高考导数题型分析及解题方法

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

高考导数的题型及解题技巧

高考导数的题型及解题技巧

高考导数的题型及解题技巧高考中,导数是数学必修内容之一,也是考生需要重点掌握的知识点之一。

导数作为微积分的基础,不仅能帮助我们求出函数的极值、最大值、最小值等,还能证明函数的性质,解决数学问题。

在高考中,涉及导数的题目类型有很多,以下是常见的几种题型及解题技巧。

一、求导数求导数是导数的基础操作,也是高考中出现频率最高的题型之一。

求导数的方法有很多,如极限法、公式法、差商法、反函数法等。

在解题时,需要掌握各种方法,依据题目的具体情况选择合适的方法求解。

二、函数的单调性和极值要判断函数的单调性和极值,需要先求出函数的导数,然后通过导数的符号来判断函数的单调性和极值。

如果导数为正,则函数单调递增;如果导数为负,则函数单调递减;如果导数为0,则函数取极值。

在解题时,需要注意导数为0时,还需要判断函数是否具有拐点。

三、曲线的凹凸性和拐点要判断曲线的凹凸性和拐点,同样需要求出函数的导数和二阶导数,然后通过二阶导数的符号来判断曲线的凹凸性和拐点。

如果二阶导数为正,则曲线凹向上;如果二阶导数为负,则曲线凹向下;如果二阶导数为0,则曲线具有拐点。

在解题时,需要注意拐点处是否是函数的极值点。

四、函数的应用题导数在实际生活中有很多应用,如速度、加速度、最优化等。

在解决这类题目时,需要将问题转化为函数的导数问题,然后根据导数的性质求解。

在解题时,需要理解速度、加速度等概念,并注意题目中给定的条件。

总之,导数是高考数学的重点和难点,需要考生认真掌握,熟练运用。

在复习时,建议多做例题,掌握各种求导方法和计算技巧,熟悉各种题型的解题思路,才能在考试中发挥出自己的水平。

高考数学导数解题技巧

高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。

以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。

具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。

2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。

例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。

3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。

线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。

乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。

链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。

5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。

通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。

以上是一些常见的高考数学导数解题技巧。

通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。

导数大题题型归纳解题方法

导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。

下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。

2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。

3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。

4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。

以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。

(完整版)导数常见题型与解题方法总结

(完整版)导数常见题型与解题方法总结

导数题型总结1、分离变量—————用分离变量时要特别注意是否需分类讨论(>0,=0,<0)2、变更主元-—-——已知谁的范围就把谁作为主元3、根分布4、判别式法--——-结合图像分析5、二次函数区间最值求法—--—-(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数)———-—(已知谁的范围就把谁作为主元)。

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数",求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=-- (1)()y f x =在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数" 则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x xF x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩ 2b a ∴-=例),10(3322R b a b x a ∈<<+-(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围。

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。

2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。

对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。

比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。

2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。

比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

高中数学导数知识总结导数七大题型答题技巧

高中数学导数知识总结导数七大题型答题技巧

高中数学导数知识总结导数七大题型答题技巧知识总结一.导数概念的引入1.导数的物理意义:瞬时速率。

一般的,函数y=f(x)在x=处的瞬时变化率是2.导数的几何意义:曲线的切线,当点趋近于P时,直线P T 与曲线相切。

容易知道,割线的斜率是当点趋近于P时,函数y=f(x)在x=处的导数就是切线P T的斜率k,即3.导函数:当x变化时,便是x的一个函数,我们称它为f(x)的导函数. y=f (x)的导函数有时也记作,即。

二.导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。

三、导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2.函数的极值与导数:极值反映的是函数在某一点附近的大小情况。

求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0,右侧<0,那么是极大值;(2)如果在附近的左侧<0,右侧>0,那么是极小值;3.函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四.推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。

容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。

二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。

三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。

求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法在高中数学中,导数是一个非常重要的概念。

导数是描述曲线在某一点处的切线斜率的指标。

在高中数学中,学生需要掌握不同类型的导数题。

以下是高中导数题中的所有题型及解题方法:1.求函数的导数:这是最基本的导数问题。

对于一个函数,需要求出它的导数函数。

为此,需要使用导数的定义公式,即极限。

例如,对于函数f(x) = x^2 + 2x + 1,其导数是f’(x) = 2x + 2。

2.求函数的导数在某一点处的值:这个类型的问题需要计算函数在一定点处的导数值。

为此,需要使用导数的定义公式,并将x的值代入到函数中计算。

例如,对于函数f(x) = x^2 + 2x + 1,在x = 2处的导数值为f’(2) = 6。

3.求函数的极值:极值是函数在某一点处的最大值或最小值,即导数为0的点。

为了找到函数的极值,需要计算函数的导数,并找到导数为0的点。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其导数为f’(x) =3x^2 - 6x + 2。

为了找到函数的极值,需要找到导数为0的点。

计算可得,x = 1或x = 2是导数为0的点。

因此,函数的极值为f(1) = 1和f(2) = 3。

4.求函数的拐点:拐点是函数曲线从凸向上到凹向上或从凸向下到凹向下的点。

为了找到函数的拐点,需要计算函数的二阶导数,即导数的导数。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其一阶导数为f’(x) = 3x^2 - 6x + 2,二阶导数为f’’(x) = 6x - 6。

为了找到函数的拐点,需要找到二阶导数为0的点。

计算可得,x = 1是二阶导数为0的点。

因此,函数在x = 1处有一个拐点。

5.求函数与直线的交点:这个类型的问题需要找出函数和直线的交点。

为此,需要先将直线方程代入到函数中,然后解方程。

例如,对于函数f(x) = x^2 + 2x + 1和直线y = 3x - 1,将直线方程代入到函数中可得x^2 + 2x + 1 = 3x - 1。

导数的大题题型及解题技巧

导数的大题题型及解题技巧

导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。

下面介绍一些解题技巧。

1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。

常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。

注意求导的顺序和方法。

3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。

常见的参数方程有直角坐标系和极坐标系。

4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。

然后利用求导公式进行计算,最后求得导数。

5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。

例如,奇偶性、周期性、对称性等。

6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。

例如,物体的位移、速度和加速度。

以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。

高中数学导数难题七大题型答题技巧全解析

高中数学导数难题七大题型答题技巧全解析

高中数学导数难题七大题型答题技巧全解析,转给所有高中生
在考试过程中,很多高中生由于没有掌握适用的解题技巧,尤其是对相关的知识点掌握不够牢固的同学,只能放弃,今天,小编为大家总结了导数七大题型,帮助大家在高考数学中多拿一分,轻松拿下140+!
1 导数单调性、极值、最值的直接应用
2 交点与根的分布
3 不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
4 不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
5 函数与导数性质的综合运用
6 导数应用题
7 导数结合三角函数。

高中导数七大题型解题技巧(一)

高中导数七大题型解题技巧(一)

高中导数七大题型解题技巧(一)
高中导数七大题型解题技巧
1. 导数的定义
•导数的定义:[f’(x) = _{{h }}]
•利用导数的定义求导数的示例题解析
2. 基本求导法则
•常数函数求导:[f(x) = c, f’(x) = 0]
•幂函数求导:[f(x) = x^n, f’(x) = nx^{n-1}] •指数函数求导:[f(x) = a^x, f’(x) = a^x a]•对数函数求导:[f(x) = _a x, f’(x) = ]
•三角函数求导:[f(x) = x, f’(x) = x]
3. 链式法则与复合函数求导
•链式法则的定义:[f’(x) = g’(u) u’(x)]•典型的复合函数求导解题步骤
4. 反函数求导
•反函数求导法则:[f’(x) = ]
•反函数求导的典型案例分析
5. 参数方程求导
•参数方程的定义与特点
•参数方程求导的示例题解析
6. 隐函数求导
•隐函数与显函数的区别
•隐函数求导的基本步骤与技巧
7. 变限积分求导
•变限积分的定义与性质
•变限积分求导的具体方法与实例分析
以上是高中导数七大题型解题的相关技巧,掌握了这些技巧可以
帮助你在解题过程中更加得心应手。

记住,多加练习,不断积累经验,相信你会在高中导数学习中取得优异的成绩!。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数概述导数是微积分学中的一个重要概念,它描述了函数在某一点的变化率。

具体来说,导数表示函数在某一点的切线斜率。

导数不仅在微积分中有重要应用,而且在物理、经济等领域也有广泛的应用。

二、导数的定义1. 函数f(x)在x=a处可导的充分必要条件是:$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$$存在,若该极限存在,则称其为函数f(x)在x=a处的导数,记作$f'(a)$或$\frac{df}{dx}(a)$。

2. 函数f(x)在区间I上可导的充分必要条件是:对于I上任意一点$x_0$,极限$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$存在。

3. 函数f(x)在区间I上可导,则称函数f(x)在I上为可导函数。

若函数f(x)在区间I上每个点都可导,则称函数f(x)在I上为光滑函数。

三、常见的求导法则1. 常数法则:若c为常数,则$(c)'=0$。

2. 幂法则:若$f(x)=x^n$,其中n为正整数,则$f'(x)=nx^{n-1}$。

3. 和差法则:若$f(x)=u(x)+v(x)$,则$f'(x)=u'(x)+v'(x)$。

4. 积法则:若$f(x)=u(x)v(x)$,则$f'(x)=u'(x)v(x)+u(x)v'(x)$。

5. 商法则:若$f(x)=\frac{u(x)}{v(x)}$,其中$v(x)\neq0$,则$$f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$$6. 复合函数求导法则:若$y=f(u), u=g(x)$,则$$\frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}=f'(u) \cdot g'(x)$$四、高阶导数1. 函数f的一阶导数为$f'$,二阶导数为$(f')'$或$f''$。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

高中导数七大题型解题技巧

高中导数七大题型解题技巧

高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。

•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。

2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。

3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。

•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。

4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。

•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。

5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。

•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。

6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。

•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。

7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。

•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。

以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。

高中数学导数难题怎么解题

高中数学导数难题怎么解题

高中数学导数难题怎么解题1高中数学导数难题解题技巧1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是:(1)先根据求导公式对函数求出函数的导数;(2)解出令函数的导数等于0的自变量;(3)从导数性质得出函数的单调区间;(4)通过定义域从单调区间中求出函数最值。

2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。

利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。

3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。

在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。

2高中数学解题中导数的妙用导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。

例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。

这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。

如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。

导数知识在方程求根解题中的妙用导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾以不同的难度形式出现过。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考导数题型分析及解题方法
一、考试内容
导数的概念,导数的几何意义,几种常见函数的导数;
两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析
题型一:利用导数研究函数的极值、最值。

1. 3
2
()32f x x x =-+在区间[]1,1-上的最大值是
2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = ; 3.函数331x x y -+=有极小值 ,极大值
题型二:利用导数几何意义求切线方程
1.曲线3
4y x x =-在点()1,3--处的切线方程是
2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为
3.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 4.求下列直线的方程:
(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线;
题型三:利用导数研究函数的单调性,极值、最值
1.已知函数))1(,1()(,)(2
3
f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;
(Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围
2.已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-. (1) 求函数()y f x =的表达式;
(2) 求函数()y f x =的单调区间和极值;
(3) 若函数()()4(0)g x f x m m m =-+>在区间[3,]m n -上的值域为[4,16]-,试求m 、n 应满足的条件.
3.设函数()()()f x x x a x b =--.
(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值; (2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.
题型四:利用导数研究函数的图象
1.如右图:是f(x)的导函数,)
(/x
f的图象如右图所示,则f(x)的图象只可能是(D )
(A)(B)(C)(D)
2.函数的图像为
1
4
3
13
+
-
=x
x
y( A )
3.方程内根的个数为
在)2,0(
7
6
22
3=
+
-x
x ( B )
A、0
B、1
C、2
D、3
题型五:利用单调性、极值、最值情况,求参数取值范围
1.设函数.1
0,
3
2
3
1
)
(2
2
3<
<
+
-
+
-
=a
b
x
a
ax
x
x
f
(1)求函数)
(x
f的单调区间、极值.
(2)若当]2
,1
[+
+
∈a
a
x时,恒有a
x
f≤
'|)
(
|,试确定a的取值范围.
2.已知函数f(x)=x3+ax2+bx+c在x=-
2
3
与x=1时都取得极值(1)求a、b的值与函数f(x)的单调区间(2)若对x∈〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范围。

题型六:利用导数研究方程的根
1.已知平面向量a
=(3,-1). b
=(
2
1
,
2
3
).
(1)若存在不同时为零的实数k和t,使x
=a
+(t2-3)b
,y
=-k a
+t b
,x
⊥y

试求函数关系式k=f(t) ;
(2) 据(1)的结论,讨论关于t的方程f(t)-k=0的解的情况.
题型七:导数与不等式的综合
1.设ax x x f a -=>3
)(,0函数在),1[+∞上是单调函数. (1)求实数a 的取值范围;
(2)设0x ≥1,)(x f ≥1,且00))((x x f f =,求证:00)(x x f =.
2.已知a 为实数,函数23()()()2
f x x x a =++
(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围 (2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间
(Ⅱ)证明对任意的12(1,0)x x ∈-、,不等式125
|()()|16
f x f x -<恒成立
题型八:导数在实际中的应用
1. 请您设计一个帐篷。

它下部的形状是高为1m 的 正六棱柱,上部的形状是侧棱长为3m 的正六棱 锥(如右图所示)。

试问当帐篷的顶点O 到底面 中心1o 的距离为多少时,帐篷的体积最大?
2.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:313
8(0120).12800080
y x x x =
-+<≤
已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
题型九:导数与向量的结合
1.设平面向量11),(22a b =-= 若存在不同时为零的两个实数s 、t 及实数k ,使b t s k t ⊥+-=-+=,)(2
(1)求函数关系式()S f t =;
(2)若函数()S f t =在[)∞+,1
上是单调函数,求k 的取值范围。

相关文档
最新文档