江苏诗台市2016_2017学年高一数学下学期第二次月考4月试题
江苏省徐州市高一数学下学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市高一(下)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4=.3.函数f(x)=(sinx﹣cosx)2的最小正周期为.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n=.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为.6.根据如图所示的伪代码,可知输出的结果S为.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于.9.已知变量x,y满足,则目标函数z=2x+y的最大值是.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是.11.在△ABC中,若acosB=bcosA,则△ABC的形状为.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是.13.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是.14.已知正实数x,y满足,则xy的取值X围为.二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.2015-2016学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.过两点M(﹣1,2),N(3,4)的直线的斜率为\frac{1}{2} .【考点】直线的斜率.【分析】直接利用直线的斜率公式可得.【解答】解:∵过M(﹣1,2),N(3,4)两点,∴直线的斜率为: =,故答案为:.2.在等差数列{a n}中,a1=1,a4=7,则{a n}的前4项和S4= 16 .【考点】等差数列的前n项和.【分析】利用等差数列的前n项和公式即可得出.【解答】解:由已知可得:S4===16.故答案为:16.3.函数f(x)=(sinx﹣cosx)2的最小正周期为π.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】化简函数的表达式为一个角的一个三角函数的形式,然后利用周期公式求出函数的周期.【解答】解:函数f(x)=(sinx﹣cosx)2=1﹣2sinxcosx=1﹣six2x;所以函数的最小正周期为:T=,故答案为:π.4.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,若样本中A种型号产品有12件,那么样本的容量n= 60 .【考点】分层抽样方法.【分析】根据分层抽样原理,利用样本容量与频率、频数的关系,即可求出样本容量n.【解答】解:根据分层抽样原理,得;样本中A种型号产品有12件,对应的频率为:=,所以样本容量为:n==60.故答案为:60.5.同时掷两枚质地均匀的骰子,所得点数之和大于10的概率为\frac{1}{12} .【考点】列举法计算基本事件数及事件发生的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为: =.故答案为:.6.根据如图所示的伪代码,可知输出的结果S为56 .【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用,一直求出不满足循环条件时S的值.【解答】解:模拟执行程序,可得S=0,I=0,满足条件I<6,执行循环,I=2,S=4满足条件I<6,执行循环,I=4,S=20满足条件I<6,执行循环,I=6,S=56不满足条件I<6,退出循环,输出S的值为56.7.某校举行元旦汇演,七位评委为某班的小品打出的分数如茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差是\frac{8}{5} .【考点】茎叶图.【分析】由已知中的茎叶图,我们可以得到七位评委为某班的小品打出的分数,及去掉一个最高分和一个最低分后的数据,代入平均数公式及方差公式,即可得到所剩数据的平均数和方差.【解答】解:由已知的茎叶图七位评委为某班的小品打出的分数为:79,84,84,84,86,87,93去掉一个最高分93和一个最低分79后,所剩数据的平均数==85方差S2= [(84﹣85)2+(84﹣85)2+(86﹣85)2+(84﹣85)2+(87﹣85)2]=,故选:.8.若数列{a n}满足a n+1﹣2a n=0(n∈N*),a1=2,则{a n}的前6项和等于126 .【考点】等比数列的前n项和.【分析】由题意可知,数列{a n}是以2为首项,以2为公比的等比数列,然后直接利用等比数列的前n项和公式得答案.【解答】解:由a n+1﹣2a n=0(n∈N*),得,又a1=2,∴数列{a n}是以2为首项,以2为公比的等比数列,则.9.已知变量x,y满足,则目标函数z=2x+y的最大值是13 .【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(5,3),代入目标函数z=2x+y得z=2×5+3=13.即目标函数z=2x+y的最大值为13.故答案为:13.10.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔人,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落人孔中的概率是\frac{4}{9π}.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要求出铜钱面积的大小和中间正方形孔面积的大小,然后代入几何概型计算公式进行求解.【解答】解:如图所示:∵S正=1,S圆=π()2=,∴P==.则油(油滴的大小忽略不计)正好落人孔中的概率是故答案为:.11.在△ABC中,若acosB=bcosA,则△ABC的形状为等腰三角形.【考点】三角形的形状判断.【分析】利用正弦定理,将等式两端的“边”转化为“边所对角的正弦”,再利用两角和与差的正弦即可.【解答】解:在△ABC中,∵acosB=bcosA,∴由正弦定理得:sinAcosB=sinBcosA,∴sin(A﹣B)=0,∴A﹣B=0,∴A=B.∴△ABC的形状为等腰三角形.故答案为:等腰三角形.12.已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是﹣1 .【考点】直线的一般式方程与直线的平行关系.【分析】两直线的斜率都存在,由平行条件列出方程,求出a即可.【解答】解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1 a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣113.已知等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,则实数d的取值X围是(﹣∞,﹣\sqrt{3}]∪[\sqrt{3},+∞).【考点】等差数列的通项公式.【分析】由已知条件利用等差数列前n项和公式得+10a1d+15=0,从而d=﹣﹣a1,由此利用均值定理能求出实数d的取值X围.【解答】解:∵等差数列{a n}中,首项为a1(a1≠0),公差为d,前n项和为S n,且满足a1S5+15=0,∴+15=0,∴+10a1d+15=0,∴d=﹣﹣a1,当a1>0时,d=﹣﹣a1≤﹣2=﹣,当a1<0时,d=﹣﹣a1≥2=,∴实数d的取值X围是(﹣∞,﹣]∪[,+∞).故答案为:(﹣∞,﹣]∪[,+∞).14.已知正实数x,y满足,则xy的取值X围为[1,\frac{8}{3}].【考点】基本不等式在最值问题中的应用.【分析】设xy=m可得x=,代入已知可得关于易得一元二次方程(2+3m)y2﹣10my+m2+4m=0,由△≥0可得m的不等式,解不等式可得.【解答】解:设xy=m,则x=,∵,∴++3y+=10,整理得(2+3m)y2﹣10my+m2+4m=0,∵x,y是正实数,∴△≥0,即100m2﹣4(2+3m)(m2+4m)≥0,整理得m(3m﹣8)(m﹣1)≤0,解得1≤m≤,或m≤0(舍去)∴xy的取值X围是[1,]故答案为:[1,]二、解答题(共6小题,满分90分)15.设直线4x﹣3y+12=0的倾斜角为A(1)求tan2A的值;(2)求cos(﹣A)的值.【考点】直线的倾斜角;两角和与差的余弦函数.【分析】(1)求出tanA,根据二倍角公式,求出tan2A的值即可;(2)根据同角的三角函数的关系分别求出sinA和cosA,代入两角差的余弦公式计算即可.【解答】解:(1)由4x﹣3y+12=0,得:k=,则tanA=,∴tan2A==﹣;(2)由,以及0<A<π,得:sinA=,cosA=,cos(﹣A)=cos cosA+sin sinA=×+×=.16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.【解答】解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.17.设等差数列{a n}的前n项和为S n,a2=4,S5=30(1)求数列{a n}的通项公式a n(2)设数列{}的前n项和为T n,求证:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差为d,由a2=4,S5=30,可得,联立解出即可得出.(2)==,利用“裂项求和”方法、数列的单调性即可得出.【解答】(1)解:设等差数列{a n}的公差为d,∵a2=4,S5=30,∴,解得a1=d=2.∴a n=2+2(n﹣1)=2n.(2)证明: ==,∴数列{}的前n项和为T n=+…+=,∴T1≤T n,∴≤T n<.18.已知函数f(x)=x2﹣kx+(2k﹣3).(1)若k=时,解不等式f(x)>0;(2)若f(x)>0对任意x∈R恒成立,某某数k的取值X围;(3)若函数f(x)两个不同的零点均大于,某某数k的取值X围.【考点】二次函数的性质;函数零点的判定定理.【分析】(1)由k的值,得到f(x)解析式,由此得到大于0的解集.(2)由f(x)>0恒成立,得到判别式小于0恒成立.(3)由两个不同的零点,得到判别式△>0,由两点均大于,得到对称轴大于,和f()>0.【解答】解:(1)若k=时,f(x)=x2﹣x.由f(x)>0,得x2﹣x>0,即x(x﹣)>0∴不等式f(x)>0的解集为{x|x<0或x>}(2)∵f(x)>0对任意x∈R恒成立,则△=(﹣k)2﹣4(2k﹣3)<0,即k2﹣8k+12<0,解得k的取值X围是2<k<6.(3)若函数f(x)两个不同的零点均大于,则有,解得,∴实数k的取值X围是(6,).19.如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过点C,已知AB=3米,AD=2米,记矩形AMPN的面积为S平方米.(1)按下列要求建立函数关系;(i)设AN=x米,将S表示为x的函数;(ii)设∠BMC=θ(rad),将S表示为θ的函数.(2)请你选用(1)中的一个函数关系,求出S的最小值,并求出S取得最小值时AN的长度.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【分析】(1)求出AN,AM,即可建立函数关系;(i)设AN=x米,先求出AM的长,即可表示出矩形AMPN的面积;(ii)由∠BMC=θ(rad),可以依次表示出AM与AN的长度,即可表示出S关于θ的函数表达式;(2)选择(ii)中的函数关系式,化简,由基本不等式即可求出最值.【解答】解:(1)(i)∵Rt△CDN~Rt△MBC,∴=,∴,∴BM=,由于,则AM=∴S=AN•AM=,(x>2)(ii)在Rt△MBC中,tanθ=,∴MB=,∴AM=3+,在Rt△CDN中,tanθ=,∴DN=3tanθ,∴AN=2+3tanθ,∴S=AM•AN=(3+)•(2+3tanθ),其中0<θ<;(2)选择(ii)中关系式∵S=AM•AN=(3+)•(2+3tanθ),(0<θ<);∴S=12+9tanθ+≥12+2=24,当且仅当9tanθ=,即tanθ=时,取等号,此时AN=4答:当AN的长度为4米时,矩形AMPN的面积最小,最小值为24m2.20.已知数列{a n}满足a n+1+a n=4n﹣3,n∈N*(1)若数列{a n}是等差数列,求a1的值;(2)当a1=﹣3时,求数列{a n}的前n项和S n;(3)若对任意的n∈N*,都有≥5成立,求a1的取值X围.【考点】数列的求和;等差关系的确定.【分析】(1)由a n+1+a n=4n﹣3,n∈N*,可得a2+a1=1,a3+a2=5,相减可得a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,可得2d=4,解得d.(2)由a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,可得a n+2﹣a n=4,a2=4.可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.对n分类讨论利用等差数列的求和公式即可得出.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10,求出其最大值即可得出.当n为偶数时,同理可得.【解答】解:(1)∵a n+1+a n=4n﹣3,n∈N*,∴a2+a1=1,a3+a2=5,∴a3﹣a1=5﹣1=4,设等差数列{a n}的公差为d,则2d=4,解得d=2.∴2a1+2=1,解得a1=﹣.(2)∵a n+1+a n=4n﹣3,a n+2+a n+1=4n+1,∴a n+2﹣a n=4,a2=4.∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为4.∴a2k﹣1=﹣3+4(k﹣1)=4k﹣7;a2k=4+4(k﹣1)=4k.∴a n=,∴当n为偶数时,S n=(a1+a2)+…+(a n﹣1+a n)=﹣3+9+…+(4n﹣3)==.当n为奇数时,S n=S n+1﹣a n+1=﹣2(n+1)=.∴S n=.(3)由(2)可知:a n=.当n为奇数时,a n=2n﹣2+a1,a n+1=2n﹣1﹣a1,由≥5成立,a n+1+a n=4n﹣3,可得:﹣a1≥﹣4n2+16n﹣10,令f(n)=﹣4n2+16n﹣10=﹣4(n﹣2)2+6,当n=1或3时,[f(n)]max=2,∴﹣a1≥2,解得a1≥2或a1≤﹣1.当n为偶数时,a n=2n﹣3﹣a1,a n+1=2n+a1,由≥5成立,a n+1+a n=4n﹣3,可得: +3a1≥﹣4n2+16n﹣12,令g(n)=﹣4n2+16n﹣12=﹣4(n﹣2)2+4,当n=2时,[f(n)]max=4,∴+3a1≥4,解得a1≥1或a1≤﹣4.综上所述可得:a1的取值X围是(﹣∞,﹣4]∪[2,+∞).。
2023—2024学年下学期佛山市普通高中教学质量检测高一数学试题及答案
O M N Pxy2023~2024学年下学期佛山市普通高中教学质量检测高一数学注意事项:1.答卷前,考生务必要填涂答题卡上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卡相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卡的整洁.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.−=i 25i( ) A .−−12iB .−+12iC .−12iD .+12i2.已知=αtan 2,则=αtan 2( )A .−34 B .34 C .−43 D .43 3.已知向量a ,b 不共线,若a b a b +−k 2//)()(,则=k ( )A .−2B .−21 C .21 D .24.已知两条不同的直线m ,n 和三个不同的平面α,β,γ,下列判断正确的是( )A .若⊂αm ,n m //,则αn //B .若⊂αm ,⊂βn ,βm //,αn //,则αβ//C .若⊥αγ,⊥βγ,m αβ=,则m ⊥γD .若n αβ=,⊥m n ,⊂βm ,则⊥αβ5.已知四边形ABCD 中,(2,1AC =−),(2,4BD =),则四边形ABCD 的面积为( )A .3B .5C .6D .106.已知函数=+ωϕf x A x sin )()((其中>A 0,>ω0,2<πϕ)的部分图象如图所示,点M ,N 是函数 图象与x 轴的交点,点P 是函数图象的最高点,且∆PMN 是边长为2的正三角形,=ON OM 3,则⎝⎭⎪=⎛⎫f 31( )A .23 B .+4322C .−4326D .+43262024 . 77.某学校兴趣学习小组从全年级抽查了部分男生和部分女生的期中考试数学成绩,并算得这部分同学的平均分以及男生和女生各自的平均分,由于记录员的疏忽把人数弄丢了,则据此可确定的是( )A .这部分同学是高分人数多还是低分人数多B .这部分同学是男生多还是女生多C .这部分同学的总人数D .全年级是男生多还是女生多8.已知正四棱台ABCD A B C D −1111,AB =2,半球的球心O 在底面A B C D 1111的中心,且半球与该棱台的各棱均相切,则半球的表面积为( )A .π9B .π18C .π27D .π36二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分. 9. 关于复数33=+ππz cosisin (i 为虚数单位),下列说法正确的是( ) A . ⋅=z z 1 B .z 在复平面内对应的点位于第二象限 C . =z 13D . −+=z z 10210.四名同学各掷骰子5次,分别记录每次骰子出现的点数.根据四名同学的统计结果,可能出现点数6的是( )A .平均数为3,中位数为2B .中位数为3,众数为2C .平均数为2,方差为2.4D .中位数为3,方差为2.8 11.如图,在三棱锥P DEF −中,==PE PF 1,=PD 2,==DE DF=EF 点Q 是DF 上一动点,则( ) A .过PE 、PF 、DE 、DFB .直线PE 与平面DEF 所成角的正弦值为32C .∆PEQD .将三棱锥的四个面展开在同一平面得到的平面图形可以是直角三角形或正方形三、填空题:本题共3小题,每小题5分,共15分.其中第14题对一空得3分,全对得5分. 12.已知a b ⋅=−1,b =1,2)(,则a 在b 上的投影向量为 . 13.已知⎝⎭⎪+=⎛⎫θθ44cos cos2π,则=θsin 2 . 14.已知∆ABC 是边长为2的正三角形,点D 在平面ABC 内且0DA DB ⋅=,则DA DC ⋅的最大值为 ,最小值为 .H.RQPDCBA四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤. 15.( 13分)某学校高一新生体检,校医室为了解新生的身高情况,随机抽取了100名同学的身高数据(单位:cm ),制作成频率分布直方图如图所示.(1) 求这100名同学的平均身高的估计值(同一组数据用区间中点值作为代表);(2) 用分层抽样的方法从165,170)[,170,175)[,175,180)[中抽出一个容量为17的样本,如果样本按比例分配,则各区间应抽取多少人?(3) 估计这100名同学身高的上四分位数.0.010.020.04x0.07/cm身高160 165 170 175 180 18516.( 15分)在非直角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足=−a c B b C 2cos cos . (1) 求证:=C B tan 2tan ;(2) 若=A tan 3,=a 3,求∆ABC 的面积.17.( 15分)如图,已知多面体PQRABCD 中,四边形ABCD 、PABQ 、PADR 均为正方形,点H 是∆CQR 的垂心,=PA 1.(1) 证明:H 是点A 在平面CQR 上的射影; (2) 求多面体PQRABCD 的体积.频率组距PQM1A 1B 1C CBA OCBADMN18.( 17分)如图,在扇形OMN 中,半径=OM 2,圆心角∠=MON 3π,矩形ABCD 内接于该扇形,其中点A ,B 分别在半径OM 和ON 上,点C ,D 在 上,AB MN //,记矩形ABCD 的面积为S .(1) 当点A ,B 分别为半径OM 和ON 的中点时,求S 的值;(2) 设∠=θDOM (<<θ60π),当θ为何值时,S 取得最大值,并求此时S 的最大值.19.( 17分)如图,在直三棱柱−ABC A B C 111中,⊥AB BC ,==AB AA 31,=BC 1,P 是BC 1上一动点,BP BC λ=1(<<λ01),M 是CC 1的中点,Q 是AM 的中点.(1) 当=λ41时,证明:PQ //平面ABC ; (2) 在答.题卡..的题(2)图中作出平面AB P 1与平面ACC A 11的交线(保留作图痕迹,无需证明); (3) 是否存在λ,使得平面AB P 1与平面ACC A 11所成二面角的余弦值为414?若存在求满足条件的λ值,若不存在则说明理由.2023~2024学年下学期佛山市普通高中教学质量检测高一数学 参考答案与评分标准一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 答案CABCBDBC二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号 9 10 11 答案ADABDBCD三、填空题:本题共3小题,每小题5分,共15分.其中第14题对一空得3分,全对得5分.12. ⎝⎭ ⎪−−⎛⎫55,12(或写成b −51) 13. 1 14. 3 , −1 四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)由图可知⨯++++=x 50.010.070.040.021)(,得x =0.06.…………………………2分 平均身高的估计值为:⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯182.50.025162.50.015167.50.075172.50.065177.50.045=172.25cm .………………………………………………………………………………………………6分(2)165,170)[,170,175)[,175,180)[各区间人数分别为:⨯⨯=1000.07535,⨯⨯=1000.06530,⨯⨯=1000.04520.所以相应抽取的人数分别为:++⨯=35302017735,++⨯=35302017630,++⨯=35302017420.………………………………9分 (3)上四分位数即75%分位数. …………………………………………………………………………10分 身高在180,185)[的人数占比⨯=50.0210%,在175,180)[的人数占比⨯=50.0420%,所以75%分位数在175,180)[内.…………………………………………………………………………11分 设上四分位数为a ,则a ⨯−+⨯=−0.04(180)0.025175%. ………………………………………12分 解得=a 176.25,即估计这100名同学身高的上四分位数为176.25. ………………………………13分 16.【解析】(1)由−=c B b C a 2cos cos 及正弦定理可得−=C B B C A 2sin cos sin cos sin ,………2分 又=+=+A B C B C B C sin sin()sin cos cos sin ,所以−=+C B B C B C B C 2sin cos sin cos sin cos cos sin ,整理得=C B B C sin cos 2sin cos ,………………………………………………………………………4分 因为∆ABC 不是直角三角形,所以≠B cos 0,≠C cos 0,两边同时除以B C cos cos ,得=C B tan 2tan .…………………………………………………………………………………………6分(2)由−−=−+=−=−=+B C BA B C B C B 1tan tan 12tan tan tan()3tan tan 3tan 2,整理得−−=B B 2tan tan 102, 所以+−=B B (2tan 1)(tan 1)0,解得=−B 2tan 1或1, ………………………………………………8分若=−B 2tan 1,则==−C B tan 2tan 1,此时B ,C 均为钝角,不符合题意,故舍去,所以=B tan 1,…9分.HOMRQPD CBA ==CB tan 2tan 2,此时=A 10sin 310,=B 2sin 2,=C 5sin 25, ……………………………11分 由正弦定理====B C A b c a 10310sin sin sin 103,可得==b B 10sin 5,==c C 10sin 22, ……………………………………………………13分所以∆ABC 的面积△==⨯⨯⨯=S bc A ABC 2210sin 522311310.………………………………15分 17.【解析】(1)连接CH ,并延长交QR 于M ,所以QR CM ⊥. ………………………………………1分由已知易得四边形BDRQ 为矩形,所以BD QR //.……………………………………………………3分BD AC ⊥,所以QR AC ⊥且=AC CM C ,所以QR ⊥平面ACM .……………………………5分AH ⊂平面ACM ,所以⊥QR AH .…………………………………6分同理⊥QC AH . ………………………………………………………7分 又=QRQC Q ,所以AH ⊥平面CQR . …………………………8分所以H 是点A 在平面CQR 上的射影.……………………9分 (2)设=ACBD O ,由题意可知BQ ⊥平面ABCD ,所以BQ 是棱柱PQR ABC −的高,且BQ OC ⊥,又由(1)知OC BD ⊥,所以OC ⊥平面QBDR , 所以OC 是棱锥C QBDR −的高.………………………………………………………………………11分 V V V PQR ABD C QBDR =+−−.…………………………………………………………………………………12分 △=⋅=−V S BQ PQR ABD ABD 21.……………………………………………………………………………13分 =⋅=⋅⋅=−V S OC C QBDR QBDR 332321121.……………………………………………………………14分所以多面体PQRABCD 的体积=+=V 236115.………………………………………………………15分18.【解析】(1)当点A ,B 分别为半径OM 和ON 的中点时,===CD AB OA 1,取CD 中点F ,连接OF ,且OF 与AB 交于点G ,则=−=−=OF OD DF 42411522, …………………………………2分 ==OG OA 2233,………………………………………………………………………………………4分 则=−=−FG OF OG 2153,…………………………………………………………………………6分 此时矩形ABCD 的面积=⋅=−S AB FG 2153.……………………………………………………7分 (2)解法一:过点D 作⊥DE OM ,垂足为E ,则=θDE 2sin ,=θOE 2cos , ……………………8分在△ADE Rt 中,∠=DAE 6π,==θAD DE 24sin , …………………………………………………9分==θAE DE 323sin ,………………………………………………………………………………10分 ==−=−θθAB OA OE AE 2cos 23sin , …………………………………………………………11分AOM NBCDE FG 矩形ABCD 的面积=⋅=−⋅=−θθθθθθS AB AD (2cos 23sin )4sin 8sin cos 83sin 2 …13分⎝⎭ ⎪=−⨯=+−=+−⎛⎫−θθθθθ234sin 2834sin 243cos 2438sin 243π1cos 2, …………15分 当+=θ322ππ,即=θ12π时,矩形ABCD 的面积S 最大,最大值为−843.………………………17分 解法二:若⎝⎭ ⎪∠=<<⎛⎫θθDOM 60π,设∠=αDOF , 则=−αθ6π,=⋅∠=αDF OD DOF sin 2sin ,…………………8分 =⋅∠=αOF OD DOF cos 2cos ,===αOG AG DF 3323sin , ……………………………9分所以=−=−ααFG OF OG 2cos 23sin , …………………10分==αAB DF 24sin .……………………………………………………………………………………13分 ⎝⎭ ⎪=−⨯=+−=+−⎛⎫−ααααα234sin 2834sin 243cos 2438sin 243π1cos 2,…………15分 当+=α322ππ,即=α12π,即=θ12π时,矩形ABCD 的面积S 最大,最大值为−843. ………17分 19.【解析】(1)过P Q 、分别作⊥PK BC ,⊥QN AC 则PK CC //1且=PK CC 411,QN CM //且==QN CM CC 24111.……………………………………………………………………………………2分所以PK QN //且PK QN =,所以四边形PKNQ 是平行四边形.……………………………………3分从而PQ KN //,又KN ⊂平面ABC ,PQ ⊄平面ABC ,所以PQ //平面ABC .…………………5分 (2)如图,在平面ACC A 11内,延长B P CC 、11交于D ,连接AD ,则AD 为平面AB P 1与平面ACC A 11的交线.……………………………………………………………8分BB 1P EKNPQM1A 1B 1C CAGHD 1A 1C CA(3)过B 1作B H A C ⊥111,垂足为H ,过H 作HG AD ⊥,垂足为G ,连接B G 1,……………………9分 因为三棱柱−ABC A B C 111是直三棱柱,所以⊥CC 1平面A B C 111, 又⊂B H 1平面A B C 111,∴⊥CC B H 11,又B H A C ⊥111,1111A C CC C =,∴⊥B H 1平面ACC A 11,又⊂AD 平面ACC A 11,∴⊥B H AD 1,又HG AD ⊥,B HHG H =1,∴⊥AD 平面B HG 1,又⊂B G 1平面B HG 1,∴⊥AD B G 1,所以B GH ∠1为平面AB P 1与平面ACC A 11所成二面角的平面角.…………………………………10分假设存在满足条件的λ,即B GH ∠=4cos 141, 由已知可求得BC =21,所以BP =λ2,−−===λλλλB C PC BE BP 2212111, 所以−−=−=−=−λλλλB C B C EC BE 1111121111,又−==−λλDC B C DC EC 112111, −−−−∴===−−λλλλλCC CC DC DC DC 1(12)121211,所以DC =−λλ3(12),…………………………12分所以△=−λλS ACD 3(12),形梯=S HACC 4531,△=−λλS DHC 43(1)1,形梯△△△=+−=−λλS S S S HACC ADH ACD DHC 43(32)11,…………………………………………………13分=+=−+λλλAD AC CD 16123222, ……………………………………………………………14分△=⋅⋅S AD HG ADH 21,故△−+==−λλλAD HG S ADH 2161233(32)22. …………………………………15分 由B GH ∠=4cos 141得HGB GH B H ∠==7tan 711,又B H =231,所以−+−=λλλ2161233(32)72732.………………………………………………………16分 解得=λ31,即存在=λ31使得平面AB P 1与平面ACC A 11所成二面角的余弦值为414. ………17分。
高一数学下学期第一次月考试题1
宁夏石嘴山市2016-2017学年高一数学下学期第一次月考试题第I 卷(选择题)一、选择题(每题5分,共60分)1.用秦九韶算法计算多项式()234561235879653f x x x x x x x =+-++++在4x =-时的值时,3V 的值为 ( )A. -845B. 220C. -57D. 34 2.执行如图所示的程序框图,则输出s 的值为( )第2题 第3题 (A )34 (B )56 (C )1112 (D )25243.执行图所示的程序框图,若输入2x =,则输出y 的值为( ) A.2 B.5 C.11 D.23 4.下列各组数据中最小的数是( )A 、()985B 、()6210C 、()41000D 、()2111111 5.如图,给出的是计算29151311+⋯+++的值的一个程序框图,则图中执行框内①处和判断框中的②处应填的语句是( )A. n=n+2, i>15?B. n=n+1, i>15?C. n=n+2, i>14?D. n=n+1, i>14 ? 6.由一组样本数据1122(,),(,),,(,)n n x y x y x y ,得到回归直线方程ˆybx a =+,那么下面说法不正确的是( )A .直线ˆybx a =+必经过(,)x y ; B .直线ˆybx a =+至少经过1122(,),(,),,(,)n n x y x y x y 中的一个点;C .直线ˆybx a =+的斜率为22i iix y nx y x nx-⋅-∑∑; D .直线ˆybx a =+的纵截距为.y bx - 7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y 2.5t44.5根据上表提供的数据,若求出y 关于x 的线性回归方程为ˆ0.70.35y x =+,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5 8.下列叙述错误的是( ).A .若事件A 发生的概率为()P A ,则()01P A ≤≤B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件C .5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D .某事件发生的概率是随着试验次数的变化而变化的9.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B .12 C.23 D .3410.一个袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和小于15的概率为( ) (A)(B)(C)(D)11.如下图,矩形ABCD 中,点E 为边CD 上任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A )14 (B )13(C )12 (D )2312.假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率() A.13 B.18 C.23 D. 78第II 卷(非选择题)二、填空题(每题5分,共20分)13.用辗转相除法求240和288的最大公约数时,需要做____次除法;利用更相减损术求36和48的最大公约数时,需要进行______次减法。
江苏省苏州市2023-2024学年高一下学期6月期末考试 数学含答案
苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学(答案在最后)2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.22.sin164sin 44cos16sin 46-= ()A.12-B.2C.12D.23.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.55.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若6b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A .等腰三角形B.锐角三角形C.直角三角形D.钝角三角形8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2233f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x=对称 D.()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增10.已知复数1z ,2z ,3z ,则下列说法正确的有()A.1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB = .(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为33,求平面1A BC 与平面ABCD 的夹角的余弦值.苏州市2023~2024学年第二学期学业质量阳光指标调研卷高一数学2024.6注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共4页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 为虚数单位,已知复数11i z =+,则||z =()A.12B.2C.D.2【答案】B 【解析】【分析】利用复数的商的运算法则求得z ,进而可求||z .【详解】11i 1i 1i 1i (1i)(21i)z --====-++-,则2||2z ==.故选:B .2.sin164sin 44cos16sin 46-= ()A.12-B. C.12D.32【解析】【分析】利用诱导公式与两角差的正弦公式化简求值.【详解】()()sin164sin 44cos16sin 46sin 18016sin 9046cos16sin 46-=---()1sin16cos 46cos16sin 46sin 1646sin 302=-=-=-=-.故选:A.3.某射击运动员射击6次,命中的环数如下:7,9,6,9,10,7,则关于这组数据的说法正确的是()A.极差为10B.中位数为7.5C.平均数为8.5D.【答案】D 【解析】【分析】利用极差、中位数、平均数、标准差的定义,根据条件逐一对各个选项分析判断即可得出结果.【详解】某射击运动员射击6次,命中的环数从小到大排列如下:6,7,7,9,9,10,对A ,极差为1064-=,故A 错误;对B ,中位数为7982+=,故B 错误;对C ,平均数为677991086+++++=,故C 错误;对D ,标准差为=,故D 正确.故选:D4.某科研单位对ChatGPT 的使用情况进行满意度调查,在一批用户的有效问卷(用户打分在50分到100分之间的问卷)中随机抽取了100份,按分数进行分组(每组为左闭右开的区间),得到如图所示的频率分布直方图,估计这批用户问卷的得分的第75百分位数为()A.78.5B.82.5C.85D.87.5【答案】B【分析】根据百分位数计算规则计算可得.【详解】因为()0.010.0250.035100.70.75++⨯=<,()0.010.0250.0350.02100.90.75+++⨯=>,所以第75百分位数位于[)80,90,设为x ,则()()0.010.0250.035100.02800.75x ++⨯+-=,解得82.5x =.故选:B5.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若b =,2c =,60B =︒,则A =()A.45︒B.60︒C.75︒D.105︒【答案】C 【解析】【分析】利用正弦定理求出C ,即可求出A .【详解】由正弦定理sin sin c b C B=,则32sin 22sin 2c B C b ⨯===,又c b <,所以60C B <=︒,所以45C =︒,所以180604575A =︒-︒-︒=︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//l m ,//l α,//m β,则//αβB.若l m ⊥,l α⊥,//m β,则//αβC.若//αβ,l ⊂α,m β⊂,则//l mD.若l m ⊥,l α⊥,m β⊥,则αβ⊥【答案】D 【解析】【分析】根据空间中线线、线面、面面的位置关系一一判断即可.【详解】对于A :若//l m ,//l α,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故A 错误;对于B :若l m ⊥,l α⊥,则//m α或m α⊂,又//m β,则//αβ或α与β相交,故B 错误;对于C :若//αβ,l ⊂α,则//l β,又m β⊂,则l 与m 平行或异面,故C 错误;对于D :若l m ⊥,l α⊥,则//m α或m α⊂,若//m α,则在平面α内存在直线c ,使得//m c ,又m β⊥,则c β⊥,又c α⊂,所以αβ⊥;若m α⊂,又m β⊥,所以αβ⊥;综上可得,由l m ⊥,l α⊥,m β⊥,可得αβ⊥,故D 正确.故选:D7.在ABC 中,已知2cos 2cos 22cos A B C +=,则ABC 的形状一定为()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】C 【解析】【分析】利用二倍角公式及正弦定理将角化边,即可判断.【详解】因为2cos 2cos 22cos A B C +=,所以22212sin 12sin 22sin A B C -+-=-,所以222sin sin sin A B C +=,由正弦定理可得222+=a b c ,所以ABC 为直角三角形.故选:C8.长篇评弹《玉蜻蜓》在江南可谓家喻户晓,是苏州评弹的一颗明珠.为了让更多年轻人走近评弹、爱上经典,苏州市评弹团在保留原本精髓的基础上,打造了《玉蜻蜓》精简版,将长篇压缩至三场,分别是《子归》篇、《认母》篇、《归宗》篇.某班级开展对《玉蜻蜓》的研究,现有三位学生随机从三篇中任意选一篇研究,记“三人都没选择《子归》篇”为事件M ,“至少有两人选择的篇目一样”为事件N ,则下列说法正确的是()A.M 与N 互斥B.()()P M P MN = C.M 与N 相互独立D.()()1P M P N +<【答案】B 【解析】【分析】计算事件M 和事件N 的概率,由互斥事件的性质和相互独立事件的定义,对选项进行判断即可.【详解】三个人随机选三篇文章研究,样本空间共33327⨯⨯=种,事件M :“三人都没选择《子归》篇”共有:2228⨯⨯=,所以()827P M =,事件N :“至少有两人选择的篇目一样”共有27621-=种,所以()1272P N =,()()1P M P N +>,所以M 与N 不互斥,A 错误,D 错误;事件MN 共有2338++=种,所以()782P MN =,B 正确;因为()()()P MN P M P N ≠,所以C 错误.故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数2()sin 2f x x x =+-,则()A.()f x 的最小正周期为2π B.()2f x ≥-C.()f x 的图象关于直线π6x =对称 D.()f x 在区间π,04⎛⎫-⎪⎝⎭上单调递增【答案】BD 【解析】【分析】利用二倍角公式及两角和的正弦公式化简,在根据正弦函数的性质计算可得.【详解】因为2()sin 2sin 22f x x x x x=+=+132sin 2cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭π2sin 23x ⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==,故A 错误;因为π1sin 213⎛⎫-≤+≤ ⎪⎝⎭x ,所以()2f x ≥-,故B 正确;因为πππ2sin 2663f ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π6x =对称,故C 错误;当π,04x ⎛⎫∈-⎪⎝⎭,则,ππ233π6x ⎛⎫-∈ ⎝+⎪⎭,又sin y x =在ππ,63⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在区间π,04⎛⎫- ⎪⎝⎭上单调递增,故D 正确.故选:BD10.已知复数1z ,2z ,3z ,则下列说法正确的有()A .1212||||||z z z z = B.若120z z ->,则12z z >C.若120z z =,则1212||||z z z z -=+ D.若1213z z z z =且10z ≠,则23z z =【答案】ACD 【解析】【分析】A 项,表达出12||z z 和12||||z z ,即可得出相等;B 项,作出示意图即可得出结论;C 项,写出12||z z -和12||z z +的表达式,利用120z z =得出两复数的实部和虚部的关系,即可得出结论;D 项,对1213z z z z =进行化简即可得出结论.【详解】由题意,设12i,i,,,,Rz a b z c d a b c d =+=+∈A 项,()()()12i i i z z a b c d ac bd bc ad =++=-++=12z z ==∴1212||||||z z z z =,A 正确;B 项,当120z z ->时,若两复数是虚数1z ,2z 不能比较大小,B 错误;C 项,()()1212i,i z z a c b d z z a c b d -=-+-+=+++,12z z -==12z z +==,当120z z =时,12120z z z z ==0=,∴0,0a b ==,,c d 任取,或0,0c d ==,,a b 任取,即12,z z 至少有一个为0∴1212z z z z -=+=(其中至少有两项为0),C 正确;D 项,∵1213z z z z =,∴()1230z z z -=,∵10z ≠,∴230z z -=,即23z z =,D 正确;故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G ,H 分别为AB ,1CC ,11A D ,1DD 的中点,则()A.1B D ⊥平面EFGB.//AH 平面EFGC.点1B ,D 到平面EFG 的距离相等D.平面EFG 截该正方体所得截面的面积为【答案】ACD 【解析】【分析】取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,即可得到正六边形LEMGKF 为平面EFG 截该正方体所得截面,求出截面面积,即可判断D ;根据线面垂直的判定定理说明A ,证明1//AD 平面EFG ,即可说明B ,根据正方体的性质判断D.【详解】如图,取BC 的中点L ,11C D 的中点K ,1AA 的中点M ,连接GK 、KF 、FL 、LE 、EM 、MG 、11A C 、MF 、AC 、1AD ,则11//GK A C ,//EL AC ,11////A C AC MF ,所以//GK MF ,所以G 、K 、F 、M 四点共面,又//EL MF ,所以L 、E 、F 、M 四点共面,同理可证//KF ME ,所以K 、E 、F 、M 四点共面,正六边形LEMGKF 为平面EFG 截该正方体所得截面,又12EL AC ===,所以216sin 602LEMGKF S =⨯⨯⨯︒=D 正确;因为AC ⊥平面11DBB D ,1DB ⊂平面11DBB D ,所以1AC DB ⊥,则1EL DB ⊥同理可证1FL DB ⊥,又EL FL L = ,,EL FL ⊂平面LEMGKF ,所以1DB ⊥平面LEMGKF ,即1B D ⊥平面EFG ,故A 正确;因为1//GM AD ,GM ⊂平面LEMGKF ,1AD ⊄平面LEMGKF ,所以1//AD 平面LEMGKF ,即1//AD 平面EFG ,又1AH AD A = ,1,AH AD ⊂平面11AD A A ,平面EFG ⋂平面11AD A A GM =,所以AH 不平行平面EFG ,故B 错误;设O 为正方体的中心,即O 为1DB 的中点,根据正方体的性质可知1EF DB O = ,即1DB 交平面LEMGKF 于点O ,所以点1B ,D 到平面LEMGKF 的距离相等,即点1B ,D 到平面EFG 的距离相等,故D 正确.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12.设向量(1,3)m = ,(4,2)n =- ,p m n λ=+,若m p ⊥ ,则实数λ的值为___________.【答案】15##0.2【解析】【分析】求出p,利用m p ⊥ ,即可求出实数λ的值.【详解】由题意,(1,3)m = ,(4,2)n =- ,p m n λ=+,∴()4,32p λλ=+-∵m p ⊥ ,∴()()143320λλ⨯++-=,解得:15λ=,故答案为:15.13.在直角三角形ABC 中,已知CH 为斜边AB 上的高,AC =2BC =,现将BCH V 沿着CH 折起,使得点B 到达点B ',且平面B CH '⊥平面ACH ,则三棱锥B ACH '-的外接球的表面积为___________.【答案】13π【解析】【分析】证明,,HA HB HC '两两垂直,由,,HA HB HC '的边长,求出外接球半径,求表面积即可.【详解】直角三角形ABC 中,AC =2BC =,则斜边4AB =,30A = ,CH 为斜边AB 上的高,则CH =3AH =,1HB =,平面B CH '⊥平面ACH ,平面B CH ' 平面ACH CH =,B H CH '⊥,B H '⊂平面B CH ',则B H '⊥平面ACH ,又AH CH ⊥,所以,,HA HB HC '两两垂直,HC =3HA =,1HB '=,则三棱锥B ACH '-的外接球半径1322R ==,所以三棱锥B ACH '-的外接球表面积为24π13πS R ==.故答案为:13π.14.在ABC 中,已知cos 21sin 2cos 212C C C =++,则3sin 2sin A B +的最大值为___________.【解析】【分析】利用二倍角公式化简,即可求出C ,从而得到π3A B +=,从而将3sin 2sin A B +转化为A 的三角函数,再利用辅助角公式计算可得.【详解】因为cos 21sin 2cos 212C C C +=++,所以222cos sin 12sin cos 2cos 112C C C C C -+=+-+,即()()()cos sin cos sin 132cos cos sin 2C C C C C C C -+=+,所以cos sin 1113tan 2cos 222C C C C -=-=,所以tan C =,又()0,πC ∈,所以2π3C =,则π3A B +=,所以π3sin 2sin 3sin 2sin 3A B A A ⎛⎫+=+-⎪⎝⎭()ππ3sin 2sin cos 2cos sin 2sin33A A A A A A ϕ=+-==+,取ϕ为锐角,其中sinϕ=,cos ϕ=1sin 2ϕ=>,所以π6ϕ>,所以当π2A ϕ+=时3sin 2sin AB +.【点睛】关键点点睛:本题关键是推导出C 的值,从而将3sin 2sin A B +转化为A 的三角函数,结合辅助角公式求出最大值.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,PA ⊥底面ABCD ,PA AB =,E ,F ,G 分别为线段AD ,BC ,PB 的中点.(1)求证:AG ⊥平面PBC ;(2)求证://PE 平面AFG .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)先证BC ⊥平面PAB ,有BC AG ⊥,再由AG PB ⊥,可证AG ⊥平面PBC ;(2)连接BE 交AF于点H ,由AHE FHB ≅ ,得H 为BE 中点,可得//GH PE ,线面平行的判定定理得//PE 平面AFG .【小问1详解】底面ABCD 为矩形,所以BC AB ⊥,PA ⊥底面ABCD ,BC ⊂底面ABCD ,则PA BC ⊥,AB PA A = ,,AB PA ⊂平面PAB ,则BC ⊥平面PAB ,AG ⊂平面PAB ,所以BC AG ⊥,又PA AB =,G 为PB 中点,则AG PB ⊥,,BC PB ⊂平面PBC ,BC PB B = ,所以AG ⊥平面PBC .【小问2详解】连接BE 交AF 于点H ,连接GH ,由四边形ABCD 为矩形,,E F 分别为,AD BC 中点,所以AHE FHB ≅ ,则BH HE =,即H 为BE 中点,又因为G 为BP 中点,有//GH PE ,GH Ì平面AFG ,PE ⊄平面AFG ,所以//PE 平面AFG .16.一个袋子中有大小和质地均相同的四个球,其中有两个红球(标号为1和2),一个黑球(标号为3),一个白球(标号为4),从袋中不放回地依次随机摸出两个球.设事件A =“第一次摸到红球”,B =“第二次摸到黑球”,C =“摸到的两个球恰为一个红球和一个白球”.(1)用数组()12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,试用集合的形式写出试验的样本空间Ω;(2)分别求事件A ,B ,C 发生的概率;(3)求事件A ,B ,C 中至少有一个发生的概率.【答案】(1)()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=(2)()12P A =,()14P B =,()13P C =(3)()34P A B C ⋃⋃=【解析】【分析】(1)根据事件的定义列出样本空间即可;(2)根据古典概型概率计算公式计算即可;(3)根据古典概型概率计算公式计算即可.【小问1详解】样本空间()()()()()()()()()()()(){}Ω1,2,1,3,1,4,2,1,2,3,2,4,3,1,3,2,3,4,4,1,4,2,4,3=,Ω共有12个基本事件;【小问2详解】事件A 的基本事件为:()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,4共6个基本事件,所以()12P A =,事件B 的基本事件为:()()(){}1,3,2,3,4,3共3个基本事件,所以()14P B =,事件C 的基本事件为:()()()(){}1,42,4,4,1,4,2共4个基本事件,所以()13P C =,【小问3详解】事件A ,B ,C 中至少有一个发生的基本事件为:()()()()()()()()(){}1,2,1,3,1,4,2,1,2,3,2,44,1,4,2,4,3共9个基本事件,所以()34P A B C ⋃⋃=.17.如图,在平面四边形ABCD 中,已知AC 与BD 交于点E ,且E 是线段BD 的中点,BCE 是边长为1的等边三角形.(1)若sin 14ABD ∠=,求线段AE 的长;(2)若:AB AD =AE BD <,求sin ADC ∠.【答案】(1)12(2)7【解析】【分析】(1)由sin 14ABD ∠=,有cos 14ABD ∠=,又120AEB ∠= ,AEB △中,()sin sin BAE AEB ABD ∠=∠+∠,求值后由正弦定理求线段AE 的长;(2)在AED △和AEB △中,余弦定理得22222AB AD AE +=+,又:AB AD =解得13AE =,在ACD 中,由余弦定理求cos ADC ∠,再得sin ADC ∠.【小问1详解】因为BCE 为等边三角形,所以120AEB ∠= ,又sin 14ABD ∠=,所以cos 14ABD ∠=,在AEB △中,()()sin sin 180sin BAE AEB ABD AEB ABD ⎡⎤∠=-∠+∠=∠+∠⎣⎦,所以21sin sin cos cos sin 7BAE AEB ABD AEB ABD ∠=∠∠+∠∠=,由正弦定理得sin sin AE BEABD BAE =∠∠,21sin 114sin 2217BE ABD AE BAE ⋅∠===∠.【小问2详解】()cos cos 180cos AED AEB AEB ∠=-∠=-∠ ,1DE BE ==,在AED △中,由余弦定理,2222cos AD AE DE AE DE AED =+-⋅⋅∠,在AEB △中,由余弦定理,2222cos AB AE BE AE BE AEB =+-⋅⋅∠两式相加得222222222AB AD AE DE BE AE +=++=+,因为:AB AD =,所以设AB =,AD =,则AE =,在AEB △中,120AEB ∠= ,由余弦定理得,2222cos AB AE BE AE BE AEB =+-⋅⋅∠,得2211310112m m ⎛⎫=-+-- ⎪⎝⎭,化简得23m =由0m >,解得1m =或13m =,当1m =时,3AE BD =>,不合题意,舍去;当13m =时,13AE BD =<,符合题意,所以13AE =,43AC AE EC =+=,73AD ==,在DCE △中,1CE DE ==,120DEC ︒=∠,可得CD =,在ACD中,由余弦定理,222cos 2AD CD AC ADC AD CD+-∠==⋅,所以sin 7ADC ∠=.18.如图,在平行四边形ABCD 中,已知3A π=,2AB =,1AD =,E 为线段AB 的中点,F 为线段BC 上的动点(不含端点).记BF mBC =.(1)若12m =,求线段EF 的长;(2)若14m =,设AB xCE yDF =+ ,求实数x 和y 的值;(3)若CE 与DF 交于点G ,AG EF ∥,求向量GE 与GF的夹角的余弦值.【答案】(1)2(2)68,1111x y =-=(3)7-【解析】【分析】(1)由向量的线性运算可得1122EF AD AB =+,两边平方可求解;(2)由已知可得34DF DC CF AB AD =+=- ,12CE CB BE AD AB =+=--,可得结论;(3)利用向量的线性关系可得1255GE AB AD =-- ,933510GF AD AB =-+,计算可得结论.【小问1详解】若12m =,则1122BF BC AD == ,12BE AB =-,所以1122EF BF BE AD AB =-=+ ,两边平方可得22222211117()(2)(12122)44424EF AD AB AD AD AB AB =+=++=+⨯⨯⨯+= ,所以2EF =;【小问2详解】若14m =,则1144BF BC AD == ,所以34CF AD =-,34DF DC CF AB AD =+=- ①,12CE CB BE AD AB =+=-- ②,由①②可得681111AB CE DF =-+;【小问3详解】1122EF EB BF AB mBC AB mAD =+=+=+,1122EC EB BC AB BC AB AD =+=+=+ ,设2EG EC AB AD λλλ==+ ,又122AG AE EG AE AB AD AB AD λλλλ+=+=++=+,又AG EF ∥,所以1212m λλ=+①,由EG EC λ= ,可得GE CE λ= ,所以CE CG CE λ-=,所以(1)CG CE λ=- ,所以11(1)(1)()(1)22CG CE AB BC CB CD λλλλ-=-=---=-+ ,由BF mBC = ,可得(1)CF m CB =- ,11CB CF m=-所以11(1)12CG CE CF CD m λλλ--=-=+-,又,,D F G 三点共线,所以11112m λλ--+=-②,联立①②解11,23m λ==,所以1142EG AB AD =+ ,所以1142GE AB AD =--,111111242424CG CB CD BC DC AD AB =+=--=-- ,21111(32464GF CF CG AD AD AB AD AB =-=----=-+ ),所以2211111111····64422412168GE GF AD AB AB AD AD AB AD AB AD AB ⎛⎫⎛⎫=-+--=+-- ⎪ ⎪⎝⎭⎝⎭111112412484=+--=-,又2222111111113()4216444444GE AB AD AB AB AD AD =--=++=++=,所以||2GE =,同理可得||6GF = ,所以1214cos ,726GE GF -==-.【点睛】关键点点睛:本题第三问的关键是用基底表示向量后,求向量模或者夹角就可以利用公式直接计算.19.如图,在四棱柱1111ABCD A B C D -中,已知侧面11CDD C 为矩形,60BAD ABC ∠=∠=︒,3AB =,2AD =,1BC =,1AA =,12AE EA =uu u r uuu r ,2AF FB =.(1)求证:平面DEF 平面1A BC ;(2)求证:平面11ADD A ⊥平面ABCD ;(3)若三棱锥1E A BC -的体积为3,求平面1A BC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)证明见解析(3)19或7.【解析】【分析】(1)由已知可得//EF 平面1A BC ,//DF 平面1A BC ,从而可证结论;(2)由余弦定理可得23DC =,从而可证AD CD ⊥,进而结合已知可证CD ⊥平面11ADD A ,可证结论;(3)延长,AD BC 交于N ,过1A 作1A M AD ⊥于M ,过M 作MH BN ⊥于H ,连接1A H ,可得1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,求解即可.【小问1详解】因为12AE EA =uu u r uuu r ,2AF FB = ,所以1EF A B ∥,又1A B ⊂平面1A BC ,EF ⊄平面1A BC ,所以//EF 平面1A BC ,2AF FB = ,3AB =,可得2AF =,又2AD =,60BAD ∠=︒,所以ADF △是等边三角形,所以2DF =,60AFD ∠=︒,又60ABC ∠=︒,所以DF BC ∥,又BC ⊂平面1A BC ,DF ⊄平面1A BC ,//DF 平面1A BC ,又DF EF F = ,又,DF EF ⊂平面DEF ,所以平面DEF 平面1A BC ;【小问2详解】由侧面11CDD C 为矩形,可得1CD DD ⊥,连接CF ,可得BCF △是等边三角形,所以60BFC ∠=︒,所以60DFC ∠=︒,又2DF =,1CF =,由余弦定理可得22211221232DC =+-⨯⨯⨯=,所以222DC CF DF +=,所以90FCD ∠=︒,所以30FDC ∠=︒,所以90ADC ∠=︒,所以AD CD ⊥,又1AD DD D = ,1,AD DD ⊂平面11ADD A ,所以CD ⊥平面11ADD A ,又CD ⊂平面ABCD ,所以平面11ADD A ⊥平面ABCD ;【小问3详解】延长,AD BC 交于N ,可得ABN 是等边三角形,过1A 作1A M AD ⊥于M ,由(1)可知//EF 平面1A BC ,所以三棱锥1E A BC -的体积即为三棱锥1F A BC -的体积,又三棱锥1F A BC -的体积等于三棱锥1A BCF -的体积,由(2)可知平面11ADD A ⊥平面ABCD ,且两平面的交线为AD ,所以AM ⊥平面ABCD ,所以111111331133223B F BCF A C V S A M A M -==⨯⨯⨯⨯= ,解得14A M =,过M 作MH BN ⊥于H ,连接1A H ,AM ⊥平面ABCD ,BN ⊂平面ABCD ,所以AM BN ⊥,又1HM A M M ⋂=,1,HM A M ⊂平面1A MH ,所以BN ⊥平面1A MH ,又1A H ⊂平面1A MH ,1BN A H ⊥,所以1A HM ∠为平面1A BC 与平面ABCD 所成二面角的平面角,若12A AD π∠<,则点M 在线段AD 上,且为AD 中点,又117AA =,由勾股定理可得1AM =,所以2MN =,所以3MH =131619A H =+=,所以1357cos 1919A HM ∠==,所以平面1A BC 与平面ABCD 的夹角的余弦值为5719;若12A AD π∠>,则点M 在线段DA 延长线上,此时13,7MH A H ==,11321cos 727MH A HM A H ∠===.。
二项式定理(1)
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
人教A版数学高二弧度制精选试卷练习(含答案)2
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
高考数学一轮总复习专题2.6对数及对数函数练习(含解析)文(2021年整理)
专题2.6 对数及对数函数真题回放1. 【2017高考天津文第6题】已知奇函数在上是增函数.若,则的大小关系为 (A )(B )(C )(D ) 【答案】【考点】1。
指数,对数;2.函数性质的应用【名师点睛】本题主要考查函数的奇偶性与指数、对数的运算问题,属于基础题型,首先根据奇函数的性质和对数运算法则,,再比较比较大小。
2.【2017高考全国卷文第9题】已知函数,则 A . 在(0,2)单调递增B .在(0,2)单调递减C .y =的图像关于直线x =1对称D .y =的图像关于点(1,0)对称【答案】C 【解析】试题分析:由题意知,,所以的图象关于直线对称,C 正确,D 错误;又(),在上单调递增,在上单调递减,A ,B 错误,故选C .【考点】函数性质【名师点睛】如果函数,,满足,恒有 ()f x R0.8221(l o g ),(l o g 4.1),(2)5a f b f cf =-==,,abca b c <<b a c <<c b a <<c a b <<C()2l o g5a f =0.822l o g 5,l o g 4.1,2()l nl n (2)fx x x =+-()f x ()f x ()f x ()f x (2)l n (2)l n()fx x x f x -=-+=()f x 1x =112(1)'()2(2)x f x x x x x -=-=--02x <<(0,1)[1,2)()f x x D ∀∈x D ∀∈()()fa x fb x +=-,那么函数的图象有对称轴;如果函数,,满足,恒有,那么函数的图象有对称中心.3。
【2017高考全国卷文第8题】函数的单调递增区间是 A 。
B. C 。
D.【答案】D4。
【2015高考上海卷文第8题】 方程的解为 。
【答案】2【解析】依题意,所以, 令,所以,解得或, 当时,,所以,而,所以不合题意,舍去; 当时,,所以,,,所以满足条件,所以是原方程的解. 【考点定位】对数方程。
高一数学下学期第二次月考试题(新版)人教版
—————————— 新学期 新成绩 新目标 新方向 ——————————2019学年高一数学下学期第二次月考试题A.n a =n a = C. n a = D. n a =2.在等比数列{a n }中,1a =﹣3,2a =﹣6,则4a 的值为( ) A .﹣24 B .24 C .±24 D .﹣12 3.已知{n a }为等差数列,2812a a +=,则5a 等于( ) A .4 B .5 C .6 D .75.已知ABC ∆的面积为2,且2,AC AB ==A ∠等于( ) A. 30 B. 30150或 C. 60 D.60120或6.在△ABC 中,如果4:3:2sin :sin :sin =C B A ,那么C cos 等于( )A32 B 32- C 31- D 41- 7.某储蓄所计划从2004年底起,力争做到每年的吸蓄量比前一年增加8%,则到2007年底该蓄所的吸蓄量比2004年的吸蓄量增加( )A .24%B .32%C .(308.1-1)100%D .(408.1-1)100%10.两等差数列{a n }和{b n }的前n 项和分别是S n 、T n ,已知S n T n =7n n +3,则a 5b 5=( ) A .7B.23C.278D.21413.已知△ABC 中,2a =,=b ,1c =,则cos B = . 14. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是 .三、解答题:本大题共6小题,共70分.18.(12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c 且cos 3cos C a cB b-=. (1)求sin B ;(2)若b a c ==,求ABC ∆的面积.19.(本小题满分12分) 在ABC ∆中,已知45B =︒,D 是BC 边上的一点,10AD =,14AC =,6DC =.(1)求ADC ∠的大小;(2)求AB 的长.20.(本小题满分12分) 已知数列{}n a 的前n 项和224n n S +=-.(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 满足73b a =,154b a =,求数列{}n b 的前n 项和n T .21.(本小题满分12分)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块,计划把图中矩形ABCD 建设为仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、D 分别在边AM 、AN 上,假设AB 的长度为x 米.(1)求矩形ABCD 的面积S 关于x 的函数解析式;(2)要使仓库占地ABCD 的面积不少于144平方米,则AB 的长度应在什么范围内?22.(10分)在数列{a n }中,a 1=12,其前n 项和为S n ,且S n =a n +1-12(n ∈N *).(1)求a n ,S n ;(2)设b n =log 2(2S n +1)-2,数列{c n }满足c n ·b n +3·b n +4=1+(n +1)(n +2)·2n b,数列{c n }的前n 项和为T n ,求使4T n >2n +1-1504成立的最小正整数n 的值.A.n a =n a = C. n a =n a =2.在等比数列{a n }中,1a =﹣3,2a =﹣6,则4a 的值为( A ) A .﹣24 B .24 C .±24 D .﹣12 3.已知{n a }为等差数列,2812a a +=,则5a 等于( C ) A .4 B .5 C .6 D .75.已知ABC ∆的面积为2,且2,AC AB ==A ∠等于( D ) A. 30 B. 30150或C. 60D.60120或6.在△ABC 中,如果4:3:2sin :sin :sin =C B A ,那么C cos 等于(D )A32 B 32- C 31- D 41- 7.某储蓄所计划从2004年底起,力争做到每年的吸蓄量比前一年增加8%,则到2007年底该蓄所的吸蓄量比2004年的吸蓄量增加( C )A .24%B .32%C .(308.1-1)100%D .(408.1-1)100%8.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0x +y ≤1x +2y ≥1,则目标函数z =5x +y 的最大值为( D )A .2B .3C .4D .5解析:如图所示,由图象可知目标函数z =5x +y 过点A (1,0)时,z 取得最大值,z max =5,故选D.的等比中项,则1a +1b的最小值为的等比中项, +b =1.⎭⎪⎫a b ≥2+2=4(当且仅当10.两等差数列{a n }和{b n }的前n 项和分别是S n 、T n ,已知n T n =7n +3,则5b 5=( D )A .7B.23C.278D.214所对的边分别是a ,b ,c .若3a =sin 2A =2⎝ ⎛⎭⎪⎫sinB sin A 2-1=213.已知△ABC 中,2a =,=b ,1c =,则cos B = 34.14. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是 20 .三、解答题:本大题共6小题,共70分.⎨⎪⎧x -x -,x -2≠0,∴原不等式的解集是{x |x <2或x ≥5}.18.(12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c 且cos B b=. (1)求sin B ;(2)若b a c ==,求ABC ∆的面积.18. (1)在ABC ∆中,由正弦定理及cos 3cos C a c B b-=,可得B CA B C sin sin sin 3cos cos -= 即B A C B C B cos sin 3sin cos cos sin =+化简得C B C B cos sin 3)sin(=+ 又B C A π+=-,所以sin()sin B C A +=∴B A A cos sin 3sin =,又因为sin 0A ≠∴31cos =B ,又因为0B π<<∴sin 3B ===(2)由余弦定理得222cos 2a c b B ac +-=,将13b B ==代入得222323a c ac +-=又a c =,故22432243c c =⇒=∴28sin 21sin 212===∆B c B ac S ABC . 19.(本小题满分12分) 在ABC ∆中,已知45B =︒,D 是BC 边上的一点,10AD =,14AC =,6DC =.(1)求ADC ∠的大小;(2)求AB 的长.19. (12分) 解: 222106141cos 21062ADC +-∠==-⨯⨯0ADC π<∠< 23ADC π∴∠=(2)由(1)可知:3ADB ADC ππ∠=-∠=10sinsin34ABππ=AB ∴=20.(本小题满分12分) 已知数列{}n a 的前n 项和224n n S +=-.(1)求数列{}n a 的通项公式;(2)设等差数列{}n b 满足73b a =,154b a =,求数列{}n b 的前n 项和n T . 20.(12分)解 (1)224n n S +=- ∴当1,n = 311244a S ==-=当2,n ≥ 2111(24)(24)2n n n n n n a S S +++-=-=---= (2)n ≥ 经检验:2124,a == 1*2(1,)n n a n n N +∴=≥∈(2)等差数列{}n b7316b a ∴==, 1547328b a b d ===+, 2d ∴=1764b b d ∴=-= 23n T n n ∴=+21.(本小题满分12分)某物流公司购买了一块长AM =30米,宽AN =20米的矩形地块,计划把图中矩形ABCD 建设为仓库,其余地方为道路和停车场,要求顶点C 在地块对角线MN 上,B 、22.(10分)在数列{a n }中,a 1=2,其前n 项和为S n ,且S n =a n +1-2(n ∈N *). (1)求a n ,S n ;(2)设b n =log 2(2S n +1)-2,数列{c n }满足c n ·b n +3·b n +4=1+(n +1)(n +2)·2n b,数列{c n }的前n 项和为T n ,求使4T n >2n +1-1504成立的最小正整数n 的值. 22. (1)由112n n S a +=-,得S n -1=a n -12(n ≥2), 两式作差得a n =a n +1-a n ,即2a n =a n +1(n ≥2),∴12(2)n na n a +=≥, 由a 1=S 1=a 2-12=12,得a 2=1,∴ 212a a =,∴数列{a n }是首项为12,公比为2的等比数列.则a n =12·2n -1=2n -2,S n=a n +1-12=2n-1-12. (2)b n =log 2(2Sn +1)-2=log 22n-2=n -2,∴c n ·b n +3·b n +4=1+(n +1)(n +2)·2n b, 即c n (n +1)(n +2)=1+(n +1)(n +2)·2n -2,∴c n =+2n -2=-+2n -2,∴T n =(-)+(-)+…+(-)+(2-1+20+…+2n -2)=-+=--+2n -1=2n -1-.由4T n>2n+1-,得4(2n-1-)>2n+1-.即<,n>2 014. ∴使4T n>2n+1-成立的最小正整数n的值为2 015.。
2023-2024学年天津市一中高一数学(下)第二次月考试卷附答案解析
2023-2024学年天津市一中高一数学(下)第二次月考试卷试卷满分150分,考试时间120分钟.一.选择题(共12小题)1.如图,在复平面内,复数z 1,z 2对应的点分别为Z 1,Z 2,则复数z 1•z 2的虚部为()A .﹣iB .﹣1C .﹣3iD .﹣32.采用简单随机抽样的方法,从含有5个个体的总体中抽取一个容量为2的样本,某个个体被抽到的概率为()A .B .C .D .3.某中学高一年级有学生1200人,高二年级有学生1000人,高三年级有学生800人,现在要用分层随机抽样的方法从三个年级中抽取m 人参加表演,若高二年级被抽取的人数为20,则m =()A .50B .60C .64D .754.已知m ,n 是两条不同的直线,α,β是两个不同的平面,则下列四个命题中正确的是()A .若m ∥α,m ∥β,α∩β=n ,则m ∥n B .若m ∥n ,n ⊂α,则m ∥αC .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥βD .若m ⊥α,m ⊥n ,则n ⊥α5.为激发中学生对天文学的兴趣,某校举办了“2022~2023学年中学生天文知识竞赛”,并随机抽取了200名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是()A .直方图中x 的值为0.035B .估计全校学生的平均成绩不低于80分C.估计全校学生成绩的样本数据的60百分位数约为60分D.在被抽取的学生中,成绩在区间[60,70)的学生数为106.抛掷三枚质地均匀的硬币,观察它们落地时朝上的面的情况,“既有正面向上,也有反面向上”的概率为()A.B.C.D.7.如图,在直三棱柱ABD﹣A1B1D1中,AB=AD=AA1,∠ABD=45°,P为B1D1的中点,则直线PB 与AD1所成的角为()A.30°B.45°C.60°D.90°8.已知向量,则向量在向量方向上的投影向量是()A.B.C.D.9.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是()A.“至少有1个红球”与“都是黑球”B.“恰好有1个红球”与“恰好有1个黑球”C.“至少有1个黑球”与“至少有1个红球”D.“都是红球”与“都是黑球”10.若数据x1+m、x2+m、⋯、x n+m的平均数是5,方差是4,数据3x1+1、3x2+1、⋯、3x n+1的平均数是10,标准差是s,则下列结论正确的是()A.m=2,s=6B.m=2,s=36C.m=4,s=6D.m=4,s=3611.已知△ABC的内角A,B,C所对的边分别为a,b,c,下列说法中不正确的是()A.a=2,A=30°,则△ABC的外接圆半径是2B.在锐角△ABC中,一定有sin A>cos BC.若a cos A=b cos B,则△ABC一定是等腰直角三角形D.若sin B cos A>sin C,则△ABC一定是钝角三角形12.已知正四棱锥P﹣ABCD的侧棱长为2,且二面角P﹣AB﹣C的正切值为,则它的外接球表面积为()A.B.6πC.8πD.二.多选题(共1小题)(多选)13.在棱长为1正方体ABCD﹣A1B1C1D1中,点P为线段CC1上异于端点的动点,()A.三角形D1BP面积的最小值为B.直线D1B与DP所成角的余弦值的取值范围为C.二面角A1﹣BD﹣P的正弦值的取值范围为D.过点P作平面α,使得正方体的每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的取值范围为三.填空题(共7小题)14.在△ABC中,三个内角A,B,C的对边分别为a,b,c.若,则b =.15.将一枚质地均匀的骰子连续抛掷2次,向上的点数分别记为a,b,则事件“|a﹣b|≤1”的概率为.16.某射击运动员在一次射击测试中,射靶10次,每次命中的环数如下:7,5,9,8,9,6,7,10,4,7,记这组数的众数为M,第75百分位数为N,则M+N=.17.在梯形ABCD中,AB∥DC,DC=2AB,E为AD中点,若,则λ+μ=.18.已知三棱锥的三个侧面两两垂直,且三个侧面的面积分别是,,1,则此三棱锥的外接球的体积为;此三棱锥的内切球的表面积为.19.如图,直三棱柱ABC﹣A1B1C1的侧棱长为1,底面ABC为直角三角形,AB=AC=1,∠BAC=90°.则二面角B1﹣AC﹣B的大小为;点A到平面BCC1B1的距离等于.20.已知非零向量与满足,且,点D是△ABC的边AB上的动点,则的最小值为.四.解答题(共4小题)21.已知向量=(1,1),=(﹣1,2),=(2,﹣1).(Ⅰ)求|++|的值;(Ⅱ)设向量=+2,=﹣2,求向量与夹角的余弦值.22.经调查某市三个地区存在严重的环境污染,严重影响本地区人员的生活.相关部门立即要求务必加强环境治理,通过三个地区所有人员的努力,在一年后,环境污染问题得到了明显改善.为了解市民对城市环保的满意程度,开展了一次问卷调查,并对三个地区进行分层抽样,共抽取40名市民进行询问打分,将最终得分按[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]分段,并得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值,以及此次问卷调查分数的中位数;(2)若分数在区间[60,70)的市民视为对环保不满意的市民,从不满意的市民中随机抽出两位市民做进一步调查,求抽出的两位市民来自不同打分区间的概率.23.如图,四边形ABCD是矩形,AD=2,DC=1,AB⊥平面BCE,BE⊥EC,EC=1.点F为线段BE 的中点.(I)求证:CE⊥平面ABE;(Ⅱ)求证:DE∥平面ACF;(Ⅲ)求AC和平面ABE所成角的正弦值.24.如图,在△ABC中,AB=2,3a cos B﹣b cos C=c cos B,点D在线段BC上.(Ⅰ)若∠ADC=,求AD的长;(Ⅱ)若BD=2DC,△ACD的面积为,求的值.参考答案与试题解析一.选择题(共12小题)1.如图,在复平面内,复数z1,z2对应的点分别为Z1,Z2,则复数z1•z2的虚部为()A.﹣i B.﹣1C.﹣3i D.﹣3【解答】解:如图,在复平面内,复数z1,z2对应的点分别为Z1,Z2,则Z1=1+2i,Z2=﹣2+i,∴复数z1•z2=(1+2i)(﹣2+i)=﹣2﹣4i+i+2i2=﹣4﹣3i,∴复数z1•z2的虚部为﹣3.故选:D.2.采用简单随机抽样的方法,从含有5个个体的总体中抽取一个容量为2的样本,某个个体被抽到的概率为()A.B.C.D.【解答】解:根据抽样原理知,每个个体被抽到的概率是相等的,所以所求的概率值为P=.故选:D.3.某中学高一年级有学生1200人,高二年级有学生1000人,高三年级有学生800人,现在要用分层随机抽样的方法从三个年级中抽取m人参加表演,若高二年级被抽取的人数为20,则m=()A.50B.60C.64D.75【解答】解:根据分层随机抽样中抽取比例相同,得=,解得m=60.故选:B.4.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列四个命题中正确的是()A.若m∥α,m∥β,α∩β=n,则m∥nB.若m∥n,n⊂α,则m∥αC.若α⊥β,α∩β=n,m⊥n,则m⊥βD.若m⊥α,m⊥n,则n⊥α【解答】解:对于A,若m∥α,m∥β,过m作平面与α,β分别交于直线a,b,由线面平行的性质得m∥a,m∥b,所以a∥b,又b⊂β,a⊄β,所以a∥β,又n⊂α,α∩β=n,所以a∥n,所以m∥n.故A正确;对于B,若m∥n,n⊂α,则m∥α或m⊂a,故B错误;对于C,由面面垂直的性质定理得当m⊂a时,m⊥β,否则可能不成立,故C错误;对于D,若m⊥α,m⊥n,则n∥α或n⊂α,故D错误.故选:A.5.为激发中学生对天文学的兴趣,某校举办了“2022~2023学年中学生天文知识竞赛”,并随机抽取了200名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是()A.直方图中x的值为0.035B.估计全校学生的平均成绩不低于80分C.估计全校学生成绩的样本数据的60百分位数约为60分D.在被抽取的学生中,成绩在区间[60,70)的学生数为10【解答】解:对于A,因为(0.005+0.010+0.015+x+0.040)×10=1,所以x=0.03,故A错误;对于B,估计全校学生的平均成绩为55×0.05+65×0.1+75×0.15+85×0.3+95×0.4=84>80,故B正确;对于C,因为0.05+0.1+0.15+0.3=0.6,所以估计全校学生成绩的样本数据的60百分位数约为90分,故C错误;对于D,在被抽取的学生中,成绩在区间[60,70)的学生数为0.010×10×200=20,故D错误.故选:B.6.抛掷三枚质地均匀的硬币,观察它们落地时朝上的面的情况,“既有正面向上,也有反面向上”的概率为()A.B.C.D.【解答】解:抛掷三枚质地均匀的硬币,观察它们落地时朝上的面的情况:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(反,反,正),(反,正,反),(正,反,反),(反,反,反),共有8种不同的结果,既有正面向上,也有反面向上情况:(正,正,反),(正,反,正),(反,正,正),(反,反,正),(反,正,反),(正,反,反),有6种不同的结果,所以,既有正面向上,也有反面向上的概率为.故选:D.7.如图,在直三棱柱ABD﹣A1B1D1中,AB=AD=AA1,∠ABD=45°,P为B1D1的中点,则直线PB 与AD1所成的角为()A.30°B.45°C.60°D.90°【解答】解:取BD中点E,连接ED1,AE,直三棱柱ABD﹣A1B1D1中,AB=AD=AA1,∠ABD=45°,P为B1D1的中点,∴PD1∥BE,PD1=BE,∴四边形BED1P是平行四边形,∴PB∥D1E,∴∠AD1E是直线PB与AD1所成的角(或所成角的补角),令AB=AD=AA1=2,则∠ADB=45°,且AE⊥BD,∴AE=,∵AD1=2,D1E=,∴cos∠AD1E==,∵∠AD1E∈(0,π),∴∠AD1E=,∴直线PB与AD1所成的角为.故选:A.8.已知向量,则向量在向量方向上的投影向量是()A.B.C.D.【解答】解:因为向量,所以向量在向量方向上的投影向量是.故选:A.9.从装有2个红球和2个黑球的袋子内任取2个球,下列选项中是互斥而不对立的两个事件的是()A.“至少有1个红球”与“都是黑球”B.“恰好有1个红球”与“恰好有1个黑球”C.“至少有1个黑球”与“至少有1个红球”D.“都是红球”与“都是黑球”【解答】解:从装有2个红球和2个黑球的袋子内任取2个球,对于A,“至少有1个红球”与“都是黑球”是对立事件,故A错误;对于B,恰好有1个红球”与“恰好有1个黑球”能同时发生,不是互斥事件,故B错误;对于C,“至少有1个黑球”与“至少有1个红球”,能同时发生,不是互斥事件,故C错误;对于D,“都是红球”与“都是黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故D正确.故选:D.10.若数据x1+m、x2+m、⋯、x n+m的平均数是5,方差是4,数据3x1+1、3x2+1、⋯、3x n+1的平均数是10,标准差是s,则下列结论正确的是()A.m=2,s=6B.m=2,s=36C.m=4,s=6D.m=4,s=36【解答】解:根据题意,设数据x1、x2、⋯、x n的平均数为,标准差为σ,数据3x1+1、3x2+1、⋯、3x n+1的平均数是10,则,可得,而数据x1+m、x2+m、⋯、x n+m的平均数是5,则有,可得m=2,由方差公式可得=,=,解得s=6.故选:A.11.已知△ABC的内角A,B,C所对的边分别为a,b,c,下列说法中不正确的是()A.a=2,A=30°,则△ABC的外接圆半径是2B.在锐角△ABC中,一定有sin A>cos BC.若a cos A=b cos B,则△ABC一定是等腰直角三角形D.若sin B cos A>sin C,则△ABC一定是钝角三角形【解答】解:对于A,在△ABC中,设△ABC的外接圆半径是R,则根据正弦定理可得,故A正确;对于B,若△ABC为锐角三角形,可得且,可得,且,根据正弦函数的单调性,可得,所以sin A>cos B,故B正确;对于C:因为a cos A=b cos B,由正弦定理得:sin A cos A=sin B cos B,所以sin2A=sin2B,因为A,B为△ABC的内角,所以2A=2B或2A+2B=π,所以A=B或,所以△ABC是等腰三角形或直角三角形,故C错误;对于D,若sin B cos A>sin C,则sin B cos A>sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B<0,又sin A>0,所以cos B<0,则△ABC一定是钝角三角形,故D正确.故选:C.12.已知正四棱锥P﹣ABCD的侧棱长为2,且二面角P﹣AB﹣C的正切值为,则它的外接球表面积为()A.B.6πC.8πD.【解答】解:设正方形ABCD中心为O,取AB中点H,连接PO、PH、OH,则PH⊥AB,OH⊥AB,PO⊥平面ABCD,所以∠PHO为二面角P﹣AB﹣C的平面角,即,设正方形ABCD的边长为a(a>0),则,又,PA=2,所以PO2+AO2=PA2,即,解得或a=﹣(负值舍去),则,AO=1,设球心为G,则球心在直线PO上,设球的半径为R,则,解得,所以外接球的表面积.故选:A.二.多选题(共1小题)(多选)13.在棱长为1正方体ABCD﹣A1B1C1D1中,点P为线段CC1上异于端点的动点,()A.三角形D1BP面积的最小值为B.直线D1B与DP所成角的余弦值的取值范围为C.二面角A1﹣BD﹣P的正弦值的取值范围为D.过点P作平面α,使得正方体的每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的取值范围为【解答】解:对于A,要使三角形D1BP面积的最小,即要使得P到直线BD1距离最小,这最小距离就是异面直线CC1和BD1的距离,也就是直线CC1到平面BDD1B1的距离,等于C到BD的距离为.由于,∴三角形D1BP面积的最小值为,故A正确;对于B,先证明一个引理:直线a在平面M中的射影直线为b,平面M中的直线c,直线a,b,c所成的角的余弦值满足三余弦定理,直线a,b的角为α,直线b,c的角为β,直线a,c的角为γ,则cosγ=cosαcosβ.证明:如上图,在平面M内任意取一点O为原点,取两条射线分别为x,y轴,得到坐标平面xOy,然后从O作与平面M垂直的射线作为z轴,建立空间直角坐标系,设直线a的方向向量为(x1,y1,z1),则(x1,y1,0)为射影直线b的方向向量,设直线c的方向向量坐标为(x2,y2,0),则,,∴,=,引理得证.如上图所示,根据正方体的性质可知BD1在平面DC1中的射影为CD1,设BD1与CD1所成的角为,设直线DP与直线CD1所成的角为.设直线D1B与DP所成角为γ,根据上面的引理,可得,故B正确;对于C,如上图所示,设AC、BD交点为M,连接A1M,PM,由正方体性质易知BD⊥AC,BD⊥AA1,AC∩AA1=A,AC,AA1⊂平面ACC1A1∴BD⊥平面ACC1A1,故BD⊥A1M,BD⊥MP,∠A1MP为二面角A1﹣BD﹣P的平面角,当P与C1重合时,∠A1MC1=π﹣2∠A1MA,,∴,∴,P在C1C上从下往上移动时,∠A1MC1逐渐变大,∠A1MC1是可以是直角,其正弦值为1,故C错误;对于D,因为过正方体顶点与各棱所成的角都相等的直线是体对角线所在的直线,∴过点P的平面与各棱所成的角相等必须且只需与某一条体对角线垂直,过P与对角线BD1垂直的截面中,当P为CC1中点时取得最大值,是一个边长为的正六边形,如图所示,面积为,不在区间内,故D不正确.故选:AB.三.填空题(共7小题)14.在△ABC中,三个内角A,B,C的对边分别为a,b,c.若,则b=.【解答】解:由正弦定理,即,解得.故答案为:.15.将一枚质地均匀的骰子连续抛掷2次,向上的点数分别记为a,b,则事件“|a﹣b|≤1”的概率为.【解答】解:将一枚质地均匀的骰子连续抛掷2次,向上的点数分别记为a,b,基本事件总数n=6×6=36,事件“|a﹣b|≤1”包含的基本事件(a,b)有15个,分别为:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),则事件“|a﹣b|≤1”的概率为P==.故答案为:.16.某射击运动员在一次射击测试中,射靶10次,每次命中的环数如下:7,5,9,8,9,6,7,10,4,7,记这组数的众数为M,第75百分位数为N,则M+N=16.【解答】解:由已知数据可得众数为7,即M=7,将10个数据按从小到大排列可得4,5,6,7,7,7,8,9,9,10,因为10×75%=7.5,所以第75百分位数为从小到大排列的第8个数,所以N=9,所以M+N=7+9=16,故答案为:16.17.在梯形ABCD中,AB∥DC,DC=2AB,E为AD中点,若,则λ+μ=.【解答】解:因为AB∥DC,DC=2AB,E为AD中点,所以==(+)=﹣=若,则λ=﹣,μ=﹣2,所以λ+μ=﹣.故答案为:.18.已知三棱锥的三个侧面两两垂直,且三个侧面的面积分别是,,1,则此三棱锥的外接球的体积为;此三棱锥的内切球的表面积为.【解答】解:①已知三棱锥的三个侧面两两垂直,且三个侧面的面积分别是,,1,如图所示:即,S△BOC=1,故AO,BO,CO两两垂直;所以BO=CO,故,整理得CO=BO=,所以,解得AO=,所以三棱锥的外接球的半径满足,解得,即R=,故.②首先利用OC=OB=,OA=,利用勾股定理,BC=2,所以,利用等体积转换法,设内切球的半径为r,所以,解得,故.19.如图,直三棱柱ABC﹣A1B1C1的侧棱长为1,底面ABC为直角三角形,AB=AC=1,∠BAC=90°.则二面角B1﹣AC﹣B的大小为45°;点A到平面BCC1B1的距离等于.【解答】解:直三棱柱ABC﹣A1B1C1中,∵∠BAC=90°,∴CA⊥平面ABB1A1,∴∠B1AB就是二面角B1﹣AC﹣B的平面角.Rt△B1AB中,tan∠B1AB===1,∴∠B1AB=45°.取等腰直角三角形ABC的斜边BC的中点D,则AD⊥平面BCC1B1,故AD即为所求.故AD===,故答案为45°,.20.已知非零向量与满足,且,点D是△ABC的边AB上的动点,则的最小值为.【解答】解:分别表示与方向的单位向量,故所在直线为∠BAC的平分线所在直线,又,故∠BAC的平分线与BC垂直,由三线合一得到AB=AC,取BC的中点E,因为,故,以E为坐标原点,BC所在直线为x轴,EA所在直线为y轴,建立平面直角坐标系,则,设,,则,当时,取得最小值,最小值为.故答案为:.四.解答题(共4小题)21.已知向量=(1,1),=(﹣1,2),=(2,﹣1).(Ⅰ)求|++|的值;(Ⅱ)设向量=+2,=﹣2,求向量与夹角的余弦值.【解答】解:(Ⅰ)∵=(1,1),=(﹣1,2),=(2,﹣1).∴,∴(Ⅱ)设向量与的夹角为θ,∵,,∴,,∴cosθ==22.经调查某市三个地区存在严重的环境污染,严重影响本地区人员的生活.相关部门立即要求务必加强环境治理,通过三个地区所有人员的努力,在一年后,环境污染问题得到了明显改善.为了解市民对城市环保的满意程度,开展了一次问卷调查,并对三个地区进行分层抽样,共抽取40名市民进行询问打分,将最终得分按[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]分段,并得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值,以及此次问卷调查分数的中位数;(2)若分数在区间[60,70)的市民视为对环保不满意的市民,从不满意的市民中随机抽出两位市民做进一步调查,求抽出的两位市民来自不同打分区间的概率.【解答】解:(1)由题意,5×(0.010+0.020+a+0.060+0.050+0.020)=1,解得a=0.040,由0.010×5+0.020×5+0.040×5=0.35,0.35+0.060×5=0.65,可得此次问卷调查分数的中位数在[75,80)上,设中位数为x,则0.35+0.06(x﹣75)=0.5,解得x=77.5,所以此次问卷调查分数的中位数为77.5;(2)[60,65)的市民人数为0.010×5×40=2人,[65,70)的市民人数为0.020×5×40=4人,则抽出的两位市民来自不同打分区间的概率为P==.23.如图,四边形ABCD是矩形,AD=2,DC=1,AB⊥平面BCE,BE⊥EC,EC=1.点F为线段BE 的中点.(I)求证:CE⊥平面ABE;(Ⅱ)求证:DE∥平面ACF;(Ⅲ)求AC和平面ABE所成角的正弦值.【解答】(Ⅰ)证明:如图,由AB⊥平面BCE,可得AB⊥CE,又由BE⊥EC,而AB∩BE=B,AB⊂平面ABE,BE⊂平面ABE,故CE⊥平面ABE;(Ⅱ)证明:连结BD交AC于M,连结FM,由点F为线段BE的中点,可得FM∥DE,而FM⊂平面ACF,DE⊄平面ACF,故DE∥平面ACF;(Ⅲ)解:由(Ⅰ)知,CE⊥平面ABE,∠CAE即为AC和平面ABE所成的角.由已知,AC=,CE=1,在直角三角形ACE中,可得sin∠CAE=.即AC和平面ABE所成角的正弦值为.24.如图,在△ABC中,AB=2,3a cos B﹣b cos C=c cos B,点D在线段BC上.(Ⅰ)若∠ADC=,求AD的长;(Ⅱ)若BD=2DC,△ACD的面积为,求的值.【解答】(本小题满分12分)解:(Ⅰ)∵3a cos B﹣b cos C=c cos B,∴3sin A cos B=sin C cos B+sin B cos C,3sin A cos B=sin(B+C),∵B+C=π﹣A,∴3sin A cos B=sin A,∵A∈(0,π),∴sin A>0,.…(2分)∵B∈(0,π),∴.…(3分)∵,∴,在△ABD中,由正弦定理得,,∴,.…(6分)(Ⅱ)设DC=a,则BD=2a,∵BD=2DC,△ACD的面积为,∴,∴,∴a=2.…(8分)∴,由正弦定理可得,∴sin∠BAD=2sin∠ADB,,∴,∵sin∠ADB=sin∠ADC,∴.…(12分)。
人教版数学高一第三章直线与方程单元测试精选(含答案)3
d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
高一数学上学期第一次月考试题(B卷)-人教版高一全册数学试题
2016-2017学年度万全中学第一次月考卷数学试卷(B 卷)考试X 围:第一章;考试时间:120分钟;注意事项:1.答题前填写好自己的某某、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题【共12个小题,每个题4分,共计48分】 1.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{}1y y x N ==-,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,2 2.满足条件M ∪{1}={1,2,3}的集合M 的个数是( ) A .1 B .2 C .3 D .43.设全集U ={1,2,3,4},集合S ={1,3},T ={4},则等于( )A 、{2,4}B 、{4}C 、ΦD 、{1,3,4}4.已知全集R U =,{}{}1,0)3(-<=<+=x x M x x x N ,则图中阴影部分表示的集合是( )A .{}13-<<-x x B.{}03<<-x x C.{}01<≤-x x D.{}3-<x5.设集合2{|1}P x x ==,那么集合P 的真子集个数是() A .3 B .4 C .7 D .86.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A .﹣1 B .0 C .1 D .27.定义在R 上的函数()f x 对任意两个不相等实数,a b ,则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 8.已知函数f(x)为奇函数,且当x>0时, f(x) =x 2f(-1)=( ) A .-2 B .0 C .1 D .29.下列函数中,既是奇函数又是增函数的为( ) A .1y x =+B .3y x =- C.||y x x = 10.若11x -≤≤时,函数()21f x ax a =++的值有正值也有负值,则a 的取值X 围是( )A .13a ≥-B .1a ≤-C .113a -<<-D .以上都不对 11.已知函数)(x f y =在R 上是增函数,且(21)(34)f m f m +>-,则m 的取值X 围是( ) A .(-)5,∞B .(5,)+∞C12.若定义在R 上的偶函数()f x 对任意12,[0,)∈+∞x x 12()≠x x ,有A .(3)(2)(1)<-<f f fB .(1)(2)(3)<-<f f fC .(1)(3)(2)<<-f f fD .(2)(3)(1)-<<f f f第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题【每小题4分,共计16分】13.已知全集U =R ,集合A ={x|x ≤-2,x ∈R},B ={x|x <1,x ∈R},则(∁U A)∩B =.14.已知集合}012|{2=+-=x ax x A 有且只有一个元素,则a 的值的集合..(.用列举法表示......).是. 15.2()24f x x x =-+的单调减区间是.16.若函数2122+-+=x )a (x y ,在(]4,∞-上是减少的,则a 的取值X 围是三、解答题17,18题每题10分,19,20,21每题12分,写出必要的解题和证明步骤。
人教版数学高一下册期末测试精选(含答案)2
B.若 , ,则
C.若 // , m ,则 m / /
D.若 m , ,n / / ,则 m n
【来源】广西梧州市 2019-2020 学年高一上学期期末数学试题 【答案】C
16.已知圆 x a2 y2 1 与圆 x2 y b2 1外切,则( ).
A. a2 b2 4
32.已知点 A(2, a) ,圆 C : (x 1)2 y2 5
(1)若过点 A 只能作一条圆 C 的切线,求实数 a 的值及切线方程; (2)设直线 l 过点 A 但不过原点,且在两坐标轴上的截距相等,若直线 l 被圆 C 截得
的弦长为 2 3 ,求实数 a 的值.
【来源】江西省宜春市上高县上高二中 2019-2020 学年高二上学期第三次月考数学(理) 试题
【答案】B
7.如图,四边形 ABCD 和 ADEF 均为正方形,它们所在的平面互相垂直,动点 M 在 线段 AE 上,设直线 CM 与 BF 所成的角为 ,则 的取值范围为( )
A.
0,
3
B.
0,
π 3
C.
0,
2
D.
0,
2
【来源】四川省乐山市 2019-2020 学年高二上学期期末数学(文)试题
6
a
1 3
,则
cos
2 3
2a
()
A. 7 9
B. 1 3
1
C.
3
7
D.
9
【来源】河北省石家庄市第二中学 2018-2019 学年高二第二学期期末考试数学(理)试
题
【答案】A
13.已知圆 C 被两直线 x y 1 0 , x y 3 0 分成面积相等的四部分,且截 x 轴
徐州二中2016-2017学年高一下学期3月月考数学试卷 含解析
2016—2017学年江苏省徐州二中高一(下)3月月考数学试卷一、填空题1.求值sin75°=.2.已知α∈(0,),cos α=,则cos(α+)= .3.在△ABC中,a=,b=1,c=2,则A等于.4.在△ABC中,a=3,b=4,sin A=,则sin B= .5.在△ABC中,A=,AB=2,且△ABC的面积为,则边AC的长为.6.若角α的终边经过点P(1,﹣2),则tan2α的值为.7.已知△ABC,sin A:sin B:sin C=1:1:,则此三角形的最大内角的度数是.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且2c2=2a2+2b2+ab,则△ABC的形状是三角形.(填“直角”、“钝角”或“锐角”等)9.计算:= .10.如图所示,D,C,B三点在地面的同一直线上,DC=a,从C,D两点测得A点的仰角分别为60°,30°,则A点离地面的高度AB 等于.11.计算:tan(18°﹣x)tan(12°+x)+[tan(18°﹣x)+tan(12°+x)].12.在△ABC中,a,b,c分别是角A,B,C的对边,若b=1,c=,∠C=π,则S△ABC= .13.设α为锐角,若cos(α+)=,则sin(2α+)的值为.14.在△ABC中,B=60°,AC=,则AB+2BC的最大值为.二、解答题15.已知sinα=,α∈(,π),cosβ=﹣,β∈(π,),求sin(α+β)的值.16.在△ABC中,根据条件判断三角形形状(1)==;(2)sinA=2sinBcosC.17.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.18.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求β.19.己知函数三个内角A,B,C的对边分别为a,b,c,且f(B)=1.(I)求角B的大小;(II)若,求c的值.20.设向量=(sinx,sinx),=(cosx,sinx),x∈[0,].(1)若||=||,求x的值;(2)设函数f(x)=•,求f(x)的最大值及单调递增区间.2016-2017学年江苏省徐州二中高一(下)3月月考数学试卷参考答案与试题解析一、填空题1.求值sin75°=.【考点】两角和与差的正弦函数.【分析】把75°变为45°+30°,然后利用两角和的正弦函数公式化简后,再利用特殊角的三角函数值即可求出值.【解答】解:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=×+×=故答案为:2.已知α∈(0,),cos α=,则cos(α+)= .【考点】两角和与差的余弦函数.【分析】利用同角三角函数的基本关系求得sinα的值,再利用两角和的余弦公式求得cos(α+)的值.【解答】解:α∈(0,),cos α=,∴sinα==,则cos(α+)=cosαcos﹣sinαsin=﹣•=,故答案为:.3.在△ABC中,a=,b=1,c=2,则A等于.【考点】余弦定理.。
高一数学下学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某市长安区第一中学2015-2016学年高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.====.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.)【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48 B.24 C.12 D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以=====.选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值X围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______. 【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φmin=.解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 . 【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和.【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。
人教A版数学高二任意角精选试卷练习(含答案)2
人教A 版数学高二任意角精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.将分针拨慢5分钟,则分钟转过的弧度数是( ) A .π3 B .π3- C .π6 D .π6- 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】C2.把 1 125-︒化成()2π02π,k k αα+≤<∈Z 的形式是( ) A .6π4π-- B .7π46π- C .π84π--D .7π4π8-【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】D3.圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为( ) A .π3 B .2π3CD .2【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】CA .960-︒B .480-︒C .120-︒D .60-︒ 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】B5.下列转化结果错误的是( )A .6730︒'化成弧度是3π8 B .10π3-化成度是600-︒ C .150-︒化成弧度是5π6 D .π12化成度是15︒【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】C 6.已知α=75π,则角α的终边位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【来源】河北省承德一中2017-2018学年高一上学期第三次月考数学试卷 【答案】C7.2016°角的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C8.已知A ={第一象限角},B ={锐角},C ={小于90︒的角},那么A 、B 、C 关系正确的是( )A .B AC =I B .=B C C U C .A C ⊆D .==A B C 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B9.与460-︒角终边相同的角的集合是( )A .{}|=360457,k k αα⋅︒+︒∈ZB .{}|=360100,k k αα⋅︒+︒∈ZC .{}|=360260,k k αα⋅︒+︒∈ZD .{}|=360260,k k αα⋅︒-︒∈Z 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C10.已知α是第三象限角,则2α是( )A .第一象限角B .第二象限角C .第一或第四象限角D .第二或第四象限角 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】D11.在[]3601440︒︒,中与2118'-︒终边相同的角有( )A .0个B .1个C .2个D .3个 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】D12.经过2小时,钟表上的时针旋转了( )A .60︒B .60-︒C .30︒D .30-︒ 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B13.集合180=45,2k M x x k ⎧⋅︒⎫=±︒∈⎨⎬⎩⎭Z ,o o 180=904k N x x k ⎧⎫⋅⎪⎪=±∈⎨⎬⎪⎪⎩⎭Z ,,则M 、N 之间的关系为( )A .=M NB .N M ⊂≠C .M N ⊃≠D .=M N ∅I【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】B14.与−405°角终边相同的角的集合中,0°~360°间的角的大小是( ) A .90° B .90° C .305° D .315° 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】C15.与角53︒终边相同的角是 ( ) A .127︒B .233︒C .307︒-D .127︒-【来源】黑龙江省大庆实验中学2017-2018学年高一上学期期中考试数学试题 【答案】C16.顶点为坐标原点,始边在x 轴的非负半轴上,终边在y 轴上的角α的集合是( ) A .2,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭B .2,2k k Z πααπ⎧⎫=-∈⎨⎬⎩⎭C .,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭D .,2k k Z παα⎧⎫=∈⎨⎬⎩⎭【来源】东北四市一模(文)试题 【答案】C17.与60-°的终边相相同的角是 ( ) A .3πB .23π C .43π D .53π 【来源】广东省阳江市2016-2017学年高一下学期期末检测数学试题 【答案】D 18.与角3π-终边相同的角是( ) A .53π B .116πC .56π-D .23π-【来源】山东省临沂市2016-2017学年高一下学期期末考试数学试题 【答案】A19.下列命题中正确的是( ) A .终边在x 轴负半轴上的角是零角 B .三角形的内角必是第一、二象限内的角 C .不相等的角的终边一定不相同D .若0•360k βα=+(k Z ∈),则α与β终边相同【来源】宁夏平罗中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】D20.下面四个命题正确的是( ) A .第一象限角必是锐角 B .锐角必是第一象限角C .若cos 0α<,则α是第二或第三象限角D .小于090的角是锐角【来源】2015-2016学年福建省上杭一中高一3月月考数学试卷(带解析) 【答案】B21.下列各个角中与2017°终边相同的是 ( ) A .﹣147° B .677° C .317° D .217°【来源】江西省景德镇市2016-2017学年高一下学期期末质量检测数学试题 【答案】D22.若α是第三象限角,则2α是( )A .第二象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角【来源】2015-2016学年吉林省实验中学高一上学期期末数学试卷(带解析) 【答案】D23.已知α是第一象限角,那么2α是( ) A .第一象限角 B .第二象限角 C .第一或第二象限角D .第一或第三象限角【来源】河南省安阳市第三十五中学2016-2017学年高一下学期期末考试数学试题 【答案】D24.若角A 是第二象限角,则角2A是第几象限角 A .一或三B .二或四C .三或四D .一或四【来源】20102011年福建省福州八周高一下学期期中考试数学【答案】A25.下列结论中正确的是( ) A .小于90°的角是锐角 B .第二象限的角是钝角 C .相等的角终边一定相同D .终边相同的角一定相等【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】C26.与-30°终边相同的角是( ) A .-330°B .150°C .30°D .330°【来源】海南省文昌中学2016-2017学年高一下学期期中段考数学(理)试题 【答案】D27.终边在直线y x =上的角的集合是( ) A .{|,}4k k Z πααπ=+∈ B .{|2,}4k k Z πααπ=+∈C .3{|,}4k k Z πααπ=+∈D .5{|2,}4k k Z πααπ=+∈【来源】山西省太原市2016-2017学年高一下学期阶段性测评(期中考试)数学试卷 【答案】A28.若α是第四象限角,则-α一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【来源】高中数学人教A 版必修4 第一章 三角函数 1.1.1 角的概念的推广 【答案】A二、填空题29.3-的终边位于第______象限. 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】三30.给出下列说法:(1)弧度角与实数之间建立了一一对应; (2)终边相同的角必相等; (3)锐角必是第一象限角;(4)小于90︒的角是锐角;(5)第二象限的角必大于第一象限角,其中正确的是__________(把所有正确说法的序号都填上). 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】(1)(3)31.终边在直线y=﹣x 上角的集合可以表示为________.【来源】河北省承德一中2017-2018学年高一上学期第三次月考数学试卷 【答案】{α|α=﹣4π+kπ,k ∈Z} 32.在148︒,475︒,960-︒,1601-︒,185-︒这五个角中,第二象限角有______个.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】433.在0360︒︒:范围内与650︒角终边相同的角为________. 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】290︒34.在集合{}120360,A k k αα==︒+⋅︒∈Z 中,属于360360-︒︒:之间的角的集合是________.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】{}120,240︒-︒ 35.已知角α=4π,则与α终边相同的角β的集合是___________________. 【来源】黑龙江省伊春市第二中学2017-2018学年高一上学期期中考试数学试题 【答案】2,4k k Z πββπ⎧⎫=+∈⎨⎬⎩⎭36.使得lg(cos θ·tan θ)有意义的角θ是第______象限角.【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题(带解析) 【答案】要使原式有意义,必须cos θ·tan θ>0,即需cos θ、tan θ同号,∴θ是第一或第二象限角37.与-20020终边相同的最大负角是________【来源】2012届广东省肇庆市封开县南丰中学高三复习必修4测试A【答案】0202-38.1200︒-是第 象限角【来源】2011—2012学年江苏省苏苑高级中学高一12月月考数学试卷 【答案】三39.用弧度制表示终边落在y 轴上的角的集合:_________________________ 【来源】20102011年云南省红河州蒙自县文澜高级中学高一下学期3月月考数学试卷 【答案】|,2k k Z πααπ⎧⎫=+∈⎨⎬⎩⎭40.若παπ-<<,且2α与54π-的终边互相垂直,则α=________. 【来源】第1.1节综合训练【答案】735,,,8888ππππ-- 41.若角θ的终边与角67π的终边相同,则在[)0,2π内与角3θ的终边相同的角是______.【来源】第五章易错疑难集训(一) 【答案】22034,,72121πππ三、解答题42.把下列各角用另一种度量制表示出来:11230︒';36︒;5π12-;3.5. 【来源】同步君人教A 版必修4第一章1.1.2弧度制 【答案】5π8;π5;75-︒;200.55︒ 43.已知在半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角()π0αα<<的大小; (2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S . 【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】(1)π3(2)π503⎛ ⎝⎭44.已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在0360α︒≤<︒范围内,找出与下列各角终边相同的角,并判断它们是第几象限角. (1)750︒;(2)795-︒;(3)95020'︒.【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】 (1)30︒,一 (2)285︒,四 (3)23020'︒,三45.在角的集合{}9060,k k αα=⋅︒+︒∈Z 中: (1)有几种终边不相同的角?(2)有几个角满足不等式360360α-︒<<︒? 【来源】同步君人教A 版必修4第一章1.1.1任意角 【答案】(1)4种(2)8个46.一只红蚂蚁与一只黑蚂蚁在一个单位圆(半径为1的圆)上爬动,若两只蚂蚁均从点A (1,0)同时逆时针匀速爬动,若红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0°<α<β<180°),如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限,求α,β的值.【来源】[同步]2014年苏教版必修四 1.1任意角、弧度制练习卷(带解析) 【答案】α=()°,β=()°.47.如果角α的终边经过点M ,试写出角α的集合A ,并求集合A 中最大的负角和绝对值最小的角.【来源】陕西省榆林府谷县麻镇中学2016-2017学年高一下学期期末质量检测试题数学试题【答案】最大的负角为0300-,绝对值最小的角为06048. 已知角α的终边经过点P(3a-9,a+2),且cosα≤0,sinα>0,则a 的取值范围是_____.【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题(带解析) 【答案】-2<a ≤3 49.已知角α的终边与3π角的终边相同,求3α在[]0,2π的]内值 【来源】20102011年吉林省油田中学高一下学期起初考试数学试卷【答案】713;;999πππ50.已知角的顶点与坐标原点重合,始边落在x 轴的非负半轴上,在0360α︒≤<︒范围内,找出与下列各角终边相同的角,并判断它们是第几象限角. (1)750o ;(2)795-o ;(3)'95020o【来源】(人教A 版必修四)1.1.1任意角(第二课时)同步练习01 【答案】(1)30°,一(2)285︒,四(3)23020︒',三。
江苏苏州市2024年高一下学期期中调研数学试题+答案
高一期中调研试卷数 学2024.04注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,则复数()()3i 4i −−在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.已知单位向量a ,b ,则a b −=A .1BCD .33.i 是虚数单位,则11iz =−的共轭复数是 A .11i 22+B .11i 22−C .1i −D.1i +4.已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,若1a =,135A =°,则sin sin b cB C++的值为A BCD .5.已知向量()3,4a=−,()2,0b = ,则a 在b上的投影向量为A .()3,0B .3,02C .3D .66.下列命题正确的是A .AB AC BC −=B .若向量()2023,2024a = ,把a向右平移2个单位,得到的向量的坐标为()2025,2024C .在△ABC 中,0AB AC ⋅>是△ABC 为锐角三角形的充要条件D .在△ABC 中,若λ为任意实数,且()CP CB CA CA CB λ=⋅+⋅,则P 点的轨迹经过△ABC 的内心7.苏州国际金融中心为地处苏州工业园区湖东CBD 核心区的一栋摩天大楼,曾获2020年度CTBUH 全球高层建筑卓越奖.建筑整体采用“鲤鱼跳龙门”之“鱼”作为象征主题,以“鱼跃龙门”为设计理念,呈鲤鱼飞跃之势寓意繁荣昌盛,大楼面向金鸡湖,迎水展开,如鱼尾般曼妙的弧线,从水面沿裙房一直延伸至主塔楼,某测量爱好者在过国际金融中心底部(当作点Q )一直线上位于Q 同侧两点A ,B 分别测得金融中心顶部点P 的仰角依次为30°,45°,已知AB 的长度为330米,则金融中心的高度约为A .350米B .400米C .450米D .500米8.在平行四边形ABCD 中,E 为CD 的中点,13BF BC = ,AF 与BE 交于点G ,若BA a = ,BC b = ,则BG =A .2177a b +B .1277a b +C .2155a b +D .1255a b +二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在△ABC 中,下列说法正确的是A .若ABC >>,则sin sin sin A B C >> B .若A B C >>,则sin 2sin 2sin 2A B C >> C .若A B C >>,则cos cos cos A B C <<D .若A B C >>,则cos 2cos 2cos 2A B C <<10.1z ,2z 是复数,下列说法正确的是A .若210z <,则1z 是纯虚数 B .若12z z =,则2212z z =C .若1z ,2z 互为共轭虚数,则1z ,2z 在复平面内对应的点关于实轴对称D .若22120z z −>,则2212z z >11.已知P 是边长为1的正六边形ABCDEF 内一点(含边界),且AP AB AF λ=+,R λ∈,则下列正确的是A .△PCD 的面积为定值B .λ∃使得PC PA >C .∠CPD 的取值范围是,63ππD .PC的取值范围是三、填空题:本题共3小题,每小题5分,共15分.12.已知a ,b 为两个不共线的非零向量,若ka b + 与2a b −共线,则k 的值为 .13.△ABC 中,若3sin 45A π+=−,则sin 12A π−=. 14.已知△ABC 的外接圆半径为1,则AB BC ⋅的最大值为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知复数z 在复平面上对应点在第一象限,且z =2z 的虚部为2.(1)求复数z ;(2)设复数z 、2z 、2z z −在复平面上对应点分别为A 、B 、C ,求AB AC ⋅的值.16.(15分)已知向量OA ,OB不共线,点P 满足OP xOA yOB =+ ,x ,y R ∈.证明: (1)若12xy ==,则点P 是线段AB 的中点; (2)1x y +=是A 、B 、P 三点共线的充要条件. 17.(15分)在平面直角坐标系xOy 中,点A 、B 、C 满足:A 在x 轴的正半轴上,C 的横坐标是1,OA OB ⋅ AOB α∠=,AOC β∠=,α是锐角,β是钝角. (1)求()cos αβ−的值; (2)求2βα−的值. 18.(17分)如图,在平面四边形ABCD 中,已知1AD =,2CD =,△ABC 为等边三角形,记ADC α∠=.(1)若3πα=,求△ABD 的面积;(2)若,2παπ∈,求△ABD 的面积的取值范围. 19.(17分)某高一数学研究小组,在研究边长为1的正方形ABCD 某些问题时,发现可以在不作辅助线的情况下,用高中所学知识解决或验证下列有趣的现象.若P ,Q 分别为边AB ,DA 上的动点,当△APQ 的周长为2时,PQ 有最小值(图1)、∠PCQ 为定值(图2)、C 到PQ 的距离为定值(图3).请你分别解以上问题. (1)如图1,求PQ 的最小值;图1(2)如图2,证明:∠PCQ 为定值;图2(3)如图3,证明:C到PQ的距离为定值.图3高一期中调研试卷 数学参考答案2024.04一、单项选择题:本题共8小题,每小题5分,共40分题号 1 2 3 4 5 6 7 8 答案DCBCADCB二、选择题:本题共3小题,每小题6分,共18分题号 9 10 11 答案ACDACAC三、填空题:本题共3小题,每小题5分,共15分12.12−;13;14.12四、解答题:本题共5小题,共77分15.解:(1)设i z a b =+,则z =,()()2222i 2i z a b a b ab =+=−+,因为z=,2z 的虚部为2,所以22222a b ab +== , 解得:11a b == 或11a b =− =−, 又复数z 在复平面上对应点在第一象限, 所以11a b ==,故1i z =+ (2)因为1i z =+,所以()221i 2i z =+=,21i 2i 1i z z −=+−=−, 所以()1,1A ,()0,2B ,()1,1C −()()1,10,22AB AC ⋅=−⋅−=−16.证明:(1)因为12x y ==的,所以1122OP OA OB =+ ,即2OP OA OB =+ ,所以OP OA OB OP −=−,所以AP PB =所以P 是线段AB 的中点 (2)充分性:若1x y +=,则1y x =−,所以()1OP xOA x OB =+− ,所以OP OB xOA xOB −=−所以()BP x OA OB xBA − ,所以A 、B 、P 三点共线 必要性:因为A 、B 、P 三点共线,所以存在实数x 满足:BP xBA =所以()OP OB x OA OB −=− ,即OP OB xOA xOB −=−所以()1OP xOA x OB =+− ,所以1x y +=综上所述,1x y +=是A 、B 、P 三点共线的充要条件 17.解:(1)因为1OA OB == ,点()cos ,sin B αα,所以cos OA OB α⋅== ,所以cos α=,又α为锐角,所以sin α因为钝角β的终边与单位圆O 的交点C 的横坐标是所以cos β=,sin β所以()cos cos cos sin sin αβαβαβ −=++=(2)由(1)知sin α=cos α=,sin β=,cos β=,所以4sin 22sin cos 25ααα==, 223cos 22cos 1215αα=−=−=−所以()34sin 2sin cos 2cos sin 255βαβαβα −=−=−−×= 因为α为锐角, 所以02πα<<,所以02απ<<, 又cos 20α<, 所以2,2παπ ∈又,2πβπ ∈, 所以2,22ππαβ−∈−, 所以24πβα−=.18.解:(1)在△ACD 中,由余弦定理,2222cos 1422cos33AC AD CD AD CD πα=+−⋅⋅=+−××=,所以AC =90DAC ∠=°, 又因为△ABC 为等边三角形,所以AB AC ==150BAD BAC DAC ∠=∠+∠=°,所以11sin 1sin15022ABD S AB AD BAD ∆=⋅⋅∠=×°=(2)不妨设DAC β∠=. 在△ACD 中,由余弦定理,2222cos 1422cos 54cos AC AD CD AD CD ααα=+−⋅⋅=+−××=−,22254cos 1412cos cos 22AC AD DC AC AD AC ACααβ+−−+−−===⋅. 在△ACD 中,由正弦定理,sin sin AC CD ADC DAC =∠∠,即2sin sin AC αβ=, 所以2sin sin ACαβ=.所以1111sin sin sin 22322ABD S AB AD BAD AC AC πβββ∆=⋅⋅∠=⋅+=⋅)1sin 1sin 23πααα =−=−+, 又因为,2παπ ∈, 所以2,363πππα −∈,所以sin 3πα−,即△ABD 的面积的取值范围为. 19.解:(1)设QPA θ∠=, 因为△APQ 的周长为2所以sin cos 2PQ PQ PQ θθ++=所以2sin cos 1PQθθ==++因为0,2πθ∈sin 14πθ<+<,所以14πθ<+<所以2PQ= 即PQ的最小值为2−图1(2)设PCB α∠=,QCD β∠=,则tan PB α=,tan DQ β=, 所以1tan AP α=−,1tan AQ β=−,PQ =因为△APQ 的周长为2, 所以21tan 1tan αβ=−+−+tan tan αβ+=所以tan tan 1tan tan αβαβ+=−⋅ 即()tan 1αβ+=, 因为02πα<<,02πβ<<,所以0αβπ<+<,所以4παβ+= 所以()24PCQ ππαβ∠=−+= (3)因为11sin 22CPQ S PQ CE CQ CP PCQ ∆=⋅=⋅∠所以PQ CECP ⋅=⋅, 因为1tan AP α=−,1tan AQ β=−, 所以()()222tan tan tan tan PQ AP AQ αβαβ=−+=−−−=+ 又1cos CP α=,1cos CQ β= 所以()tan tan CE αβ+⋅所以sin cos cos sin cos cos CE αβαβαβ +⋅所以()sin cos cos CE αβαβ+⋅ 因为4παβ+=,CE 所以1CE =,即C 到PQ 的距离的定值为1图3。
湖北省武汉市育才高级中学2023-2024学年高一下学期4月月考数学试题(解析版)
湖北省武汉市育才高中2023~2024学年4月月考高一数学试题一、单选题1. cos1,sin1,tan1的大小关系是 A. sin1cos1tan1<< B. tan1sin1cos1<< C. cos1tan1sin1<< D. cos1sin1tan1<<【答案】D 【解析】 【分析】在单位圆中作出1弧度角的正弦线、余弦线、正切线,由图可观察出它们的大小.【详解】如图所示,作出1弧度角的正弦线、余弦线、正切线分别为MP ,OM ,AT,由图知sin10>,cos10>,tan10>,且cos1sin1tan1<<,所以cos1sin1tan1<<.故选:D.【点睛】本题考查三角函数线的应用.三角函数线可能用来求三角函数值,解三角不等式,比较三角函数式的大小等.2. 若a ∈R ,则“1a =”是“2(i)a +为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件【答案】A 【解析】【分析】先求出2(i)a +为纯虚数的实数a 的值,再判断以“1a =”与“2(i)a +为纯虚数”分别为题设、结论和结论、题设的两个命题真假即可得解.【详解】因222i i)1(a a a =−++,则2(i)a +为纯虚数,当且仅当21020a a −= ≠ , 即1a =−或1a =,于有1a =⇒2(i)a +为纯虚数,而2(i)a +为纯虚数 1a =, 所以“1a =”是“2(i)a +为纯虚数”的充分非必要条件. 故选:A3. 已知()0,θπ∈,3cos 5θ=−,则sin 2θ=( ) A. 1225−B. 2425−C. 45−D.45【答案】B 【解析】【分析】根据cos θ求出sin θ,根据sin 22sin cos θθθ=求值. 【详解】3cos 5θ=−,()0,θπ∈, 4sin 5θ∴=,24sin22sin cos 25θθθ∴==−.故选:B.4. 如图所示的矩形ABCD 中,E ,F 满足BE EC =,2CF FD =,G 为EF 的中点,若AG AB AD λµ=+,则λµ的值为( )A.12B. 3C.34D. 2【答案】A 【解析】【分析】以,AB AD为基底,根据平面向量线性运算即可求解. 【详解】因为BE EC =,2CF FD =,G 为EF 的中点,所以()()11112222AG AE AF AB BE AD DF ++++ 1111111122232223AB BC AD DC AB AD AD AB =+++=+++是2334AB AD +, 所以23,34λµ==,所以231342λµ=×=.故选:A5. 已知向量(2,0)a =,sin b α= ,若向量b 在向量a 上的投影向量1,02c =,则||a b +=( )A.B.C. 3D. 7【答案】B 【解析】【分析】根据已知结合投影向量的概念得出1sin 2α=,求解即可得出答案. 【详解】由已知可得,b 在a 上的投影向量为2sin (2,0)(sin ,0)|||22|a b a a a αα⋅⋅==×, 又b 在a 上的投影向量1,02c =,所以1sin 2α=,所以1(2b =,所以5(2a b =+ ,所以||a b += .故选:B.6. 如图是某人设计的产品图纸,已知四边形ABCD 的三个顶点A ,B ,C 在某圆上,且AD BC ∥,AD CD ⊥,4=AD ,3BC =,1CD =,则该圆的面积为( ).A.13π2B.17π2C. 9πD.5π4【答案】B 【解析】【分析】先根据直角三角形求出AC ,再利用余弦定理求出AB ,结合正弦定理可得圆的半径,然后可得面积. 【详解】连接AC ,在ACD 中,4=AD ,1CD =,AD CD ⊥,则AC =,所以sin CD CAD AC ∠=,AD CAD AC ∠= 因为AD BC ∥,所以ACB CAD ∠=∠,所以cos cos ACB CAD ∠=∠,sin sin ACB CAD ∠=∠所以2222cos 17932AB AC BC AC BC ACB =+−⋅⋅∠=+−=,所以AB =,设该圆的半径为R,则2sin ABR ACB==∠,所以该圆的面积为2217πππ2R =. 故选:B .7. 折扇又名“纸扇”是一种用竹木或象牙做扇骨、韧纸或者绫绢做扇面能折叠的扇子.某折扇如图1所示,其平面图为如图2所示的扇形AOB ,其半径为3,150AOB ∠=°,点E ,F 分别在 AB , CD上,且2FE OF = ,则AF OE ⋅的取值范围是( )A. 156,2−B. 3C. 3,32−D. 6,3−+【答案】D 【解析】【分析】利用向量的运算及数量积的定义求出数量积,结合余弦函数的值域即可求解范围.【详解】设AOE θ∠=,则0150θ≤≤,因为13AF AO OF AO OE =+=+,所以2111()33cos(180)99cos 3333AF OE AO OE OE AO OE OE θθ⋅=+⋅=⋅+=××−+×=−+ , 又0150θ≤≤,所以cos 1θ≤≤,所以69cos 33θ−≤−+≤,所以AF OE ⋅的取值范围是6,3 − .故选:D8. 在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,若222sin()SA C b c +=−,则1tan 2tan()C B C +−的最小值为( )A.B. 2C. 1D.【答案】A 【解析】 【分析】的222sin()S A C b c+=−结合面积公式,可得出22b c ac =+,由余弦定理得出2cos a c B c −=,再用正弦定理化边为角,得出2B C =,把所求式子用角C 表示,并求出角C 范围,最后用基本不等式求最值. 【详解】因为222sin()SA C b c +=−,即222sin S B b c=−, 所以22sin sin ac BB b c =−,因为sin 0B ≠,所以22b c ac =+,由余弦定理2222cos b a c ac B =+−,可得2cos a c B c −=,再由正弦定理得sin 2sin cos sin A C B C −=,因为sin 2sin cos sin()2sin cos sin()A C B B C C B B C −=+−=−, 所以sin()sin B C C −=,所以B C C −=或B C C π−+=,得2B C =或B π=(舍去).因为ABC ∆是锐角三角形,所以02022032C C C ππππ<<<<<−<,得64C ππ<<,即tan C ∈,所以11tan tan 2tan()2tan C C B C C+=+≥−当且仅当tan C =,取等号. 故选:A【点睛】本题考查考查用正弦定理、余弦定理、面积公式解三角形,考查基本不等式求最值,属于较难题.二、多选题9. 已知函数()()sin f x A x ωϕ=+(A ,ω,ϕ是常数,0A >,0ω>,π2ϕ<)的部分图象如图所示,下列结论正确的是( ).A. ()0f =B. 在区间π,03−上单调递增 C. 将()f x 的图象向左平移π6个单位,所得到的函数是偶函数 D. ()2π3f x f x=−−【答案】ABD 【解析】【分析】先根据图象求出()f x 的解析式,进而根据三角函数的图象和性质求解ABD ,根据三角函数图象平移法则判断C.【详解】由图象可知,2A =7ππ3π1264−−= , 所以函数最小正周期2ππT ω==,所以2ω=,又7π7π2sin 221212f ϕ =×+=− ,即7πsin 16ϕ+=− , 所以7π3π2π,62k k ϕ++∈Z ,所以π2π,3k k ϕ=+∈Z ,由π2ϕ<,得π3ϕ=,所以()π2sin 23f x x =+,所以()π02sin 3f ==,A 选项正确;当π,03x∈−时,πππ2,333x +∈− ,因为函数sin y x =在ππ,33 − 上单调递增,所以()f x 在区间π,03−上单调递增,B 选项正确;将()f x 的图象向左平移π6个单位,得函数()ππ2π2sin 22sin 2633g x x x=++=+的图象,其中()2π02sin 3g ==y 轴不是函数图象的对称轴,所以()g x 不是偶函数,C 选项错误;2π2ππ5π2sin 22sin 23333f x x x−=−+=− ()ππ2sin 2π22sin 233x x f x =−+=−+=−,所以()2π3f x f x=−−,D 选项正确. 故选:ABD10. 对于ABC 中,有如下判断,其中正确的判断是( ). A. 若8a =,10c =,60A =°,则符合条件的ABC 有两个 B. 若222sin sin sin A B C +>,则ABC 是锐角三角形 C. 若2sin ABC S a A = ,则cos A 的最小值为34D. 若点P 在ABC 所在平面且2cos cos OB OC AB AC OP AB B AC C λ + =++,[)0,λ∈+∞,则点P 的轨迹经过ABC 的外心. 【答案】CD 【解析】【分析】利用正弦定理解三角形可判断A 选项;利用余弦定理可判断B 选项;利用三角形的面积公式可得出,利用余弦定理结合基本不等式可判断C 选项;BC 的中点为D ,利用平面向量数量积证明DP BC ⊥,可判断D 选项.【详解】对于A 选项,由正弦定理可得sin sin c a C A=,则sin sin 1c A C a ==>, 故ABC 不存在,A 选项错误;对于B 选项,222sin sin sin A B C +>,由正弦定理得222a b c +>,则222cos 02a b c C ab+−=>,只能说明C 是锐角,另外两个角不一定是锐角,所以B 选项错误;对于C 选项,因为21sin sin 2ABC S a A bc A == ,因为()0,πA ∈,则sin 0A >,则212a bc =,由余弦定理可得22222112322cos 2224b c bc bc bcb c a A bc bc bc +−−+−==≥=, 当且仅当b c =时取等号,故cos A 的最小值为34,C 选项正确;对于D 选项,设线段BC 的中点为D ,连接PD ,由BD DC =,可得OD OB OC OD −=− ,所以,2OB OC OD +=, 由2cos cos OB OC AB AC OP AB B AC C λ + =++ , 可得cos cos AB AC DP OP OD AB B AC C λ =−=+, 所以,cos cos cos cos AB BCAC BC BA BCCA CB DP BC AB B AC C AB BAC C λλ ⋅⋅⋅⋅⋅=+=−+()cos cos 0cos cos BA BC B CA CB C CB CB AB B CA C λλ ⋅⋅ =−+=−+=, 即DP BC ⊥,所以,点P 的轨迹经过ABC 的外心,D 选项正确. 故选:CD .11. 圆O 半径为2,弦2AB =,点C 为圆O 上任意一点,则下列说法正确的是( ).A. AB AC ⋅的最大值为6B. []0,4OC AB AO −+∈C. 6AC BC ⋅>−D. 满足0AB AC ⋅=的点C 仅有一个【答案】AB 【解析】【分析】根据题意建立适当的平面直角坐标系,设()2cos ,2sin C αα,分别写出AB ,AC,的坐标,利用向量数量积的坐标表示可判断A ;先写出OC AB AO −+的坐标,再将向量的模转化为求三角函数的值域可判断B ;根据极化恒等式可判断C ;令0AB AC ⋅=,得到1cos 2α=−可判断D. 【详解】由题意,以O 为原点,以平行于AB 的直线为x 轴建立如图所示的平面直角坐标系,()0,0O ,(1,A −,(1,B ,设()2cos ,2C sin αα, 0,2πα ,对于A ,()(2,02cos 1,2sin 4cos 2AB AC ααα⋅=⋅++=+,∵ 0,2πα ,∴[]cos 1,1α∈−,∴[]4cos 22,6AB AC α⋅=+∈−, ∴AB AC ⋅的最大值为6,故A 正确;对于B ,()()((2cos ,2sin 2,02cos 1,2sin OC AB AO αααα−+=−+−+∴OC AB AO −+=∵ 0,2πα ,∴[]πsin 1,16α−∈,∴[]0,4OC AB AO −+∈ ,故B 正确;对于C ,取AB 的中点为E ,则2221AC BC AC BC CE AD CE ⋅=⋅=−=− ,故C 错误; 对于D ,当0AB AC ⋅=时,即4cos 20α+=,解得2cos 3α=−, ∵ 0,2πα ,∴2π3α=或4π3α=,即符合条件的点C 有两个,故D 错误. 故选:AB .【点睛】思路点睛:平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.三、填空题12. 复数z 满足12i z =+,①|z |=2i 1z =−;③复数z 的虚部为2i ;④x z =是方程2250x x −+=在复数范围内的一个解.则以上四个结论中正确序号为_______.【答案】①④ 【解析】【分析】根据复数的几何意义计算进而判断①;根据共轭复数的概念判断②;根据复数的实部、虚部概念判断③;将x z =代入方程计算验证即可判断④. 【详解】因为12z i =+,则||z ==12i z =−,故选项②错误;复数z 的虚部为2,故选项③错误;因为22(12i)2(12i)514i 4i 24i 50+−++=++−−+=,故x z =是方程2250x x −+=在复数范围内的一个解,故选项④正确. 故答案为:①④.13. “丹凤朝阳敬英雄,马踏飞燕谁争锋!”2023年5月21日上午7:30分, 2023唐山马拉松在唐山抗震纪念碑广场鸣枪开跑,来自国内外的20000名选手齐聚于此,在奔跑中感受唐山这座英雄城市的魅力,用不断前行的脚步挑战极限、超越自我!唐山抗震纪念碑建在纪念碑广场内,建成于1986年纪念唐山抗震10周年之际.由主碑和副碑组成.纪念碑主碑和副碑建在一个大型台基座上,台基四面有四组台阶,踏步均为4段,每段7步,共28步,象征“七·二八”这一难忘时刻(如图1).唐山二中某数学兴趣小组为测量纪念碑的高度MN ,如图2,在纪念碑的正东方向找到一座建筑物AB ,高约为16.5m ,在地面上点C 处(B C N ,,三点共线)测得建筑物顶部A ,纪念碑顶部M 的仰角分别为30°和45°,在A 处测得纪念碑顶部M 的仰角为15°,则纪念碑的高度约为_____米.【答案】33 【解析】【分析】由题意只需求出MN 的长,在AMC 中运用正弦定理求解即可. 【详解】由题意,MNC 为等腰直角三角形,设MN x =,则CN x =,MC =,在Rt ABC △中,33sin 30ABAC ==, 在AMC 中,105ACM ∠= ,45CAM ∠= ,则30CMA ∠= ,33sin 30=,解得33x =,即为纪念碑高度. 故答案为:3314. 定义平面非零向量之间的一种运算“※”,记cos sin b a b a θθ=+※,其中θ是非零向量a、b的夹角,若1e ,2e 均为单位向量,且1245e e ⋅=− ,则向量21e e ※ 与()12e e −※ 的夹角的余弦值为__________, 【答案】220221【解析】【分析】由向量的新定义结合数量积的运算律求解即可.【详解】因为1245e e ⋅=− ,所以124cos ,5e e =− ,则123sin ,5e e = , 所以12124355e e e e =−+※,()21214355e e e e −=−※ , 设向量21e e ※ 与()12e e −※的夹角为α,因为14355e −+=,13455e −+=, 22121211224334121255552525e e e e e e e e −+⋅−+=−⋅+12412442552525++, 则1212121243345555cos 43345555e e e e e e e e α −+⋅−+=−+⋅−+4422025221221125=, 故答案为:220221. 四、解答题15. 已知向量()1,2a =,()()1,bt t ∈R .(1)若()()a b a b +⊥−,求t 的值;(2)若1t =,a与a mb +的夹角为锐角,求实数m 的取值范围. 【答案】(1)2t =− (2)()5,00,3 −∪+∞【解析】【分析】(1)求出向量a b − 、a b +的坐标,根据这两个向量均为非零向量可得出2t ≠,再由()()0a b a b +⋅−=,结合平面向量数量积的坐标运算可求得实数t 的值;(2)当1t =时,求出向量a mb + 的坐标,由题意可知,()0a a mb ⋅+> 且a 与a mb +不共线,结合平面向量的坐标运算可求得实数m 的取值范围. 【小问1详解】解:因为向量()1,2a =,()()1,bt t ∈R ,且()()a b a b +⊥−,则()2,2a bt +=+,()0,20a bt −=−≠,则20t −≠,可得2t ≠,所以,()()()()220a b a b t t +⋅−=+−= ,解得2t =−.【小问2详解】解:当1t =时,()1,1b =,则()()()1,21,11,2a mb m m m +=+=++ ,因为a 与a mb + 的夹角为锐角,则()()122350a a mb m m m ⋅+=+++=+> ,解得53m >−,且a 与a mb +不共线,则()221m m +≠+,可得0m ≠,综上所述,实数m 取值范围是()5,00,3 −∪+∞.16. (1)计算()()20211i 23i 14i 1i + +−+ −; (2)已知()5cos 13αβ−=−,4cos 5β=,π,π2α ∈ ,π0,2β∈,求()cos 2αβ−的值. 【答案】(1)146i +;(2)1665【解析】【分析】(1)利用复数的乘除运算和i 的周期性计算即可; (2)结合角的范围利用同角三角函数基本关系求得3sin 5β=,()12sin 13αβ−=,然后利用两角差的余弦公式求解即可.【详解】(1)因()()()21i 1i2ii 1i 1i 1i 2++===−−+,且4i 1=, 所以()2021505202141i i i i i 1i + ==⋅=− ,所以()()()20211i 23i 14i i 145i 146i 1i + +−+=++=+−. (2)由4cos 5β=且π0,2β∈,可得3sin 5β=,又由π,π2α ∈且π0,2β∈,可得()0,παβ−∈, 因为()5cos 13αβ−=−,可得()12sin 13αβ−=, 又因为()()()()cos 2cos cos cos sin sin αβαββαββαββ −=−−=−+−的为541231613513565=−×+×=. 17. 已知()sin ,cos a x x ωω=,()cos b x x ωω= ,0ω>,函数()f x a b =⋅的最小正周期为π.(1)求函数()f x 的单调递增区间;(2)在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,且满足2A f=,a =4b =,角A 的平分线交BC 于D ,求AD 的长. 【答案】(1)5πππ,π1212k k−+,k ∈Z (2)AD = 【解析】【分析】(1)根据数量积的运算律及坐标运算结合三角恒等变换化简函数()f x ,再利用函数()f x 的周期求得解析式,最后利用结论法求得单调递增区间;(2)先求出角A ,再利用余弦定理求得6c =,最后利用面积分割建立方程求解. 【小问1详解】因为()sin ,cos a x x ωω=,()cos b x x ωω= ,则1a ==,()()2sin ,cos cos sin cos a bx x x x x x x ωωωωωωω⋅=⋅+1πsin 22sin 223x x x ωωω+++, 故()πsin 23f x a b a b a b x ω=⋅−=⋅⋅=+, 因为()f x 最小正周期为π,所以2ππ2T ω==,所以1ω=, 故()πsin 23f x x =+, 由πππ2π22π232k x k −+≤+≤+,k ∈Z ,解得5ππππ1212k x k −+≤≤+,k ∈Z ,所以()f x 的单调递增区间为5πππ,π1212k k −+,k ∈Z . 【小问2详解】由(1)及2A f =,即ππsin 2sin 233A A ×+=+=, 又()0,πA ∈,所以π2π33A +=,解得π3A =,因为a =4b =,由余弦定理:2222cos a b c bc A =+−可得:6c =或2c =−(舍),又ABCABD ACD S S S =+ ,所以1π1π1π46sin 4sin 6sin 232626AD AD ×××=×××+×××,所以AD =. 18. 在ABC 中,D 为BC 的中点,O 为AD 的中点,过点O 作一条直线分别交线段AB ,AC 于点M ,N .(1)若3MO ON =,2AM =1AN =,3MAN π∠=,求AO ; (2)求AMN 与ABC 面积之比的最小值.【答案】(1 (2)14【解析】【分析】(1)先根据题意求得1344AO AM AN =+ ,再结合数量积的运算律即可求解; (2)先设[],,,0,1AM AB AN AC λµλµ==∈,再根据题意求得1144AO AM AN λµ=+ ,再根据平面向量基本定理,基本不等式和三角形的面积公式求解即可. 【小问1详解】依题意可得MO AO AM =− ,NO AO AN =−,又3MO ON =,则3MO NO =−,所以()3AO AM AO AN −=− ,所以1344AO AM AN =+ , 所以22221311391924416441616AO AM AN AM AM AN AN =+=+××⋅+=,故AO =. 【小问2详解】设[],,,0,1AM AB AN AC λµλµ==∈ , 由D 为BC 的中点,O 为AD 的中点,则()11111112224444AO AD AB AC AB AC AM AN λµ==×+=+=+, 又,,O M N 三点共线,则11144λµ+=,所以11144λµ=+≥,即14λµ≥,所以14AMN ABC S AM ANS AB AC λµ⋅==≥⋅△△, 当且仅当12λμ==时,等号成立,即min 14AMN ABC S S = △△. 19. 如图,半圆O 的直径为4cm ,A 为直径延长线上的点,4cm OA =,B 为半圆上任意一点,以AB 为一边作等边三角形ABC .设AOB α∠=.(1)当π3α=时,求四边形OACB 的周长; (2)克罗狄斯·托勒密(Ptolemy )所著《天文集》中讲述了制作弦表的原理,其中涉及如下定理:任的意凸四边形中,两条对角线的乘积小于或等于两组对边乘积之和,当且仅当对角互补时取等号,根据以上材料,则当线段OC 的长取最大值时,求AOC ∠.(3)问:B 在什么位置时,四边形OACB 的面积最大,并求出面积的最大值.【答案】(1)(6cm +; (2)π3;(3)当B 满足5π6AOB ∠=时,四边形OACB 的面积最大,最大值为(28cm + 【解析】【分析】(1)ABO 中,由余弦定理求出AB =OACB 的四条边长都已知,可求周长; (2)由OB AC OA BC AB OC ⋅+⋅≥⋅,得6OC ≤,取等号时πOBC OAC ∠+∠=,由cos cos 0OBC OAC ∠+∠=,由余弦定理求出AB ,再用余弦定理求cos AOC ∠,可得AOC ∠;(3)四边形OACB 的面积为21sin 2AOB ABC S S S OA OB AB α=+=⋅⋅+ ,表示成关于α的函数,结合正弦函数的性质求最大值. 【小问1详解】ABO 中,4OA =,2OB =,π3AOB α∠==, 由余弦定理得22212cos 164242122AB OA OB OA OB α+−⋅⋅+−×××,即AB =,于是四边形OACB 的周长为(26cm OA OB AB ++=+. 【小问2详解】因为OB AC OA BC AB OC ⋅+⋅≥⋅,且ABC 为等边三角形,2OB =,4OA =, 所以OB OA OC +≥,所以6OC ≤,即OC 的最大值为6,取等号时πOBC OAC ∠+∠=, 所以cos cos 0OBC OAC ∠+∠=,不妨设AB x =,则224361636048x x x x +−+−+=,解得x =,所以1636281cos 2462AOC +−∠==××,所以π3AOC ∠=.【小问3详解】在ABO 中,由余弦定理得2222cos 2016cos AB OA OB OA OB αα=+−⋅⋅=−,所以AB=,0πα<<,于是四边形OACB 的面积为21sin 2AOB ABC S S S OA OB α=+=⋅⋅)4sin 2016cos 4sin αααα=−=−+π8sin 3α−+当ππ32α−=,即5π6α=时,四边形OACB 的面积取得最大值为8+,所以,当B 满足5π6AOB ∠=时,四边形OACB 的面积最大,最大值为8+.。
江苏省启东中学2016-2017学年高一上学期第二次月考英语试题 含答案
江苏省启东中学2016-2017学年第一学期第二次月考高一英语试题第一部分:听力(共两节,满分20分)第一节听下面5段对话.每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
(共5小题;每小题o。
5分,满分2。
5分)1。
What is the man’s favorite music?A. Jazz musicB. Folk music C。
Country music2。
What does the woman want to do ?A。
Watch a performance B。
Get some sleep C。
See a film 3。
What size does the woman usually wear?A。
Size six and a half B。
Size ten C. Size fifteen and a half4。
What does the man say about Stephanie?A。
She will get well soon B。
She has a very bad cold C。
She is coming to the beach5。
Where does the woman want to go?A. Oxford B。
Liverpool C。
London第二节(共15小题;每小题0.5分,满分7。
5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听第6段材料,回答第6至7题。
6。
How will the woman probably get to the new company?A. By plane B。
By car C. By train7. What does the man suggest?A. Making a call B。
Writing an e-mail C。
Checking on the Internet听第7段材料,回答第8至9题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省东台市2016-2017学年高一数学下学期第二次月考(4月)试题(无
答案)
一、填空题(本大题共14个小题,每小题5分,共70分,将答案填在答题卡上)
1.直线y=x﹣3的倾斜角为.
2.已知点A(﹣1,2),B(﹣4,6),则|AB|等于.
3.圆x2+y2﹣2x+4y=0的面积为.
4.点(1,2)关于点(2,3)的对称点的坐标为.
5.在△ABC中,a=,b=1,∠A=,则cosB= .
6.过点M(3,4)且在坐标轴上截距相等的直线方程为.
7.已知正四棱锥的底面边长是3,高为,这个正四棱锥的侧面积是.
8.若正六棱柱的底面边长为10,侧面积为180,则这个棱柱的体积为.
9.在△ABC中,A=,b2sinC=sinB,则△ABC的面积为.
10.已知一个棱长为的正四面体内接于球,则该球的表面积是.
11.直线x﹣2y﹣3=0与圆(x﹣2)2+(y+3)2=9交于E、F两点,则弦长EF= .
12.两直线l1:ax+2y+b=0;l2:(a﹣1)x+y+b=0.若l1∥l2,且l1与l2的距离为,则a•b= .13.四棱锥P﹣ABCD的底面ABCD为正方形,且PD垂直于底面ABCD,,则三棱锥P﹣ANC 与四棱锥P﹣ABCD的体积比为.
14.设圆C:(x﹣3)2+(y﹣5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为.
二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)
15.三角形ABC的三个顶点A(﹣3,0),B(2,1),C(﹣2,3),求:
(1)BC边所在直线的方程;
(2)BC边上中线AD所在直线的方程.
16.一圆与y轴相切,圆心在直线x﹣3y=0上,且直线y=x截圆所得弦长为,求此圆的方程.
17.已知两条直线l1:x+2my+6=0,l2:(m﹣2)x+3my+2m=0
问:当m为何值时,l1与l2
(1)平行;
(2)垂直.
18.如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;
(1)求证:CD⊥平面ABE;
(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.
19.已知圆,圆,C1,C2分别为两圆的圆心.
(Ⅰ)求圆C
1和圆C2的公共弦长;
(Ⅱ)过点C1的直线l交圆C2与A,B,且,求直线l的方程.
20.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;
(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.
高一数学试卷答题纸
二、填空题(本大题共14个小题,每小题5分,共70分,将答案填在答题卡上) 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12、 13、 14、 二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.) 15.三角形ABC 的三个顶点A (﹣3,0),B (2,1),C (﹣2,3),求: (1)BC 边所在直线的方程; (2)BC 边上中线AD 所在直线的方程. 16.一圆与y 轴相切,圆心在直线x ﹣3y=0上,且直线y=x 截圆所得弦长为,求此圆的方程.
……………………………………………密……………………………封……………………………线……………………………………………
17.已知两条直线l1:x+2my+6=0,l2:(m﹣2)x+3my+2m=0
问:当m为何值时,l1与l2
(1)平行;
(2)垂直.
18.如图,三棱锥A﹣BCD中,△BCD为等边三角形,AC=AD,E为CD的中点;
(1)求证:CD⊥平面ABE;
(2)设AB=3,CD=2,若AE⊥BC,求三棱锥A﹣BCD的体积.
19.已知圆,圆,C1,C2分别为两圆的圆心.(Ⅰ)求圆C
1和圆C2的公共弦长;
(Ⅱ)过点C1的直线l交圆C2与A,B,且,求直线l的方程.
20.已知点M(﹣1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的倍.(1)求曲线E的方程;
(2)已知m≠0,设直线l:x﹣my﹣1=0交曲线E于A,C两点,直线l2:mx+y﹣m=0交曲线E于B,D两点,若CD的斜率为﹣1时,求直线CD的方程.。