【全国市级联考】四川省南充市2018届高三第三次联合诊断考试数学文科试题(原卷版)

合集下载

四川省南充市2018届高三高考适应性考试(零诊)数学(文) 含解析

四川省南充市2018届高三高考适应性考试(零诊)数学(文) 含解析

南充市高2018届高考适应性考试(零诊)数学试题(文科)第Ⅰ卷选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】C【解析】∵∴故选:C2. 复数在复平面内所对应的点在()A. 第一象限内B. 第二象限内C. 第三象限内D. 第四象限内【答案】B【解析】,对应的点为,故在第二象限内.故选:B3. 某工厂生产产品,用传送带将产品送到下一道工序,质检人员在传送带的某一个位置每隔十分钟取一件检验,则这种抽样方法是()A. 简单随机抽样B. 系统抽样C. 分层抽样D. 非上述答案【答案】B【解析】试题分析:因为质检人员每隔十分钟在传送带的某一个位置取一件检验,所以样品的间隔一样,故这种抽样方法为系统抽样,故选B.考点:抽样方法.4. 已知角的终边经过点,则()A. B. C. D.【答案】D【解析】由角的终边经过点,可知,则故选:D5. 若实数满足,则的最大值为()A. 2B. 5C. 7D. 8【答案】C【解析】作出可行域:.....................由,可得:,平行移动,由图象可知当直线经过点A时,直线的纵截距最大,即z最大;易得A,带入目标函数,得:,即的最大值为7故选:C点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.6. 将函数的图象向左平移个单位,所得函数图象的一条对称轴方程是()A. B. C. D.【答案】D【解析】将函数图象向左平移个单位,所得函数图象对应的解析式为y=sin[2(x+)−]=sin(2x+)令2x+=kπ+,k∈z,求得x=+,故函数的一条对称轴的方程是x=,故选:D.7. 函数(为自然对数的底数)的图象可能是()A. B.C. D.【答案】A【解析】∴f(−x)===f(x),函数y=为偶函数,图象关于y轴对称,排除BD,又f(0)=3,排除C,故选:A.点睛:识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.8. 一个与球心距离为2的平面截球所得圆面面积为,则球的表面积为()A. B. C. D.【答案】A【解析】用一平面去截球所得截面的面积为π,所以小圆的半径为1;已知球心到该截面的距离为2,所以球的半径为:所以表面积为4π⋅5=20π.9. 阅读如图所示的程序框图,运行相应的程序,输出的结果是()A. 2B. 4C. 8D. 16【答案】C【解析】试题分析:根据程序框图可知,程序运行时,列出数值S与n对应变化情况,从而求出当S=2时,输出的n即可.解:.由框图可知,程序运行时,数值S与n对应变化如下表:故S=2时,输出n=8.故选C10. 已知函数,若有最小值-2,则的最大值为A. -1B. 0C. 2D. 1【答案】D【解析】 f ( x ) =-( x2- 4 x +4) + a + 4 =-( x -2)2+ 4 + a .∴函数 f ( x ) 图象的对称轴为x = 2 ,∴ f ( x ) 在[0,1] 上单调递增.又∵ f ( x )min=- 2 ,∴ f (0) =- 2 ,即 a =- 2.∴ f ( x )max= f (1) =- 1 + 4 - 2 = 1.故选:D11. 已知双曲线的一条渐近线与圆没有公共点,则双曲线离心率的取值范围是()A. B. C. D.【答案】A【解析】双曲线 (a>0,b>0)的一条渐近线方程为bx−ay=0,∵双曲线的一条渐近线与圆无公共点,∴>1∴b2<3a2,∴c2−a2<3a2∴c2<4a2∵e=,∵1<e<2故选A .点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.12. 已知函数,若,且对任意恒成立,则的最大值为()A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:由题设可得,令,则.令.则函数的零点就是函数的极值点.设并记极值点为,则,由于,故,而且不难验证当时,,单调递减;当时,,单调递增,所以,因此,由于且,所以,故应选B.考点:导数与最值,恒成立问题.【方法点睛】本题主要考查了函数的恒成立问题和导数的应用,属于中档题.题中要求不等式对任意的恒成立,所以的系数符号为正,可以通过分离参数转化为求函数的的最小值来求解,本题的难点是导函数的零点不能直接求出,可设出其零点,再构造新函数来解答.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13. 在中,,则__________.【答案】【解析】∵,∴即故答案为:14. 若函数是奇函数,则__________.【答案】【解析】当时,,∴,又即,,∴当时,.故答案为:.15. 在中,角的对边分别为,已知,的面积为4,则边__________.【答案】6【解析】由,∴ab=c,sin C=.∴ab sin C=×c×=4,解得c=6.故答案为:6.16. 已知,方程为的曲线关于直线对称,则的最小值为__________.【答案】【解析】由题意可知:直线经过圆的圆心,∴,,当且仅当,即a=,时,取等号。

数学---四川省南充高中2018届高三(上)第三次月考试卷(文)(解析版)

数学---四川省南充高中2018届高三(上)第三次月考试卷(文)(解析版)

四川省南充高中2018届高三(上)第三次月考数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={﹣1,0,1},B={y|y=sinπx,x∈A},则A∩B=()A.{﹣1} B.{0} C.{1} D.∅2.(5分)已知复数z=1﹣i(i为虚数单位),则的共轭复数是()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i3.(5分)为了得到函数的图象,可以将函数y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度4.(5分)双曲线=1(m∈Z)的离心率为()A.B.2 C.D.35.(5分)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为()A.4 B.3.5 C.4.5 D.36.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.7.(5分)在平面直角坐标系中,不等式组,(a是常数)表示的平面区域面积是9,那么实数a的值为()A.3+2 B.﹣3+2 C.﹣5 D.18.(5分)已知函数,则其导函数f′(x)的图象大致是()A.B.C.D.9.(5分)若,则=()A.B.C.D.10.(5分)将函数f(x)=3sin(2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值不可能是()A.B.πC.D.11.(5分)椭圆C:+=1的左,右顶点分别为A1,A2,点P在C上,且直线P A2斜率的取值范围是[﹣2,﹣1],那么直线P A1斜率的取值范围是()A.[,] B.[,] C.[,1] D.[,1]12.(5分)已知函数f(x)=﹣5,若对任意的,都有f(x1)﹣g(x2)≥2成立,则a的取值范围是()A.(0,+∞)B.[1,+∞)C.(﹣∞,0)D.(﹣∞,﹣1]二、填空题:每题5分,满分20分13.(5分)若向量,夹角为,且,,则与的夹角为.14.(5分)已知A(2,5),B(4,1),若点P(x,y)在线段AB上,则2x﹣y的最大值为.15.(5分)一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,则它的外接球的表面积为.16.(5分)已知实数a,b满足ln(b+1)+a﹣3b=0,实数c,d满足,则(a ﹣c)2+(b﹣d)2的最小值为.三、解答题:本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{a n}是等差数列,a1=2,a1+a2+a3=12.(1)求数列{a n}的通项公式;(2)令b n=3a n,求数列{b n}的前n项和S n.18.(12分)某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?(Ⅲ)学生的积极性与对待班级工作的态度是否有关系?请说明理由.附:K2=19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.(Ⅰ)证明:平面EAC⊥平面PBD;(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.20.(12分)已知抛物线C1:y2=2px(p>0)的焦点为F,抛物线上存在一点G到焦点的距离为3,且点G在圆C:x2+y2=9上.(Ⅰ)求抛物线C1的方程;(Ⅱ)已知椭圆C2:=1(m>n>0)的一个焦点与抛物线C1的焦点重合,且离心率为.直线l:y=kx﹣4交椭圆C2于A、B两个不同的点,若原点O在以线段AB为直径的圆的外部,求k的取值范围.21.(12分)已知函数,其中m,a均为实数,e为自然对数的底数.(I)求函数g(x)的极值;(II)设m=1,a<0,若对任意的x1,x2∈[3,4](x1≠x2),恒成立,求实数a的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线B是过点P(﹣1,1),倾斜角为的直线,以直角坐标系xOy的原点为极点,x轴正半轴为极轴建立极坐标系,曲线A的极坐标方程是.(1)求曲线A的普通方程和曲线B的一个参数方程;(2)曲线A与曲线B相交于M,N两点,求|MP|+|NP|的值.[选修4-5:不等式选讲]23.已知定义在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(I)求a的值;(II)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.【参考答案】一、选择题1.B【解析】∵集合A={﹣1,0,1},B={y|y=sinπx,x∈A}={0},∴A∩B={0},故选:B.2.A【解析】∵z=1﹣i,∴=,∴的共轭复数为1﹣3i.故选:A.3.D【解析】将函数y=sin2x的图象向右平移个单位长度可得函数的图象,故选:D.4.B【解析】由题意,m2﹣4<0且m≠0,∵m∈Z,∴m=1∵双曲线的方程是y2﹣x2=1∴a2=1,b2=3,∴c2=a2+b2=4∴a=1,c=2,∴离心率为e==2.故选:B.5.D【解析】∵根据所给的表格可以求出==4.5,==∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=3,故选:D.6.B【解析】由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.7.D【解析】由约束条件作出可行域如图,联立,解得C(﹣2,2),联立,得A(a,﹣a),联立,得B(a,a+4),∴|AB|=2a+4,C到AB的距离为a+2,由,解得:a=1.故选:D.8.C【解析】∵f(x)=x2sin x+x cos x,∴f′(x)=x2cos x+cos x,∴f′(﹣x)=(﹣x)2cos(﹣x)+cos(﹣x)=x2cos x+cos x=f′(x),∴其导函数f′(x)为偶函数,图象关于y轴对称,故排除A,B,当x→+∞时,f′(x)→+∞,故排除D,故选:C.9.B【解析】若,则cosα==,则=sinαcos+cosαsin=+=,故选:B.10.C【解答】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.11.A【解析】由椭圆C:+=1可知其左顶点A1(﹣2,0),右顶点A2(2,0).设P(x0,y0)(x0≠±2),则得=﹣.∵=,=kP A1=,∴=•==﹣.∵直线P A2斜率的取值范围是[﹣2,﹣1],∴直线P A1斜率的取值范围是[,]故选:A.12.B【解析】函数g(x)的导数g′(x)=3x2﹣2x=x(3x﹣2),∴函数g(x)在[,]上递减,则[,2]上递增,g([)=,g(2)=8﹣4﹣5=﹣1,若对任意的,都有f(x1)﹣g(x2)≥2成立,即当≤x≤2时,f(x)≥1恒成立,即恒成立,即a≥x﹣x2ln x在≤x≤2上恒成立,令h(x)=x﹣x2ln x,则h′(x)=1﹣2x ln x﹣x,h′′(x)=﹣3﹣2ln x,当在≤x≤2时,h′′(x)=﹣3﹣2ln x<0,即h′(x)=1﹣2x ln x﹣x在≤x≤2上单调递减,由于h′(1)=0,∴当≤x≤1时,h′(x)>0,当1≤x≤2时,h′(x)<0,∴h(x)≤h(1)=1,∴a≥1.故选:B.二、填空题13.【解析】根据题意,设与的夹角为θ,向量,夹角为,且,,则•=2×1×=1,•()=2+2•=6,则()2=2+4•+42=12,则||=2,则有cosθ===,又由0<θ<π,则θ=;故答案为:.14.7【解析】如图示:A(2,5),B(4,1).若点P(x,y)在线段AB上,令z=2x﹣y,则平行y=2x﹣z当直线经过B时截距最小,z取得最大值,可得2x﹣y的最大值为:2×4﹣1=7.故答案为:7.15.25π【解析】直六棱柱的外接球的直径为直六棱柱中最长的对角线,∵一个直六棱柱的底面是边长为2的正六边形,侧棱长为3,∴直六棱柱的外接球的直径为5,∴外接球的半径为,∴外接球的表面积为=25π.故答案为:25π.16.1【解析】由ln(b+1)+a﹣3b=0,得a=3b﹣ln(b+1),则点(b,a)是曲线y=3x﹣ln(x+1)上的任意一点,由2d﹣c+=0,得c=2d+,则点(d,c)是直线y=2x+上的任意一点,因为(a﹣c)2+(b﹣d)2表示点(b,a)到点(d,c)的距离的平方,即曲线上的一点与直线上一点的距离的平方,所以(a﹣c)2+(b﹣d)2的最小值就是曲线上的点到直线距离的最小值的平方,即曲线上与直线y=2x+平行的切线到该直线的距离的平方.y'=,令y'=2,得x=0,此时y=0,即过原点的切线方程为y=2x,则曲线上的点到直线距离的最小值的平方=1.故答案为:1.三、解答题17.解:(1)数列{a n}是等差数列,a1=2,a1+a2+a3=12.∴2+2+d+2+2d=12,解得d=2,∴数列{a n}的通项公式a n=2+(n﹣1)×2=2n.(2)b n=3a n=6n,∴数列{b n}的前n项和:S n=6(1+2+3+…+n)=6×=3n(n+1).18.解:(Ⅰ)随机调查这个班的一名学生,有50种情况,抽到不积极参加班级工作且学习积极性不高的学生,有19种情况,故概率是(Ⅱ)设这7名学生为a,b,c,d,e,A,B(大写为男生),则从中抽取两名学生的所有情况是:ab,ac,ad,ae,aA,aB,bc,bd,be,bA,Bb,cd,ce,cA,cB,de,dA,dB,eA,eB,AB共21种情况,其中含一名男生的有10种情况,∴.(Ⅲ)根据∴我们有99.9%把握认为“学生的学习积极性与对待班级工作的态度”有关系.19.(Ⅰ)证明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD.∵四边形ABCD是菱形,∴AC⊥BD,又∵PD∩BD=D,AC⊥平面PBD.而AC⊂平面EAC,∴平面EAC⊥平面PBD.(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,∴PD∥OE,∵O是BD中点,∴E是PB中点.取AD中点H,连结BH,∵四边形ABCD是菱形,∠BAD=60°,∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BH⊥平面P AD,.∴==.20.解:(Ⅰ)设点G的坐标为(x0,y0),由题意可知解得:,所以抛物线C1的方程为:y2=8x(Ⅱ)由(Ⅰ)得抛物线C1的焦点F(2,0),∵椭圆C2的一个焦点与抛物线C1的焦点重合∴椭圆C2半焦距c=2,m2﹣n2=c2=4,∵椭圆C2的离心率为,∴,,∴椭圆C2的方程为:设A(x1,y1)、B(x2,y2),由得(4k2+3)x2﹣32kx+16=0由韦达定理得:,由△>0⇒(﹣32k)2﹣4×16(4k2+3)>0或…①∵原点O在以线段AB为直径的圆的外部,则,∴===…②由①、②得实数k的范围是或21.解:(Ⅰ),函数g(x)的定义域为R,,令g′(x)>0,解得:x<1,令g′(x)<0,解得:x>1,∴g(x)在(﹣∞,1)递增,在(1,+∞)递减,∴x=1时,g(x)取得极大值,无极小值;(Ⅱ),m=1,a<0时,f(x)=x﹣a ln x﹣1,x∈(0,+∞),∴f′(x)=>0在[3,4]恒成立,∴f(x)在[3,4]上为增函数,设h(x)=,>0在[3,4]恒成立,∴h(x)在[3,4]上为增函数,不妨设x2>x1,则恒成立等价于:f(x2)﹣f(x1)<h(x2)﹣h(x1),即f(x2)﹣h(x2)<f(x1)﹣h(x1),设u(x)=f(x)﹣h(x)=x﹣a ln x﹣1﹣则必有u(x)在[3,4]上为减函数,∴u′(x)=1﹣≤0在[3,4]上恒成立,∴a≥x﹣e x﹣1+,∴a≥(x﹣e x﹣1+)max,x∈[3,4],设v(x)=x﹣e x﹣1+,∵v′(x)=1﹣e x﹣1+=1﹣e x﹣1[()2+],x∈[3,4].∵e x﹣1[()2+]>1,在[3,4]恒成立,∴v'(x)<0,v(x)为减函数,∴v(x)在[3,4]上的最大值v(3)=3﹣e2,∴a≥3﹣e2,∴a的最小值为3﹣e2,22.解:(1)∵,∴ρ2(3+sin2θ)=12,即曲线A的普通方程为,∵曲线B是过点P(﹣1,1),倾斜角为的直线,∴由题得,曲线B的一个参数方程为(t为参数).(2)设|PM|=|t1|,|PN|=|t2|,把,代入中,得,整理得,,∴,∴.23.解:(Ⅰ)由绝对值不等式的性质有:|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,当且仅当﹣1≤x≤2时等号成立,即函数f(x)的最小值为3,a=3.证明:(Ⅱ)由题意结合柯西不等式有:(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=9,则:p2+q2+r2≥3.。

2018届全国四省名校高三第三次大联考文科数学试题(附答案)

2018届全国四省名校高三第三次大联考文科数学试题(附答案)

2018届全国四省名校高三第三次大联考文科数学试题(附答案)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足(为虚数单位),则的虚部为( ) A . B . C . D .2.某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为144,则( )A .14B .13C .12D .11 3.设集合,则( ) A . B . C . D .4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为( ) A .B .C .D .5.双曲线的一条渐近线截圆为弧长之比是1:2的两部z i z i =-)1(i z 21-21i 21-i 212cm =d cm cm cm cm }2|{},20|{2x x R x N x R x M ≥∈=≤<∈=M x N x ∈∈∀,N x M x ∈∈∀,M x N x ∈∉∃00,N x M x ∉∈∃00,716561135310)0(1222>=-b by x 0422=-+y y x分,则双曲线的离心率为( )A .B .2C .D .6.某校李老师本学期任高一A 班、B 班两个班数学课教学,两个班都是50个学生,下图反映的是两个班在本学期5次数学检测中的班级平均分对比,根据图表信息,下列不正确的结论是( )A .A 班的数学成绩平均水平好于B 班 B .B 班的数学成绩没有A 班稳定C .下次B 班的数学平均分高于A 班D .在第一次考试中,A 、B 两个班总平均分为78分7.已知为定义在上周期为2的奇函数,当时,,若,则( ) A .6 B .4 C . D . 8.阅读如图所示的程序,若运行结果为35,则程序中的取值范围是( )A .B .C .D . 9.设函数的图象关于点对称,点到该函数图象的对称轴的距离的最小值为,则( ) 32313-)(x f R 01<≤-x )1()(+=ax x x f 1)25(-=f =a 2514-6-a 76≤<a 76≤≤a 76<≤a 76<<a )0,0)(sin()(πϕωϕω<<>+=x x f )0,3(πM M 4πA .的周期为B .的初相C .在区间上是单调递减函数D .将的图象向左平移个单位长度后与函数图象重合 10.设,则( )A .B .C .D . 11.如图,在中,已知,为上一点,且满足,若的面积为,,则的最小值为( )A .B. C . D . 12.设抛物线的焦点为,准线与轴交于点,过点的直线与抛物线相交于不同两点,且,连接并延长准线于点,记与的面积为,则( ) )(x f π2)(x f 6πϕ=)(x f ]32,3[ππ)(x f 12πx y 2cos =215,2ln ,23-===z y xz y x <<x z y <<y x z <<x y z <<ABC ∆21=P AD m 94+=ABC ∆33π=∠ACB ||3169163834x y E 4:2=F l x K K m E B A ,23||=AF BF l C ACF ∆ABC ∆21,S S =21S SA .B .C .D . 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若变量满足约束条件,,则的最小值为 .14.设为等比数列,为其前项和,若,则. 15.已知,且满足,则 .16.如图,已知直二面角,点,若,则三棱锥的体积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数. (1)当时,求的值域;(2)在中,若,求的面积.745432107y x ,⎪⎩⎪⎨⎧≥+-≥+≤052301y x y x x y x z -=2z }{n a n S n 362a a ==36S S )23,(ππα∈2cos 1sin 1sin 1=++-ααα=+αα2sin 2cos 2βα--l 060,3,4,,,,=∠==∈∈∈∈BCD BD BC CD l D l C B A βαAD AC 2=BCD A -)sin 3(cos cos 2)(x x x x f +=]127,24[ππ∈x )(x f ABC ∆A B BC B f sin 3sin ,3,1)(==-=ABC ∆18.2018年6月14日,第二十一届世界杯足球赛将在俄罗斯拉开帷幕.为了了解喜爱足球运动是否与性别有关,某体育台随机抽取100名观众进行统计,得到如下列联表.(1)将列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关?(2)在不喜爱足球运动的观众中,按性别分别用分层抽样的方式抽取6人,再从这6人中随机抽取2人参加一台访谈节目,求这2人至少有一位男性的概率.19.在如图所示的几何体中,平面,四边形为等腰梯形,,,,,,.(1)证明:; (2)若多面体的体积为,求线段的长. 20.如图,在平面直角坐标系中,已知点,过直线:左侧的动点作于点,的角平分线交轴于点,且,记动点的轨迹为曲线.(1)求曲线的方程;22⨯22⨯⊥EA ABCD ABCD BC AD //BC AD 21=1=AD 060=∠ABC AC EF //AC EF 21=CF AB ⊥ABCDEF 833CF )0,1(F l 4=x P l PH ⊥H HPF ∠x M ||2||MF PH =P C C(2)过点作直线交曲线于两点,设,若,求的取值范围.21.已知函数. (1)当时,判断函数的单调性; (2)若有两个极值点. ①求实数的取值范围; ②证明:. 22.在极坐标系中,曲线的极坐标方程化为,点的极坐标为,以极点为坐标原点,极轴为轴正半轴,建立平面直角坐标系. (1)求曲线的直角坐标方程和点的直角坐标;(2)过点的直线与曲线相交于两点,若,求的值. 23.已知函数,. (1)当时,解不等式;(2)若对任意,都存在,使得成立,求实数的取值范围.F 'l C B A ,FB AF λ=]2,21[∈λ||AB )()1()(2R a e x a x f x∈-+=21=a )(x f )(x f )(,2121x x x x <a ex f 1)(211-<<-C θρsin 6=P )4,2(πx C P P l C B A ,||2||PB PA =||AB |12||2|)(-++=x a x x f 1256)(--=x x x g 3=a 6)(≤x f ]25,1[1∈x R x ∈2)()(21x f x g =a试卷答案一、选择题1-5:BDBCB 6-10:CAADC 11、12:DC二、填空题13. 14.3 15.16. 三、解答题3 5936817.解:(1)∵,∴ 当,即时,取得最大值3;当,即时,取得最小值,故的值域为.(2)设中角所对的边分别为 ∵ ∴,∵,即,∴,得.又∵,即,,即, ∴ 由正弦定理得,解得∵,∴,∴∴. 18.解:(1)补充列联表如下:1)2cos 212sin 23(2)(++=x x x f 1)62sin(2++=πx ]127,24[ππ∈x ]34,4[62πππ∈+x 262ππ=+x 6π=x )(x f 3462ππ=+x 127π=x )(x f 31-)(x f ]3,31[-ABC ∆C B A ,,c b a ,,,1)(-=B f 1)62sin(-=+πB π<<B 062626ππππ+<+<B 2362ππ=+B π32=B 3=BC 3=a A B sin 3sin =a b 3=3=b Bb A a sin sin =21sin =A 30π<<A 6π=A 6π=C 433213321sin 21=⨯⨯⨯==∆C ab S ABC由列联表知 故可以在犯错误的概率不超过0.001的前提下认为喜爱足球运动与性别有关. (2)由分层抽样知,从不喜爱足球运动的观众中抽取6人,其中男性有人,女性有人. 记男性观众分别为,女性观众分别为,随机抽取2人,基本事件有共15种记至少有一位男性观众为事件,则事件包含共9个基本事件由古典概型,知 19.解:(1)∵平面,∴作于点,在中,,,得, 在中,∴∴且, ∴平面 又∵平面 ∴.828.1035060405050)20104030(10022>=⨯⨯⨯⨯-⨯⨯=K 260206=⨯460406=⨯21,a a 4321,,,b b b b ),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(212414231322122111434232413121a a a b a b a b a b a b a b a b a b b b b b b b b b b b b b A A ),(),,(),,(),,(),,(),,(),,(),,(),,(212414231322122111a a a b a b a b a b a b a b a b a b 53159)(==A P ⊥EA ABCD AB EA ⊥BC AH ⊥H ABH Rt ∆060=∠ABH 21=BH 1=AB ABC ∆360cos 20222=⋅-+=BC AB BC AB AC 22BC AC AB =+AC AB ⊥A EA AC = ⊥AB ACFE ⊂CF ACFE CF AB ⊥(2)设,作于点, 则平面,且, 又, ,∴,得 连接,则, ∴. 20、(1)设,由题可知,所以,即,化简整理得, 即曲线的方程为. (2)由题意,直线的斜率,设直线的方程为,由得, 设,所以恒成立,a AE =AC DG ⊥G ⊥DG ACFE 21=DG a a AB S V ACFE ACFE B 431)323(213131=⨯⨯+⨯⨯=⨯=-梯形a a DG S V ACFE ACFE D 8321)323(213131=⨯⨯+⨯⨯=⨯=-梯形833833==+=--a V V V ACFE D ACFE B ABCDEF 多面体1=a FG AC FG ⊥27)23(1222=+=+=CG FG CF ),(y x P ||||PF MF =21||||||||==PH MF PH PF 21|4|)1(22=-+-x y x 13422=+y x C 13422=+y x 'l 0≠k 'l 1+=my x ⎪⎩⎪⎨⎧=++=134122y x my x 096)43(22=-++my y m ),(),,(2211y x B y x A 0)1(144)43(36)6(222>+=++=∆m m m且,① 又因为,所以,②联立①②,消去,得 因为, 所以, 解得. 又, , 因为, 所以. 所以的取值范围是. 21.解:(1)当时,, 记,则,由,得,由,得,∴即在区间上单调递增,在区间上单调递减. ∴.∴对,,439,43221221+-=+-=+m y y m y y λ=21y y λ=-21,y y λλ222)1(434-=+m m ]21,0[21)1(2∈-+=-λλλλ21434022≤+≤m m 5402≤≤m 1||1||2212+=-+=m y y m AB 43444312124)(22221221+-=++=-+m m m y y y y 5324342≤+≤m ]827,3[4344||2∈+-=m AB ||AB ]827,3[21=a x x e x x f e x x f -+=-+=1)(',)1(21)(2x e x x g -+=1)(x e x g -=1)('01)('>-=x e x g 0<x 01)('<-=x e x g 0>x )(x g )('x f )0,(-∞),0(+∞0)0(')('max ==f x f R x ∈∀0)('≤x f∴在上单调递减.(2)①∵有两个极值点,∴关于的方程有两个根,设,则,当时,, 即在上单调递减,∴最多有一根,不合题意当时,由,得,由,得,∴即在区间上单调递增,在区间上单调递减. 且当时,,当时,,要使有两个不同的根,必有,解得 ∴实数的取值范围是. ②∵, ∴ 又,∴, ∴ 令, )(x f R )(x f x 0)1(2)('=-+=xe x a xf 21,x x x e x a x -+=)1(2)(ϕx e a x -=2)('ϕ0≤a 02)('<-=x e a x ϕ)(x ϕ)('x f R 0)('=x f 0>a 0)('>x ϕa x 2ln <0)('<x ϕa x 2ln >)(x ϕ)('x f )2ln ,(a -∞),2(ln +∞a -∞→x -∞→)('x f +∞→x -∞→)('x f 0)('=x f 02ln 22)12(ln 2)2(ln ')('max >=-+==a a a a a a f x f 21>a a ),21(+∞012)0(',01)1('>-=<-=-a f ef 011<<-x 0)1(2)('111=-+=x e x a x f )1(211+=x e a x )01()1(21)1(21)1()(1112111111<<--=-+=-+=x e x e e x e x a x f x x x x )01()1(21)(<<--=x e x x h x则, ∴在区间上单调递减,∴.又,, ∴. 22、(1),得,又,∴,即曲线的直角坐标方程为, 点的直角坐标为.(2)设过点的直线的参数方程是(为参数), 将其代入,得,设两点对应的参数分别为,∴∵,∴∴或∴,23.解:(1)当时,, 021)('<=x xe x h )(x h )0,1(-)1()()0(1-<<f x f f 211)0(->-=a f ef 1)1(-=-ex f 1)(211-<<-θρsin 6=θρρsin 62=θρθρsin ,cos ==y x y y x 622=+C 9)3(22=-+y x P )1,1(P l ⎩⎨⎧+=+=θθsin 1cos 1t y t x t y y x 622=+04)sin 2(cos 22=--+t t θθB A ,21,t t 421-=t t ||2||PB PA =212t t -=2,2221-==t t 2,2221=-=t t 23||||21=-=t t AB 3=a |12||32|)(-++=x x x f或或 解得即不等式解集为.(2)∵, 当且仅当时取等号,∴的值域为又在上单调递增, ∴的值域为,要满足条件,必有,∴,解得∴实数的取值范围为. ⎪⎩⎪⎨⎧≤-++--<⇔≤621)32(236)(x x x x f ⎪⎩⎪⎨⎧≤-++≤≤-621322123x x x ⎪⎩⎪⎨⎧≤-++>612)32(21x x x 12≤≤-x }12|{≤≤-x x |1||122||12||2|)(+=+-+≥-++=a x a x x a x x f 0)12)(2(≤-+x a x )(x f )|,1[|+∞+a 1256)(--=x x x g 1223--=x ]25,1[∈x )(x g ]25,1[)|,1[|]25,1[+∞+⊆a 1|1|≤+a 02≤≤-a a ]0,2[-。

四川省南充市2018届高三第三次诊断考试文科综合试题含答案

四川省南充市2018届高三第三次诊断考试文科综合试题含答案

四川省南充市2018届⾼三第三次诊断考试⽂科综合试题含答案秘密★启封并使⽤完毕前【考试时间:2018年4⽉25⽇上午9∶00-11∶30】四川⾼三联合诊断考试⽂科综合能⼒测试考⽣注意:1.答题前,考⽣务必将⾃⼰的姓名、考号填写在答题卡规定的位置上,在答题卡规定的位置贴好条形码,并核准条形码上的姓名、考号。

2.作答时,将答案涂或写在答题卡规定的位置上,在试题卷上作答,答案⽆效。

3.考试结束后,考⽣将答题卡交回。

第Ⅰ卷本卷共35⼩题,每⼩题4分,共140分。

在每个⼩题给出的四个选项中,只有⼀项是符合题⽬要求的。

下表是某国不同时期的城市⽤地年均增长率与城市⼈⼝年均增长率统计表,据表回答1~2题。

时期(年)1985~19951995~20052005~2015城市⽤地年均增长率(%) 6.49 5.72 6.22城市⼈⼝年均增长率(%) 3.77 4.28 3.791.1985年~2015年该国城市⽤地和城市⼈⼝年均增长率有明显差异,其原因是该国A.城市化⽔平⾼B.城市化不合理C.城市⼈⼝过少D.出现逆城市化2.据表中数据,可以推测1985年以来该国A.城市⽤地增长变缓B.城市⼈⼝增长缓慢C.城市环境污染减轻D.城市住房闲置增多花炮制作的重要原料是⽕硝和爆料纸等,其中⽕硝采⾃湿润的酸性泥⼟,爆料纸由优质⽵⽊和稻杆加⼯⽽成。

湖南省浏阳市的花炮制作有着悠久的历史,其产品久负盛名,2016年巴西⾥约奥运会开幕式上,由浏阳企业开发研制的花炮更是给全世界带来了全新的视觉盛宴。

近年来,浏阳花炮企业在欧洲、南美等13个国家都建有⽣产基地。

据此完成3~4题。

3.历史上浏阳花炮制作兴起的主要原因是A.原料来源⼴泛B.制作技术精湛C.劳动⼒数量多D.⽔陆交通便利4.浏阳花炮企业在欧洲、南美等地建⽣产基地的⽬的是A.提⾼⽣产技术B.打开国际市场B.接近⽣产原料 D.降低⽣产成本熔岩湖是由⽕⼭喷发时溢出的熔岩在⽕⼭⼝洼地内长期保持液态⽽形成。

2018届四川省南充市高三第三次诊断性考试文科数学试题及答案 精品

2018届四川省南充市高三第三次诊断性考试文科数学试题及答案 精品

四川省南充市2018届高三第三次诊断性考试数学(文)试题(考试时间120分钟满分150分)第I卷选择题(满分60分)参考公式①如果事件A,B互斥,那么P(A+B) =P(A)+P(B)②如果事件A,B相互独立,那么P(A·B)=P(A)·P(B)③如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率④球的表面积公式:其中R表示球的半径⑤球的体积公式:其中R表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项符合题目要求的1.设集合A={x︱(x+1)x>0},B={x︱x≥0},则A∩B=A.B.R C.(0,+0)D.[0,)2.已知抛物线y= ,则其焦点到准线的距离为A.B.1 C.2 D.43.某校要从高一.高二.高三共2018名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2018人中剔除12人,剩下的2000人再按分层抽样的方法进行,则每人人选的概率A.都相等且为B.都相等且为C.不会相等D.均不相等4.把函数y=sinx的图像按下列顺序变换:①图像上点的横坐标伸长到原来的2倍(纵坐标不变)②图像向右平移个单位,得到的函数y=g(x)的解析式为5.若函数f(x)=x2+bx+c的图像的顶点在第四象限,则其导数的图像大致是6.在等比数列{a n}中,S4=1,S8=3,则a17 +a18 +a19 +a20,的值是A.14 B.16 C.18D.207.定义在R上的偶函数f(x)满足f(x)=f(x+2),当时,f(x)=x-2,则8.已知正三棱锥S-ABC的侧棱与底面边长相等,E.F分别为侧棱SC底边AB的中点,则异面直线EF与SA所成角的大小是()9.用数字0.1.2.3.4.5组成,没有重复数字且大于201845的六位数的个数为()A.480 B.478 C.479 D.60010.已知实数x,y满足若x+2y≤a,则a的最小值为()A.1 B.2 C.3 D.411已知抛物线y2=2px(p>0)的焦点F为双曲线的一个焦点,经过两曲线焦点的直线恰好过点F,则该双曲线的离心率为12.设函数,区间,集合,能使M=N成立的实数对(a,b)的个数为()A.0个B.1个C.2个D.无数个第Ⅱ卷(非选择题,满分7V分)注意事项:(1)只能用黑色签字笔直接答在答题卷中.(2)答题前将密封线内的项目填写清楚.二.填空题:本题共4小题,共16分,把答案填在答题卷相对应的横线上13.已知(1-2x)n的展开式中只有第3项的二项式系数最大,则展开式的各项系数和等于14.如图:边长为1的正方体ABCD-A l B1C1D1的顶点都在以O为球心的球面上,则A, C两点在该球面上的球面距离为15.已知三个不共面的平面向量两两所成的角相等,且则的值为16.在平面直角坐标系中有点P(x,y)定义,其中O为坐标原点,以下结论①符合[OP]=1的点P的轨迹围成的图形面积为2②设P为直线上任意一点,则[OP]的最小值为1③设P为直线y=kx+b(k, )上任意一点,则“使[OP]最小的点P有无数个”的必要不充分条件是“k=土1,其中正确的结论有(填上正确的所有结论的序号).三.解答题:本大题共6小题,共74分,解答过程应写出文字说明,证明过程或演算步骤.17.(本题满分12分)已知函数-(1)求函数f(x)的最小值和最小正周期(2)设a,b,c分别为△ABC的内角A.B.C的对边,且边,若平面向量(1,sinA)与共线,求a,b的值18.(本题满分12分)为了保障生命安全,国家有关部门发布的《车辆驾驶人员血液呼气酒精含量阀值与检验》中规定:车辆驾驶人员血液酒精含量(单位:mg/l00m1)大于或者等于20,且小于80的为“饮酒驾车”,大于或者等于80的为“醉酒驾车”。

四川省大教育联盟2018届高中毕业班第三次诊断性考试文数试题

四川省大教育联盟2018届高中毕业班第三次诊断性考试文数试题

高中2017-2018学年毕业班第三次诊断性考试数文史类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】C【解析】由得,,则,故选C.2. 已知复数满足(为虚数单位),则()A. B. C. D.【答案】D【解析】由得:,故选D.3. 已知为锐角,若,则()A. B. C. D.【答案】C【解析】∵为锐角且,∴,则故选C.4. 某青少年成长关爱机构为了调研所在地区青少年的年龄与身高壮况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1000个,根据各年龄段平均身高作出如图所示的散点图和回归直线.根据图中数据,下列对该样本描述错误的是()A. 据样本数据估计,该地区青少年身高与年龄成正相关B. 所抽取数据中,5000名青少年平均身高约为C. 直线的斜率的值近似等于样本中青少年平均身高每年的增量D. 从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线上【答案】D【解析】在给定范围内,随着年龄增加,年龄越大身高越高,故该地区青少年身高与年龄成正相关,故A正确;用样本数据估计总体可得平均数大约是,故B正确;根据直线斜率的意义可知斜率的值近似等于样本中青少年平均身高每年的增量,故C正确;各取一人具有随机性,根据数据做出的点只能在直线附近,不一定在直线上,故D错误,故选D.5. 《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:),则该阳马的外接球的表面积为()A. B. C. D. ...【答案】A【解析】由三视图可得,在长宽高分别为的长方体中,该几何体为如图所示的,设该几何体外接球的半径为R,由题意有:,解得:,该阳马的外接球的体积为。

2018届四川省南充市高三第三次高考适应性考试文科数学试题及答案 精品

2018届四川省南充市高三第三次高考适应性考试文科数学试题及答案 精品

南充市高2018届第三次高考适应性考试数学试卷(文科)本试卷分第I卷(选择题)和第II卷(非选择题)。

第I卷1至2页,第II卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试卷、草稿纸上答题无效。

考试结束后,只将答题卡交回。

第I卷选择题(满分50分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标题涂黑。

第I卷共10小题。

一、选择题:本大题共10小题,每题5分,共50分·在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M满足{1,2}{1,2,3,4},则满足条件的集合M的个数为()A.1 B .2 C .3.D. 42.已知点A(1,3),B(4,一1),则与向量AB 的方向相反的单位向量是()A、(-35,45)B、(-45,35)C、(35,-45)D、(45,-35)3.函数2()f x x+bx的图象在点A(l,f(1))处的切线与直线3x - y+2=0平行,若数列{1()f n}的前n项和为Sn,则S2018=()A、1B、20132014C、20142015D、201520164.某锥体三视图如右,根据图中所标数据,该锥体的各侧面中,面积最大的是()A. 3B. 2C. 6D. 85.设两圆C1,C2都与坐标轴相切,且都过点(4,1),则两圆的圆心距|C l C2|=()A. 4B、4C、8D、46.函数有零点( )个A.1B.2C. 3 D 、47.已知抛物线22(0)y px p =>上一点M (1,m )(m >0)到其焦点的距离为5,双曲线2221x y a-=的左顶点为A ,若双曲线一条渐近线与直线AM 平行、则实数a 等于( )A 、19B 、14C 、13D 、128.函数在x =1和x =-1处分别取得最大值和最小值,且对于,则函数f (x +1)一定是( )A .周期为2的偶函数 B.周期为2的奇函数 C.周期为4的奇函数 D.周期为4的偶函数 9.已知正方体ABCD 一A 1B 1C 1D 1,,下列命题:③向量1AD 与向量1A B的夹角为600④正方体ABCD 一A 1B 1C 1D 1的体积为1||AB AA AD,其中正确命题序号是A.①②B.①②③C.①④D.①②④.10.设函数,则关于x 的方程有三5个不同实数根,则等于C. 5D. 13第II卷(非选择题,满分100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡题目所指示的答题区域作答。

2018届四川省绵阳市高三第三次诊断性考试数学文试题(解析版)

2018届四川省绵阳市高三第三次诊断性考试数学文试题(解析版)

2018届四川省绵阳市高三第三次诊断性考试数学文试题(解析版)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足(是虚数单位),则=()A. 1B. -1C.D.【答案】A详解:由题设有,选A.点睛:本题考查复数的加、减、乘、除等四则运算,属于基础题.2. 已知集合,,集合,则集合的子集个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:为一元二次不等式的解集,可先计算出,求得为单元素集合,其子集的个数为2.详解:由题设有,故,所以的子集的个数为,选B.点睛:本题为集合与集合的交集运算,它们往往和一元二次不等式结合在一起考查,注意如果一个有限集中元素的个数为,那么其子集的个数为.3. 为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A. 0047B. 1663C. 1960D. 1963【答案】D【解析】,故最后一个样本编号为,故选D.4. 已知实数满足,则的最小值是()A. 4B. 5C. 6D. 7【答案】C详解:不等式组对应的可行域如图所示:由当动直线过时,取最小值为6,选C.点睛:当题设条件给出的是关于的二元一次不等式组时,我们可考虑利用线性规划来求目标函数的最值.5. 执行如图所示的程序框图,若输入,则输出的取值范围是()A. B. C. D.【答案】C【解析】分析:题设中的算法是结合的范围计算分段函数的函数值.详解:由题设有,当时,;当时,,从而当时,,选C.点睛:本题考察算法中的选择结构,属于基本题. 解题时注意判断的条件及其每个分支对应的函数形式.6. 如图1,四棱锥中,底面,底面是直角梯形,该四棱锥的俯视图如图2所示,则的长是()A. B. C. D.【答案】A【解析】根据俯视图可知,所以三角形为直角三角形,且为,由于所以,所以.故选A.7. 在区间上随机取一个实数,则事件“”发生的概率是()A. B. C. D.【答案】D【解析】由于,所以,故概率为,故选D.8. 甲、乙、丙三人各买了一辆不同品牌的新汽车,汽车的品牌为奇瑞、传祺、吉利.甲、乙、丙让丁猜他们三人各买的什么品牌的车,丁说:“甲买的是奇瑞,乙买的不是奇瑞,丙买的不是吉利.”若丁的猜测只对了一个,则甲、乙所买汽车的品牌分别是()A. 吉利,奇瑞B. 吉利,传祺C. 奇瑞,吉利D. 奇瑞,传祺【答案】A【解析】分析:因为丁的猜测只对了一个,所以我们从“甲买的是奇瑞,乙买的不是奇瑞”这两个判断着手就可以方便地解决问题.详解:因为丁的猜测只对了一个,所以“甲买的是奇瑞,乙买的不是奇瑞”这两个都是错误的.否则“甲买的不是奇瑞,乙买的不是奇瑞”或“甲买的是奇瑞,乙买的是奇瑞”是正确的,这与三人各买了一辆不同的品牌矛盾,“丙买的不是吉利”是正确的,所以乙买的是奇瑞,甲买的是吉利,选A.点睛:本题为逻辑问题,此类问题在解决时注意结合题设条件寻找关键判断.9. 双曲线的离心率是,过右焦点作渐近线的垂线,垂足为,若的面积是1,则双曲线的实轴长是()A. 1B. 2C.D.【答案】B【解析】由于双曲线焦点到渐近线的距离为,故,根据面积公式有,而,解得,故实轴长,选B.10. 若曲线的一条切线是,则的最小值是()A. 2B.C. 4D.【答案】C【解析】设切点为,,故切线方程为,即,所以.故选C.【点睛】本小题主要考查利用导数求函数的切线方程,考查利用基本不等式求解式子的最小值.求曲线的切线方程,主要把握住两点,一个是切点的坐标,另一个是在切点处的导数值,也即是在该点切线的斜率,根据点斜式可写出切线方程.要注意查看题目所给点是否是切点.11. 已知圆,圆交于不同的,两点,给出以下列结论:①;②;③,,其中正确结论的个数是()A. 0B. 1C. 2D. 3【答案】D【解析】分析:根据两个圆的标准方程得到公共弦的方程为,两点均在该直线上,故其坐标满足①②.而的中点为直线与直线的交点,利用直线方程构成的方程组可以得到交点的坐标,从而得到③也是正确的.详解:公共弦的方程为,所以有,②正确;又,所以,①正确;的中点为直线与直线的交点,又,.由得,故有,③正确,综上,选D.点睛:当两圆相交时,公共弦的方程可由两个圆的方程相减得到,而且在解决圆的有关问题时,注意合理利用圆的几何性质简化计算.12. 中,,,,点是内(包括边界)的一动点,且,则的最大值是()A. B. C. D.【答案】B【解析】分析:根据点在三角形内部(含边界)可以得到,再通过的解析式来求的最大值.详解:因为为三角形内(含边界)的动点,所以,从而.又,因为,所以的最大值为,故,选B.点睛:本题中向量的模长、数量积都是已知的,故以其为基底计算,其中的取值范围可以由的位置来确定.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 抛物线的焦点坐标是__________.【答案】【解析】焦点坐标为。

(完整版)2018年全国卷3文科数学试题及参考答案

(完整版)2018年全国卷3文科数学试题及参考答案
年全国卷3文科数学试题及其参考答案 第7页(共13页) 【考点】线性规划 16. 已知函数2ln11fxxx,4fa,则_______.fa 【答案】2 【解析】令2ln1gxxx,则2ln1gxxxgx, 14faga,而112fagaga 【考点】对数型函数的奇偶性 三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分) 等比数列na中,1531,4aaa. (1)求na的通项公式; (2)记nS为na的前n项和. 若63mS,求m. 【答案】(1)12nna或12nna;(2)6m 【解析】(1)25334aaaq,2q,12nna或12nna (2) 当2q时,112631mmS,解得6m 当2q时,112633mmS,得2188m无解 综上:6m 【考点】等比数列通项公式与前n项和公式 18. (12分)
年全国卷3文科数学试题及其参考答案 第3页(共13页) 6.函数2tan1tanxfxx的最小正周期为( ) A.4 B.2 C. D.2 【答案】C 【解析】2222tantancos1sincossin2221tan1tancosxxxfxxxxxkxxx,22T(定义域并没有影响到周期) 【考点】切化弦、二倍角、三角函数周期 7.下列函数中,其图像与函数lnyx的图像关于直线1x对称的是 A.ln1yx B.ln2yx C.ln1yx D.ln2yx 【答案】B 【解析】采用特殊值法,在lnyx取一点3,ln3A,则A点关于直线1x的对称点为'1,ln3A应该在所求函数上,排除A,C,D 【考点】函数关于直线对称 8.直线20xy分别与x轴、y轴交于点,AB两点,点P在圆2222xy上,则ABP面积的取值范围是( ) A.2,6 B.4,8 C.2,32 D.22,32 【答案】A 【解析】2,0,0,2AB,22AB,可设22cos,2sinP,则42sin4222sin2,3242PABd 122,62ABPPABPABSABdd

四川省南充高级中学2018届高三上学期第三次检测数学(文)试题Word版附详细解析

四川省南充高级中学2018届高三上学期第三次检测数学(文)试题Word版附详细解析

南充高中2017-2018学年上学期第三次考试高三数学(文)试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】试题分析:由,故选B.考点:集合的基本运算.2. 已知复数(为虚数单位),则的共轭复数是()A. B. C. D.【答案】A【解析】 ,所以共轭复数是。

故选A。

3. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.4. 双曲线()的离心率为()A. B. C. D.【答案】B【解析】由双曲线的标准方程,则根据题意可得,即双曲线的标准方程为,其离心率为,选B5. 如表是降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,则表中的值为()A. 4.5B. 3.5C. 3D. 2.5【答案】C【解析】∵根据所给的表格可以求出∵这组数据的样本中心点在线性回归直线上,,选B点睛:本题考查线性回归方程的应用,是一个基础题,题目的运算量不大,解题的关键是理解样本中心点在线性回归直线上.6. 某空间几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】B【解析】解析:由三视图中提供的数据信息和几何特征可知该几何体是一个四棱锥去掉以半圆锥的组合体,其体积,应选答案B。

7. 在平面直角坐标系中,不等式组(为常数)表示的平面区域的面积是9,那么实数的值为()A. B. C. D.【答案】D【解析】试题分析:由题意得平面区域为一个等腰直角三角形ABC,其中,因此,选D.考点:线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.8. 已知函数,则其导函数的图象大致是()A. B. C. D.【答案】C【解析】∴其导函数为偶函数,图象关于轴对称,故排除A,B,当时,故排除D,故选:C.点睛:本题考查了导数的运算法则和函数图象的识别,属于基础题.9. 若(),则()A. B. C. D.【答案】B【解析】试题分析:因为,,所以,所以=,故选B.考点:1、同角三角函数间的基本关系;2、两角和的正弦公式.10. 将函数()的图象向右平移()个单位长度后得到函数的图象,若的图象都经过点,则的值不可能是()A. B. C. D.【答案】D【解析】函数向右平移个单位,得到因为两个函数都经过,所以,又因为,所以,所以由题意所以此时或此时故选D.点睛:本题考查的知识点是函数的图象变换,三角函数求值,属中档题.解题时要注意,否则容易引起错误11. 椭圆:的左、右顶点分别为、,点在上,且直线的斜率的取值范围是,那么直线斜率的取值范围是()A. B. C. D.【答案】A【解析】试题分析:设,直线的斜率分别为,则,所以因为,所以,故选A.考点:1、双曲线的几何性质;2、直线的斜率公式.【方法点晴】本题主要考查利用双曲线的几何性质及直线的斜率公式,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系,本题首先根据双曲线的对称性,求出,再由的范围求得的范围.12. 已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】令,则,所以在单调递减,单调递增,所以,则,所以,令,则,,则在区间上,,则单调递减,又,所以在单调递增,单调递减,所以,所以,故选A。

四川省南充市2018届高三第三次诊断考试数学(文)含答案

四川省南充市2018届高三第三次诊断考试数学(文)含答案

间(0,1) 与(1,2) 内,则 b -2 a 的取值范围是
2 2
x3 1 2 + ax + 2 bx + c 的两个极值分别为 f ( x1 ) , f ( x2 ) , 若 x1 , x2 分别在区 3 2 B. ( -4, -2) C. ( -5, -2) ㊀ ㊀ ㊀ D. ( -ɕ ,2) ɣ(7, +ɕ )
第Ⅰ卷㊀ 选择题( 共 60 分)
注意事项: ㊀ ㊀ 必须使用 2B 铅笔在答题卡上将所选答案对应的标题涂黑㊂ 一㊁选择题:本大题共 12 小题,每小题 5 分, 共 60 分㊂ 在每小题给出的四个选项中, 只有一项 1 . 已知集合 A = { x | xɤ1} ,B = { x | 0ɤxɤ4} ,则 AɘB = 是符合题目要求的㊂ ㊀ ㊀ 第Ⅰ卷共 12 小题㊂
- 2 = p( nȡ2,nɪN ∗ ,p 为常数 ) ,则 { a n } 称为 等方差数列 . 下列对 16 . 在数列{ a n } 中,若 a2 n a n-1 ②{ ( -1) n } 是等方差数列; 其中正确命题序号为 ①若{ a n } 是等方差数列,则{ a2 n } 是等差数列 ; ③若{ a n } 是等方差数列,则{ a kn } ( kɪN ∗ ,k 为常数) 也是等方差数列. ( 写出所有正确命题的序号) . 等方差数列 的判断:
D. x 甲 <x 乙 ,乙比甲成绩稳定,应选乙参加比赛
高三数学( 文科) 第㊀1 页( 共 4 页)
6. 已知数列{ a n } 满足 a1 = 0,a n+1 = A. - 3 A. 5 B. 0
an - 3
3 a n +1
( nɪN ∗ ) ,则 a56 = C. 3 C. 3 D. 3 2

四川省南充市2017-2018学年高考数学三模试卷(文科) Word版含解析

四川省南充市2017-2018学年高考数学三模试卷(文科) Word版含解析

2017-2018学年四川省南充市高考数学三模试卷(文科)一、选择题:本大题共10小题,每小题5分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.满足{1,3}∪A={1,3,5}的所有集合A的个数()A.1个B.2个C.3个D.4个2.i是虚数单位,则复数i(1+i)的虚部是()A.1B.﹣1C.iD.﹣i3.函数f(x)=cos(2x﹣)的最小正周期是()A.B.πC.2πD.4π4.某几何体的三视图如图,(其中侧视图中圆弧是半圆),则该几何体的表面积为()A.92+14πB.100+10πC.90+12πD.92+10π5.执行如图所示的程序框图,输出k的值为()A.10B.11C.12D.136.若tanα=2,则的值为()A.0B.C.1D.7.若是两个非零向量,则()2=是的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件8.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列中的假是()A.若m⊥α,m⊥β,则α∥βB.若m∥n,m⊥α,则n⊥αC.若m⊥β,α⊥β,则m∥αD.若m⊥α,m∥β,则α⊥β9.已知a为实数,函数,若函数f(x)的图象在某点处存在与x轴平行的切线,则a的取值范围是()A.B.C.D.10.若抛物线y=x2上的两点A,B的横坐标恰好是关于x的方程x2+px+q=0(常数p,q∈R)的两个实根,则直线AB的方程是()A.qx+3y+p=0B.qx﹣3y+p=0C.px+3y+q=0D.px﹣3y+q=0二、填空题:本题共5小题,每题5分,共25分。

11.lg0.01+()﹣1的值为.12.已知平面向量=(3,1),=(x,﹣3),∥,则x等于.13.已知函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2.则++…+=.14.直线x+7y﹣5=0分圆x2+y2=1所成的两部分弧长之差的绝对值为.15.若以曲线y=f(x)上的任意一点M(x,y)为切点作切线L,曲线上总存在异于M的点N(x1,y1),使得过点N可以作切线L1,且L∥L1,则称曲线y=f(x)具有“可平行性”.下面有四条曲线:①y=x3﹣x ②y=x+③y=sinx ④y=(x﹣2)2+lnx其中具有可平行性的曲线为.(写出所有满足条件的曲线编号)三、简答题:本大题共6小题,共75分。

四川省2018届高三第三次诊断性考试数学(文)试题(含答案)

四川省2018届高三第三次诊断性考试数学(文)试题(含答案)

需 改动 ,用 橡 皮擦 干 净 后 ,再 选 涂 其 它答 案 标 号 。 回 答 非 选 择 题 时 ,将 答 案 写在 答 题 卡 上 。 写在 本试 卷 上 无效 。 ,
3.考 试 结 束 后 ,将 本试 卷和答题 卡 一 并 交回 。 -、 选 择 题 :本 题 共 12小 题 ,每 小 题 符 合 题 目要 求 的 。
A。 9
B。 C。 D。
≤z 1ˉ 川
8.5
8
7.5
3ˉ 1|(jr3讠 2|:
6.已 知双 曲线
(夕

ห้องสมุดไป่ตู้
— =1(曰 )0,8)O)的 左焦点到抛物线 /=2夕 J 芳
(5,2√ t)是 双 曲线 的 一 条渐 近线
>0)的 准线 的距离为 2,点
一 苦 一 喾 菩 喾
与抛物线 的一 个交点 ,则 双 曲线 的标准方程为
下列选项 中 ,说 法 与实 际情 况 最相符 的是
A。
B。 C。 D。
逐 年 比较 ,各 年 的活跃 用 户数 与 营销 费用增 速均在增 加 逐 季度 比较 ,各 季度 的活跃用 户增 速 与 活跃用 户数呈 线性 关 系 ⒛ 15年 一 ⒛ 16年 该 电商平 台活跃 用 户数增速仍增 大
2017年 该 电商平 台活跃 用 户数 逐 季度增 加
2018年 秘密 ★ 启 用前 【 考试 时 间 ∶
5
月 17日 15:00~17:00】
zO15级 高 三毕业班 第三 次诊 断性 考试

注意 事项
:
毒 廴 文 史 类
)
(考 试 时 间 :1zO分 钟
试 卷 满 分 :15O分
)
1.答 卷前 ,考 生 务 必 将 自己的 姓 名 、 准考 证 号填 写在 答题 卡 上 。 2.回 答 选 择 题 时 ,选 出每 小题 答案后 ,用 铅 笔把 答题 卡 上 对应题 目的 答 案标 号涂 黑 。如

2018届四川省绵阳市高三第三次诊断考试文科数学试题及答案 精品

2018届四川省绵阳市高三第三次诊断考试文科数学试题及答案 精品

绵阳市高中2018届第三次诊断性考试数学(文)本试卷分第I卷(选择题)和第B卷(非选择题)。

第I卷1至2页,第B卷2至4页.共4页.满分150分考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将答题卡交回。

第I卷(选择题,共50分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。

第I卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的1.已知i是虚数单位,则32ii-+等于(A)-l+i (B) 1-i (C) 1+i (D) -1-i2.已知向量为非零向量,则的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件3.己知函数的图象在同一直角坐标系中对称轴相同,则ω的值为(A) 4 (B) 2 (C) 1 (D)124、已知M,N为集合I的非空真子集,且M,N不相等,若(A)M (B)N (C)I (D)∅5.一机器元件的三视图及尺寸如右图示(单位:dm),则该组合体的体积为(A) 80 dm3 (B) 88 dm3 (C) 96 dm}3(D) 120dm36.若,则下列不等式成立的是7.某流程图如图所示,现输入如下四个函数,则可以输出f(x)的是8、已知C是半径为1,圆心角为60°的圆弧上的动点,如图,若其中,则x+y的最大值是9.己知四梭锥P-ABCD的各条棱长均为13, M, N分别是PA, BD 上的点,且PM:MA=BN:ND=5:8,则线段MN的长(A)5 (B)6 (C) 7 (D)810.已知点是抛物线y2=4x上相异两点,且满足=4,若AB的垂直平分线交x轴于点M,则△AMB的面积的最大值是第II卷(非选择题共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指的答题区域内作答.作图题可先用铂笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。

高三数学-2018年四川南充市高三下学期第三次高考适应

高三数学-2018年四川南充市高三下学期第三次高考适应

2018年四川南充市高三下学期第三次高考适应性考试数学(文科)试卷(满分150分,时间120分钟)本试卷分第1卷(选择题)和第Ⅱ卷(非选择题)两部分。

第1卷1至2页,第Ⅱ卷3至8页。

考试结束后,将本试卷和答题卡一并交回。

第1卷(选择题,满分60分)参考公式如果事件A 、B 互斥,那么 球的表面积公式()()()()P A P B P A P B +=+ 24S R =π 如果事件A 、B 相互独立,那么 其中只表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是p , 343V R =π那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k kn k n n P k C p p -=-一、选择题:共12小题,每小题5分,每小题给出的四个选项中只有一个选项符合题目要求,请将答案涂在机读卡上。

1.已知tan()2A π-=4,则tanA 的值为A .-3B .-1C .1D .2 2.在等比数列{}n a 中,12342,50a a a a +=+=,则公比q 为 A .25 B .5 C .-5 D .±5 3.函数sin()24x y π=--的最小正周期是A .2πB .4πC .πD .2π 4.已知命题3:1;:||1p q x a x ≤<+,若p ⌝是q 的必要不充分条件,则实数a 的取值范围是A .1a <B .1a ≤C .1a <D .2a ≤ 5.已知单位向量a 、b 的夹角为3π,则|2|a b -的值为ABC . 10D .-106.直线l 过抛物线28y x =的焦点F 交抛物线于A 、B 两点,若点M (2,0y )是弦AB 的中点,则弦AB 的长为A .4B .5C .8D .由0y 确定 7.过点(1,0)作曲线32y x x =+-的切线,则切线的斜率为 A .1 B .2 C .3 D .48.已知x ,y 满足约束条件001x y x y ≥⎧⎪≥⎨+≥⎪⎩,则22(3)x y ++的最小值为AB. C 8 D .109.三棱锥A —BCD 中,!ABC 和!DBC 是全等的正三角形,且边长为2,AD = 1,则点A 到平面BCD 的距离为 ABCD10.用0到9这十个数字组成的没有重复数字的三位数中,满足百位、十位、个位上的数字依次成等差数列的三位数共有A .36个B .60个C .76个D .100个11.已知函数f (x )是定义在R 上的函数,f (1)=1,且对任意x R ∈都有(1)()1f x f x +≤+,(5)()5f x f x +≥+,则f (6)的值是A .6B .5C .7D .不确定12.设双曲线22221(0)y x b a a b-=>>的半焦距为c ,直线l 过点A (a ,0)、B (0,b )两点,若原点O 到直线l的距离为4c ,则双曲线的离心率为 ABCD .2第Ⅱ卷(非选择题,满分90分)二、填空题:(本大题共4个小题,每小题4分,共16分;请将答案直接写在题中横线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川高三联合诊断考试
数学试题(文科)
第Ⅰ卷选择题(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,,则()
A. B. C. D.
2. 设复数,在复平面内的对应点关于虚轴对称,,则()
A. 10
B. -10
C.
D.
3. 已知等差数列中,则()
A. B. C. D.
4. 在同一坐标系中,函数与的图象都正确的是()
A. B. C. D. ...
5. 为了从甲、乙两人中选一人参加数学竞赛,老师将二人最近的6次数学测试的分数进行统计,甲、乙两人的得分情况如茎叶图所示,若甲、乙两人的平均成绩分别是,,则下列说法正确的是
()
A. ,乙比甲成绩稳定,应选乙参加比赛
B. ,甲比乙成绩稳定,应选甲参加比赛
C. ,甲比乙成绩稳定,应选甲参加比赛
D. ,乙比甲成绩稳定,应选乙参加比赛
6. 已知数列满足,,则()
A. B. 0 C. D.
7. 直线与曲线交于两点,且这两个点关于直线对称,则()
A. 5
B. 4
C. 3
D. 2
8. 执行如图所示的程序框图,输出的值为()
A. 3
B. -6
C. 10
D. -15
9. 已知函数在定义域上是单调函数,若对于任意,都有,则的值是()
A. 5
B. 6
C. 7
D. 8
10. 在三棱锥中,侧棱,,两两垂直,,,的面积分别为,,,则该三棱锥的体积为()
A. B. C. 6 D.
11. 已知函数的两个极值分别为,,若,分别在区间与内,则
的取值范围是()
A. B. C. D.
12. 已知双曲线的左、右焦点分别为、,过作平行于的渐近线的直线交于点
,若,则的渐近线方程为()
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13. 已知,,,则__________.
14. 已知函数则__________.
15. 已知斜率为2的直线过抛物线的焦点,且与轴相交于点,若(为坐标原点)的面积为4,
则__________.
16. 在数列中,若(,,为常数),则称为“等方差数列”.下列对“等方差数列”的判断:
①若是等方差数列,则是等差数列;
②是等方差数列;
③若是等方差数列,则(,为常数)也是等方差数列.其中正确命题序号为
__________(写出所有正确命题的序号).
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17. 在中,内角的对边分别为,已知.
(Ⅰ)若,,求边;
(Ⅱ)若,求角.
18. 汽车行业是碳排放量比较大的行业之一,欧盟从2012年开始就对二氧化碳排放量超过
的型汽车进行惩罚,某检测单位对甲、乙两类型品牌汽车各抽取5辆进行二氧化碳排放量检测,记录如下(单位:):
经测算发现,乙类型品牌汽车二氧化碳排放量的平均值为.
(Ⅰ)从被检测的5辆甲类型品牌车中任取2辆,则至少有1辆二氧化碳排放量超过的概率是多少?
(Ⅱ)求表中,并比较甲、乙两类型品牌汽车二氧化碳排放量的稳定性.
,其中,表示的平均数,表示样本数量,表示个体,
表示方差)
19. 如图,四边形中,,,,,,分别在,
上,,现将四边形沿折起,使平面平面.
(Ⅰ)若,在折叠后的线段上是否存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由;
(Ⅱ)求三棱锥的体积的最大值.
20. 已知椭圆的左焦点左顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.若,试问直
线的斜率是否为定值?请说明理由.
21. 函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求单调递减区间和极值(其中为自然对数的底数);
(Ⅱ)若对任意,恒成立.求的取值范围.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号
22. 选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线过点,倾斜角为.
(Ⅰ)求曲线的直角坐标方程与直线的参数方程;
(Ⅱ)设直线与曲线交于两点,求的值.
23. 选修4-5:不等式选讲
已知函数.
(Ⅰ)解不等式;
(Ⅱ)若,且,证明:.。

相关文档
最新文档