核磁共振基础ppt课件

合集下载

光谱学-核磁共振课件(共86张PPT)

光谱学-核磁共振课件(共86张PPT)
第二页,共八十六页。
从核磁共振氢谱、核磁共振碳谱到核磁共振二维谱,从永久 磁铁仪器、电磁铁仪器到超导磁体仪器,从连续波仪器到脉冲付 里叶变换仪器,从低磁场仪器(40兆赫、60兆赫、80兆赫、90兆 赫、100兆赫)到高磁场仪器(200兆赫、300兆赫、400兆赫、500 兆赫、800兆赫、900兆赫),核磁共振技术正以迅猛发展之势日 新月异。核磁共振在有机化学、植物化学、药物化学、生物化学 (shēnɡ wù huà xué)和化学工业、石油工业、橡胶工业、食品工业、医药 工业等方面应用越来越广泛。
核磁共振 (NMR) (hé cí ɡònɡ zhèn)
Nuclear magnetic resonance(NMR)
第一页,共八十六页。
一. 简 介 1. 发展概况
核磁共振(NMR)是根据有磁矩的原子 核
(如1H、13C、19F、31P等),在磁场的作用下,能够
(nénggòu)产生能级间的跃迁的原理,而采用的一种新技 术。这种新技术自1946年发现,中经50年代末高分辨 核磁共振仪问世以来,现已有很大发展。
第十页,共八十六页。
核磁矩在外磁场方向(fāngxiàng)上的分量μz亦量子化:
z
Pz
mh 2
第十一页,共八十六页。
3、核的进动(jìn dònɡ)
将自旋核放在外磁场H0中时,自旋核的行为就像一 个在重力场中做旋转(xuánzhuǎn)的陀螺,即一方面自旋, 一方面由于磁场作用而围绕磁场方向旋转(xuánzhuǎn),这 种运动方式称为进动,又称为Larmor进动。其进动频 率称为Larmor频率υ0, υ0∞H0
低场
向左
向右 磁场强度
( 增大(zēnɡ dà))
( 减小)

核磁共振基本知识ppt课件

核磁共振基本知识ppt课件

3.饱和及弛豫
➢ 低能态核比高能态核只多0.001%。因此低能态核 总是比高能态核多一些,因为这样一点过剩,所以 能观察到电磁波的吸收。
➢ 如果核连续吸收电磁波,原过剩的低能态就逐渐
减少,吸收信号的强度就会减弱,最终完全消失,
这个现象就称饱和。出现饱和时,两种自旋状态的
核数目完全相同。
精选课件PPT
甲基正好处于屏蔽区共甲基处于去屏蔽区共振吸收向低场移动结果是两个吸收峰位臵发生互换相邻核自旋之间的相互作用称为自旋自旋偶合spinspincoupling由自旋耦合引起的吸收峰分裂使谱线增多的现象称为自旋自旋裂分简称自旋裂分splittingnmr吸收峰分裂为n1个相邻峰间距离为jhz各峰相对强度比为二项式a展开式的各项系数之比ppt精选版48信号裂分的数目和相对强度ppt精选版49氢核间的耦合类型苯环上的质子耦合dfppt精选版50典型有机物的质子耦合常数ppt精选版51ppt精选版5213h谱的对比ppt精选版53几种常见碳谱ppt精选版54使用一个高功率频率范围较宽的可以覆盖全部质子larmor频率范围的去偶场使样品中所有h全部共振饱和去偶使每一个c都出现一个s峰
④H键效应
H
O
R
H
O
R
H OO
R1
R2
• ROH、RNH2在0.5-5,ArOH在4-7,变化范围大, 影响因素多
• 氢键作用随温度、溶剂、浓度变化显著,可以了 解与氢键有关的结构及其变化
分子内氢键同样可以影响质子的共振吸收
-二酮的烯醇式可以形成分子内氢键 该羟基质子的化学位移为11~16
⑤ 溶剂效应
① 理想状况时的共振
➢ 对于孤立的、裸露的核,ΔE =(h/2π) γ·H ➢ 在一定H0下,一种核只有唯一的ΔE ➢ ΔE = E外 = hν ➢ 只有唯一频率ν的吸收 ➢ 如H0=2.3500 T 时,

核磁共振基本原理PPT课件

核磁共振基本原理PPT课件

2022/3/22
This paper mainly introduces the design of an intelligent temperature control sy stem which realizes the function of temperature measurement and control by using single bus digital temperature sensor DS18B20 and single chip microcomputer. The core components of the sy stem are AT89C51 microcontroller and DS18B20 temperature sensor.
❖ 1946年, Purcell和 Bloch观察到核 磁共振现象。 于1952年获得 诺贝尔物理奖
2022/3/22
This paper mainly introduces the design of an intelligent temperature control sy stem which realizes the function of temperature measurement and control by using single bus digital temperature sensor DS18B20 and single chip microcomputer. The core components of the sy stem are AT89C51 microcontroller and DS18B20 temperature sensor.
This paper mainly introduces the design of an intelligent temperature control sy stem which realizes the function of temperature measurement and control by using single bus digital temperature sensor DS18B20 and single chip microcomputer. The core components of the sy stem are AT89C51 microcontroller and DS18B20 temperature sensor.

《核磁共振》PPT课件

《核磁共振》PPT课件
用一定频率电磁波对样品进行照射,就可使特定结构 环境中的原子核实现共振跃迁,在照射扫描中记录发生共 振时的信号位置和强度,就得到NMR谱。
谱上的共振信号位置反映样品分子的局部结构(例如官能 团,分子构象等);信号强度则往往与有关原子核在样品中 存在的量有关。
3
5.1 概述
目前常用的磁场强度下测量NMR所需照射电磁波落在射频 区(60~600 MHz)。
36
5.3.1 质子的化学位移
在各种化合物分子中,与同一类基团相连的质子, 它们都有大致相同的化学位移。
化学位移是分析分子中各类氢原子所处位置的重要 依据。
值越大,表示屏蔽作用越小,吸收峰出现在低场; 值越小,表示屏蔽作用越大,吸收峰出现在高场。
37
5.3 核磁共振氢谱
5.3.2 影响化学位移的因素 1. 取代基的诱导效应 2. 各向异性效应 3. 共轭效应 4. 氢键和溶剂效应
为高,其能量差E为:
E H0
I
为自旋核产生的磁矩。
由于I =1/2,故
(5-2)
E 2H0
16
(5-3)
5.2.1 原子核的自旋 在外磁场作用下,自旋核能级的裂分如图所示。
在外磁场作用下,核自旋能级的裂分示意图 17
5.2.1 原子核的自旋
由图可见,当磁场不存在时,I =1/2的原子核对两种可 能的磁量子数并不优先选择任何一个,具有简并的能级;
脉冲傅里叶变换NMR仪的问世,极大得推动了NMR技术, 特别是使13C,15N,29Si等核磁共振及固体NMR得以广泛应用。 发明者R. R. Ernst 曾获1991年诺贝尔化学奖。
在过去10 年中,NMR谱在研究溶液及固体状态的材料结 构中取得了巨大的进展。

核磁共振讲义核磁共振(共59张PPT)

核磁共振讲义核磁共振(共59张PPT)
形成的分子内氢键。
R ROHO
H OO
R
R'
H
1. 有两个电负性基团靠近形成氢键的质子,分别通过共价键和氢键产生吸电子 诱导作用,造成较大的去屏蔽效应,使共振发生在低场。
2. 分子间氢键形成的程度与样品浓度、测定时的温度以及溶剂类型等有关,因 此相应的质子化学位移值不固定。在非极性溶剂中,浓度越稀,越不利于形 成氢键。因此随着浓度逐渐减小,能形成氢键的质子共振向高场移动,但分 子内氢键的生成与浓度无关。所以可以用改变浓度的办法区分这两种氢键。
对质子的屏蔽作用较小。 • sp3、sp2和 sp杂化轨道中的 s成分依次增加,成键电子对质子的屏蔽作用依
次减小,δ值应该依次增大。实际测得的乙烷、乙烯和乙炔的质子δ值 分别为 0.88、5.23 和 2.88。
各向异性效应
环电流效应
环外氢受到强的去屏蔽作用: 8.9 环内H 在受到高度的屏蔽作用,: -1.8
耦合种类较少。 • 在 sp3杂化体系中由于单键能自由旋转,同碳上的质子许多是磁等价的
,但是在构象固定等条件下它们不再磁等价、同碳耦合就会发生。 • 在 sp2杂化体系中双键不能自由旋转,同碳质子耦合是常见的。
3J与Karplus公式
3J 是两面角的函数。它们之间的关系可以用 Karplus公式表示: 3JH,H=J0cos2-C (0 90 ) 3JH,H=J180cos2-C (90 180 )
大,共振发生在较低场,值较大。
• 电负性基团越多,吸电子诱导效应的影响越大,相应的质子化学位移 值越大
• 电负性基团的吸电子诱导效应沿化学键延伸,相隔的化学键越多,影响 越小。
相连碳原子的杂化态
• 碳碳单键是碳原子 sp3杂化轨道重叠而成的,而碳碳双键和三键分别是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近,而离氢原子较 远。所以杂化轨道中 s成分越多,成键电子越靠近碳核,而离质子较远,

《核磁共振》PPT课件.ppt

《核磁共振》PPT课件.ppt
时间表示;T2 气、液的T2与其T1相似,约为1秒;
固体试样中的各核的相对位置比较固定,利于自旋-自旋间的能量交换,T2很小, 弛豫过程的速度很快,一般为10-4~10-5秒。
弛豫时间虽然有T1、T2之分,但对于一个自旋核来说,它在高能态所停 留的平均时间只取决于T1、T2中较小的一个。因T2很小,似乎应该采用 固体试样,但由于共振吸收峰的宽度与T成反比,所以,固体试样的共振 吸收峰很宽。为得到高分辨的图谱,且自旋-自旋弛豫并非为有效弛豫, 因此,仍通常采用液体试样。
z
pz
hm 2
核磁矩的能级
EZH 2hmH
*
(二) 磁性原子核在外磁场中的行为特性
1、自旋取向与核磁能级
无外加磁场时,核磁矩的取向是任意的,自旋能级相同; 有外加磁场时,核磁矩共有2I+1个取向,用磁量子数(m
)表示每一种取向 m=I,I-1,I-2 … -I+1,-I 核磁矩在外磁场空间的取向不是任意的,是量子化的, 不同
高能态核寿命的量度。 T1取决于样品中磁核的运动,样品流动性降低时,T1增
大。气、液(溶液)体的T1较小,一般在1秒至几秒左右; 固体或粘度大的液体,T1很大,可达数十、数百甚至上千 秒。 因此,在测定核磁共振波谱时,通常采用液体试样。
*
2) 自旋-自旋驰豫(横向驰豫)
指两个进动频率相同而进动取向不同(即能级不同)的性核, 在一定距离内,发生能量交换而改变各自的自旋取向。交换能量 后,高、低能态的核数目未变,总能量未变(能量只是在磁核之 间转移),所以也称为横向弛豫。
取向具有不同自旋能级, 这种现象称为能级分裂.
*
当置于外磁场H0中时,相对于外磁场,有(2I+1)种 取向: m为磁量子数,取值范围:I,I-1,…,-I, 共(2I+1)种取向。

磁共振 ppt课件

磁共振 ppt课件
化学交换饱和转移成像(Chemical Exchange Saturation Transfer,CEST):通过测量化学交换过程中产生的磁共振 信号来反映组织内的特定代谢物浓度,常用于神经退行性疾 病和肿瘤的研究。
05 磁共振的优势与局限性
优势
无电离辐射
磁共振成像技术利用磁场和射频脉冲,而 不是X射线,因此没有电离辐射,对病人
磁场均匀度
为了保证检测结果的准确性,磁体 系统需要提供高均匀度的磁场环境 。
射频系统
发射器
射频系统中的发射器负责 产生高频电磁波,用于激 发人体内的氢原子核。
接收器
接收器负责接收氢原子核 返回的信号,并将其转换 为可供计算机系统处理的 电信号。
射频线圈
射频线圈是发射和接收电 磁波的重要部件,其设计 和性能对信号质量和成像 质量有重要影响。
研究和发展分子成像技术,实现从分子水平上对疾病进行早期诊断 和疗效评估。
THANKS FOR WATCHING
感谢您的观看
磁共振的发展历程
1946年,美国科学家Bloch和Purcell 共同获得了诺贝尔物理学奖,因为他 们发现了核磁共振现象。
1977年,美国科学家Mansfield和 Maudsley开发出了基于快速扫描的 磁共振成像技术,大大缩短了成像时 间。
1971年,美国科学家Damadian发明 了第一台核磁共振成像仪,并获得了 专利。
无害。
高软组织分辨率
磁共振成像能够清晰地显示软组织结构, 对于脑、关节、肌肉等部位的病变诊断具
有优势。
多参数成像
磁共振成像可以获取多种参数,如T1、T2 、质子密度等,从而提供丰富的诊断信息 。
功能成像
除了结构成像外,磁共振还可以进行功能 成像,如灌注成像和弥散成像,有助于疾 病的早期诊断和预后评估。

磁共振成像(MRI)的基本原理PPT演示课件

磁共振成像(MRI)的基本原理PPT演示课件
磁共振成像(MRI)的基本原理 Magnetic Resonance Imaging
同济医科大学附属协和医院MR室 刘定西
1
磁共振现象的发现及发展
1924年pauli在进行电在子波谱 试验中发现了许多原子核象带电的 自旋粒子一样具有角动量和磁动量。
1946年美国物理学家Block和 Purcell分别测出了在均匀物质中磁 共振的能量吸收,进一步证实了核 自旋的存在,并为此获得了1952年 诺贝尔物理学奖。
• 影响M的因素:静磁场强度、温度、自 旋密度(单位体积的自旋数)。
• 纵向磁化:平行于磁场方向的磁化矢量 • 横向磁化:垂直于磁场方向的磁化矢量
30
31
磁共振成像中的坐标系统
Z
Y X
32
第四节 核磁共振现象
• 单摆共振 • 核磁共振
33
单摆共振的条件
• 系统与激发源的固有频率相同 • 系统吸收能量内能增加
10
3
11
净自旋
• 原子核的运动:自旋 • 净自旋:具有自旋磁动量的自旋。 • 零自旋/非零自旋:净自旋为零/净自旋不
为零 • 净自旋产生的条件:奇数质子和/或奇数中
子 • 净自旋的意义:是磁共振信号来源的基
础。 • 自旋系统:磁场中所有自旋的集合。
12
1H的原子核结构及特性
1H原子核仅有一个质子,无中子。 其磁化敏感度高,在人体的自然 丰 富度很高,是很好的磁共振靶核。
21
M1
M2
22
Z
M0 B1 X
Y
23
24
自旋在磁场中的运动
• 进动(旋进):自旋轴绕磁场方 向的圆周运动。遵循 lamor 定理, w=rB0
• 影响进动频率的因素:磁场强度。 • 进动的方向:上旋态与下旋态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H C
N
1/2 99.98 1/2 1.11
1/2 0.37
26.75 6.73
-2.71
100
400
13 15
2. 核磁共振仪器
• 连续波(CW) • 傅立叶变换(FT)
Acquire
td
FID
3. 描述核磁共振的方法简介
• 能级图(energy level) • 矢量模型(vector model) • 迟豫(relaxation)过程
Felix Bloch, USA and Edward M. Purcell, USA The Nobel Prize in Physics 1952, "for their discovery of new methods for nuclear magnetic precision measurements and discoveries in connection therewith" Richard R. Ernst, Switzerland The Nobel Prize in Chemistry 1991, "for his contributions to the development of the methodology of high resolution nuclear magnetic resonance (NMR) spectroscopy " Kurt Wuthrich, Switzerland The Nobel Prize in Chemistry 2002, "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in solution" Paul C. Lauterbur, USA and Peter Mansfield, United Kingdom The Nobel Prize in Physiology or Medicine 2003, "for their discoveries concerning magnetic resonance imaging " ??? Theory ———— Methodology ———— Application
质量数 质子数 中子数 I 典型核
12C, 1ห้องสมุดไป่ตู้O, 32S 2H, 14N
偶数 偶数
偶数 奇数
偶数 奇数
0 n/2(n=2,4,…)
奇数
偶数 奇数
奇数 偶数
n/2(n=1,3,5,…)
1H, 13C, 15N, 19F, 31P,
11B,17O,35Cl, 79Br, 81Br, 127I
核磁共振(NMR)的产生
问题:根据1H、13C和15N的旋磁比、天然丰度等基本参数,计算13C、15N的 绝对灵敏度(假设1H的绝对灵敏度为100)。对于400兆核磁共振谱 仪而言,1H的共振频率为400MHz,那么,13C、15N的共振频率应该 是多少呢? 同位素
1
I
天然丰度(%)
/107
绝对灵敏度
共振频率(MHz)
0.015 1.11 99.63 0.37
26.75
1.00
1.45*10-6
300
46.05 75.43 21.67 30.40
6.73
1.76*10-4 1.01*10-3
-2.71
3.85*10-6
19F
31P
1/2
1/2
100
100
25.18
10.84
0.83
6.63*10-2
282.23
121.40
能级图
β
α
frequency
吸收光谱、波谱共性: 波尔兹曼分布 布居数 跃迁 自发辐射 几率与能级差成正比 饱和:αβ 布居数相同,无跃迁,即无核磁共振吸收 核磁特点:迟豫过程
核磁共振基础教学
一.核磁共振概论 二.一维氢谱 三.一维碳谱
1. 有机化合物结构鉴定与有机波谱学 宁永成 科学出版社 2. 有机化合物的波谱解析 药明康德 华东理工大学出版社
一.核磁共振概论
1. 2. 3. 4. 5. 6. 核磁共振现象 仪器 描述核磁共振的方法 谱图参数 实验操作 谱图处理
核磁共振发展历程
与外磁场相互作用能 E = -μ B0 能级量子化 ΔE=(hγ/2π) B0
特定频率电磁波照射,满足 hν = ΔE ν = (γ/2π) B0
经典力学 拉摩尔进动(Larmor precession)
ν = (γ/2π) B0
核磁共振信号的影响因素
ν = (γ/2π) B0
I ν B0 γ 0 ½ >½ 射频(兆赫) 磁场强度 旋磁比
结构到分子动力学、化学平衡、化学反应性和超分子体系。
核磁共振特点
原子分辨率的三维结构
可以研究结构、动力学、相互作用 最接近生理或化学反应条件 不破坏样品,不需要分离 技术手段多,发展快
灵敏度低
仪器贵重 原理和方法不易掌握
原子核的一些基本属性
电荷: 质子 中子 自旋: 自旋量子数I:0 ½ >½ 自旋角动量P: P = I(I 1) h/2 π 磁矩(表征磁性)μ:μ=γP 旋磁比γ gyromagnetic ratio 具有磁矩的原子核才会发生核磁共振现象
核磁共振概述
核磁共振(NMR,Nuclear Magnetic Resonance)是指处于外 磁场中的物质,其原子核受到相应频率的电磁波作用时,其原 子核的磁能级之间发生共振跃迁的这种物理现象。 检测电磁波被吸收的情况就可以得到核磁共振波谱。因此, 核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光 谱(波谱)范畴。 根据核磁共振波谱图上共振峰的位置、强度和精细结构及其 它信息,可以研究物质的分子结构、动力学和相互作用。 核磁共振是最广泛地研究分子性质的最通用的技术:从三维
核磁共振的灵敏度 S/N∝Nγ3B03/2n1/2
N γ B0 n 自旋原子数目(样品浓度) 旋磁比 磁场强度 扫描次数
常见核的核磁共振性质
同位素 I
1H 2H 13C 14N 15N
天然丰度 (%)
/107
绝对灵敏度
共振频率(MHz) B=7.0463T
1/2
1 1/2 1 1/2
99.98
相关文档
最新文档