长度相等且交于顶点.③ 平行于底面的截面是与底面大小不同的圆面, 过轴的截面(轴截面)是全等的等腰三角形.圆台:① 圆台上、下底面是互相平行且不等的圆面.② 有无数条母线,等长且延长线交于一点.③平行于底面的截面是与两底面大小都不等的圆面, 过轴的截面(轴截面)是全等的等腰梯形.球:①球心和截面圆心的连线垂直于截面.② 球心到截面的距离d 与球的半径R 及截面圆的半径r 之间满足关系式:d2=R2-r2.二、空间几何体的三视图与直观图1.空间几何体的三视图(1 )三视图的概念几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.① 光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图 ;② 光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图 ;③ 光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.( 2 )三视图的画法规则① 排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.② 画法规则正视图与俯视图的长度一致,即“ 长对正”;。
高中数学教学课例《“空间几何体的结构、三视图和直观图”》课程思政核心素养教学设计及总结反思
体的结构特征的题型; 教学目标
2、熟悉一些典型的几何体模型,如三棱柱、长(正)
方体、三棱锥等几何体的三视图。
本班学生学习态度比较端正,大部分学生能够积极 学生学习能
思考;但对于女生来说,空间想象能力还是比较欠缺, 力分析
学习体地位,在教师点明本
高中数学教学课例《“空间几何体的结构、三视图和直观 图”》教学设计及总结反思
学科
高中数学
教学课例名
《“空间几何体的结构、三视图和直观图”》
称
本节课为高三一轮复习中的空间几何体的结构、三
教材分析 视图和直观图,要求学生重点掌握以三视图为命题背
景,研究空间几何体的结构特征的题型。
1、重点掌握以三视图为命题背景,研究空间几何
对部分学习有困难的学生给于指导; 共性的问题适时点拨(多媒体展示图形) 完成基础自测题 给学生思考的时间和空间
对不同层次的学生给于不同的指导; 共性的问题适时点拨(多媒体展示图形) 完成“几何体的三视图”、“几何体的直观图”部 分的例题和变式题。 给学生思考的时间和空间
引导学生总结、反思解题的一般思路和策略,课堂 小结,课外作业布置
总结、反思三视图还原成直观图的一般方法,解题 策略
由学生自主进行小结反思,更容易理解,记忆
我在教学中,采取通过学生自己的亲身实践,动手
作图来完成;我还充分利用教材“思考”栏目中提出的 课例研究综
问题,让学生在动手实践的过程中学会三视图的作法, 述
体会三视图的作用。再加上学生原有的基础,很圆满地
完成了这一部分的教学,并且收到了良好的效果。
教学策略选 节课的主体知识和高考动向后,给学生充分的思维时间
择与设计 和空间;设法引导学生积极动手探索解题思路并寻求解
空间几何体的结构及其三视图和直观图最新衡水中学自用精品教学设计
空间几何体的结构及其三视图和直观图主标题:空间几何体的结构及其三视图和直观图副标题:为学生详细的分析空间几何体的结构及其三视图和直观图的高考考点、命题方向以及规律总结。
关键词:多面积,旋转体,三视图难度:2重要程度:4考点剖析:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).命题方向:在空间几何体部分,主要是以空间几何体的三视图为主展开,考查空间几何体三视图的识别判断、考查通过三视图给出的空间几何体的表面积和体积的计算等问题,试题的题型主要是选择题或者填空题,在难度上也进行了一定的控制,尽管各地有所不同,但基本上都是中等难度或者较易的试题.规律总结:1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.该部分要牢牢抓住各种空间几何体的结构特征,通过对各种空间几何体结构特征的了解,认识各种空间几何体的三视图和直观图,通过三视图和直观图判断空间几何体的结构,在此基础上掌握好空间几何体的表面积和体积的计算方法.知识梳理1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.。
【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文
()
A. ①② B. ②③ C. ①③ D. ②④
4. 如图,几何体的正视图和侧视图都正确的是 ( )
5. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4, A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的 长为________.
答案:
1. C 解析:由棱柱定义可判断,最简单的棱柱为三棱柱,故C
答案:2 3 解析:由正视图和俯视图可知几何体是正方体切割后的一部分
(四棱锥C1ABCD),还原在正方体中,如图所示.
多面体最长的一条棱即为正方体的体对角线,
由正方体棱长AB=2知最长棱的长为2 3
9.若一个底面是正三角形的直三棱柱的正视图如图所示,
则其侧面积等于
()
A. 3
B.2
C.2 3
D.6
图1
图2
高考体验
(2012 高考浙江文 3)已知某三棱锥的三视图(单位:cm)如图 所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
【答案】C
【解析】由题意判断出,底面是一个直角三角形,两个直角
边分别为 1 和 2,整个棱锥的高由侧视图可得为 3,所以三棱
锥的体积为
1 3
3. D 解析:由母线的定义可知①、③错.
4. B 解析:注意实、虚线的区别.
5.2 2 解析:由题意知,在△ABO中,边OB上的高AB=16/4*2=8,
则在直观图中A′B′=4,∴A′C′=A′B′sin 45°=4*
2 2 2. 2
6.如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观 图,其中O′A′=6 cm,O′C′=2 cm,则原图形是 ( )
高中数学复习:空间几何体及其三视图、直观图
教材研读 栏目索引
答案 B 该几何体是组合体,上面的几何体是一个五面体,下面是一个 长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的 两端点在底面的射影距左右两边距离相等,因此选B.
6.利用斜二测画法得到的
①三角形的直观图一定是三角形;
②正方形的直观图一定是菱形;
③等腰梯形的直观图可以是平行四边形;
4
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”) (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( ✕ ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. ( ✕ ) (3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是 棱台. ( ✕ )
A.棱台 B.四棱柱 答案 C
C.五棱柱
D.简单组合体
教材研读 栏目索引
3.(教材习题改编)如图所示,在三棱台A'B'C'-ABC中,沿A'BC截去三棱锥 A'-ABC,则剩余的部分是 ( B )
A.三棱锥 B.四棱锥 C.三棱柱 D.组合体
答案 B 如图所示,
教材研读 栏目索引
在三棱台A'B'C'-ABC中,沿A'BC截去三棱锥A'-ABC,剩余部分是四棱锥A' -BCC'B'.
多面体 结构特征
棱柱
棱锥 棱台
有两个面① 互相平行 ,其余各面都是四边形且每相邻的两个四边形的公共边都 互相平行 有一个面是多边形,而其余各面都是有一个② 公共顶点 的三角形 棱锥被③ 平行于 底面的平面所截,截面和底面之间的部分叫做棱台
(2)旋转体的形成
几何体 旋转图形
总复习《第33讲 空间几何体的结构特征及三视图和直观图》
其中真命题的序号是________ . 答案:①②③
[例1] (2011· 广东高考)正五棱柱中,不同在任何侧面且 不同在任何底面的两顶点的连线称为它的对角线,那么 一个正五棱柱对角线的条数共有 A.20 C.12 [自主解答] B.15 D.10 如图,在正五棱柱ABCDE- ( )
A1B1C1D1E1中,从顶点A出发的对角线有 两条:AC1、AD1,同理从B、C、D、E点 出发的对角线也有两条,共2×5=10条.
3.投影的分类
中心投影 投影线交于一点 投影
直观强、接近实物
斜投影 正投影
平行投影 投影线平行
正视图 侧视图 俯视图 长对正、高平齐、宽相等
三视图
视图 直观图
斜二测画法
思考:如图,点 O 为正方体 ABCD-A′B′C′D′ 的中心 ,点 E 为面 B′ BCC′的中心 , 点 F 为 B′C′的中点,则空间四边形 D′OEF 在该正方体的各个面上的正投影可能是
②水面四边形BFGH的面积不改变;
③棱A1D1始终与水面EFGH平行; ④当E∈AA1时,AE+BF是定值. 答案:D 其中正确说法是 A.①②③ B.①③ ( )
C.①②③④
D.①③④
2.(2012· 温州五校第二次联考)下图是一个正方体的展
开图,将其折叠起来,变成正方体后的图形可能是
答案:B ( )
侧视图
考点三、空间几何体的直观图 【例5】已知正三角形ABC的边长为a, 那么△ABC的平 面直观图的面积为 ( D ) 6 a2 6 3 2 2 3 2 D. C. a B. a A. a 16 8 8 4
[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2012· 西安模拟)如图,某几何体的正视图与侧视图都是边长为1 1 的正方形,且体积为2,则该几何体的俯视图可以是 ( )
空间几何体的结构及其三视图和直观图(高考题)
8.1空间几何体的结构及其三视图和直观图高考题1.(2015课标II,6,5分)一个正方体被一个平面截去一部分后,剩余部分的三视图 如下图,则截去部分体积与剩余部分体积的比值为()A.;:B.:C.,:D J2.(2015北京,7,5分)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为A.1B.「C.「D.23.(2015重庆,5,5分)某几何体的三视图如图所示,则该几何体的体积为()4.(2015安徽,9,5分)一个四面体的三视图如图所示,则该四面体的表面积是学习必备欢迎下载A.1+:广B.1+2:八C.2+:广D.2于5.(2014课标11,6,5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.:「B.「;C.D.:6.(2014浙江,3,5分)某几何体的三视图(单位:cm)如图所示,则该几何体的体积是A.72cm3B.90cm3C.108cm3D.138cm37.(2014辽宁,7,5分)某几何体三视图如图所示,则该几何体的体积为()TTtA.8-i C.8-n D.8-2n8.(2014湖南,8,5分)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.49.(2014湖北,7,5分)在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②10.(2013山东,4,5分)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如C.4C.+1),:D.8,8图所示,则该四棱锥侧面积和体积分别是()11.(2013湖南,7,5分)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为「的矩形,则该正方体的正视图的面积等于()V3血亠1A.■B.1D.112.(2013课标全国11,9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()13.(2013辽宁,10,5分)已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上. 若AB=3,AC=4,AB丄AC,AA1=12,则球O的半径为()3\/1713A.■B.2I一C.'D.3丨-14.(2012课标全国,7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()15.(2012福建,4,5分)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱16.(2011山东,11,5分)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图•其中真命题的个数是()A.3B.2C.1D.017.(2014北京,11,5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为18.(2013北京,10,5分)某四棱锥的三视图如图所示,该四棱锥的体积为I—™2—i—i—d19.(2011上海,7,4分)若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为。
第一节 空间几何体的结构特征及三视图和直观图-高考状元之路
第一节空间几何体的结构特征及三视图和直观图复习备考资讯考纲点击1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解以下可以作为推理依据的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内。
公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.一个平面内的两条相交直线与另一个平面都平行,则这两个平面平行。
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
一个平面经过另一个平面的垂线,则这两个平面垂直.理解以下性质定理,并能够证明:一条直线与一个平面平行,则经过该直线的任意一个平面与此平面的交线和该直线平行。
两个平行平面同时和第三个平面相交,则它们的交线相互平行。
垂直于同一个平面的两条直线平行.如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.4.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.5.立体几何中的向量方法(1)理解直线的方向向量与平面法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用,考情分析………1.空间几何体的结构及其三视图和直观图以考查三视图、直观图为主,同时考查空间几何体的表面积、体积、空间想象能力等,考查方式有由空间几何体画出其三视图,求三视图的面积或边长,再者由三视图得出空间图形,求出空间几何体的棱长,元素间的位置关系,进而求出表面积及体积.有时以实物为背景,考查空间几何体的表面积、体积公式,以一及运算能力、应用数学知识解决实际问题的能力.以选择、填空题的形式考查,有时也会出现在解答题中.2.空间几何体的表面积与体积以求几何体的表面积和体积为载体,考查空间想象能力、计算能力,多与三视图、简单组合体相联系,在知识交汇点处命题,多以选择题、填空题的形式考查,偶尔在解答题中出现,属容易题.3.空间点、直线、平面之间的位置关系以考查点、线、面的位置关系为主,同时考查逻辑推理能力与空间想象能力,有时考查应用公理、定理证明点共线、线共点、线共面的问题,多以选择题、填空题的形式考查,有时也出现在解答题中,属低中档题.4.直线、平面平行的判定及其性质以选择、填空题的形式考查线与面、面与面平行关系的判定与性质定理的内容.在解答题中,除考查判定与性质定理外,还考查空间想象能力、逻辑推理能力.5.直线、平面垂直的判定及其性质以选择题、填空题的形式,考查线面垂直,面面垂直的判定定理和性质定理,解答题中一般以考查线面垂直、面面垂直的判定及逻辑推理能力为主.通过考查线面角,考查空间想象能力及运算能力,常以解答题的形式出现.6.利用空间向量证明平行与垂直,以及求空间角是高考的热点,题型主要为解答题,难度属于中等偏高,主要考查向量的坐标运算,以及向量的平行与垂直的充要条件,如何用向量法解决空间角等,同时注重考查空间想像能力、运算能力.预习设计 基础备考知识梳理1.空间几何体的结构特征2.空间几何体的三视图(1)三视图的形成与名称,空间几何体的三视图是用 得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是 的,三视图包括(2)三视图的画法,①在画三视图时,重叠的线只画一条,挡住的线要画成虚线,②三视图的主视图、侧视图、俯视图分别是从几何体的 方、 方、 方观察几何体画出的轮廓线.3.空间几何体的直观图空间几何体的直观图常用 画法来画,基本规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,//y x 轴、轴的夹角为 //,x z 轴与轴所在平面垂直(2)原图形中平行于坐标轴的线段,直观图中 平行于x 轴和z 轴的线段长度在直观图中 平行于y 轴的线段长度在直观图中典题热身1.下列有关棱柱的命题中正确的是 ( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱C .一个棱柱至少有五个面、六个顶点、九条棱D .棱柱的侧棱长有的相等,有的不相等 答案:C2.用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是 ( ) A .圆柱 B .圆锥 C .球体 D .圆柱、圆锥、球体的组合体 答案:C3. 如图,下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )A .①② B.①③ C.①④ D.②④4.如图所示,图①②③是图④表示的几何体的三视图,其中图①是 ,图②是 ,图③是 (写出视图名称)答案:主视图侧视图俯视图5.等腰梯形ABCD ,上底,1=CD 腰,2==CB AD 下底,3=AB 以下底所在直线为x 轴,则由斜二测画法画出的直观图ABCD 的面积为 答案:22 课堂设计 方法备考题型一 空间几何体的结构特征【1】给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④若有两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;⑤存在每个面都是直角三角形的四面体;⑥棱台的侧棱延长后交于一点. 其中正确命题的序号是 . 答案:③④⑤⑥题型二 空间几何体的三视图【例2】(2010.北京高考)一个长方体去掉一个小长方体,所得几何体的主视图与侧视图分别如图所示,则该几何体的俯视图为 ( )答案:C题型三 空间几何体的直观图【例3】已知△ABC 的直观图///C B A 是边长为a 的正三角形,求原△ABC 的面积,技法巧点(1)正棱锥问题常归结到它的高、侧棱、斜高、底面正多边形、内切圆半径、外接圆半径、底面边长的一半构成的直角三角形中解决.(2)圆柱、圆锥、圆台、球应抓住它们是旋转体这一特点,弄清旋转轴、旋转面、轴截面.失误防范……….1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.在绘制三视图时,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,被挡住的轮廓线画成虚线.并做到“正侧一样高、正俯一样长、俯侧一样宽”. 3.在斜二测画法中,要确定关键点及关键线段,“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.随堂反馈……….1.(2011.开封调研)下列命题中,成立的是 ( ) A .各个面都是三角形的多面体一定是棱锥 B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥 答案:B2.如图,矩形////C B A O 是水平放置的一个平面图形的直观图,其中,6//cm A O =,2//cm C O =则原图形是( )A .正方形.B .矩形C .菱形D .一般的平行四边形答案:C3.三视图如图所示的几何体是( )A .三棱锥B .四棱锥C .四棱台D .三棱台 答案:B4.(2010.全国新课标)一个几何体的主视图为一个三角形则这个几何体可能是下列几何体中的 (填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱 答案:①②③⑤高效作业 技能备考一、选择题1.(2010.广东高考)如图,△ABC 为正三角形,若⊥////,////CC CC BB AA 平面ABC ,且,233///AB CC BB AA ===则多面体///C B A ABC -的主视图是 ( )答案:D2.(2011.课标全国卷)在一个几何体的三视图中,主视图和俯视图如图所示,则相应的侧视图可以为( )答案:D3(2011.枣庄质检)如图,几何体的主视图和侧视图都正确的是 ( )答案:B4.(2011.青岛质检)如图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块的块数共有 ( )A.3块 B.4块 C.5块 D.6块答案:B5.(2011.江西高考)将长方体截去一个四棱锥,得到的几何体如下图所示,则该几何体的左视图为( )答案:D6.(2011.浙江高考)若某几何体的三视图如图所示,则这个几何体的直观图可以是 ( )答案:B二、填空题7.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是答案:①④45的等腰梯形,其下底长为5,一腰长为,2则原8.如图,在斜二测投影下,四边形AB-CD是下底角为四边形的面积是8答案:29.(2011.广州模拟)已知一个几何体的三视图如下,主视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是(写出所有正确结论的编号)①矩形②不是矩形的平行四边形;③有三个面为直角三角形,有一个面为等腰三角形的四面体;④每个面都是等腰三角形的四面体;⑤每个面都是直角三角形的四面体,答案:①③④⑤三、解答题10.(2011.黄山适应性测试)一个正方体内接于高为40 cm,底面半径为30 cm的圆锥中,求正方体的棱长.11.(2011.四平质检)已知正三棱锥V-ABC的主视图和俯视图如图所示.(1)画出该三棱锥的侧视图和直观图.(2)求出侧视图的面积.12.如图是一个几何体的主视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.。
高中数学复习教案:空间几何体的结构及其三视图和直观图
第7章立体几何初步第一节空间几何体的结构及其三视图和直观图[考纲传真] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.1.多面体的结构特征2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.(1)在画三视图时,重叠的线只画一条,挡住的线要画成虚线.(2)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.[常用结论]1.按照斜二测画法得到的平面图形的直观图,其面积与原图形面积的关系如下.S直观图=24S原图形,S原图形=22S直观图.2.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.3.正棱柱、正棱锥的结构特征(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()[答案](1)×(2)×(3)×(4)×2.(教材改编)如图所示,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′,则剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.简单组合体C[由几何体的结构特征,剩下的几何体为五棱柱.]3.下列说法正确的是()A.相等的角在直观图中仍然相等B.相等的线段在直观图中仍然相等C.正方形的直观图是正方形D.若两条线段平行,则在直观图中对应的两条线段仍然平行D[根据斜二测画法的规则知,A,B,C均不正确,故选D.]4.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱A[由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.]5.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于________.2π[由题意得圆柱的底面半径r=1,母线l=1,所以圆柱的侧面积S=2πrl=2π.]空间几何体的结构特征1.给出下列命题:(1)棱柱的侧棱都相等,侧面都是全等的平行四边形;(2)若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;(3)在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;(4)存在每个面都是直角三角形的四面体;(5)棱台的侧棱延长后交于一点.其中正确命题的个数为()A.2B.3C.4D.5C[(1)不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;(2)正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;(3)正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;(4)正确,如图,正方体ABCD-A1B1C1D1中的三棱锥C1-ABC,四个面都是直角三角形;(5)正确,由棱台的概念可知.]2.以下命题:(1)以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;(2)以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;(3)圆柱、圆锥、圆台的底面都是圆;(4)一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3B[命题(1)错,因为这条边若是直角三角形的斜边,则得不到圆锥;命题(2)错,因为这条腰必须是垂直于两底的腰;命题(3)对;命题(4)错,必须用平行于圆锥底面的平面截圆锥才可以.] 3.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线D[A错误.如图①所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.图①图②B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.] [规律方法]解决与空间几何体结构特征有关问题的技巧(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)棱(圆)台是由棱(圆)锥截得的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.空间几何体的三视图►考法1已知几何体,识别三视图【例1】(1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()(2)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()(1)A(2)D[(1)由题意可知,咬合时带卯眼的木构件如图所示,其俯视图为选项A中的图形.(2)由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D.]►考法2已知三视图,判断几何体【例2】(1)(2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4(2)(2019·郑州模拟)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.(1)C(2)22[(1)在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3,故选C.(2)由三视图可知该三棱锥的底面是斜边长为2的等腰直角三角形,有一条长度为2的侧棱垂直于底面,所以三条侧棱长分别是2,6,2 2.故该三棱锥中最长棱的棱长为2 2.] ►考法3已知三视图中的两个视图,判断另一个视图【例3】(1)一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为()(2)(2018·衡水模拟)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为1 2,则该几何体的俯视图可以是()(1)C(2)C[(1)由三视图中的正、侧视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.(2)由该几何体的正视图和侧视图可知该几何体是柱体,且其高为1,由其体积是12,可知该几何体的底面积是12,由图知A的面积是1,B的面积是π4,C的面积是12,D的面积是π4,故选C.][规律方法] 1.已知几何体,识别三视图的技巧,已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,“直角本由垂线生,虚线皆因遮挡起”,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.(4)对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.A.1 B.2 C.3D.2(2)如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正视图是边长为2的正方形,则此三棱柱侧视图的面积为()A. 3 B.2 3 C.2 2 D.4(1)C(2)B[(1)由三视图可知AD=BC=CD=DE=EB=1,AE=AC=2,AB= 3.所以最长棱棱长为 3.(2)其侧视图为一矩形,其宽为三棱柱底面正三角形的高.所以面积S=2 3.]空间几何体的直观图【例4】(1)已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()A.34a2 B.38a2C.68a2 D.616a2(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形(1)D(2)C[(1)如图①②所示的实际图形和直观图,由图②可知,A′B′=AB=a,O′C′=12OC=34a,在图②中作C′D′⊥A′B′于D′,则C′D′=22O′C′=68a,所以S△A′B′C′=12A′B′·C′D′=12×a×68a=616a2,故选D.(2)如图,在原图形OABC中,应有OD=2O′D′=2×22=42(cm),CD=C′D′=2 cm.所以OC=OD2+CD2=(42)2+22=6(cm),所以OA=OC,故四边形OABC是菱形,故选C.][规律方法] 1.用斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.2.平面图形直观图与原图形面积间的关系对于几何体的直观图,除掌握斜二测画法外,记住原图形面积S与直观图面积S′之间的关系S′=24S,能更快捷地进行相关问题的计算.腰和上底均为1的等腰梯形,那么原平面图形的面积是________.(2)如图正方形OABC 的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图形的周长是________cm.(1)2+2 (2)8 [(1)把直观图还原为平面图形得:在直角梯形ABCD 中,AB =2,BC =2+1,AD =1,所以面积为12(2+2)×2=2+ 2.(2)由题意知正方形OABC 的边长为1,它是水平放置的一个平面图形的直观图,所以OB =2 cm,对应原图形平行四边形的高为2 2 cm,所以原图形中,OA =BC =1 cm,AB =OC =(22)2+12=3 cm,故原图形的周长为2×(1+3)=8 cm.]1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A.217B.2 5C.3 D.2B[设过点M的高与圆柱的下底面交于点O,将圆柱沿MO剪开,则M,N的位置如图所示,连接MN,易知OM=2,ON=4,则从M到N的最短路径为OM2+ON2=22+42=2 5.]2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.16B[观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示.因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2×12×(2+4)×2=12.故选B.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的结构及其三视图和直观图1.下列不正确的命题的序号是 .①有两个面平行,其余各面都是四边形的几何体叫棱柱 ②有两个面平行,其余各面都是平行四边形的几何体叫棱柱 ③有一个面是多边形,其余各面都是三角形的几何体叫棱锥④有一个面是多边形,其余各面都是有一个公共顶点的三角形的几何体叫棱锥 答案 ①②③2.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 . 答案 60°3.如果一个几何体的三视图如图所示(单位长度:cm ),则此几何体的表面积是 cm 2.答案 (20+42)4.(2008·宁夏文,14)一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,那么这个球的体积为 . 答案34 5.已知正三角形ABC 的边长为a ,那么△ABC 的直观图△A ′B ′C ′的面积为 . 答案 166a 2例1 下列结论不正确的是 (填序号). ①各个面都是三角形的几何体是三棱锥②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥 ③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥 ④圆锥的顶点与底面圆周上的任意一点的连线都是母线 答案 ①②③基础自测解析 ①错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定 是棱锥.②错误.如下图,若△ABC 不是直角三角形或是直角三角形,但旋转轴不是直角边,所得的几何体都不是圆锥.③错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长. ④正确.例2 (14分)已知△ABC 的直观图A ′B ′C ′是边长为a 的正三角形,求原三角形ABC 的面积. 解 建立如图所示的xOy 坐标系,△ABC 的顶点C 在y 轴上,AB 边在x 轴上,OC 为△ABC 的高.3分 把y 轴绕原点顺时针旋转45°得y ′轴,则点C 变为点C ′,且OC =2OC ′,A 、B 点即为A ′、 B ′点,AB =A ′B ′.6分已知A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得''sin C OA OC =45sin ''C A ,9分所以OC ′=a45sin 120sin =a 26, 所以原三角形ABC 的高OC =6a , 12分 所以S △ABC =21×a ×6a =a 262.14分例3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解 由三视图易知,该正三棱柱的形状如图所示:且AA ′=BB ′=CC ′=4cm,正三角形ABC 和正三角形A ′B ′C ′的高为23cm.∴正三角形ABC 的边长为|AB |=60sin 32=4.∴该三棱柱的表面积为 S =3×4×4+2×21×42sin60°=48+83(cm 2). 体积为V =S 底·|AA ′|=21×42sin60°×4=163(cm 3). 故这个三棱柱的表面积为(48+83)cm 2,体积为163cm 3.例4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示,求图中三角形(正四面体的截面)的面积. 解 如图所示,△ABE 为题中的三角形, 由已知得AB =2,BE =2×23=3,BF =32BE =332,AF =22BF AB -=344-=38, ∴△ABE 的面积为 S =21×BE ×AF =21×3×38=2. ∴所求的三角形的面积为2.1.如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中为真命题的是 (填序号).①等腰四棱锥的腰与底面所成的角都相等②等腰四棱锥的侧面与底面所成的二面角都相等或互补 ③等腰四棱锥的底面四边形必存在外接圆 ④等腰四棱锥的各顶点必在同一球面上 答案 ①③④2.一个平面四边形的斜二测画法的直观图是一个边长为a 的正方形,则原平面四边形的面积等于 .答案 22a 23.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等 腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解 (1)由该几何体的俯视图、正视图、左视图可知,该几何体是四棱锥,且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点. ∴该几何体的体积 V =31×8×6×4=64.(2)如图所示,侧面VAB 中,VE ⊥AB ,则 VE =22OE VO +=2234+=5 ∴S △VAB =21×AB ×VE =21×8×5=20侧面VBC 中,VF ⊥BC ,则VF =22OF VO +=2244+=42. ∴S △VBC =21×BC ×VF =21×6×42=122 ∴该几何体的侧面积 S =2(S △VAB +S △VBC )=40+242.4.(2007·全国Ⅱ文,15)一个正四棱柱的各个顶点在一个直径为2 cm 的球面上.如果正四棱柱的底面边长为1 cm ,那么该棱柱的表面积为 cm 2. 答案 2+42一、填空题1.利用斜二测画法可以得到:①三角形的直观图是三角形,②平行四边形的直观图是平行四边形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上正确结论的序号是 . 答案 ①②2.如图所示,甲、乙、丙是三个几何体图形的三视图,甲、乙、丙对应的标号是 .①长方体;②圆锥;③三棱锥;④圆柱. 答案 ④③②3.下列几何体各自的三视图中,有且仅有两个视图相同的是 .答案 ②④4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下:根据三视图回答此立体模型的体积为 . 答案 55.棱长为1的正方体ABCD —A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O截得的线段长为 . 答案 26.(2008·湖北理)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为 .答案3287.用小立方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体至少要 个小立方块.最多只能用 个小立方块.答案 9 148.如图所示,E 、F 分别是正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是 .(把可能的图的序号都填上)答案 ②③ 二、解答题9.正四棱台AC 1的高是17 cm ,两底面的边长分别是4 cm 和16 cm ,求这个棱台的侧棱长和斜高.解 如图所示,设棱台的两底面的中心分别是O 1、O ,B 1C 1和BC 的中点分别是E 1和E ,连接O 1O 、E 1E 、O 1B 1、OB 、O 1E 1、OE ,则四边形OBB 1O 1和OEE 1O 1都是直角梯形. ∵A 1B 1=4 cm ,AB =16 cm ,∴O 1E 1=2 cm ,OE =8 cm , O 1B 1=22 cm ,OB =82 cm , ∴B 1B 2=O 1O 2+(OB -O 1B 1)2=361 cm 2, E 1E 2=O 1O 2+(OE -O 1E 1)2=325 cm 2, ∴B 1B =19 cm ,E 1E =513cm.答 这个棱台的侧棱长为19 cm ,斜高为513cm.10.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm 2,母线与轴的夹角是45°,求这个圆台的高、母线长和两底面半径.解 圆台的轴截面如图所示,设圆台上下底面半径分别为x cm,3x cm.延长AA 1交OO 1的延长线于S , 在Rt △SOA 中,∠ASO =45°,则∠SAO =45°, ∴SO =AO =3x ,∴OO 1=2x , 又S 轴截面=21(6x +2x )·2x =392,∴x =7. 故圆台的高OO 1=14 (cm), 母线长l =2O 1O =142 (cm),两底面半径分别为7 cm,21 cm.11.正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少? 解 如图所示,正棱锥S -ABCD 中高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =22OS SA =2, ∴AC =4.∴AB =BC =CD =DA =22.作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高,则SO ⊥OE . 在Rt △SOE 中,∵OE =21BC =2,SO =3, ∴SE =5,即侧面上的斜高为5.12. 如图所示的几何体中,四边形AA 1B 1B 是边长为3的正方形,CC 1=2,CC 1∥AA 1,这个几何体是棱柱吗?若是,指出是几棱柱.若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.解 这个几何体不是棱柱;在四边形ABB 1A 1中,在AA 1上取点E ,使AE =2;在BB 1上取F 使BF =2;连接C 1E ,EF ,C 1F ,则过C 1EF 的截面将几何体分成两部分,其中一部分是棱柱ABC —EFC 1,其棱长为2;截去的部分是一个四棱锥C 1—EA 1B 1F .。