2018高三一轮复习理科数学之《天天练——三角部分》
2018届高考数学理第一轮总复习全程训练考点集训:第3
天天练
1.B当x∈ 时,2x- ∈ ,sin ∈ ,故3sin ∈ ,即此时函数f(x)的值域是 .
2.B据已知可得f(x)=2sin ,若函数为偶函数,则必有θ+ =kπ+ ,k∈Z,又由于θ∈ ,故有θ+ = ,解得θ= ,经代入检验符合题意.
③∵当x∈- , ]时,f(x)=|sinx确;
④∵f(x+π)≠f(x),∴函数f(x)的周期不是π,∴④不正确;
⑤∵f(x)=|sinx|cosx=
,
k∈Z,∴结合图象可知f(x)的图象关于点( ,0)成中心对称,
∴⑤正确.
12.解:(1)由题设知f(x)= 1+cos(2x+ )].
∴f(x)=sin(x+φ),令x+φ=kπ+ (k∈Z),将x= 代入可得φ=kπ+ (k∈Z),∵0<φ<π,∴φ= .
7.A∵β∈ ,
∴π-β∈ ,且sin(π-β)=sinβ.
∵y=sinx在x∈ 上单调递增,
∴sinα>sinβ⇔sinα>sin(π-β)
⇔α>π-β⇔α+β>π.
8.B要使函数f(x)=2sinωx(ω>0)在区间 上的最小值是-2,则应有 ≤ 或 T≤ ,即 ≤ 或 ≤π,解得ω≥ 或ω≥6.
4.A依题意,得f(x)=(1+ tanx)cosx=2sin .故最小正周期为2π.
5.D依题意,f(x)= cos(ωx+ ),令2kπ≤ωx+ ≤π+2kπ(k∈Z),解得- + ≤x≤ + (k∈Z),∴ ,又ω>0,∴0<ω≤ ,观察可知选D.
6.A由题意可知函数f(x)的周期T=2× =2π,故ω=1,
令2x+ =kπ(k∈Z),得x= - (k∈Z),
2018版高考一轮总复习数学(理)习题第3章 三角函数、解三角形3-1含答案
(时间:40分钟)1.点A(sin2018°,cos2018°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析sin2018°=sin218°=-sin38°<0,cos2018°=cos218°=-cos38°<0,∴选C项.2.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A.2 B.4C.6 D.8答案 C解析设扇形所在圆的半径为R,则2=错误!×4×R2,∴R2=1,∴R=1,扇形的弧长为4×1=4,扇形的周长为2+4=6.3.如果角α的终边过点P(2sin30°,-2cos30°),那么sinα=()A.错误!B.-错误!C.-错误!D.-错误!答案 C解析因为P(1,-3),所以r=错误!=2。
所以sinα=-错误!。
4.sin2·cos3·tan4的值()A.小于0 B.大于0C.等于0 D.不存在答案 A解析∵错误!<2<3<π<4<错误!,∴sin2>0,cos3<0,tan4>0。
∴sin2·cos3·tan4<0,∴选A.5.已知α是第二象限角,P(x,5)为其终边上一点,且cosα=错误!x,则x=()A.错误!B.±错误!C.-错误!D.-错误!答案 D解析依题意得cosα=错误!=错误!x<0,由此解得x=-错误!,选D.6.若420°角的终边所在直线上有一点(-4,a),则a的值为________.答案-4错误!解析由三角函数的定义有:tan420°=错误!。
又tan420°=tan(360°+60°)=tan60°=错误!,故错误!=错误!,得a=-4错误!。
7.点P从(-1,0)出发,沿单位圆顺时针方向运动错误!弧长到达点Q,则点Q的坐标为________.答案错误!解析设点A(-1,0),点P从(-1,0)出发,沿单位圆顺时针方向运动错误!弧长到达点Q,则∠AOQ=错误!-2π=错误!(O为坐标原点),所以∠xOQ=错误!,cos错误!=错误!,sin错误!=错误!,点Q的坐标为错误!。
2018届高考数学一轮总复习 第三章 三角函数、解三角形 文 新人教A版
第三章⎪⎪⎪ 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式1.若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案:C2.(教材习题改编)3 900°是第________象限角,-1 000°是第________象限角.答案:四 一3.(教材习题改编)已知半径为120 mm 的圆上,有一条弧的长是144 mm ,则该弧所对的圆心角的弧度数为________.答案:1.21.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.4.三角函数的定义中,当P (x ,y )是单位圆上的点时有sin α=y ,cos α=x ,tan α=y x ,但若不是单位圆时,如圆的半径为r ,则sin α=y r ,cos α =x r ,tan α=y x.[小题纠偏]1.下列说法正确的是( )A .三角形的内角必是第一、二象限角B .第一象限角必是锐角C .不相等的角终边一定不相同D .若β=α+k ·360°(k ∈Z),则α和β终边相同答案:D2.若角α终边上有一点P (x,5),且cos α=x13(x ≠0),则sin α=________.答案:513考点一 角的集合表示及象限角的判定基础送分型考点——自主练透[题组练透]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三角限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个解析:选C -3π4是第三象限角,故①错误;4π3=π+π3,从而4π3是第三象限角,故②正确;-400°=-360°-40°,从而③正确;-315°=-360°+45°,从而④正确.2.(易错题)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角解析:选C ∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z ,∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.3.设集合M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k2·180°+45°,k ∈Z ,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅解析:选B 法一:由于M =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =k 2·180°+45°,k ∈Z ={…,-45°,45°,135°,225°,…},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k4·180°+45°,k ∈Z={…,-45°,0°,45°,90°,135°,180°,225°,…},显然有M ⊆N .法二:由于M 中,x =k2·180°+45°=k ·90°+45°=45°·(2k +1),2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N .4.在-720°~0°范围内所有与45°终边相同的角为________.解析:所有与45°有相同终边的角可表示为:β=45°+k ×360°(k ∈Z),则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.答案:-675°或-315°[谨记通法]1.终边在某直线上角的求法4步骤(1)数形结合,在平面直角坐标系中画出该直线;(2)按逆时针方向写出[0,2π)内的角;(3)再由终边相同角的表示方法写出满足条件角的集合;(4)求并集化简集合.2.确定k α,αk(k ∈N *)的终边位置3步骤(1)用终边相同角的形式表示出角α的范围;(2)再写出k α或αk的范围;(3)然后根据k 的可能取值讨论确定k α或αk的终边所在位置,如“题组练透”第2题易错.考点二 扇形的弧长及面积公式基础送分型考点——自主练透[题组练透]1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( )A .1B .4C .1或4D .2或4解析:选C 设此扇形的半径为r ,弧长为l ,则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2.从而α=l r =41=4或α=l r =22=1.2.(易错题)若扇形的圆心角是α=120°,弦长AB =12 cm ,则弧长l =________cm.解析:设扇形的半径为r cm ,如图.由sin 60°=6r,得r =4 3 cm ,∴l =|α|·r =2π3×43=833π cm.答案:833π3.已知扇形周长为40,当它的半径和圆心角分别取何值时,扇形的面积最大?解:设圆心角是θ,半径是r ,则2r +r θ=40.又S =12θr 2=12r (40-2r )=r (20-r )=-(r -10)2+100≤100.当且仅当r =10时,S max =100,此时2×10+10θ=40,θ=2.所以当r =10,θ=2时,扇形的面积最大.[谨记通法]弧度制下有关弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =αr ,扇形的面积公式是S =12lr =12αr 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求得扇形的圆心角、半径、弧长三个量中的任意两个量,如“题组练透”第2题.考点三 三角函数的定义常考常新型考点——多角探明[命题分析]任意角的三角函数(正弦、余弦、正切)的定义属于理解内容.在高考中多以选择题、填空题的形式出现.常见的命题角度有:(1)三角函数值的符号判定;(2)由角的终边上一点的P 的坐标求三角函数值;(3)由角的终边所在的直线方程求三角函数值.[题点全练]角度一: 三角函数值的符号判定1.若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选C 由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角.由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角.综上可知,α为第三象限角.角度二:由角的终边上一点P 的坐标求三角函数值2.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为45,则cos α=________.解析:因为A 点纵坐标y A =45,且A 点在第二象限,又因为圆O 为单位圆,所以A 点横坐标x A =-35,由三角函数的定义可得cos α=-35.答案:-353.已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m 4,则m =________.解析:由题设知x =-3,y =m ,∴r 2=|OP |2=(-3)2+m 2(O 为原点),r =3+m 2.∴sin α=m r=2m 4=m 22,∴r =3+m 2=22,即3+m 2=8,解得m =± 5.答案:±5角度三:由角的终边所在的直线方程求三角函数值4.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.解:设α终边上任一点为P (-4a,3a ),当a >0时,r =5a ,sin α=35,cos α=-45,tan α=-34;当a <0时,r =-5a ,sin α=-35,cos α=45,tan α=-34.[方法归纳]应用三角函数定义的3种求法(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.一抓基础,多练小题做到眼疾手快1.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( )A .40π cm 2B .80π cm 2C .40 cm 2D .80 cm2解析:选B ∵72°=2π5,∴S 扇形=12αr 2=12×2π5×202=80π(cm 2).2.已知点P (tan α,cos α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B 因为点P 在第三象限,所以⎩⎪⎨⎪⎧tan α<0,cos α<0,所以角α的终边在第二象限.3.如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)解析:选A 由三角函数定义知,点P 的横坐标x =cos θ,纵坐标y =sin θ.4.(2019·江西六校联考)点A (sin 2 015°,cos 2 015°)位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C 因为sin 2 015°=sin(11×180°+35°)=-sin 35°<0,cos 2 015°=cos(11×180°+35°)=-cos 35°<0,所以点A (sin 2 015°,cos 2 015°)位于第三象限.5.(2019·福州一模)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34C .-34D .-43解析:选D 因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =xx 2+16.解得x =-3,所以tan α=4x =-43.二保高考,全练题型做到高考达标1.将表的分针拨快10分钟,则分针旋转过程中形成的角的弧度数是( )A.π3B.π6C .-π3D .-π6解析:选C 将表的分针拨快应按顺时针方向旋转,为负角.故A ,B 不正确,又因为拨快10分钟,故应转过的角为圆周的16.即为-16×2π=-π3.2.(2019·南昌二中模拟)已知角α终边上一点P 的坐标是(2sin 2,-2cos 2),则sin α等于( )A .sin 2B .-sin 2C .cos 2D .-cos 2解析:选D 因为r =2+-2=2,由任意三角函数的定义,得sin α=y r=-cos 2.3.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为( )A.π3B.π2C. 3 D .2解析:选C 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =αr ,∴α= 3.4.(2019·潍坊二模)集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C 当k =2n (n ∈Z)时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z)时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.5.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 取终边上一点(a,2a )(a ≠0),根据任意角的三角函数定义,可得cos θ=±55,故 cos 2θ=2cos 2θ-1=-35.6.已知α是第二象限的角,则180°-α是第________象限的角.解析:由α是第二象限的角可得90°+k ·360°<α<180°+k ·360°(k ∈Z),则180°-(180°+k ·360°)<180°-α<180°-(90°+k ·360°),即-k ·360°<180°-α<90°-k ·360°(k ∈Z),所以180°-α是第一象限的角.答案:一7.在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°,设点B 坐标为(x ,y ),所以x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3).答案:(-1,3)8.已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:因为sin θ=y42+y2=-255,所以y <0,且y 2=64,所以y =-8.答案:-89.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为____________________.解析:如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝⎛⎭⎪⎫π4,5π4.答案:⎝⎛⎭⎪⎫π4,5π410.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α,(1)由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)法一:∵2r +l =8,∴S 扇=12lr =14l ·2r≤14⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4,当且仅当2r =l ,即α=l r=2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1.法二:∵2r +l =8,∴S 扇=12lr =12r (8-2r )=r (4-r )=-(r -2)2+4≤4,当且仅当r =2,即α=lr=2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1.三上台阶,自主选做志在冲刺名校1.若α是第三象限角,则下列各式中不成立的是( )A .sin α+cos α<0B .tan α-sin α<0C .cos α-tan α<0D .tan αsin α<0解析:选B ∵α是第三象限角,∴sin α<0,cos α<0,tan α>0,则可排除A ,C ,D.2.已知角α=2k π-π5(k ∈Z),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z)及终边相同的概念知,角α的终边在第四象限,又角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.3.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断 tan α2sin α2cos α2的符号.解:(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上;由tan α>0, 知α在第一、三象限,故α角在第三象限,其集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪2k π+π<α<2k π+3π2,k ∈Z .(2)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,故α2终边在第二、四象限.(3)当α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2 sin α2 cos α2取正号;当α2在第四象限时, tan α2<0,sin α2<0, cos α2>0,所以 tan α2sin α2cos α2也取正号.因此,tan α2sin α2cos α2取正号.第二节 同角三角函数的基本关系与诱导公式_1.同角三角函数的基本关系式(1)平方关系sin 2α+cos 2α=1;(2)商数关系tan α=sin αcos α.2.诱导公式1.已知sin ⎝⎛⎭⎪⎫5π2+α=15,那么cos α=( )A .-25B .-15C.15D.25解析:选C ∵sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝⎛⎭⎪⎫π2+α=cos α,∴cos α=15.2.若sin θcos θ=12,则tan θ+cos θsin θ的值是( )A .-2B .22解析:选B tan θ+cos θsin θ=sin θcos θ+cos θsin θ=1cos θsin θ=2.3.(教材习题改编)(1)sin ⎝⎛⎭⎪⎫-31π4=________,(2)tan ⎝⎛⎭⎪⎫-26π3=________.答案:(1)22(2)31.利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.3.注意求值与化简后的结果一般要尽可能有理化、整式化.[小题纠偏]1.(2019·福建高考)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125C.512 D .-512解析:选D 因为α为第四象限的角,故cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-5132=1213,所以tan α=sin αcos α=-5131213=-512.2.若sin(3π+θ)=13,则sin θ=________.答案:-13考点一 三角函数的诱导公式基础送分型考点——自主练透[题组练透]1.sin 210°cos 120°的值为( )A.14B .-3424解析:选A sin 210°cos 120°=-sin 30°(-cos 60°)=12×12=14.2.已知A =k π+αsin α+k π+αcos α(k ∈Z),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}解析:选C 当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.3.已知tan ⎝ ⎛⎭⎪⎫π6-α=33,则tan ⎝ ⎛⎭⎪⎫5π6+α=________.解析:tan ⎝⎛⎭⎪⎫5π6+α=tan ⎝ ⎛⎭⎪⎫π-π6+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-α=-tan ⎝ ⎛⎭⎪⎫π6-α=-33.答案:-334.(易错题)设f (α)=π+απ-α-π+α1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α⎝ ⎛⎭⎪⎫sin α≠-12,则f ⎝⎛⎭⎪⎫-23π6=________.解析:∵f (α)=-2sin α-cos α+cos α1+sin 2α+sin α-cos 2α=2sin αcos α+cos α2sin 2α+sin α =cos α+2sin αsin α+2sin α=1tan α,∴f ⎝⎛⎭⎪⎫-23π6=1tan ⎝ ⎛⎭⎪⎫-23π6=1tan ⎝⎛⎭⎪⎫-4π+π6=1tan π6= 3.答案:3[谨记通法]1.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤也就是:“负化正,大化小,化到锐角就好了.”2.利用诱导公式化简三角函数的要求(1)化简过程是恒等变形;(2)结果要求项数尽可能少,次数尽可能低,结构尽可能简单,能求值的要求出值,如“题组练透”第4题.考点二 同角三角函数的基本关系题点多变型考点——纵引横联[典型母题]已知α是三角形的内角,且sin α+cos α=15.求tan α的值.[解] 法一: 联立方程⎩⎪⎨⎪⎧sin α+cos α=15,sin 2α+cos 2α=1,①②由①得cos α=15-sin α,将其代入②,整理得 25sin 2α-5sin α-12=0. ∵α是三角形的内角, ∴⎩⎪⎨⎪⎧sin α=45,cos α=-35,∴tan α=-43.法二:∵sin α+cos α=15,∴(sin α+cos α)2=⎝ ⎛⎭⎪⎫152,即1+2sin αcos α=125,∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925.∵sin αcos α=-1225<0且0<α<π,∴sin α>0,cos α<0,同角三角函数基本关系式的应用技巧[变式一] 保持母题条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.解:由母题可知:tan α=-43.(1)sin α-4cos α5sin α+2cos α=tan α-45tan α+2=-43-45×⎝ ⎛⎭⎪⎫-43+2=87.(2)sin 2α+2sin αcos α=sin 2α+2sin αcos αsin 2α+cos 2α=tan 2α+2tan α1+tan 2α=169-831+169=-825.[变式二] 若母题条件变为“sin α+3cos α3cos α-sin α=5”, 求tan α的值.解:法一:由sin α+3cos α3cos α-sin α=5, 得tan α+33-tan α=5,即tan α=2.法二:由sin α+3cos α3cos α-sin α=5,得sin α+3cos α=15cos α-5sin α,∴6sin α=12cos α,即tan α=2.[变式三] 若母题中的条件和结论互换:已知α是三角形的内角,且tan α=-13, 求sin α+cos α的值.解:由tan α=-13,得sin α= -13cos α,将其代入 sin 2α+cos 2α=1,得109cos 2α=1,∴cos 2α=910,易知cos α<0,∴cos α=-31010, sin α=1010,故 sin α+cos α=-105.1.三角形中求值问题,首先明确角的范围,才能求出角的值或三角函数值.2.三角形中常用的角的变形有:A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos ⎝⎛⎭⎪⎫A +B 2=sin C 2等.一抓基础,多练小题做到眼疾手快1.若α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,则cos(-α)=( )A .-45B.45C.35D .-35解析:选B 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,sin α=-35,所以cos α=45,即cos(-α)=45.[破译玄机]2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6 D.π3解析:选D ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=( )A.223B .-223C.13D .-13解析:选D ∵cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝⎛⎭⎪⎫α-π4=-13.4.已知α∈⎝ ⎛⎭⎪⎫π2,π,sin α=45,则tan α=________.解析:∵α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-1-sin 2α=-35,∴tan α=sin αcos α=-43.答案:-435.如果sin(π+A )=12,那么cos ⎝ ⎛⎭⎪⎫3π2-A 的值是________.解析:∵sin(π+A )=12,∴-sin A =12.∴cos ⎝⎛⎭⎪⎫3π2-A =-sin A =12.答案:12二保高考,全练题型做到高考达标1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是( )A .sin θ<0,cos θ>0B .sin θ>0,cos θ<0C .sin θ>0,cos θ>0D .sin θ<0,cos θ<0解析:选B ∵sin(θ+π)<0,∴-sin θ<0,sin θ>0.∵cos(θ-π)>0,∴-cos θ>0,cos θ<0.2.若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin α·cos α的值等于( )A .-25B .-15C.25或-25D.25解析:选A 由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,sin α·cos α=tan α1+tan 2α=-25.3.(2019·江西五校联考)cos 350°-2sin 160°-=( )A .- 3B .-32C.32D.3解析:选D 原式=----+=cos 10°----=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°= 3.4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( )A.12 B .-13C .-12D.13解析:选C ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫10π+π3=-cos π3=-12.5.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32 B.32C .-34D.34解析:选B ∵5π4<α<3π2,∴cos α<0,sin α<0且|cos α|<|sin α|,∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32.6.化简:sin ⎝ ⎛⎭⎪⎫π2+α·cos ⎝ ⎛⎭⎪⎫π2-απ+α+π-α⎝ ⎛⎭⎪⎫π2+απ+α=________.解析:原式=cos α·sin α-cos α+sin α-sin α-sin α=-sin α+sin α=0.答案:07.sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________.解析:原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝ ⎛⎭⎪⎫π-π6·tan ⎝ ⎛⎭⎪⎫-π-π3=⎝ ⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3 =⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334.答案:-3348.已知cos ⎝ ⎛⎭⎪⎫π6-θ=a (|a |≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ=-cos ⎝ ⎛⎭⎪⎫π6-θ=-a .sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,∴cos ⎝⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0.答案:09.求值:sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°.解:原式=-sin 1 200°·cos 1 290°+cos 1 020°·(-sin 1 050°)+tan 945°=-sin 120°·cos 210°+cos 300°·(-sin 330°)+tan 225°=(-sin 60°)·(-cos 30°)+cos 60°·sin 30°+tan 45°=32×32+12×12+1=2. 10.已知sin(3π+α)=2sin ⎝ ⎛⎭⎪⎫3π2+α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.三上台阶,自主选做志在冲刺名校1.sin 21°+sin 22°+…+sin 290°=________.解析:sin 21°+sin 22°+…+sin 290°=sin 21°+sin 22°+…+sin 244°+sin 245°+cos 244°+cos 243°+…+cos 21°+sin 290°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 244°+cos 244°)+sin 245°+sin 290°=44+12+1=912.答案:9122.已知f (x )=cos2n π+x2n π-xcos2n +π-x ](n ∈Z).(1)化简f (x )的表达式;(2)求f ⎝ ⎛⎭⎪⎫π2 014+f ⎝ ⎛⎭⎪⎫503π1 007的值.解:(1)当n 为偶数,即n =2k (k ∈Z)时, f (x )=cos 2k π+x2k π-x cos2k +π-x ]=cos 2x ·sin 2-xcos 2π-x =cos 2x-sin x2-cos x2=sin 2x ;当n 为奇数,即n =2k +1(k ∈Z)时,f (x )=cos 2k +π+x ]·sin 2k +π-x ]cos2k ++1]π-x }=cos 2[2k π+π+x 2[2k π+π-x cos 2k +π+π-x=cos2π+x2π-xcos 2π-x=-cos x 2sin 2x -cos x 2=sin 2x ,综上得f (x )=sin 2x .(2)由(1)得f ⎝ ⎛⎭⎪⎫π2 014+f ⎝ ⎛⎭⎪⎫503π1 007=sin 2π2 014+sin 21 006π2 014=sin 2π2 014+sin 2⎝ ⎛⎭⎪⎫π2-π2 014=sin2π2 014+cos 2π2 014=1.第三节 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z).1.下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2x B .y =sin 2xC .y =tan 2xD .y =sin ⎝ ⎛⎭⎪⎫2x -π2答案:B2.(教材习题改编)函数y =4sin x ,x ∈[-π,π]的单调性是( )A .在[-π,0]上是增函数,在[0,π]上是减函数B .在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,在⎣⎢⎡⎦⎥⎤-π,-π2和⎣⎢⎡⎦⎥⎤π2,π上都是减函数C .在[0,π]上是增函数,在[-π,0]上是减函数D .在⎣⎢⎡⎦⎥⎤π2,π和⎣⎢⎡⎦⎥⎤-π,-π2上是增函数,在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 答案:B3.(教材习题改编)函数y =-tan ⎝⎛⎭⎪⎫x +π6+2的定义域为________________.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π3,k ∈Z1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时的情况.3.三角函数存在多个单调区间时易错用“∪”联结.[小题纠偏]1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .-1B .-22C.22D .0解析:选B 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π4上的最小值为-22.2.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调减区间为____________.解析:由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4得2k π≤2x -π4≤2k π+π(k ∈Z),解得k π+π8≤x ≤k π+5π8(k ∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z)考点一 三角函数的定义域与值域基础送分型考点——自主练透[题组练透]1.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1-3解析:选A ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.∴y ∈[-3,2],∴y max +y min =2- 3.2.(易错题)函数y =1tan x -1的定义域为__________________.解析:要使函数有意义,必须有⎩⎪⎨⎪⎧tan x -1≠0,x ≠π2+kx ,k ∈Z ,即⎩⎪⎨⎪⎧x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z.故函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z .答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≠π4+k π且x ≠π2+k π,k ∈Z3.函数y =lg(sin 2x )+9-x 2的定义域为______________.解析:由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2.答案:⎣⎢⎡⎭⎪⎫-3,-π2∪⎝ ⎛⎭⎪⎫0,π2 4.(易错题)求函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值与最小值.解:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22.∴y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值为54,最小值为1-22.[谨记通法]1.三角函数定义域的2种求法(1)应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域,如“题组练透”第2题易忽视.(2)转化为求解简单的三角不等式求复杂函数的定义域.2.三角函数最值或值域的3种求法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数,如“题组练透”第4题.考点二 三角函数的单调性重点保分型考点——师生共研[典例引领]写出下列函数的单调区间:(1)f (x )=2sin ⎝⎛⎭⎪⎫x +π4,x ∈[0,π];(2)f (x )=|tan x |;(3)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6,x ∈⎣⎢⎡⎦⎥⎤-π2,π2.解:(1)由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z.又x ∈[0,π],所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤0,π4,递减区间为⎣⎢⎡⎦⎥⎤π4,π.(2)观察图象可知,y =|tan x |的增区间是⎣⎢⎡⎭⎪⎫k π,k π+π2,k ∈Z ,减区间是⎝ ⎛⎦⎥⎤k π-π2,k π,k ∈Z.(3)当2k π-π≤2x -π6≤2k π(k ∈Z),即k π-5π12≤x ≤k π+π12,k ∈Z ,函数f (x )是增函数.因此函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π2上的单调递增区间是⎣⎢⎡⎦⎥⎤-5π12,π12,递减区间为⎣⎢⎡⎦⎥⎤-π2,-5π12,⎣⎢⎡⎦⎥⎤π12,π2.[由题悟法]求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域.[即时应用]1.函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调减区间为______.解析:由已知函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝ ⎛⎭⎪⎫2x -π3的单调增区间即可.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z.故所给函数的单调减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)2.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析:∵f (x )=sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数.由f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在⎣⎢⎡⎦⎥⎤π3,π2上单调递减知,π2ω=π3,∴ω=32.答案:32考点三 三角函数的奇偶性、周期性及对称性常考常新型考点——多角探明[命题分析]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用.[题点全练]角度一:三角函数的周期1.函数y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:选A y =1-2sin 2⎝ ⎛⎭⎪⎫x -3π4=cos 2⎝ ⎛⎭⎪⎫x -3π4=-sin 2x ,所以f (x )是最小正周期为π的奇函数.2.(2019·长沙一模)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3.答案:2或3角度二:求三角函数的对称轴或对称中心3.(2019·太原模拟)已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( )A .关于直线x =π4对称B .关于直线x =π8对称C .关于点⎝ ⎛⎭⎪⎫π4,0对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称解析:选B ∵f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4的最小正周期为π,∴2πω=π,ω=2,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4.当x =π4时,2x +π4=3π4,∴A ,C 错误;当x =π8时,2x +π4=π2,∴B 正确,D 错误.角度三:三角函数对称性的应用4.(2019·西安八校联考)若函数y =cos ⎝⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:选Bπω6+π6=k π+π2(k ∈Z)⇒ω=6k +2(k ∈Z)⇒ωmin =2.5.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML =90°,KL =1,则f ⎝ ⎛⎭⎪⎫16的值为( )A .-34B .-14C .-12 D.34解析:选D 由题意知,点M 到x 轴的距离是12,根据题意可设f (x )=12cos ωx ,又由题图知12·2πω=1,所以ω=π,所以f (x )=12cos πx ,故f ⎝ ⎛⎭⎪⎫16=12cos π6=34.[方法归纳]函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.一抓基础,多练小题做到眼疾手快1.函数y =cos x -32的定义域为( )A.⎣⎢⎡⎦⎥⎤-π6,π6B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z) C.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z)D .R解析:选C ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z.2.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π8=( )A .1 B.12C .-1D .-12解析:选 A 由题设知2πω=π,所以ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以 f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1.3.(2019·石家庄一模)函数f (x )=tan ⎝⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)D.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z).4.函数f (x )=sin(-2x )的单调增区间是____________.解析:由f (x )=sin(-2x )=-sin 2x ,2k π+π2≤2x ≤2k π+3π2得k π+π4≤x ≤k π+3π4(k ∈Z).答案:⎣⎢⎡⎦⎥⎤k π+π4,k π+3π4(k ∈Z)5.函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为______,此时x =______.解析:函数y =3-2cos ⎝ ⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z).答案:53π4+2k π(k ∈Z)二保高考,全练题型做到高考达标1.若函数f (x )=-cos 2x ,则f (x )的一个递增区间为( )A.⎝ ⎛⎭⎪⎫-π4,0 B.⎝⎛⎭⎪⎫0,π2 C.⎝⎛⎭⎪⎫π2,3π4D.⎝⎛⎭⎪⎫3π4,π解析:选B 由f (x )=-cos 2x 知递增区间为⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z ,故只有B 项满足.2.(2019·河北五校联考)下列函数最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3B .y =2sin ⎝ ⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3 D .y =2sin ⎝⎛⎭⎪⎫2x -π3解析:选B 由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝⎛⎭⎪⎫2×π3-π3=sin π3=32,所以选项D 不正确.对于B ,sin ⎝⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确.3.已知函数f (x )=-2sin(2x +φ)(|φ|<π), 若f ⎝ ⎛⎭⎪⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎢⎡⎦⎥⎤-π8,3π8B.⎣⎢⎡⎦⎥⎤5π8,9π8C.⎣⎢⎡⎦⎥⎤-3π8,π8 D.⎣⎢⎡⎦⎥⎤π8,5π8解析:选D ∵f ⎝ ⎛⎭⎪⎫π8=-2,∴-2sin ⎝ ⎛⎭⎪⎫π4+φ=-2,sin ⎝ ⎛⎭⎪⎫π4+φ=1.又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝⎛⎭⎪⎫2x +π4,由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.4.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析:选A 由题意得T 2=π2,T =π,ω=2.又2x 0+π6=k π(k ∈Z),x 0=k π2-π12(k∈Z),而x 0∈⎣⎢⎡⎦⎥⎤0,π2,所以x 0=5π12.5.若函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上是单调减函数,且函数值从1减少到-1,则f ⎝ ⎛⎭⎪⎫π4=( )A.12B.22C.32D .1解析:选C 由题意得函数f (x )的周期T =2⎝⎛⎭⎪⎫2π3-π6=π,所以ω=2,此时f (x )=sin(2x +φ),将点⎝ ⎛⎭⎪⎫π6,1代入上式得sin ⎝ ⎛⎭⎪⎫π3+φ=1⎝ ⎛⎭⎪⎫|φ|<π2,所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,于是f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π2+π6=cos π6=32.6.已知函数f (x )=2sin(ωx +φ),对于任意x 都有f ⎝ ⎛⎭⎪⎫π6+x=f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6的值为________.解析:∵f ⎝⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,∴x =π6是函数f (x )=2sin(ωx +φ)的一条对称轴.∴f ⎝ ⎛⎭⎪⎫π6=±2.答案:2或-27.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是________________.解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z.答案:⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z 8.已知x ∈(0,π],关于x 的方程2 sin ⎝⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a的取值范围为________.解析:令y 1=2sin ⎝ ⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎪⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.答案:(3,2)9.已知f (x )=2sin ⎝⎛⎭⎪⎫2x +π4.(1)求函数f (x )图象的对称轴方程;(2)求f (x )的单调增区间;(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)f (x )=2sin ⎝⎛⎭⎪⎫2x +π4,令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z.∴函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z.(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(3)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,∴-1≤sin ⎝⎛⎭⎪⎫2x +π4≤22,∴-2≤f (x )≤1,∴当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解:∵f (x )的最小正周期为π,则T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),将上式展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,。
2018版高考一轮总复习数学(理)习题第3章 三角函数、解三角形3-2含答案
(时间:40分钟)1.已知cos 错误!=错误!,且α∈错误!,则tan α=( )A .错误!B .错误!C .-错误!D .±错误! 答案 B解析 ∵sin α=-错误!,cos α=-错误!,∴tan α=错误!,选B.2.已知sin 错误!=m ,则cos 错误!=( )A .mB .-mC .1-m 2D .-1-m 2 答案 C解析 因为sin 5π7=sin 错误!=sin 错误!,所以sin 错误!=m ,且错误!∈错误!,所以cos 错误!=错误!. 3.已知α为锐角,且tan(π-α)+3=0,则sin α的值是( )A .13B .错误!错误!C .错误!错误!D .错误!错误! 答案 B解析 由tan(π-α)+3=0得tan α=3,即错误!=3,sin α=3cos α,所以sin 2α=9(1-sin 2α),10sin 2α=9,sin 2α=错误!。
又因为α为锐角,所以sin α=错误!错误!.4.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 ∵A ,B 是锐角△ABC 的两个内角,∴A +B >90°,即A >90°-B .∵0°<A <90°,0°<90°-B 〈90°。
∴sin A >sin(90°-B )=cos B ,cos A <cos (90°-B )=sin B 。
∴cos B -sin A <0,sin B -cos A >0。
∴点P 在第二象限,故选B.5.已知sin θ+cos θ=43,θ∈错误!,则sin θ-cos θ的值为( ) A .错误!B .错误!C .-错误!D .-错误!答案 C解析 (sin θ+cos θ)2=错误!,∴1+2sin θcos θ=错误!,∴2sin θcos θ=错误!,由(sin θ-cos θ)2=1-2sin θcos θ=1-错误!=错误!,可得sin θ-cos θ=±错误!。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.4含解析
1.y=A sin(ωx+φ)的有关概念y=A sin(ωx +φ)(A〉0,ω〉0),x∈R 振幅周期频率相位初相A T=错误!f=错误!=错误!ωx+φφ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x错误!错误!错误!错误!错误!ωx+φ0π2π错误!2πy=A sin(ωx+φ)0A0-A03.函数y=sin x的图象经变换得到y=A sin(ωx+φ) (A>0,ω>0)的图象的步骤如下:【知识拓展】1.由y=sin ωx到y=sin(ωx+φ)(ω>0,φ〉0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y=A sin(ωx+φ)的对称轴由ωx+φ=kπ+错误!,k∈Z确定;对称中心由ωx+φ=kπ,k∈Z确定其横坐标.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)y=sin错误!的图象是由y=sin错误!的图象向右平移错误!个单位得到的.( √)(2)将函数y=sin ωx的图象向右平移φ(φ>0)个单位长度,得到函数y=sin(ωx-φ)的图象.(×)(3)利用图象变换作图时“先平移,后伸缩"与“先伸缩,后平移”中平移的长度一致.( ×)(4)函数y=A sin(ωx+φ)的最小正周期为T=错误!。
( ×) (5)把y=sin x的图象上各点纵坐标不变,横坐标缩短为原来的错误!,所得图象对应的函数解析式为y=sin 12x。
(×)(6)若函数y=A cos(ωx+φ)的最小正周期为T,则函数图象的两个相邻对称中心之间的距离为错误!.(√)1.(教材改编)y=2sin(错误!x-错误!)的振幅,频率和初相分别为( )A.2,4π,错误!B.2,错误!,错误!C.2,错误!,-错误!D.2,4π,-错误!答案C解析由题意知A=2,f=错误!=错误!=错误!,初相为-错误!. 2.(2015·山东)要得到函数y=sin错误!的图象,只需将函数y=sin 4x 的图象( )A.向左平移π12个单位B.向右平移错误!个单位C.向左平移错误!个单位D.向右平移错误!个单位答案B解析∵y=sin错误!=sin错误!,∴要得到y=sin错误!的图象,只需将函数y=sin 4x的图象向右平移错误!个单位.3.(2016·青岛模拟)将函数y=sin x的图象上所有的点向右平行移动错误!个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A.y=sin(2x-错误!)B.y=sin(2x-错误!)C.y=sin(错误!x-错误!)D.y=sin(错误!x-错误!)答案C解析y=sin xπ10右移个单位−−−−−→y=sin(x-错误!)错误!y=sin(错误!x-错误!).4.(2016·临沂模拟)已知函数f(x)=A cos(ωx+θ)的图象如图所示,f(错误!)=-错误!,则f(-错误!)=________。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.7含解析
1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等.3.方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).【知识拓展】1.三角形的面积公式:S=p p-a p-b p-c(p=错误!),S=错误!=rp(R为三角形外接圆半径,r为三角形内切圆半径,p=错误!).2.坡度(又称坡比):坡面的垂直高度与水平长度之比.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.(×)(2)俯角是铅垂线与视线所成的角,其范围为[0,错误!].(×)(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.(√)(4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,错误!).(√)1.(教材改编)如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为()A.50错误!m B.50错误!mC.25 2 m D.错误!m答案A解析由正弦定理得错误!=错误!,又∵B=30°,∴AB=错误!=错误!=50错误!(m).2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的( )A.北偏东15° B.北偏西15°C.北偏东10° D.北偏西10°答案B解析如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.1含解析
1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S={β|β=k·360°+α,k∈Z}.(3)象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0。
(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°。
(3)扇形的弧长公式:l=|α|·r,扇形的面积公式:S=错误!lr=错误!|α|·r2。
3.任意角的三角函数任意角α的终边与单位圆交于点P(x,y)时,sin α=y,cos α=x,tan α=错误!(x≠0).三个三角函数的初步性质如下表:三角函数定义域第一象限符号第二象限符号第三象限符号第四象限符号sin αR++--cos αR+--+tan α{α|α≠kπ+错误!,k∈Z}+-+-4。
三角函数线如下图,设角α的终边与单位圆交于点P,过P作PM⊥x轴,垂足为M,过A(1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T。
三角函数线有向线段MP为正弦线;有向线段OM为余弦线;有向线段AT为正切线。
【知识拓展】1.三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.2.任意角的三角函数的定义(推广)设P(x,y)是角α终边上异于顶点的任一点,其到原点O的距离为r,则sin α=错误!,cos α=错误!,tan α=错误!(x≠0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√)(3)不相等的角终边一定不相同.(×)(4)终边相同的角的同一三角函数值相等.(√)(5)若α∈(0,错误!),则tan α>α〉sin α.(√)(6)若α为第一象限角,则sin α+cos α>1.(√)1.角-870°的终边所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析由-870°=-1 080°+210°,知-870°角和210°角终边相同,在第三象限.2.(教材改编)已知角α的终边与单位圆的交点为M(错误!,y),则sin α等于()A 。
2018版高考一轮总复习数学(理)习题第3章 三角函数、解三角形3-3含答案
(时间:40分钟)1.给定性质:①最小正周期为π;②图象关于直线x =错误!对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin 错误!B .y =sin 错误!C .y =sin 错误!D .y =sin |x | 答案 B解析 注意到函数y =sin ()2x -π6的最小正周期T =错误!=π,当x =错误!时,y =sin 错误!=1,因此该函数同时具有性质①②。
2.函数y =2sin 错误!(0≤x ≤9)的最大值与最小值之和为( )A .2-错误!B .0C .-1D .-1-错误! 答案 A解析 ∵0≤x ≤9,∴-错误!≤错误!x -错误!≤错误!,∴sin 错误!∈错误!.∴y ∈,∴y max +y min =2-错误!。
3.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =1所得的线段长为错误!,则f 错误!的值是( )A.0 B.错误!C.1 D.错误!答案D解析由条件可知,f(x)的周期是错误!。
由错误!=错误!,得ω=4,所以f错误!=tan错误!=tan错误!=错误!.4.函数y=错误!的定义域为()A.错误!B.错误!(k∈Z)C.错误!(k∈Z)D.R答案C解析∵cos x-错误!≥0,得cos x≥错误!,∴2kπ-错误!≤x≤2kπ+错误!,k∈Z。
5.函数y=2sin错误!(x∈)的递增区间是()A.错误!B.错误!C.错误!D.错误!答案A解析首先将函数化为y=-2sin错误!(x∈),令t=2x-错误!,x增大,t增大,所以为求函数的增区间,须研究y=2sin t的减区间.由错误!+2kπ≤2x-错误!≤错误!+2kπ,k∈Z得错误!+kπ≤x≤错误!+kπ,k∈Z,所以k=0时得错误!,故选A。
6.函数y=3-2cos错误!的最大值为________,此时x=________.答案 5 错误!+2kπ(k∈Z)解析函数y=3-2cos错误!的最大值为3+2=5,此时x+错误!=π+2kπ(k∈Z),即x=错误!+2kπ(k∈Z).7.若函数y=cos错误!(ω∈N*)的一个对称中心是错误!,则ω的最小值是________.答案2解析由题意得ω×错误!+错误!=错误!+kπ(k∈Z),ω=6k+2(k∈Z),∵ω∈N*,所以ω的最小值是2。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.3含解析
1.用五点法作正弦函数和余弦函数的简图正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(错误!,1),(π,0),(错误!,-1),(2π,0).余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(错误!,0),(π,-1),(错误!,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象与性质函数y=sin x y=cos x y=tan x图象定义域R R {x|x∈R 且x≠错误!+kπ,k∈Z}值域[-1,1][-1,1]R【知识拓展】1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是错误!个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.奇偶性若f(x)=A sin(ωx+φ)(A,ω≠0),则(1)f(x)为偶函数的充要条件是φ=错误!+kπ(k∈Z);(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)y=sin x在第一、第四象限是增函数.(×)(2)常数函数f(x)=a是周期函数,它没有最小正周期.(√)(3)正切函数y=tan x在定义域内是增函数.(×)(4)已知y=k sin x+1,x∈R,则y的最大值为k+1.(×)(5)y=sin |x|是偶函数.( √)(6)若sin x>错误!,则x>错误!.(×)1.函数f(x)=cos(2x-错误!)的最小正周期是( )A.错误!B.πC.2π D.4π答案B解析最小正周期为T=错误!=错误!=π.故选B.2.(教材改编)函数f(x)=3sin(2x-错误!)在区间[0,错误!]上的值域为( )A.[-错误!,错误!] B.[-错误!,3]C.[-错误!,错误!]D.[-错误!,3]答案B解析当x∈[0,错误!]时,2x-错误!∈[-错误!,错误!],sin(2x-错误!)∈[-错误!,1],故3sin(2x-错误!)∈[-错误!,3],即f(x)的值域为[-32,3].3.函数y=tan 2x的定义域是() A。
2018版高考一轮总复习数学(理)习题第3章三角函数、解三角形3-7Word版含答案
(时间:40分钟)1.海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =( )A .10 3 n mile B.1063n mile C .5 2 n mile D .5 6 n mile答案 D解析 由题意可知,∠CAB =60°,∠CBA =75°,所以∠C =45°,由正弦定理得10sin45°=BCsin60°,所以BC =5 6.2. 如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km答案 B解析 在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos∠ACB =a 2+a 2-2a 2cos120°=3a 2,故|AB |=3a .3.某工程中要将一坡长为100 m ,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高度不变,则坡底需加长( )A .100 2 mB .100 3 mC .50(2+6) mD .200 m答案 A解析 设坡底需加长x m ,由正弦定理得100sin30°=xsin45°,解得x =100 2.4.在200 m 高的山顶上,测得山下一塔顶与塔底俯角分别为30°、60°,则塔高为( ) A.4003m B.40033 m C.200 33m D.2003 m答案 A解析 如图,由已知可得∠BAC =30°,∠CAD =30°,∴∠BCA =60°,∠ACD =30°,∠ADC =120°,又AB =200,∴AC =4003 3.在△ACD 中,由正弦定理,得ACsin120°=DC sin30°,即DC =AC ·sin30°sin120°=4003(m).5. 如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h答案 B解析 设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝ ⎛⎭⎪⎫110v 2=⎝ ⎛⎭⎪⎫110×22+12-2×110×2×1×45,解得v =6 2.6.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,两船相距a 海里的B 处,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.答案 30°解析 设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC=3,由正弦定理得AC BC =sin120°sin ∠BAC =3⇒sin ∠BAC =12.又0°<∠BAC <60°,所以∠BAC =30°,60°-30°=30°.7.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北偏东30°方向,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为______米.答案 700解析 由题意,△ABC 中,AC =300,BC =500,∠ACB =120°,利用余弦定理可得,AB 2= 3002+5002-2×300×500×cos120°,∴AB =700.8.如图所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46 m ,则河流的宽度BC 约等于________m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,3≈1.73)答案 60解析 AC =2×46=92,AB =46sin67°,在△ABC 中,由正弦定理可知:AB sin30°=BCsin37°,∴BC =AB sin37°sin30°≈60.9.如图,为了测量河的宽度,在一岸边选定两点A ,B 望对岸的标记物C ,测得∠CAB =45°,∠CBA =75°,AB =120米,求河的宽度.解 在△ABC 中,∵∠CAB =45°,∠CBA =75°,∴∠ACB =60°.由正弦定理可得AC =AB sin Bsin ∠ACB,∴AC =120sin75°sin60°=20(32+6).设C 到AB 的距离为CD ,则CD =AC sin ∠CAB =22AC =20(3+3). ∴河的宽度为20(3+3)米.10. 如图,点A ,B ,C 在同一水平面上,AC =4,CB =6.现要在点C 处搭建一个观测站CD ,点D 在顶端.(1)原计划CD 为铅垂线方向,α=45°,求CD 的长;(2)搭建完成后,发现CD 与铅垂线方向有偏差,并测得β=30°,α=53°,求CD 2.(结果精确到1)(本题参考数据:sin97°≈1,cos53°≈0.6) 解 (1)∵CD 为铅垂线方向,点D 在顶端,∴CD ⊥AB . 又∵α=45°,∴CD =AC =4.(2)在△ABD 中,α+β=53°+30°=83°,AB =AC +CB =4+6=10,∴∠ADB =180°-83°=97°,∴由AD sin β=AB sin ∠ADB 得AD =AB sin βsin ∠ADB =10sin30°sin97°=5sin97°≈5.在△ACD 中,CD 2=AD 2+AC 2-2AD ·AC cos α=52+42-2×5×4×cos53°≈17.(时间:20分钟)11.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 3 海里D .20 2 海里答案 A解析 如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin30°=ABsin45°,解得BC =102(海里).12. 某观察站B 在A 城的南偏西20°的方向,由A 出发的一条公路的走向是南偏东25°.现在B 处测得此公路上距B 处30 km 的C 处有一人正沿此公路骑车以40 km/h 的速度向A 城驶去,行驶了15 min 后到达D 处,此时测得B 与D 之间的距离为810 km ,则此人到达A 城还需要( )A .40 minB .42 minC .48 minD .60 min 答案 C解析 由题意可知,CD =40×1560=10.cos ∠BDC =102+102-3022×10×810=-1010,∴cos ∠ADB =cos(π-∠BDC )=1010, ∴sin ∠ABD =sin =255.在△ABD 中,由正弦定理得AD sin ∠ABD =BDsin ∠BAD ,∴AD255=81022, ∴AD =32,∴所需时间t =3240=0.8 h ,∴此人还需要0.8 h 即48 min 到达A 城.13.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为______m .(取2=1.4,3=1.7)答案 2650解析 如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21000(m). 又在△ABC 中,BC sin A =ABsin ∠ACB, ∴BC =2100012×sin15°=10500(6-2)(m).∵CD ⊥AD ,∴CD =BC ·sin∠DBC =10500(6-2)×22=10500(3-1)=7350(m). 故山顶的海拔高度h =10000-7350=2650(m).14.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇, 则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos120°, 解得x =2.故AC =28,BC =20.根据正弦定理,得BC sin α=AC sin120°,解得sin α=20sin120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.。
2018版高考一轮总复习数学理习题 第3章 三角函数、解
(时间:40分钟)1.已知△ABC 的内角A 满足sin2A =23,则sin A +cos A =( )A.153 B .-153 C.52 D .-53答案 A解析 因为sin2A =2sin A cos A >0,A 为△ABC 的内角,所以A 是锐角.所以sin A +cos A >0,又因为(sin A +cos A )2=1+sin2A =53,所以sin A +cos A =153.2.已知α是第二象限角,且sin(π+α)=-35,则tan2α的值为( )A.45 B .-237 C.247 D .-247 答案 D解析 sin α=35,cos α=-45,则tan α=-34,所以tan2α=2tan α1-tan 2α=-247. 3.已知sin α=23,则cos(π-2α)=( )A .-53 B .-19 C.19 D.53答案 B解析 由诱导公式,得cos(π-2α)=-cos2α. 因为cos2α=1-2sin 2α=1-2×49=19,所以cos(π-2α)=-19. 4.函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( ) A.π2 B .π C.3π2D .2π 答案 B解析 ∵f (x )=(3sin x +cos x )(3cos x -sin x )=4sin ⎝ ⎛⎭⎪⎫x +π6·cos ⎝⎛⎭⎪⎫x +π6=2sin ⎝⎛⎭⎪⎫2x +π3,∴T =2π2=π,故选B.5.已知sin α+2cos α=3,则tan α=( )A.22 B. 2C .-22D .- 2答案 A解析 ∵sin α+2cos α=3,∴(sin α+2cos α)2=3. ∴sin 2α+22sin αcos α+2cos 2α=3, ∴sin 2α+22sin αcos α+2cos 2αsin 2α+cos 2α=3, ∴tan 2α+22tan α+2tan 2α+1=3, ∴2tan 2α-22tan α+1=0,∴tan α=22,故选A. 6.函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.答案π3解析 因为y =sin x -3cos x =2sin ⎝⎛⎭⎪⎫x -π3,所以函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移π3个单位长度得到.7.计算:2sin50°-3sin20°cos20°=________.答案 1 解析 原式=+-3sin20°cos20°=2sin30°cos20°+2cos30°sin20°-3sin20°cos20°=cos20°+3sin20°-3sin20°cos20°=1.8.已知2cos 2x +sin2x =A sin(ωx +φ)+b (A >0),则A =________,b =________. 答案2 1解析 ∵2cos 2x +sin2x =1+cos2x +sin2x =2sin ( 2x +π4 )+1,∴A =2,b =1.9.已知函数f (x )=cos 4x -2sin x cos x -sin 4x . (1)求f (x )的最小正周期;(2)求f (x )的单调区间;(3)若x ∈⎣⎢⎡⎦⎥⎤0,π2,求f (x )的最大值及最小值.解 (1)f (x )=(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x =cos2x -sin2x =2cos ⎝⎛⎭⎪⎫2x +π4,所以最小正周期T =2π2=π.(2)由2k π-π≤2x +π4≤2k π,k ∈Z ,得k π-58π≤x ≤k π-π8,k ∈Z ,所以函数f (x )的单调增区间为⎣⎢⎡k π-58π,⎦⎥⎤k π-18π(k ∈Z ).由2k π≤2x +π4≤2k π+π,k ∈Z .得k π-18π≤x ≤k π+38π,k ∈Z ,所以函数f (x )的单调减区间为⎣⎢⎡⎦⎥⎤k π-18π,k π+38π(k ∈Z ).(3)因为0≤x ≤π2,所以π4≤2x +π4≤5π4,-1≤cos ⎝ ⎛⎭⎪⎫2x +π4≤22,-2≤f (x )≤1. 所以当x =0时,f (x )有最大值为1, 当x =38π时,f (x )有最小值为- 2.10.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos ⎝⎛⎭⎪⎫A -π6的值.解 (1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫452=35. 由正弦定理知AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos ⎝⎛⎭⎪⎫B +π4=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A <π,所以sin A =1-cos 2A =7210.因此,cos ⎝⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620.(时间:20分钟)11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin2θ=378,则sin θ=( )A.35B.45C.74D.34 答案 D解析 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,cos2θ<0,sin θ>0.因为sin2θ=378,所以cos2θ=-1-sin 22θ=-1-⎝⎛⎭⎪⎫3782=-18. 又因为cos2θ=1-2sin 2θ,所以sin θ=1-cos2θ2= 1-⎝ ⎛⎭⎪⎫-182=34. 12.若tan α=34,α是第三象限角,则1-tanα21+tanα2=( )A .-12 B.12 C .2 D .-2答案 D解析 由tan α=34,α是第三象限角,得sin α=-35,cos α=-45,所以1-tanα21+tanα2=cos α2-sinα2cos α2+sinα2=⎝⎛⎭⎪⎫cos α2-sin α22⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫cos α2-sin α2=1-sin αcos α=85-45=-2.13.已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________. 答案 -43解析 因为θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,所以θ+π4为第一象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4=45,所以tan ⎝ ⎛⎭⎪⎫θ-π4=sin ⎝ ⎛⎭⎪⎫θ-π4cos ⎝ ⎛⎭⎪⎫θ-π4=-cos ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫θ-π4sin ⎣⎢⎡⎦⎥⎤π2+⎝⎛⎭⎪⎫θ-π4= -cos ⎝⎛⎭⎪⎫θ+π4sin ⎝⎛⎭⎪⎫θ+π4=-43.14.已知函数f (x )=cos x ·sin ( x +π3 )-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.解 (1)由已知,有f (x )=cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin2x -34(1+cos2x )+34 =14sin2x -34cos2x =12sin ⎝ ⎛⎭⎪⎫2x -π3.所以f (x )的最小正周期T =2π2=π.(2)由x ∈⎣⎢⎡⎦⎥⎤-π4,π4得2x -π3∈⎣⎢⎡⎦⎥⎤-5π6,π6,则sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-1,12,即函数f (x )=12sin ⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-12,14.所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.。
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.5第1课时含解析
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β,(C(α-β)) cos(α+β)=cos αcos β-sin αsin β,(C(α+β))sin(α-β)=sin αcos β-cos αsin β,(S(α-β)) sin(α+β)=sin αcos β+cos αsin β,(S(α+β))tan(α-β)=错误!,(T(α-β))tan(α+β)=错误!.(T(α+β))2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=错误!。
【知识拓展】1.降幂公式:cos2α=1+cos 2α2,sin2α=错误!.2.升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.3.辅助角公式:a sin x+b cos x=错误!sin(x+φ),其中sin φ=错误!,cos φ=错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×) (3)若α+β=45°,则tan α+tan β=1-tan αtan β.(√)(4)对任意角α都有1+sin α=(sin 错误!+cos 错误!)2.( √)(5)y=3sin x+4cos x的最大值是7.(×)(6)在非直角三角形中,tan A+tan B+tan C=tan A tan B tan C.(√)1.(教材改编)sin 18°cos 27°+cos 18°sin 27°的值是()A.错误! B.错误!C.错误!D.-错误!答案A解析sin 18°cos 27°+cos 18°sin 27°=sin(18°+27°)=sin45°=错误!.2.化简错误!等于( )A .1 B.错误! C 。
2018版高考一轮总复习数学(理)习题第3章 三角函数、解三角形3-7含答案
(时间:40分钟)1.海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B 成60°视角,从B望C和A成75°视角,则BC=()A.10错误!n mile B.错误!n mileC.5错误!n mile D.5错误!n mile答案D解析由题意可知,∠CAB=60°,∠CBA=75°,所以∠C=45°,由正弦定理得错误!=错误!,所以BC=5错误!。
2. 如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.a km B。
错误!a kmC。
错误!a km D.2a km答案B解析在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2a2cos120°=3a2,故|AB|=3a。
3.某工程中要将一坡长为100 m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高度不变,则坡底需加长( )A.100错误!m B.100错误!mC.50(错误!+错误!) m D.200 m答案A解析设坡底需加长x m,由正弦定理得错误!=错误!,解得x=100错误!。
4.在200 m高的山顶上,测得山下一塔顶与塔底俯角分别为30°、60°,则塔高为( )A.错误!m B。
错误!mC。
错误!m D。
错误!m答案A解析如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∠ACD=30°,∠ADC=120°,又AB=200,∴AC=4003错误!。
在△ACD中,由正弦定理,得错误!=错误!,即DC=错误!=错误!(m).5。
如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为()A.8 km/h B.6 2 km/hC.2错误!km/h D.10 km/h答案B解析设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sinθ=错误!=错误!,从而cosθ=错误!,所以由余弦定理得错误!2=错误!2+12-2×错误!×2×1×错误!,解得v=6错误!.6.甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里的B处,乙船正向北行驶,若甲船是乙船速度的3倍,甲船为了尽快追上乙船,则应取北偏东________(填角度)的方向前进.答案30°解析设两船在C处相遇,则由题意∠ABC=180°-60°=120°,且ACBC=错误!,由正弦定理得错误!=错误!=错误!⇒sin∠BAC=错误!。
2018年高考理科数学山东专用一轮复习练习:第3章 三角
1.若tan θ=3,则sin 2θ1+cos 2θ=( )A.3 B .- 3C.33 D .-33解析:选A.sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3.2.2sin 235°-1cos 10°-3sin 10°的值为( ) A .1 B .-1 C.12 D .-12解析:选D .原式=2sin 235°-12⎝⎛⎭⎫12cos 10°-32sin 10°=-cos 70°2sin 20°=-12.3.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=( )A.33B.12C. 3 D .1解析:选D .因为tan β=cos α-sin αcos α+sin α,所以tan β=1-tan α1+tan α=tan ⎝⎛⎭⎫π4-α.又α、β均为锐角,所以β=π4-α,即α+β=π4,所以tan(α+β)=tan π4=1.4.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4 D .π6解析:选C.因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010.又sin α=55,所以cos α=255,所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4.5.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫α+π4=13,sin ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A.33 B .-33 C.63 D .-69解析:选C.由已知得π4<π4+α<3π4,π4<π4-β2<π2,所以sin ⎝⎛⎭⎫π4+α=223,cos ⎝⎛⎭⎫π4-β2=63,cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎫π4-β2=63. 6.(2016·温州八校联考)若sin α+cos α=13,0<α<π,则sin 2α+cos 2α的值为( ) A.8+179 B.-8+179C.-8-179 D .-8±179解析:选C.因为sin α+cos α=13<1且0<α<π,所以α为钝角.又由sin α+cos α=13得1+2sin αcos α=19,所以sin 2α=2sin αcos α=-1+19=-89,sin α-cos α=(sin α+cos α)2-2sin 2α= 19-2×⎝⎛⎭⎫-89= 179=173, 所以cos 2α=cos 2α-sin 2α=-(sin α+cos α)(sin α-cos α)=-13×173=-179, 从而sin 2α+cos 2α=⎝⎛⎭⎫-89+⎝⎛⎭⎫-179=-8-179. 7.已知点P ⎝⎛⎭⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则tan ⎝⎛⎭⎫θ+π3的值为________.解析:因为点P 坐标为⎝⎛⎭⎫22,-22,所以θ为第四象限角,tan θ=-1,所以tan ⎝⎛⎭⎫θ+π3=tan θ+31-3tan θ=-1+31+3=2- 3. 答案:2- 38.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2=________.解析:因为α是第二象限角,所以α2可能在第一或第三象限.又sin α2<cos α2,所以α2为第三象限角,所以cosα2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55.答案:-559.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎫2α+π3=________.解析:因为cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23,又α∈⎝⎛⎭⎫0,π2,所以2α∈(0,π),所以sin 2α=1-cos 22α=53,所以cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156. 答案:2-15610.(2016·济南模拟)设α∈⎝⎛⎭⎫0,π3,β∈⎝⎛⎭⎫π6,π2,且53sin α+5cos α=8,2sinβ+6cos β=2,则cos(α+β)的值为________.解析:由53sin α+5cos α=8,得sin ⎝⎛⎭⎫α+π6=45,因为α∈⎝⎛⎭⎫0,π3,α+π6∈⎝⎛⎭⎫π6,π2,所以cos ⎝⎛⎭⎫α+π6=35.又β∈⎝⎛⎭⎫π6,π2,β+π3∈⎝⎛⎭⎫π2,56π,由已知得sin ⎝⎛⎭⎫β+π3=22.所以cos ⎝⎛⎭⎫β+π3=-22.所以cos(α+β)=sin ⎣⎡⎦⎤π2+(α+β)=sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6+⎝⎛⎭⎫β+π3=sin ⎝⎛⎭⎫α+π6cos ⎝⎛⎭⎫β+π3+cos ⎝⎛⎭⎫α+π6sin ⎝⎛⎭⎫β+π3=-210.答案:-21011.已知tan α=-13,cos β=55,α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈⎝⎛⎭⎫0,π2,得sin β=255,tan β=2.所以tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.因为α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2, 所以π2<α+β<3π2,所以α+β=5π4.12.已知0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45.(1)求sin 2β的值;(2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:因为cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin π4sin β=22cos β+22sin β=13,所以cos β+sin β=23,所以1+sin 2β=29,所以sin 2β=-79.法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79.(2)因为0<α<π2<β<π,所以π4<β-π4<34π,π2<α+β<3π2.所以sin ⎝⎛⎭⎫β-π4>0,cos(α+β)<0,因为cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45,所以sin ⎝⎛⎭⎫β-π4=223,cos(α+β)=-35.所以cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4=cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4=-35×13+45×223=82-315.1.4cos 50°-tan 40°=( ) A.2B.2+32C. 3 D .22-1解析:选C.4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°=4sin 40°cos 40°-sin 40°cos 40°=2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°=sin 80°+2cos 60°sin 20°cos 40°=sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°=2sin 50°cos 30°cos 40°=3·cos 40°cos 40°= 3.2.若sin x +cos x sin x -cos x =3,tan(x -y )=2,则tan(y -2x )=________.解析:由sin x +cos xsin x -cos x =3,得tan x +1tan x -1=3,即tan x =2. tan(y -x )=-tan(x -y )=-2,所以tan(y -2x )=tan (y -x )-tan x 1+tan (y -x )tan x =-2-21-4=43.答案:433.求值:1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎫1tan 5°-tan 5°.解:原式=2cos 2 10°2×2sin 10°cos 10°-sin 10°⎝ ⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 2 5°-sin 2 5°sin 5°cos 5° =cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10° =cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝⎛⎭⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.4.已知0<α<π2<β<π,tan α2=12,cos(β-α)=210.(1)求sin α的值; (2)求β的值.解:(1)因为tan α2=12,所以tan α=2tanα21-tan 2 α2=2×121-⎝⎛⎭⎫122=43. 由⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1.解得sin α=45(sin α=-45舍去).(2)由(1)知cos α=1-sin 2α= 1-⎝⎛⎭⎫452=35,又0<α<π2<β<π,所以β-α∈ (0,π),而cos(β-α)=210. 所以sin(β-α)=1-cos 2(β-α)=1-⎝⎛⎭⎫2102=7210, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin (β-α) =45×210+35×7210=22. 又β∈⎝⎛⎭⎫π2,π,所以β=3π4.。
2018届高三数学理一轮总复习练习-第三章 三角函数、解
课时规范训练[A 级 基础演练]1.在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D .π3解析:选D.在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.2.(2016·高考天津卷)在△ABC 中,若AB =13,BC =3,∠C =120°,则AC =( )A .1B .2C .3D .4解析:选A.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则a =3,c =13,∠C =120°,由余弦定理得13=9+b 2+3b ,解得b =1,即AC =1.3.在△ABC ,已知∠A =45°,AB =2,BC =2,则∠C 等于( ) A .30° B .60° C .120°D .30°或150°解析:选A.在△ABC 中,AB sin C =BC sin A ,∴2sin C =2sin 45°, ∴sin C =12,又AB <BC ,∴∠C <∠A ,故∠C =30°.4.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .102海里B .103海里C .203海里D .202海里解析:选A.如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC =102(海里).5.(2016·高考山东卷)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4 B .π3 C.π4D .π6解析:选C.由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cos A ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.6.(2016·高考北京卷)在△ABC 中,∠A =2π3,a =3c ,则bc= . 解析:∵a =3c ,∴sin A =3sin C ,∵∠A =2π3,∴sin A =32,∴sin C =12,又∠C 必为锐角,∴∠C =π6,∵∠A +∠B +∠C =π,∴∠B =π6,∴∠B =∠C ,∴b =c ,∴bc =1.答案:17.在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,则BC 边的长为 .解析:由S △ABC =1534得12×3×AC sin 120°=1534,所以AC =5,因此BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=9+25+2×3×5×12=49,解得BC =7.答案:78.已知△ABC的内角A,B,C的对边分别为a,b,c,且c-bc-a=sin Asin C+sin B,则B=()A.π6B.π4C.π3D.3π4解析:选C.根据正弦定理:asin A=bsin B=csin C=2R,得c-bc-a=sin Asin C+sin B=a c+b ,即a2+c2-b2=ac,得cos B=a2+c2-b22ac=12,故B=π3,故选C.9.△ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);(2)若a,b,c成等比数列,且c=2a,求cos B的值.解:(1)证明:∵三角形的三边a,b,c成等差数列,∴a+c=2b.由正弦定理得sin A+sin C=2sin B.∵sin B=sin[π-(A+C)]=sin(A+C),∴sin A+sin C=2sin(A+C).(2)由题设有b2=ac,c=2a,∴b=2a,由余弦定理得cos B=a2+c2-b22ac=a2+4a2-2a24a2=34.10.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知4sin2A-B2+4sin A sin B=2+ 2.(1)求角C的大小;(2)已知b=4,△ABC的面积为6,求边长c的值.解:(1)由已知得2[1-cos(A-B)]+4sin A sin B=2+2,化简得-2cos A cos B+2sin A sin B=2,故cos(A+B)=-22,所以A+B=3π4,从而C=π4.(2)因为S△ABC=12ab sin C,由S△ABC=6,b=4,C=π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10.[B 级 能力突破]1.(2017·辽宁五校联考)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C =( )A.2π3 B .π3 C.3π4D .5π6解析:选A.由3sin A =5sin B ,得3a =5b . 又因为b +c =2a , 所以a =53b ,c =73b ,所以cos C =a 2+b 2-c 22ab =⎝ ⎛⎭⎪⎫53b 2+b 2-⎝ ⎛⎭⎪⎫73b 22×53b ×b=-12.因为C ∈(0,π),所以C =2π3.2.(2017·北京东城一模)在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( )A .5B .13或37 C.37D .13解析:选D.由S △ABC =12AB ·AC ·sin ∠BAC =12×3×4×sin ∠BAC =33,得sin ∠BAC =32,因为△ABC 为锐角三角形,所以∠BAC ∈⎝ ⎛⎭⎪⎫0,π2,故∠BAC =π3,在△ABC 中,由余弦定理得,BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC =42+32-2×4×3×cos π3=13.所以BC =13,故选D.3.(2017·厦门模拟)在不等边三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝ ⎛⎭⎪⎫0,π2 B .⎝ ⎛⎭⎪⎫π4,π2C.⎝ ⎛⎭⎪⎫π6,π3 D .⎝ ⎛⎭⎪⎫π3,π2解析:选D.由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2, 即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0, ∵0<A <π,∴0<A <π2.又a 为最大边,∴A =A ,A >B ,A >C , 即3A >A +B +C =π,∴A >π3. 因此得角A 的取值范围是⎝ ⎛⎭⎪⎫π3,π2.4.(2017·云南第一次检测)已知a 、b 、c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A 的值等于 .解析:依题意可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62,所以b +a sin A =b +bsin B =16 2. 答案:16 25.海上一观测站测得方位角240°的方向上有一艘停止待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90海里.此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船即可到达商船.解析:如图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20分钟后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD=400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中由已知得∠ABD =30°. ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(分钟). 答案:4036.(2017·成都外国语学校模拟)已知函数f (x )=23sin 2⎝ ⎛⎭⎪⎫π4+x +2sin⎝ ⎛⎭⎪⎫π4+x ·cos ⎝ ⎛⎭⎪⎫π4+x . (1)求函数f (x )的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c 且角A 满足f (A )=3+1.若a =3,BC 边上的中线长为3,求△ABC 的面积S .解:(1)由题意知,f (x )=3⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+2x +sin ⎝ ⎛⎭⎪⎫π2+2x=3()1+sin 2x +cos 2x =3+3sin 2x +cos 2x =3+2sin ⎝ ⎛⎭⎪⎫2x +π6, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,解得 k π-π3≤x ≤k π+π6,k ∈Z ,∴函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z . (2)由f (A )=3+1,得sin ⎝ ⎛⎭⎪⎫2A +π6=12,∴2A +π6=π6或5π6,即A =0或π3.又A 为△ABC 的内角,∴A =π3. 由A =π3,a =3.得|BC→|=|AC →-AB →|=a =3,① 又BC 边上的中线长为3,知|AB →+AC →|=6.② 联立①②,解得AB →·AC→=274,即|AB →|·|AC →|·cos π3=274, ∴|AB →|·|AC→|=272. ∴△ABC 的面积为 S =12|AB →|·|AC →|·sin π3=2738.。
2018届高考数学(理)第一轮总复习全程训练考点集训:第3章三角函数、解三角形天天练17含解析
天天练17解三角形及其应用一、选择题1.在△ABC中,如果sin A:sin B:sin C=2:3:4,那么cos C等于( )A。
错误!B.-错误!C.-错误!D.-错误!2.(2017·河西五市二联)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(b-a)sin A=(b-c)(sin B+sin C),则角C等于( )A。
错误!B。
错误!C.错误!D.错误!3.在△ABC中,若c=2a cos B,则△ABC是( )A.直角三角形B.等腰三角形C.等腰或直角三角形D.等腰直角三角形4.(2017·大连双基)△ABC中,AB=2,AC=3,B=60°,则cos C=( )A.错误!B.±错误!C.-错误!D.错误!5.(2016·新课标全国卷Ⅲ)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=( )A。
错误!B。
错误!C.-错误!D.-错误!6.(2016·天津,3)在△ABC中,若AB=错误!,BC=3,∠C=120°,则AC=( )A.1 B.2 C.3 D.47.(2017·太原五中检测)在锐角△ABC中,角A,B,C所对的边分别为a,b,c。
若sin A=错误!,a=2,S△ABC=错误!,则b的值为()A.错误!B.错误!C.2错误!D.2错误!8.在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cos B+cos(A-C)=1,则( )A.a,b,c成等差数列B.a,b,c成等比数列C.a,c,b成等差数列D.a,c,b成等比数列二、填空题9.在△ABC中,a=4,b=5,c=6,则错误!=__________。
10.(2017·长沙一模)△ABC的周长等于2(sin A+sin B+sin C),则其外接圆半径等于__________.11.某观察站C与两灯塔A、B的距离分别为300米和500米,测得灯塔A在观察站C北偏东30°方向,灯塔B在观察站C正西方向,则两灯塔A、B间的距离为__________米.三、解答题12.(2016·山东,16)在△ABC中,角A,B,C的对边分别为a,b,c.已知2(tan A+tan B)=错误!+错误!。
2018年高考数学理科全程天天训练(17)解三角形及其应用(含答案)
C.等腰或直角三角形D.等腰直角三角形
4.(2017·大连双基)△ABC中,AB=2,AC=3,B=60°,则cosC=()
A. B.± C.- D.
5.(2016·新课标全国卷Ⅲ)在△ABC中,B= ,BC边上的高等于D.-
6.(2016·天津,3)在△ABC中,若AB= ,BC=3,∠C=120°,则AC=()
A.1B.2C.3D.4
7.(2017·太原五中检测)在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若sinA= ,a=2,S△ABC= ,则b的值为()
A. B.
C.2 D.2
8.在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(A-C)=1,则()
A.a,b,c成等差数列B.a,b,c成等比数列
8.B由cos2B+cosB+cos(A-C)=1得,cosB+cos(A-C)=1-cos2B,∵cosB=cos[π-(A+C)]=-cos(A+C),cos2B=1-2sin2B,∴cos(A-C)-cos(A+C)=2sin2B,∴sinAsinC=sin2B,由正弦定理得ac=b2,∴a,b,c成等比数列.故选B.
技巧点拨:三角形中边角互化的依据是正弦定理、余弦定理,考生要能灵活应用.
6.A在△ABC中,设A、B、C所对的边分别为a,b,c,则由c2=a2+b2-2abcosC,得13=9+b2-2×3b× ,即b2+3b-4=0,解得b=1(负值舍去),即AC=1.故选A.
7.A因为S△ABC= bcsinA= bc× = ,所以bc=3①.因为△ABC是锐角三角形,所以cosA= ,由余弦定理知a2=b2+c2-2bccosA,即4=b2+c2-2×3× ,所以b2+c2=6②.联立①②,解得b=c= ,故选A.
2018版高考数学(理)一轮复习文档:第四章三角函数、解三角形4.6含解析
1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则定理正弦定理余弦定理内容asin A=错误!=错误!=2Ra2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C变形(1)a=2R sin A,b=2R sin B,c=2R sin C;cos A=错误!;cos B=错误!;(2)sin A =a2R,sinB=错误!,sin C=错误!; (3)a∶b∶c=sin A∶sin B∶sin C;(4)a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos C=a2+b2-c22ab2。
在△ABC中,已知a、b和A时,解的情况如下:A为锐角A为钝角或直角图形关系式a=b sin Ab sinA<a<ba≥b a〉b解的个数一解两解一解一解3.三角形常用面积公式(1)S =错误!a ·h a (h a 表示边a 上的高);(2)S =错误!ab sin C =错误!ac sin B =错误!bc sin A ; (3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】1.三角形内角和定理: 在△ABC 中,A +B +C =π; 变形:错误!=错误!-错误!。
2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos (A +B )=-cos C ; (3)sin 错误!=cos 错误!;(4)cos 错误!=sin 错误!. 3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×")(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC中,若sin A>sin B,则A>B.(√)(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b2+c2-a2〉0时,三角形ABC为锐角三角形.( ×)(5)在△ABC中,asin A=错误!.( √)(6)在三角形中,已知两边和一角就能求三角形的面积.( √)1.(2016·天津)在△ABC中,若AB=错误!,BC=3,C=120°,则AC等于()A.1 B.2 C.3 D.4答案A解析由余弦定理得AB2=AC2+BC2-2AC·BC·cos C,即13=AC2+9-2AC×3×cos 120°,化简得AC2+3AC-4=0,解得AC=1或AC=-4(舍去).故选A.2.(教材改编)在△ABC中,A=60°,B=75°,a=10,则c等于( )A.5错误!B.10错误!C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.B∵θ∈,∴cosθ===,
∴sin(π-θ)sin=-sinθcosθ=-×=-.故B正确.
6.D由三角函数的定义可得:tanα=-2,由两角和的正切公式可得:tan==-,故选择D.
A.y=cosB.y=sin
C.y=sin2x+cos2xD.y=sinx+cosx
3.(2017·广西二市模拟)将函数f(x)=sinωx(ω>0)的图象向右平移个单位长度,所得图象关于点(,0)对称,则ω的最小值是()
A.B.1C.D.2
4.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()
7.C因为sin=,所以cosα=,
所以cos(π-2α)=-cos2α=-(2cos2α-1)=-=.选C.
8.B因为g=,g=+1,f=sin+1=-+1,f=sin+1=-+1,故原式=3.
9.4 cm2解析:=|α|⇒=2⇒r=2,∴S=lr=4.
10.π解析:由已知,得P,tanα==-1,又点P在第四象限,θ∈[0,2π],所以θ∈,θ=π.
11.-解析:本题考查同角的三角函数基本关系式及三角函数值的符号规律.∵sin2θ+cos2θ=1,∴2+2=1,解得m=0或m=8∵θ为第四象限角,∴sinθ<0,cosθ>0,所以m=0
∴tanθ===-.
12.解析:本题考查利用同角的三角函数基本关系式灵活解题的能力.由根与系数的关系可得
将①式两边同时平方,得1+2sinαcosα=,sinαcosα=
11.已知函数f(x)=sinx.若存在x1,x2,…,xm满足0≤x1<x2<…<xm≤6π,且++…+=12(m≥2,m∈N*),则m的最小值为________.
三、解答题
12.某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ
0
A.f(2)<f(-2)<f(0) B.f(0)<f(2)<f(-2)
C.f(-2)<f(0)<f(2) D.f(2)<f(0)<f(-2)
二、填空题
9.已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ=________.
10.给出下列命题:
(1)终边在y轴上的角的集合是;
三、解答题
12.已知关于x的方程2x2-(+1)x+m=0的两根为sinα与cosα,α∈,若角α与β的终边互相垂直,求tanβ的值.
天天练13三角函数概念、同角三角函数基本关系式、诱导公式1.D由β=α+k·360°(k∈Z)可知,α与β相差周角整数倍,所以α与β的终边相同,故选D.
2.C本题考查利用诱导公式一、二、三、四求特殊角的三角函数值.3.D因为sinα=-,且α为第四象限角,所以cosα==,所以tanα==-,故选D.
A.锐角三角形B.钝角三角形
C.等腰直角三角形D.等腰三角形
5.已知sinθ=,θ∈,则sin(π-θ)sin的值为()
A.B.-C.D.-
6.已知角α的终边经过点P(-1,2),则tan的值是()
A.3 B.-3C.D.-
7.已知sin=,则cos(π-2α)的值为()
A.B.-C.D.-
8.设f(x)=和g(x)=
天天练
一、选择题
1.下列说法正确的是()
A.终边在yቤተ መጻሕፍቲ ባይዱ非负半轴上的角是直角
B.第二象限角一定是钝角
C.第四象限角一定是负角
D.若β=α+k·360°(k∈Z),则α与β终边相同
2.sin的值等于()
A.B.-C.D.-
3.若sinα=-,且α为第四象限角,则tanα的值等于()
A.B.-C.D.-
4.角A为△ABC的一个内角,若sinA+cosA=,则这个三角形的形状为()
则g+f+g+f的值为()
A.2 B.3C.4 D.5
二、填空题
9.若2弧度的圆心角所对的弧长是4 cm,则这个圆心角所在的扇形面积是________.
10.已知点P落在角θ的终边上,且θ∈[0,2π],则θ的值为________.
11.已知sinθ=,cosθ=,且θ为第四象限角,则tanθ的值为________.
π
2π
x
Asin(ωx+φ)
0
5
-5
0
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为,求θ的最小值.
7.已知函数f(x)=sinωx-cosωx(ω>0)的图象与x轴的两个相邻交点的距离等于,若将函数y=f(x)的图象向左平移个单位得到函数y=g(x)的图象,则y=g(x)是减函数的区间为()
A.B.C.D.
8.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()
A.,k∈ZB.,k∈Z
C.,k∈ZD.,k∈Z
5.(2017·贵阳监测)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则f(0)=()
A.-B.-C.-1 D.-
6.已知定义域为R的函数f(x)=(a∈R)有最大值和最小值,且最大值与最小值的和为6,则a=()
A.1B.2 C.3 D.4
由②得=,m=
(2)由(1)得2x2-(+1)x+=0,x=或x=
∵α∈,sinα=,cosα=
角α与β的终边互相垂直,β=α++2kπ,k∈Z
∴tanβ=tan===-.
天天练
一、选择题
1.下列函数中周期为的是()
A.y=sinB.y=sin2xC.y=cosD.y=cos4x
2.下列函数中,最小正周期为π且图象关于原点对称的函数是()
(2)把函数f(x)=2sin2x的图象沿x轴方向向左平移个单位后,得到的函数解析式可以表示成f(x)=2sin;
(3)函数f(x)=sinx+的值域是[-1,1];
(4)已知函数f(x)=2cosx,若存在实数x1,x2,使得对任意的实数x都有f≤f(x)≤f成立,则的最小值为2π.
其中正确的命题的序号为________.