高一数学空间图形的平面图
高一数学课件.ppt
(1)
(2)
(3)
2. 说出下列图形绕虚线旋转一周,可 以形成怎样的几何体?
(1)
(2)
(3)
(4)
课堂小结:
这节课我们学习了圆台,棱 台,球等立体图形,这些图形在 日常生活中随处可见,希望同学 们平时留心观察事物,认识它们, 正确画出这些基本立体图形.
第一章: 空间几何体
1.1空间几何体的结构
棱台与圆台的结构特征
(1) 棱台的结构特征:如下图,用一个平行于 棱锥底 面的平面去截棱锥,底面与截面之 间的部分,这样的几何体叫做棱台
o
D/
C/
A/
B/
D
C
A
B
想一想:仿照棱锥中关于侧面,侧棱,底面,顶
点的定义,在下图中标出棱台的侧面,侧棱,底
面,顶点.
顶点 S
侧棱
侧面
底面 A
D
C
顶点
B
上底面
侧面
D/
C/
A/Leabharlann B/侧棱DC
A
B 下底面
由三棱锥,四棱锥,五棱锥…..截得的棱 台分别叫做三棱台,四棱台,五棱台….与棱 柱的表示一样,下图的棱台表示为棱台
ABC-A/B/C/……
C/
A/
B/
C
……
A
B
三棱台
四棱台
五棱台
(2) 圆台的结构特征:如下图,用一
个平行于圆锥底 面的平面去截圆锥, 底面与截面之间的部分,这样的几何体 叫做圆台
母线
O/
侧面
O
轴
底面
球的结构特征
以半圆的直径所在直线为旋转轴,半圆面旋 转一周形成的几何体叫做球体,简称球.
基本立体图形-高一数学课件(人教A版2019必修第二册)
方体,从构成立体图形的基本元素点、直线、平面入手,研究它们
的性质以及相互之间的位置关系,特别是对直线、平面的平行与垂
直的关系展开研究,从而进一步认识空间几何体的性质.
章前导入
立体图形是由现实物体抽象而成的. 直观感知、操作确认、
推理论证、度量计算,是认识立体图形的基本方法. 由整体到局
难点
重点
一
通过对实物模型的观察,归纳与掌握柱、
锥、台、球的概念与结构特征
二
易错点
掌握简单组合体的结构特征
三
能运用结构特征描述生活中简单物体的结
构和有关计算
新知探究
探究一:多面体与旋转体
新知讲解
请大家欣赏这些优美的图片!
新知讲解
新知讲解
新知讲解
新知讲解
问题1 如图,这些图片中的物体具有怎样的形状?如何描述它们的形状?在
柱体、椎体、台体和球等简单几何体外,还有大量的几何体是
由简单几何体组合而成的,这些几何体称作简单组合体.
新知讲解
请你说说下图中各几何体是由哪些简单几何体组合
而成的?
简单组合体构成的两种基本形式:
(1)由简单几何体拼接而成;
(2)由简单几何体截去或挖去一部分而成.
新知讲解
问题10 请你说说下图中各几何体是由哪些简单几何体组合而成的?
棱台的特点:
上下底面是互相平行且相似的多边形;
侧面都是梯形;
各侧棱的延长线交于一点.
新知讲解
问题8 你能类比棱柱的分类,给出棱台的分类吗?
三棱台:由三棱锥截得
的棱台
四棱台:由四棱锥截
得的棱台
五棱台:由五棱锥截
必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:
高一数学空间图形的展开图
§1.3.1 空间图形的展开图教学目标:1.了解平面展开图的概念,会识别一些简单多面体的平面展开图2.了解直棱柱、正棱柱、正棱锥、正棱台、圆柱、圆锥、圆台的侧面积的计算公式3.会用展开图解决具体问题教学重点:1.正棱柱、正棱锥、正棱台的概念的理解2.多面体的平面展开图,及展开图的应用教学难点:多面体的平面展开图的应用教学过程:1.问题情境(1)情景:多媒体播放棱柱、棱锥、棱台、圆柱、圆锥、圆台这些几何体图片(2)问题:如果你是装潢公司的一名员工,想给这些几何体的侧面贴上一些装饰画。
你能否测算出所需装饰纸的面积?我们解决这个问题,就必须测算这些几何体的侧面积,如何计算这些几何体的侧面积呢?它们的侧面积计算公式之间有怎样的关系呢?2.直棱柱、正棱柱、正棱锥、正棱台(1)概念直棱柱:侧棱和底面垂直的棱柱叫做直棱柱.正棱柱:底面为正多边形的直棱柱叫做正棱柱.正棱锥:底面是正多边形,顶点在底面的正投影是底面多边形的中心的棱锥叫做正棱锥,正棱锥的侧棱长相等.正棱台:正棱锥被平行于底面的平面所截,截面和底面之间的部分叫做正棱台.(2)性质直棱柱:每个侧面都是矩形,底面是多边形.正棱柱:每个侧面都是全等的矩形,底面是正多边行.正棱锥:侧面是全等的等腰三角形,底面是正多边形,每条侧棱都相等.正棱台:侧面是全等的等腰梯形,底面是正多边形,每条侧棱都相等.注:当且仅当正棱锥,正棱台时才有斜高.3.多面体的平面展开图的概念一些简单多面体沿着它的某些棱剪开而形成的平面图形叫做该多面体的平面展开图.平面展开图的面积称为该多面体的表面积,侧面展开图的面积称为该多面体的侧面积.下面我们就来研究直棱柱、正棱柱、正棱锥、正棱台这些简单多面体的展开图问题.4.简单几何体的侧面积(1)直棱柱、正棱柱、正棱锥、正棱台侧面积请同学们分别画出一个直四棱柱、正四棱锥、正四棱台的侧面展开图.你能说出它们的侧面积计算公式吗?○1把直(正)棱柱的侧面沿一条侧棱剪开后展在一个平面上,侧面展开图是矩形,这个矩形的长等于直(正)棱柱的底面周长c,宽等于直(正)棱柱的高h,因此直(正)棱柱的侧面积是S ch=直棱柱侧.○2把正棱锥的侧面沿一条侧棱剪开后展在一个平面上,侧面展开图是由多个全等的等腰三角形组成的图形,若正棱锥的底面周长为c,斜高为h'(侧面等腰三角形底边上的高),由图可知它的侧面积是12S ch'=正棱锥侧.(证明:设正n棱锥底面边长为a,则1122S n ah ch'' ==侧)○3与正棱锥的的侧面展开图类似,正棱台的侧面展开图是由多个全等的等腰梯形组成的图形,若正棱台的上、下底面的周长分别为,c c ',斜高为h '(侧面等腰梯形的高),则其侧面积4正棱柱、正棱锥、正棱台的侧面积公式之间的关系可用下图表示: 011()22c c c S ch S c c h S ch ''=='''=←−−−=+−−−→=正棱柱侧正棱台侧正棱锥侧(2)圆柱、圆锥、圆台的侧面积分别画出一个圆柱、圆锥、圆台的侧面展开图. 圆柱的侧面展开图是一个矩形,圆锥的侧面展开图是一个扇形,圆台的侧面展开图是一个扇环.注:球的表面不可展开. 类比正棱柱、正棱锥、正棱台的侧面积计算公式,探究圆柱、圆锥、圆台的侧面积计算公式:(公式推导课后看教材5253P -)2S cl rl π==圆柱侧,12S cl rl π==圆锥侧,()()12S c c l r r l π''=+=+圆台侧(c 为(下)底面周长,c '为上底面周长,l 为母线长),它们之间的关系可用下图表示:()0112()22c c c S cl rl S c c l r r l S cl rlπππ''==''==←−−−=+=+−−−→==圆柱侧圆台侧圆锥侧5.例题讲解例1.已知11ABB A 是圆柱的轴截面(经过圆柱旋转轴的截面),15AA =,2AB =,一动点P 绕圆柱侧面一圈从1A 移动到A ,求动点P 经过的最短路程。
《高一立体几何三视图》课件
三视图在日常生活中的应用
产品描述
在购买产品时,三视图常用于展 示产品的外观和结构,帮助消费
者更好地了解产品的特点。
建筑设计
在建筑设计领域,三视图用于展 示建筑物的外观、内部布局和结构 设计,为建筑师与客户之间的沟通 提供便利。
模型制作
在制作各种模型时,如玩具、家具 或机器部件,三视图是制作精确模 型的关键工具。
建筑学
用于设计和建造建筑物,理解空间关 系和结构。
工程学
在机械、航空等领域,需要利用立体 几何知识进行设计和分析。
学习立体几何的未来发展
• 计算机图形学:在游戏开发、动画制作等领域,立体几何是构建三维场景的基础。
学习立体几何的未来发展
未来趋势
随着科技的发展,立体几何将在虚拟现实、增强现实等领域发挥更大的作用。
俯视图
从物体的上面方向观察,投影 到垂直于投影面的平面上所得 到的视图。
三视图之间的关系
相互依赖
方位关系
正视图、侧视图和俯视图之间是相互 依赖的,任何一个视图的变化都会影 响到其他两个视图。
通过三视图可以判断物体的左右、前 后、上下方位关系。
投影关系
正视图和侧视图之间、侧视图和俯视 图之间、正视图和俯视图之间都存在 投影关系,即“长对正、高平齐、宽 相等”。
《高一立体几何三视图》ppt 课件
目
CONTENCT
录
• 引言 • 三视图基础知识 • 立体几何图形的三视图 • 三视图的运用 • 练习与巩固 • 总结与展望
01
引言
课程简介
课程目标
帮助学生掌握三视图的基本概念和绘制技巧,培养 空间想象力和几何思维能力。
适用对象
高一学生,具备初步的几何知识和空间感知能力。
高一数学人教A版必修2课件:2.1.1平面 教学课件
定一个平面,设为α.
因为 l∩a = A , l∩b = B ,所以 A∈a , B∈b ,则 A∈α , B∈α. 又因为 A∈l , B∈l,所以由公理1可知l⊂α. 因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l⊂β. 因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2知:经过两条
“∈”或“∉”表示.
(3)直线和平面都是点集,它们之间的关系可看成集合与集合的关系,故用 “⊂”或“⊄”表示.
3.公理1
文字语言 如果一条直线上的________ 两点 在一个平面内,那么这条直线在 此平面内
图形语言
l⊂α 符号语言 A∈l,B∈l,且 A∈α,B∈α⇒_______
判断点在平面内 作用 判断直线在平面内 用直线检验平面
记法
用三角形、圆或其他平面图形表示平面.
2.点、线、面的位置关系的表示
A是点,l,m是直线,α,β是平面.
文字语言 A在l上 A在l外 A在α内 A在α外 符号语言 图形语言
A∈l ____________ A∉l ____________ A∈α ____________ A∉α ____________
又AC∩BD=M,∴M∈平面BC1D且M∈平面A1C.
又C1∈平面BC1D且C1∈平面A1C, ∴平面A1C∩平面BC1D=C1M,∴O∈C1M,即C1、O、M三点共线.
命题方向3 ⇨点线共面问题
求证: 如果两两平行的三条直线都与另一条直线相交, 那么这四条 直线共面. 导学号 09024243
[解析] 已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C. 求证:直线a、b、c和l共面. 证明:如图所示,因为a∥b,由公理2可知直线a与b确
1.2.3 空间几何体的直观图
变式练习: 变式练习
已知正三角形 ABC 的边长为 a,那么△ABC 的平面直观图 ( 3 2 a 8 C. 6 2 a 8 D. ) 6 2 a 16
△A′B′C′的面积为 A. 3 2 a 4 B.
解析:如图①、②所示的实际图形和直观图.
3 1 由②可知,A′B′=AB=a,O′C′= OC= a, 4 2 在图②中作 C′D′⊥A′B′于 D′,则 C′D′= 6 6 2 1 1 ∴S△A ′B′C′= A′B′· C′D′= ×a× a= a . 2 2 8 16 答案:D 2 6 O′C′= a. 2 8
注意!!! 注意!!!
由直观图还原为平面图形时,注意平行 轴的线段 轴的线段, 由直观图还原为平面图形时,注意平行y′轴的线段, 要变为2倍长度.如例 要变为 倍长度.如例2. 倍长度
反思感悟:善于总结,养成习惯 对于直观图,除了了解其画图规则外,还要了解原图形面积 S 与其直观图面积 S′之间的关系 S′= 迁移发散 3.如图,矩形 O′A′B′C′是水平放置的一个平面图形的 直观图,其中 O′A′=6 cm,O′C′=2 cm,则原图形 是 A.正方形 C.菱形 B.矩形 D.一般的平行四边形 ( ) 2 S,能进行相关问题的计算. 4
解析:将直观图还原得▱OABC,则 ∵O′D′= 2O′C′=2 2(cm), OD=2O′D′=4 2(cm), C′D′=O′C′=2(cm),∴CD=2(cm), OC= CD2+OD2= 22+(4 2)2=6(cm),
OA=O′A′=6 (cm)=OC, 故原图形为菱形. 答案:C
将直观图还原为平面图 把一个水平放置的平面图形的直观图,通过逆向思维, 把一个水平放置的平面图形的直观图,通过逆向思维,逆 用斜二测画法规则可还原为原来的图形. 用斜二测画法规则可还原为原来的图形.
高一数学讲义 第八章 空间直线与平面
高一数学讲义 第八章 空间直线与平面8.1平面及其基本性质几何里的平面与直线一样,是无限延伸的,我们不能把一个无限延伸的平面在纸上表现出来,通常用平面的一部分表示平面.例如,我们常用平行四边形表示平面(图8-1).但我们要把它想象成无限延展的.通常我们用一个希腊字母如:αβγ、、…来表示平面,也可以用表示平面的平行四边形的对角顶点的字母来表示,如平面AC .DCBAβα图81平面的基本性质公理l 如果一条直线上有两个点在同一个平面上,那么这条直线上所有的点都在这个平面上(即直线在平面上).公理2 如果两个平面存在一个公共点,那么它们所有公共点的集合是一条直线.公理3 不在同一直线上的三点确定一个平面(即经过不在同一直线上三点有且仅有一个平面). 在上述公理的基础上,可以得到以下三个推论: 推论1 一条直线和直线外一点确定一个平面.证明:如图8-2,在直线l 上任取两个点A B 、,则A B C 、、是不在同一直线上的三点,由公理3可知,经过此三点的平面有且仅有1个,设为平面α,则A B ∈、平面α,又A B 、在直线l 上,由公理1可知直线l 在平面α上.即经过直线l 和直线外一点的平面有且仅有一个.图82推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.例1.如图8-3,在正方体1111ABCD A B C D -中,点E F 、分别是棱1AA 、1CC 的中点.试画出过点1D E F 、、三点的截面.B 1C 1D 1A 1EHF GDCB A 图83解:连1D F 并延长1D F 与DC 的延长线交于点H ,联结1D E 并延长与DA 的延长线交于点G ,联结GH 与AB BC 、两条棱交于点B ,联结BE BF 、,则1BED F 就是过点1D E F 、、三点的截面.例2.如图8-4,在正方体1111ABCD A B C D -中,E F 、分别为1CC 和1AA 上的中点,画出平面1BED F 与平面ABCD 的交线.PF C E A DB A 1B 1D 1C 1图84解:在平面11AA D D 内,延长1D F ,1D F 与DA 不平行,因此1D F 与DA 必相交于一点,设为P ,则1P FD P DA ∈∈,. 又1FD ⊂平面1BED F ,AD ⊂平面ABCD 内,P ∴∈平面1BED F P ∈,平面ABCD .又B 为平面ABCD 与平面1BED F 的公共点,∴联结PB PB ,即为平面1BFD F 与平面ABCD 的交线.例3.已知E F G H 、、、分别是空间四边形ABCD (四条线段首尾相接,且联结点不在同一平面内,所组成的空间图形叫空间四边形).各边AB AD CB CD 、、、上的点,且直线EF 和HG 交于点P ,如图8-5,求证:点B D P 、、在同一条直线上.G DPF ECBA图85证明:如图直线EF 直线HG P =.P ∴∈直线EF .而EF ⊂平面ABD , P ∴∈平面ABD .同理,P ∈平面CBD ,即点P 是平面ABD 和平面CBD 的公共点.显然,点B D 、也是平面ABD 和平面CBD 的公共点,由公理2知,点B D P 、、都在平面ABD 和平面CBD 的交线上,即点B D P 、、在同一条直线上. 基础练习1.用符号语言表示下列语句(1)点A 在平面α内,但在平面β外;(2)直线a 经过平面α外一点M ;(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a . 2.已知a b c 、、空间三条直线,且a b ∥与a b 、都相交,求证直线a b c 、、在同一个平面上. 3.怎样用两根细绳检查一张桌子的四条腿的下端是否在一个平面内?4.如图8-6所示,ABC △与111A B C △不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线111AA BB CC 、、交于一点.PC 1B 1A 1C BA图865.已知ABC △在平面α外,它的三边所在的直线分别交平面α于P Q R ,,三点,证明P Q R ,,三点在同一条直线上.6.画水平放置的正五边形的直观图. 8.2空间直线与直线之间的位置关系公理4 平行于同一条直线的两条直线平行(即平行线的传递性). 例1.如图8-7所示,设E F G H ,,,分别是空间四边形ABCD 的边AB BC CD DA ,,,上的点,且AE AH CF CGAB AD CB CDλμ====,,求证:F GH EDCBA图87(1)当λμ=时,四边形EFGH 是平行四边形; (2)当λμ≠时,四边形EFGH 是梯形. 证明:联结BD , 在ABD △中,AE AHAB ADλ==,EH BD ∴,∥且EH BD λ=. 在CBD △中,CF CGCB CDμ==,FG BD ∴,∥且FG BD μ=. EH FG ∴∥,∴顶点E F G H ,,,在由EH 和FG 确定的平面内. (1)当λμ=时,EH FG =,故四边形EFGH 为平行四边形; (2)当λμ≠时,EH FG ≠,故四边形EFGH 是梯形.等角定理 如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.证明:当两组平行直线在同一平面内,即为初中几何中的等角定理. 当它们不在同一平面时,如图8-8所示.a 1O 1B 1A 1BA Oba 图88设直线a b 、相交于点O ,直线11a b 、相交于点1O ,且11a a b b ,∥∥,在直线a b 、上分别任取点A B 、(异于点O ),在直线11a b 、上分别任取点11A B 、(异于点1O ),使得11OA O A =,11OB O B =,111AOB AO B ∠∠,分别是a b 、,与11a b 、所成的角. 1111OA O A OA O A =,∥ ∴四边形11OO A A 为平行四边形. 1111OO AA OO AA ∴=,∥.同理1111OO BB OO BB =,∥.1111BB AA BB AA ∴=,∥.四边形11BB A A 为平行四边形. 11AB A B ∴=,因此111AOB AO B △△≌. 111AOB AO B ∴∠=∠.在平面中两条直线的位置关系可以根据交点个数来判断:当两条直线仅有1个交点时.它们是相交的;当没有交点时它们是平行的.但在空间中两条直线没有交点却未必是平行的,如图8-9直线a 在平面α上,直线b 与平面α交于点P ,且P 不在直线b 上,那么直线a 与直线b 即不平行也不相交.此时直线a 与直线b 不能在同一平面内,我们称直线a 、b 是异面直线.baP图89在空间任取一点Q 过Q 分别作a b 、的平行线11a b 、,我们把11a b 、所成的锐角或直角称为异面直线a b 、所成的角.当所成的角为90︒时称异面直线a b 、相互垂直.此外,我们把和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段长度,叫做两条异面直线的距离.例2.如图8-10,在正方体1111ABCD A B C D -中,判断下列直线之间的位置父系,并求出它们所成角的大小.A 2D 2B 2C 2D 1C 1B 1A 1D CBA图810(1)AC 与1BC ;(2)1B D 与1BC . 解:(1)AC 与1BC 是异面直线. 11AA CC ∥且11AA CC =,∴四边形11AA C C 为平行四边形,即11AC AC ∥.11AC B ∴∠为所求AC 与1BC 所成的角.易知11A C B △为等边三角形,即11π3AC B ∠=(2)1B C 与1BC 是异面直线如图8-10:在原正方体下方补一个相同大小的正方体11112222A B C D A B C D -中121B C BC ∥,12DB C ∴∠为所求1B D 与1BC 所成的角.设正方体的棱长为a ,在12DB C △中,112212π2DB B C DC DB C ==∴∠=,,,. 例3.空间四边形ABCD中,2AB BD AD BC CD =====,32AC =,延长BC 到E ,使BC CE =,取BD 中点F ,求异面直线AF 与DE 的距离和他们所成的角.F ED BA图811解:(1)2AB AD BD === ∴三角形ABD 为等边三角形 F 为BD 中点,AF BD ∴⊥,即AF FD ⊥90BC CD CE BDE DF DE ===∴∠=︒∴⊥, DF 长即为异面直线AF DE ,的距离,又112DF BD ==,AF ∴与DE 的距离为1.(2)联结CF F C ,,分别是BD ,BF 的中点, FC ∴平行且等于12DE ,AFC ∴∠即为异面直线AF 与DE 所成的角. 在等边三角形ABD中,AF == 在直角三角形BDE中,12CF DE ==. 三角形AFC 中,由余弦定理得2221cos 22AF FC AC AFC AF FC +-∠==⨯⨯.60AFC ∴∠=︒,即异面直线AF 与DF 成60︒角. 基础练习 1.从止方体的12条棱和12条面对角线中选出n 条,使得其中任意两条线段所在的直线都是异面直线,则n 的最大值为__________.2.如图8-12,已知三棱锥S ABC -中,90ABC ∠=︒,侧棱SA ⊥底面ABC ,点A 在棱SB 和SC 上的射影分别是点E F 、,求证:EF SC ⊥.SGF E CBA 图8123.已知a b 、是两条异面直线,直线a 上的两点A B 、的距离为6.直线b 上的两点C D 、的距离为8,AC BD 、的中点分别为M N 、且5MN =,见图8-13.求异面直线a b 、所成的角.图813bMNO aDCBA4.已知四面体S ABC -的所有棱长均为a .求: (1)异面直线SC 、AB 的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.5.如图8-14,等腰直角三角形ABC中,90A BC DA AC DA AB ∠=︒=⊥⊥,,,若1DA =,且E 为DA 的中点.求异面直线BE 与CD 所成角的余弦值.图814FE D CBA6.如图8-15,在正三角形ABC 中,D E F ,,分别为各边的中点,G H I J ,,,分别为AF AD BE DE ,,,的中点.将ABC △沿DE EF DF ,,折成三棱锥以后,求GH 与IJ 所成角的度数.I JH GFEDCB A 图8157.长方体1111ABCD A B C D -中,143AB AA AD ===,,则异面直线1A D 与11B D 间的距离为__________.8.空间两条异面直线a b 、所成角α,过空间一定点O 与a b ,所成角都是θ的直线l 有多少条? 8.3空间直线与平面空间中直线l 与平面α的位置关系,按照它们交点的个数分成以下三种情况:若直线l 与平面α没有公共点,那么称直线l 与平面α平行,记作l α∥;若直线l 与平面α仅有一个公共点,那么直线l 与平面α是相交的;若直线l 与平面α有1个以上的公共点,由公理1可知直线l 在平面α上.我们将直线与平面平行和相交统称为直线在平面外.直线和平面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 例1.已知:ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上任取一点G ,过G 和AP 作平面交平面BDM 于GH .求征:AP GH ∥. 证明:如图8-16.联结AC 交BD 于O ,联结MO ,G HPOMD CBA图816ABCD 是平行四边形O ∴是AC 中点,又M 是PC 中点, AP OM ∴∥,又OM ⊂面BM DPA ∴∥平面BM D (线面平行判定定理)又PA ⊂平面PAHG ,且面PAHG 平面BMD GH =, PA GH ∴∥(线面平行的性质定理)例2.正方体1111ABCD A B C D -中,E G 、分别是BC 、11C D 的中点如图8-17.求证:EG ∥平面11BB D D .D C 1A 1C图817证明:取BD 的中点F ,联结FF 、1D F .E 为BC 的中点,EF ∴为BCD △的中位线,则EF DC ∥,且12EF CD =.G 为11C D 的中点,1D G CD ∴∥且112D G CD =,1EF D G ∴∥且1EF D G =, ∴四边形1EFD G 为平行四边形,∴1D F EG ∥,而1D F ⊂平面11BDD B ,EG ⊄平面11BDD B , ∴EG ∥平面11BDD B .直线l 与平面α相交,且与平面内所有直线都垂直,称直线l 垂直于平面α,记作l α⊥.直线l 称为平面α的垂线,l 与平向α的交点称为垂足.直线和平面垂直判定定理 如果直线l 与平面α内两条相交直线a b 、都垂直,那么直线与平面垂直. 证明:设直线a b O =,直线c 为平面α上任意一条直线 (1)当直线l 与直线c 都经过点O 时在直线l 上点O 的两侧分别取点P Q 、使得OP OQ =,在平面α上作一条直线,使它与a b c 、、分别交于点A B C 、、联结PA PB PC QA QB QC 、、、、、(见图8-18). acb αO QB A P图818OA 垂直平分PQ ,PQ QA ∴=. 同理PB QB =. PA QA PB QB AB AB ===,,, PAB QAB PC QC ∴∴=,△△≌.PQ c ∴⊥,即l c ⊥.(2)若直线l 与直线c 不都经过点O ,则过O 引l 与直线c 的平行线1l 与直线1c ,由(1)可知11l c ⊥.由等角定理可知l c ⊥.综上所述,l α⊥.直线和平面垂直性质定理 如果两条直线同垂直于一个平面,那么这两条直线平行.过空间一点P 有且仅有一条直线l 和一个平面α垂直,反之过一点P 有且仅有一个平面α与直线l 垂直,垂足Q 称为点P 在平面α上的射影,线段PQ 的大小称为点P 到平面α的距离.若一条直线与一个平面平行,则这条直线上任意一点到平面的距离,叫做这条直线到平面的距离. 若一条直线与一个平面α相交且不垂直,称直线l 与平面α斜交,直线l 为平面α的斜线,交点称为斜足.平面的斜线与其在平面上的射影所成的角称为直线与平面所成的角.最小角定理 斜线和平面所成的角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角. 例3.已知:一条直线l 和一个平面α平行.求证:直线l 上各点到平面α的距离相等. 证明:过直线l 上任意两点A B ,分别引平面α的垂线AA ,′BB ′,垂足分别为A B ,′′(见图8-19).βαB'A'B A图819AA BB αα⊥⊥,′′ AA BB ∴∥′′设经过直线AA ′和BB ′的平面为A B ββα=,′′l l A B α∴∴,∥∥′′AA BB ∴′′是平行四边形 AA BB ∴=′′即直线l 上各点到平面的距离相等例4.如图8-20,已知正方形ABCD 的边长为4,E F ,分别是边AB AD ,的中点,GC 垂直于ABCD 所在的平面,且2GC =,求点B 到平面EFG 的距离.OSGH F E DCBA图820证明:联结DB AC ,,设DB AC O = E F ,分别为AB AD ,中点DB EF ∴∥;又DB ⊄平面EFG , BD ∴∥平面EFG .∴点B 到平面EFG 的距离就是DB 到平面EFG 的距离. ∴即点O 到平面X O 的距离.设EF AC H =,在平面CHG 中,作OS GH ⊥ DB AC ⊥,又EF BD ∥ EF AC ∴⊥又GC ⊥面ABCD ,GC EF ∴⊥ EF ∴⊥面CHG EF OS ∴⊥,又OS GH ⊥ OS ∴⊥面EFG ∴OS 即为O 点到平面EFG 的距离,即为所求 直角三角形HSO 与直角三角形HGC 相似 SO HOGC GH∴=,又124GC HO AC GH =====,2SO ∴= ∴B 到平面EFG的距离为11. 例5.相交成60︒的两条直线AB AC ,和平面α所成的角分别为30︒和45︒,求这两条斜线在平面α内的射影所成的角.解:如图8-21,作平面AO ⊥平面A ,垂足为O ,O CBA图821则30ABO ∠=︒,45ACO ∠=︒,设AO h =,则2AB h =,AC =,BO =,CO h =, 在三角形ABC 中,根据余弦定理有22222(2))cos606BC h h h =+-⨯⨯︒=-.同理,在三角形BOC 中,令BOC θ∠=,则有22222)cos 4cos BC h h h θθ=+-⨯⨯=-.222264cos h h θ∴-=-.cos θ∴=,θ∴=. 三垂线定理 在平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图8-22,直线PM 为平面α的斜线,M 为斜足,Q 为P 在平面α内的射影,a 为平面α内一条直线,且a MQ ⊥.求证:a PM ⊥.图822ab a PQM证明:过点M 作的a 平行线b ,则b MQ b PQ ⊥⊥, 即b ⊥平面PMQ ,MQ ⊆平面PMQ 所以b PM a b ⊥,∥,即a PM ⊥.类似地,我们也可以证明:三垂线的逆定理 在平面内的一条直线,如果和平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 基础练习1.如果三个平面αβγ、、两两相交于三条交线a b c 、、,讨论三条交线的位置关系,并证明你的结论. 2.在正方体1111ABCD A B C D -中,P 为棱AB 上一点,过点P 在空间作直线l ,使l 与平面ABCD 和平面11ABC D 均成30︒角,求这样的直线条数3.已知空间四边形ABCD P Q ,、分别是ABC △和BCD △的重心,求证:PQ ∥平面ACD .4.在棱长为a 正方体1111ABCD A B C D -中, (1)求证:11B D CD ⊥; (2)求证:1B D ⊥平面1ACD ; (3)求点D 到平面1ACD 的距离.5.正方体1111ABCD A B C D -中,求1B D 与平面11ABC D 所成角的大小.6.正方体ABCD A B C D -′′′′的棱长为a ,则异面直线CD ′与BD 间的距离等于__________. 7.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE BD 、上各取一点P Q 、.且AP DQ =.求证:PQ ∥面BCE .8.如图8-23,已知AOB ∠在平面M 上,P 为平面外一点,满足POA ∠POB =∠θ=(θ为锐角),点P 在平面上的射影为Q .P OQFE AM 图823(1)求证点Q 在AOB ∠的平分线OT 上;(2)讨论POA ∠、POQ ∠、QOA ∠之间的关系.9.若直线l 与平面α成角π3,直线a 在平面α内,且和直线l 异面,则l 与a 所成角的取值范围是多少? 10.如图8-24,AB 为平面α的斜线,B 为斜足,AH 垂直平面α于H 点,BC 为平面α内的直线,,,ABH HBC ABC θαβ∠=∠=∠=,求证:cos cos cos βαθ=⋅. αθβH D CB Aα图82411.如图8-25,平面α内有一半圆,直径AB ,过A 作SA ⊥平面α,在半圆上任取一点M .连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影.N MBA HSα图825(1)求证:NH SB ⊥;(2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线?12.如图8-26,在正方体1111ABCD A B C D -中,EF 为异面直线1A D 与AC 的公垂线,求证:1EF BD ∥.FE D CBAD 1C 1B 1A 1图82613.如图8-27所示,90BAC ∠=︒.在平面α内,PA 是α的斜线,60PAB PAC ∠=∠=︒.求PA 与平面α所成的角.B αA CMO NP图8278.4空间平面与平面的位置关系空间两个平面根据交点的个数可以分为:若两个平面没有交点则称两个平面互相平行;若两个平面有交点则称两个平面是相交的.平行于同一平面的两个平面互相平行,分别在两个平行平面上的直线是异面或平行的.两个平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.推论 如果一个平面内的两条相交直线,分别平行于另一个平面内的两条相交直线,那么这两个平面平行.两个平面平行的性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 例1.平行四边形ABCD 和平行四边形ABEF 不在同一平面内,M ,N 分别为对角线AC ,BF 上的点,且AM ACFN FB=.求证:MN ∥平面BEC .证明:如图8-28,在平行四边形ABCD 中,过M 作MP BC ∥交BC 于P ,联结PN .FP MNEDCBA图828AM AP AC AB =,又AM AC FN BF =,即AM FNAC BF=. ,AP FN PN AF BE AB BF∴=∴∥∥. 又MP BC ∥,∴平面MPN ∥平面CBE . 又MN ⊂平面MPN , MN ∴∥平面BEC .例2.如图8-29所示,平面α平面β,点A C α∈、,点B D β∈、,AB a =是α、β的公垂线,CD 是斜线.若AC BD b ==,CD c =,M 、N 分别是AB 和CD 的中点.图829(1)求证:MN β∥;(2)求MN 的长. 证明:(1)联结AD ,设P 是AD的中点,分别联结PM 、PN . M 是AB 的中点,PM BD ∴∥.又,PM ββ⊂∴∥. 同理N 是CD 的中点,PN AC ∴∥. AC α⊂,PN α∴∥.,,PN PM P αβ=∥PMN β∴∥. MN ⊂平面PMN ,MN β∴∥. (2)分别联结MC MD 、.1,,2AC BD b AM BM a ====又AB 是αβ、的公垂线,90CAM DBM ∴∠=∠=︒,Rt Rt ACM BDM ∴≌△△,CM DM ∴=,DMC ∴△是等腰三角形. 又N 是CD 的中点,MN CD ∴⊥.在Rt CMN △中,MN =一般地,当两个平面相交时,它们的交线l 将各平面分割为两个半平面,由两个半平面αβ、及其交线l 组成的空间图形叫做二面角(dihedral angle ),记作l αβ--.交线l 称之为二面角的棱,两个半平面αβ、叫做二面角的面.如果αβ、上分别有点P Q 、,那么二面角l αβ--也可以记作P l Q --.为了刻画二面角的大小,我们在棱l 上任取一点O ,在面αβ、上分别作棱l 的垂线OM 、ON ,则[](0,π)MON θ∠=∈称为二面角l αβ--的平面角.若π2α=,则称平面αβ⊥. 两个平面垂直的判定定理 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 两个平面垂直的性质定理 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.例3.如图8-30,在空间四边形SABC 中,SA ⊥平面ABC ,AB BC ⊥,DE 在平面SAC 内,DE 垂直平分SC ,且分别交AC ,SC 于D ,E ,又SA AB =,SB BC =,求以BD 为棱,以BDE 和BDC 为面的二面角的大小.E DCBAS图830解:SB SC =,且E 为SC 的中点,BE SC ∴⊥. 又DE 垂直平分SC ,SC ∴⊥面,BDE SC BD ∴⊥. 又BD ⊥平面SAC ,,,BD DE BD DC ∴⊥⊥EDC ∴∠即为E BD C --的平面角.设SA a =,则,,AB a SB ==SA ⊥面ABC ,BC AB ⊥.,SB BC SC ∴⊥∴为等腰直角三角形SBC的斜边,又BC =,2,,cos ,30SC a AC SCA SCA ∴==∠=∴∠=︒. DE SC ⊥,∴在直角三角形EDC 中,60EDC ∠=︒,即为所求.例4.已知:如图8-31所示,平行四边形ABCD中,AB =AD BD ==,沿BD 将其折成一个二面角A BD C --,若折后AB CD ⊥.63223DCBA图831(1)求二面角A BD C --的大小;(2)求折后点C C 到平面ABD 的距离.解:(1)在平行四边形ABCD中AB =AD BD ==.222AB AD BD ∴=+ ,AD BD BC BD ∴⊥⊥. 作AH ⊥平面BDC ,联结DH (见图8-32).HEDCB A图832AD BD ⊥,由三垂线定理逆定理得DH BD ⊥, ∴ADH ∠是二面角A BD C --的平面角.联结BH,AB DC ⊥,由三垂线定理逆定理, 得BH DC ⊥,设垂足为E ,在直角三角形ABC中,2BD BC BE DC ⋅===,DE ∴ 三角形DHB 与三角形DBE 相似,DH DEDB BE∴=,即DE BD DH BE ⋅=在直角三角形ADH中,1cos 2DH ADH AD ∠===,π3ADH ∴∠=. 即二面角--A BD C 的大小为π3. (2)由对称性,C 到平面ABD 的距离等于A 到平面ABD 的距离. AH ⊥平面BCD ,∴点A 到平面BCD 的距离即是线段AH 的长, 直角三角形ADH中,sin 3AH AD ADH =⋅∠==, ∴点C 到平面ABD 的距离为3. 例5.如图8-33,已知A B 、在平面α上,点C 是平面外一点,且在平面α上的射影为D ,且A B D、、三点不共线,二面角C AB D --的大小为θ,求证:cos DABCABS S θ=.αM DCBA图833证明:过点D 作DM 垂直AB ,垂足为M ,联结CM . 因为,CD AB αα⊥⊆,所以CD AB ⊥,又AB DM ⊥,因此AB ⊥平面CDM ,即AB CM ⊥. 所以CMD ∠为二面角--C AB D 的平面角. 在直角三角形CDM △中有cos cos ABDCBDS DM CMD CM S θ=∠==. 例6.如图8-34,已知两异面直线,a b 所成的角为θ,它们的公垂线段AA ′的长度为d .在直线,a b 上分别取点,E F ,设,A E m AF n ==′,求EF .A'βnb a m F G A图834解:设经过b 且与AA ′垂直的平面为α,经过a 和AA ′的平面为β,c αβ=;则c a ∥,因而b ,c 所成角为θ,且AA c ⊥′;又,AA b AA a ⊥∴⊥′′, 根据两个平面垂直的判定定理,βα⊥. 在平面β内作EG c ⊥,则EG AA =′. 并且根据两个平面垂直的性质定理,EG α⊥ 联结FG ,则EG FG ⊥.在直角三角形EFG 中,222EF EG FG =+AG m =,三角形AFG 中,2222cos FG m n mn θ=+-;又22ED d =,22222cos EF d m n mn θ∴=++-,因此EF =1.已知平面αβ∥,AB ,CD 为夹在,αβ间的异面线段,E 、F 分别为AB CD 、的中点. 求证:,EF EF αβ∥∥.2.如果αβ∥,AB 和AC 是夹在平面α与β之间的两条线段,AB AC ⊥,且2AB =,直线AB 与平面α所成的角为30︒,求线段AC 长的取值范围.3.如图8-35,已知正方体1111ABCD A B C D -中,E F 、分别为1AB AA 、的中点.求平面1CEB 与平面11D FB 所成二面角的平面角的正弦值.CB E AF D 1C 1B 1A 1图8354.如图8-36,点A 在锐二面角MN αβ--的棱MN 上,在面α内引射线AP ,使AP 与MN 所成的角PAM ∠为45︒,与面β所成的角大小为30︒,求二面角MN αβ--的大小.NM APβα图8365.正方形ABCD 边长为4,点E 是边CD 上的一点,将AED △沿AE 折起到1AED 的位置时,有平面1ACD ⊥平面ABCE ,并且11BD CD ⊥.(1)判断并证明E 点的具体位置; (2)求点D ′到平面ABCE 的距离.6.在正三角形ABC 中,E F P 、、分别是AB AC BC 、、边上的点,满足12AE EB CF FA CP PB ===∶∶∶∶,如图8-37.将AEF △沿EF 折起到1A EF △的位置,使二面角1A EF B --成直二面角,联结1A B 、1A P ,如图8-38.A BP FEC图837CEF P BA 图838(1)求证:1A E ⊥平面BEP ;(2)求直线1A E 与平面1A BP 所成角的大小;(3)求二面角1B A P F --的大小(用反三角函数表示).7.如图8-39,将边长为a 的正三角形ABC 以它的高AD 为折痕折成一个二面角C AD C --′.C'DCB A图839(1)指出这个二面角的面、棱、平面角; (2)若二面角C AD C --′是直二面角,求C C ′的长; (3)求AC ′与平面C CD ′所成的角; (4)若二面角C AD C --′的平面角为120︒,求二面角A C C D --′的平面角的正切值. 8.在棱长为a 的正方体中.求异面直线BD 和1B C 之间的距离.9.设由一点S 发出三条射线,,,,SA SB SC ASB BSC ASC αβθαβθ∠=∠=∠=、、、、均为锐角,且cos cos cos θβθ⋅=.求证:平面ASB ⊥平面BSC .10.如图8-40,矩形ABCD ,PD ⊥平面ABCD ,若2PB =,PB 与平面PCD 所成的角为45︒,PB 与平面ABD 成30︒角,求:PF EDCBA图840(1)CD 的长;(2)求PB 与CD 所在的角;(3)求二面角C PB D --的余弦值. 11.如图8-41,线段PQ 分别交两个平行平面αβ、于A B 、两点,线段PD 分别交αβ、于C D 、两点,线段QF 分别交αβ、于F E 、两点,若9PA =,12AB =,12BQ =,ACF △的面积为72.求BDE △的面积.βαAB Q ED CPF图84112.如图8-42,已知正方形ABCD .E F 、分别是AB CD 、的中点.将ADE △沿DE 折起,如图8-43所示,记二面角A DE C --的大小为θ(0πθ<<).FEDCBA图842F EDCBA 图843(1)证明BF ∥平面ADE ;(2)若ACD △为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.13.在矩形ABCD 中,已知1,AB BC a ==,PA ⊥平面ABCD ,且1PA =. (1)在BC 边上是否存在点Q ,使得PQ QD ⊥,说明理由;(2)若BC 边上有且仅有一个点Q ,使PQ QD ⊥,求AD 与平面PDQ 所成角的弦值; (3)在(2)的条件下,求出平面PQD 与平面PAB 所成角的大小.14.两个平行平面α和β将四面体ABCD 截成三部分.已知中间一部分的体积小于两端中任一部分的体积,点A 和B 到平面α的距离分别为30和20.而点A 和C 到平面β的距离分别为20和16,两个截面中有一个是梯形,点D 到平面α的距离小于24.求平面α和β截四面体所得的截面面积之比. 8.5空间向量及其坐标表示我们把具有大小和方向的量叫做向量.同向且大小相等的两个向量是同一个向量或相等的向量,大小相等方向相反的两个向量是互为负向量,大小为0的向量称为零向量.对空间任意两个向量a b 、.作OA a OC AB b ===,,则O A B 、、三点共面,见图8-44.因此,空间任意两个向量都可以用在同一平面内的两条有向线段表示.与平面向量运算一样,我们可以定义空间向量的加法、减法与数乘运算如下:a图844OB OA AB a b =+=+; CA OA OC a b =-=-;0000a a a λλλλλλ⎧>⎪⎪>⎨⎪<⎪⎩方向相同,大小,,方向相同,大小,为为- 与平面向量类似,在空间两个向量的方向相同或相反,则称他们为共线向量或平行向量,共线向量所在直线平行或重合.类似我们可以验证空间向量的加法与数乘运算满足如下规律: (1)加法交换律:a b b a +=+(2)加法结合律:()()a b c a b c ++=++ (3)数乘分配律:()a b a b λλλ+=+类似地,可以定义两个向量的夹角和向量的数量积:cos a b a b θ⋅=,其中θ为两个向量的夹角,[]0πa b θ∈,,、表示向量a b 、的大小 当π2θ=时称两个向量垂直记作a b ⊥. 与平向向量类似有下列性质成立: (1)0a b a b ⊥⇔⋅=. (2)2a a a =⋅. (3)()()ab a b λλ⋅=⋅.(4)a b b a ⋅=⋅. (5)()()()a b c a b a c ⋅+=⋅+⋅.例1.A B C D 、、、为空间不共面的四点,以A B C D 、、、四点为顶点的线段围成一个空间四面体,若AC BD BC BD ==,,求证AB CD ⊥.图845DBA解:BC AC AB BD AD AB =-=-,, BC BD =, 22BC BD ∴=.2()()BC BC BC AC AB AC AB =⋅=-⋅- 222AC AC AB AB =-⋅+.同理2222BD AD AD AB AB AD AC =-⋅+=,, AD AB AC AB ∴⋅=⋅即()AD AC AB -⋅=0.即CD AB ⋅=0,AB CD ∴⊥.通常我们将可以平移到同一个平面的向量,叫做共面向量.对空间任意两个向量,它们总是共面的,但空间任意三个向量就不一定是共面向量.如上例中a b c 、、中任意两个共面,但a b c 、、却不共面.下面讨论三个向量共面的条件.已知a b 、为不共线的向量,而a b c 、、三个向量共面,则表示可以将它们平移到同一个平面上.由平面向量唯一分解定理.存在实数()λμ,满足c a b λμ=+.反之,若存在实数对()λμ,满足c a b λμ=+,对空间任意一点O 作111OA a OB b OA a A B b λμ====,,,,则1111OB OA A B a b c λμ=+=+=即c 可以平移到O A B 、、三点所在平面上,因此a b c 、、共面.由此可得a b c 、、共面的充要条件是:存在实数对()λμ,满足c a b λμ=+.例2.求证:任意三点不共线的四点A B C D 、、、共面的充要条件是:对空间任意点O 有:OD xOA yOB zOC =++(其中1x y z ++=).证明:A B C D 、、、共面的充要条件是存在实数对()λμ,满足AD AB AC λμ=+(见图8-46).图846()()OD OA AD OB OA OC OA μμ∴-==-+-, (1)OD OA OB OC λμλμ∴=--++.令1x λμ=--,y z λμ==,,则OD xOA yOB zOC =++(其中1x y z ++=).定理 如果三个向量a b c 、、不共面,那么对于空间任意向量P ,存在唯一的实数对()x y z ,,满足:P xa yb zc =++证明:如图8-47,过空间任意点O 作OA a OB b OC c OP P ====,,,, 图847P过点P 作1PP OC ,∥交平面OAB 于点1P ;则11P OP OP PP ==+. 11PP OC PP zc z ∴=∈R ,,∥. 在平面AOB 中存在z ,y ∈R ,满足1OP xOA yOB =+, 因此有11P OP OP PP xOA yOB zOC ==+=++. 若存在111()()x y z x y z ≠,,,,也满足:111P x a y b z c =++, 则有111P xa yb zc x a y b z c =++=++. 111()()x y z x y z ≠,,,,,不妨设1x x ≠,1111y y z za b c x x x x --∴=+--.a b c ∴、、共面,矛盾.由此定理可知,如果三个向量a b c 、、,那么所有空间向量均可以由a b c 、、唯一表示,此时我们称(a b c 、、)为空间向量的一个基底,a b c 、、都叫做基本向量.如果空间的一个基底的三个基向量互相垂直,且大小为1,则称这个基底为单位正交基底,常用(i j k 、、)表示.在空间选定一点O 和一个单位正交基底(i j k 、、),以O 点为坐标原点,分别以i j k 、、的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系O xyz -,那么对于任意向量P ,存在唯一的实数对(x y z ,,)满足:P OP xi y j zk ==++,简记为()P x y z =,,,此时称点P 的坐标为()x y z ,,,见图8-48.图848若111()OA a x y z ==,,,222()OB b x y z ==,,,则 121212()a b x x y y z z +=+++,,,121212()BA OA OB a b x x y y z z =-=-=---,,,111()a x y z λλλλ=,,.例3.在直三棱柱111A B C ABC -中,π2BAC ∠=,11AB AC AA ===.已知G 与E 分别为11A B 和1CC 的中点,D 与F 分别为线段AC 和AB 上的动点(不包括端点).若GD EF ⊥,求线段DF 的长度的取值范围解:建立直角坐标系,以A 为坐标原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,则112211(00)(01)0101(00)(01)22F t t E G D t t ⎛⎫⎛⎫<<<< ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,.所以12111122EF t GD t ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭,,,,,.因为GD EF ⊥,所以1221t t +=,由此推出2102t <<.又12(0)DF t t =-,,,21DF t =1DF <.例4.已知四边形ABCD 和ABEF 是两个正方形,它们所在的平面互相垂直,M AC ∈,N BF ∈,且AM FN =,见图8-49.求证:不论M 在AC 上何处,直线MN 不可能同时垂直AC 和BF .MNFEDCBA图849证明:设BA a BE b BC c BN t BF ====⋅,,,, 则()(1)()BN t a b AM t c a =⋅+=--, 于是()(1)()(1)MN BN BM t a b t c a a tb t c ⎡⎤⎡⎤=-=+---+=--⎣⎦⎣⎦, 假设MN 同时垂直AC 和BF ,则00.MN AC MN BF ⎧⋅=⎪⎨⋅=⎪⎩,由题设,知00a b b c ⋅=⋅=,, 由2(1)()(1)MN AC tb t c c a t c ⎡⎤⋅=--⋅-=-⋅⎣⎦,得10t -=即1t =.由2(1)()0MN BF tb t c a b t b ⎡⎤⋅=--⋅+=⋅=⎣⎦得0t =,矛盾!所以,MN 不可能同时垂直AC 和BF .基础练习1.如图8-50,OA a OB b OC c ===,,,M N P 、、分别为AB 、BC 、CA 的中点,试用a b c 、、表示下列向量:OM MN AN ,,.图8502.已知空间三点(202)A -,,,(212)B -,,,(303)C -,,.设a AB b AC ==,,是否存在实数k ,使向量ka b +与2ka b -互相垂直,若存在,求k 的值;若不存在,说明理由.。
高一数学三视图
三视图的对应规律
主视图和俯视图
----长对正 主视图和左视图 ----高对齐 俯视图和左视图
----宽相等
俯视图在主视图的下方、左视图在主视图的右方。
例1. 如图所示的长方体的长、宽、高分别为5cm、 4cm、3cm,画出这个长方体的三视图。
4cm
5cm
3cm
讨论:①这个长方体的三视图分别是什么形状的?
②正视图、侧视图和俯视图的长方形的长宽高分 别为多少厘米? ③正视图和侧视图中有没有相同的线段?正 视图和俯视图呢?侧视图和俯视图呢?
正 俯 3cm 长 对 正 俯 侧 宽 4cm 相 等
5cm
正侧高平齐
4cm
3cm
正视图
侧视图
5cm
5cmቤተ መጻሕፍቲ ባይዱ
4cm 俯视图
3cm
例2、画几何体的三视图
练习1、画下例几何体的三视图
三视图
横看成岭侧成峰,远近高低各不同。 不识庐山真面目,只缘身在此山中。 ——苏轼
三视图
视图:是指将物体按正投影向投影面 投射所得到的图形。 下列为两个几何体的正投影:
左视图
正视图 和 俯视图
用三种视图刻画空间物体的结构
主视图(正视图):光线自物体的 前面向后投射所得的投影
三视图
俯视图:自上向下
; / 深圳除甲醛 深圳甲醛检测
主视图
左视图
俯视图
练习:给出物体的三视图,作出该物体的实物形状图
主视图
左视图
俯视图
就脸皮厚壹些,自己来讨弟妹の这盏茶来喝。”婉然晓得这是福晋在为她打圆场,她感谢地望咯排字琦壹眼,然后赶快从红莲手中の茶盘上端起咯另壹盏茶,恭恭敬敬地递咯上去: “请四嫂喝茶。”“多谢弟妹咯。”壹边说着,排字琦壹边轻轻地抿咯壹口茶,就将茶盏放回咯茶盘,然后赶快又细心地将王爷手中の茶盏也接咯过来,壹并放回茶盘。敬过茶之后, 意味着最艰难、最紧张、最尴尬の时刻已经过去,壹屋子所有の人都大大地松咯壹口气,排字琦作为女主人,当仁不让地担当起缓和紧张气氛,调节众人情绪の重要角色。于是刚刚 将茶盏放回去,她马上主动而又不露痕迹地拉上咯婉然の胳膊,真心实意地说道:“小弟妹,喝咯这改口茶,咱们可就是壹家人咯,壹家人不能说两家话,所以呢,你以后千万不要 跟四嫂客气,有啥啊事情需要四嫂帮忙の,就算不跟你家爷说,也得跟四嫂说,听见没有?”“听见咯,多谢四嫂。”“这就对咯,以后要是跟四嫂见外、生分,四嫂可是不答应。 来来,大家赶快就座吧,两位爷也真是,壹聊起来就那么长时间,把我们这些姐妹们都晾在壹边,这肚子可是咕咕叫呢。”在排字琦这壹番活跃气氛话语の调节下,众人也渐渐地放 松下紧绷の神经,面含笑容地壹边相互谦让壹边赶快落咯座。婉然自从进咯霞光苑,壹双眼睛就不停地在找水清。可是除咯福晋,另外两位女眷她都不认识。按理说,水清可是第壹 侧福晋,没有不坐陪の道理啊!在等两位爷入席の漫长时间里,她更是心急如焚,好不容易可以不用单独请求就能看到凝儿,多么难得の机会啊!可是怎么就是见不到凝儿呢?难道 凝儿不晓得今天の拜访吗?这么大の事情她怎么可能不晓得。难道是凝儿还在怨恨自己?假设还在怨恨自己の话,她为啥啊会送来那么贵重の贺礼?可是假设凝儿原谅咯自己,她为 啥啊没有来这里呢,她难道再也不想见到姐姐咯吗?永远都不会原谅姐姐吗?凝儿,你告诉姐姐,这是为啥啊,好吗?直到二十三小格壹行离开王府,婉然都没有见到水清,她是那 么の心不甘情不愿,她想看到凝儿,亲耳听到凝儿对她说:姐姐,凝儿原谅你,凝儿不恨你。排字琦当然晓得婉然频频望向她の充满咯探寻の目光意味着啥啊,那副欲言又止、楚楚 可怜の样子,看着着实令人心酸。可是当着那么多の人,她能说啥啊呢?天仙妹妹の腿跪伤咯,况且前天又挨咯爷の训斥,她倒是想来呢,可是身子没有养好也来不咯!第壹卷 第 439章 专宠婉然带着无尽の遗憾,随自家爷和福晋回到咯二十三贝子府。壹进府门,穆哲立即开口说道:“爷,今天晚上,您是回书院?”其实穆哲这番话是说给婉然听の。自从二 十三小格与婉然成亲以来,壹连七天,他都是歇在婉然の院子里,这可是自穆哲嫁入二十三府以来,从来都没有遇见过の情况!二十三小格是啥啊人?他既不会哄诸人,也不会费心 费力地去讨好诸人,因此也就更不会专宠壹各诸人,诸人对于他而言,只是可有可无の壹件衣裳而已。而且他不止壹次地对穆哲说过,婉然可是壹各他最需要の诸人,办好咯差事, 少不咯她这各嫡福晋の好处。当初二十三小格让她托媒人上年府提亲の时候,可是红口白牙地承诺咯她:“你乖乖地把爷の事情办漂亮咯,有你の好处。”可是,这就是她得到の好 处?壹连七天都专宠这各婉然?还是说爷只是图新鲜,头几天热乎气儿过去咯,就完咯?刚刚从王府回来,估计二十三小格对婉然也没啥啊好心情,因此穆哲打算趁热打铁,直接问 向咯自家爷,希望尽早改变婉然壹人专宠の局面。谁想到二十三小格直接就给她来咯壹各下不来台:“爷为啥啊要回书院?”“不去书院?那您要去哪里?”“当然是去婉然那 里。”“啊?爷,您怎么还?这都第八天咯,您怎么„„”“爷要去哪里,需要福晋の准许?”“不是,不是,爷,您就是给妾身十各胆子,妾身也不敢。可是,您怎么能对婉然这 么好?”“爷对谁好也要福晋准许?”“爷!您当初让妾身去提亲の时候,可是许诺过妾身の啊!”“爷当然记得。”“难道,这就是爷の许诺?对婉然妹妹の专宠?”“妇道人 家!”不仅是穆哲,就是婉然,晚上见到二十三小格进咯她の院子,简直就是惊愕不已!他这是要做啥啊?假意让她独得专宠,然后在二十三贝子府里四面树敌?因为她晓得,不管 是她对二十三小格,还是二十三小格对她,都没有真情真意。她呢,只是二十三小格与年二公子之间の壹块跳板,而二十三小格呢,则是为咯得到年家の势力和打击他の四哥,她只 是还有那么壹点儿剩余价值可供二十三小格利用而已。可就是这么壹各利用の关系,居然令他夜夜留宿她の院子,婉然实在是想不明白二十三小格这葫芦里卖の是啥啊药。“给爷请 安。”“起来吧。”今天晚膳前敬茶の那壹幕,仍然深深地印在二十三小格の脑海,他不但没有生气、愤怒,相反,心中却是兴灾乐祸,欣喜异常。原本他就没有喜欢过婉然,他娶 她不过是为咯拉拢年二和报复四哥,这两各原因,连他自己也搞不清楚,哪壹各占の份量更重。既然不是心中所爱,又乐见四哥几乎要被活活气死,二十三小格の心中真是痛快淋 漓!可是,这只是片刻の欢愉,转瞬即逝,因为他壹直没有见到水清。这种场合,小四嫂怎么没有出席呢?是因为生病咯吗?还是又被四哥处罚咯?第壹卷 第440章 陌生丹桂飘香 の八月空余花香满地,遍插茱萸の九月寄尽乡思离愁,转
最新-2021学年高一数学必修二课件:第二章 点、直线、平面之间的位置关系 第1课时 平面 精品
线;(3)两条相交直线.
议一议:一个平面将空间分成几部分?两个平面呢?三个平面
呢?(指定小组回答,其他组补充)
【解析】空间被一个平面分成 2 个部分.
当两个平面相交时,可以将空间分成 4 个部分;当两个平面不相
交时,可以将空间分成 3 个部分.
(1)直线在平面内的概念
如果直线 l 上的所有点都在平面α内,那么就说直线 l 在平面α
内或者说平面α经过直线 l.
(2)文字语言与数学符号的对应关系
文字语言表示
数学符号表示
文字语言表示 数学符号表示
点 A 在直线
A∈l
点 A 在直线 l 外
A∉l
l上
点 A 在平面
A∈α
点 A 在平面α外
A∉α
α内
本章教学的重点主要有:平面的基本性质,空间直线与平面平行、
垂直的判定和性质定理,平面与平面平行、垂直的判定和性质定理.
在教学时应注意以下问题:
(1)点、线、面的位置关系是立体几何初步中的重点内容,教学中
应以长方体模型中的点、线、面之间的关系为载体,使学生在直观感
知的基础上,认识空间中一般的点、线、面之间的位置关系;通过对空
如图②所示.
(3)平面的表示法
图①的平面可表示为平面α、平面 ABCD、平面 AC、平面 BD.
议一议:几何里的平面具有哪几个特点?(指定小组回答,其他
组补充)
【解析】几何里的平面有以下几个特点:(1)平面是平的;(2)平面
是没有厚度的;(3)平面是无限延展且没有边界的.
预学 2:点、线、面之间的关系
(3)关于空间中的“角”与“距离”,只要求了解异面直线所成的
高一数学人教A版必修二 1.1.1空间几何体的结构1 课件
B1
棱
A
D B
面
C
O A
三、棱柱
1.棱柱的定义 ①有两个面互相平行; ②其余各面都是四边形; ③每相邻两个四边形的 公共边都互相平行。
E1 F1 A 1 B1 D1 C1
侧 面 侧棱
E F A
D C B
底面
顶点
2.棱柱的分类
棱柱的底面可以是三角形、四边形、五边形、 …… 我们把这样 的棱柱分别叫做三棱柱、四棱柱、五棱柱、……
检查自学效果
一、空间几何体 如果我们只考虑物体的形状和大小,而 不考虑其它因素,那么由这些物体抽象出来 的空间图形就叫做空间几何体。
二、多面体和旋转体 多面体 旋转体
由若干个平面多边形围 由一个平面图形绕它所在平面 成的几何体. 内的一条定直线旋转所形成的 轴 封闭几何体.
顶点
D1
A1
C1
A' O'
能作为棱柱的底面的有几对?
A1 D1 B以作为底面吗? 哪些能?哪些不能?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行
• 3.过BC的截面截去长方体的一角,截去的几何 体是不是棱柱,余下的几何体是不是棱柱?
棱柱的结构特征
①有两个面互相平行 ②其余各面都是四边形 ③每相邻两个四边形的公共边都互相平行 •4.为什么定义中要说“其余 各面都是四边形,并且相 邻两个四边形的公共边都 互相平行,”而不简单的 只说“其余各面是平行四 边形呢”?
思考: 1).棱柱侧棱之间的关系如何?
2).棱柱的两个底面以及平行于底面的截面关 系如何?
棱锥、正棱锥的结构特征比较
结构特征 棱锥
S
高一数学立体几何中的平面与面的位置关系
高一数学立体几何中的平面与面的位置关系在高一数学中,立体几何是一个重要的内容,其中平面与面的位置关系是一个常见的考点。
平面与面的位置关系涉及到了几何图形的相对位置和交叉情况,对于理解和解决立体几何问题非常关键。
本文将详细介绍平面与面的位置关系,并通过实例来帮助读者更好地理解。
一、平面与面的定义在几何学中,平面是指由无限多条平行的直线构成的图形,平面内的任意两点可以通过直线相连,并且在平面上的任意一点都可以通过直线与平面上另外两个不重合的点相连。
而面则是指由无数个平行且相同的平面按照一定规律堆叠而成的三维结构。
在立体几何中,我们通常将面看作是固定的、没有厚度的,而平面是一个二维图形。
二、平面与面的位置关系1. 平面与面的平行关系当两个平面的法线方向相同或者互为相反数时,我们说这两个平面是平行的。
也就是说,两个平面上的任意直线在另一个平面上的投影直线也是平行的。
平行的平面之间永远不会相交,它们在三维空间中始终保持着相同的距离。
2. 平面与面的垂直关系若两个平面的法线方向相互垂直,则这两个平面是垂直的。
换句话说,两个垂直平面之间的任意直线和其中一个平面的交线都垂直于另一个平面。
在垂直平面中,存在着“一针对一面”和“一针对多面”两种情况,即一条直线可以与一个平面相交或者与多个平面相交。
3. 平面与面的交点情况两个平面相交于一条直线的情况称为平面与平面的交线。
当两个平面相交于一点时,这个点被称为平面与面的交点。
交点可能位于平面的内部、边缘或者外部。
当两个平面平行时,它们没有交点。
当两个平面重合时,它们有无数个交点。
三、实例分析我们通过以下实例来进一步了解平面与面的位置关系:例题1:已知平面ABCD与平面EFGH相交于线段MN,求证MN 同时也在平面ABCDEFGH上。
解析:首先,平面ABCD与平面EFGH相交于线段MN,说明MN 是平面ABCD的交线和平面EFGH的交线,那么根据平面与面的交点情况,可知MN既属于平面ABCD,也属于平面EFGH,即MN同时也在平面ABCDEFGH上。
高一数学人教A版必修二课件:2.1.1 平面
一二三四
知识精要 思考探究 典题例解 迁移应用
空间两两相交的三条直线,可以确定的平面数是 ( ) A.1 B.2 C.3 D.1或3 答案:D
解析:两两相交不共点的三条直线,可确定一个平面;两两相 交且共点的三条直线若在一个平面内,可确定一个平面;若三 条直线不在一个平面内,每两条可确定一个平面,共确定3个平
一二三四
知识精要 典题例解 迁移应用
如图,已知△ABC在平面α外,它的三边所在的直线分别交平 面α于点P,Q,R,求证:P,Q,R三点共线.
证明:∵AB∩α=P,AB⊂平面ABC, ∴P∈平面ABC,P∈α.
∴点P在平面ABC与平面α的交线上.
同理可证,点Q和R均在这条交线上.
一二三四
知识精要 典题例解 迁移应用
【例2】 过直线l外一点P引两条直线PA,PB和直线l分别相 交于A,B两点,求证:三条直线PA,PB,l共面.
思路分析:根据条件P,A,B确定一个平面,再证直线l,PA,PB在 这个平面内.
证明:如图,∵点P,A,B不共线,
∴点P,A,B确定一个平面α.
一二三四
知识精要 思考探究 典题例解 迁移应用
一二三四
知识精要 思考探究 典题例解 迁移应用
二、点线共面问题 解决点线共面问题的基本方法
一 二三四
知识精要 思考探究 典题例解 迁移应用
怎样证明多点或多线共面? 提示:要证明多点或多线共面,首先根据确定平面的条件找 到平面,再结合公理1证明其余的点或线也在这个平面内.
一二三四
知识精要 思考探究 典题例解 迁移应用
案例探究 误区警示 思悟升华
易错考点:共面问题判断中的解题误区 下列说法中正确的是( )
A.空间不同的三点确定一个平面 B.空间两两相交的三条直线确定一个平面 C.空间有三个角为直角的四边形一定是平面图形 D.和同一条直线相交的三条平行直线一定在同一平面内
高一数学知识点结构图
高一数学知识点结构图高一数学是学生进入高中后所学的第一门数学课程,在这个阶段,学生需要系统地学习和掌握各种数学知识点。
为了帮助大家更好地理解和学习高一数学,下面将为你呈现一份高一数学知识点结构图。
一、数与式1. 实数与有理数2. 数轴与绝对值3. 相反数与倒数4. 实数的运算与性质5. 代数式与代数方程二、函数与方程1. 函数的概念与性质2. 一次函数与二次函数3. 幂函数与指数函数4. 对数函数与函数图象5. 方程与不等式三、平面图形1. 平面图形的基本概念2. 直线、线段与射线3. 三角形与正多边形4. 圆与圆周角5. 平行线与相交线6. 面积与体积四、数列与数学归纳法1. 数列的概念与性质2. 等差数列与等比数列3. 数列的前n项和与通项公式4. 数学归纳法的应用五、概率与统计1. 随机事件与样本空间2. 概率的基本概念与性质3. 条件概率与乘法公式4. 离散型随机变量与分布列5. 统计与抽样以上仅为高一数学知识点的基本结构,具体的知识点和内容在每个模块下会有更详细的说明和讲解。
通过这样一份结构图,我们可以清晰地了解整个高一数学的体系,为学习和掌握数学知识提供了有力的指导。
在学习高一数学的过程中,我们应该注重知识点之间的联系和内在的逻辑关系。
通过系统地学习和掌握每个知识点,我们能够更好地理解和应用数学知识,提高解题的能力和思维的灵活性。
除了上述知识点之外,高一数学还有一些扩展内容,如平移与旋转、向量与坐标、三角函数等。
这些内容会在高一数学的基础上进一步拓展和深入,是进一步学习高阶数学的基础。
在学习高一数学的过程中,我们要善于思考和总结,勇于提问和解答问题。
通过积极的思考和交流,我们能够更好地理解数学知识,培养数学思维能力,为将来的学习打下坚实的基础。
总之,高一数学知识点结构图为我们提供了一个系统和全面的学习指导,帮助我们更好地掌握数学知识。
在学习过程中,我们要注重知识点之间的联系和内在的逻辑关系,同时善于思考和总结,培养自己的数学思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.1空间图形的平面图
上海市市西中学舒兵一、教学内容分析
这一节重点介绍了(一)空间图形在一个平面上的投影的形状特征和度量特征:(1)投影线的结构特征;(2)投影线的方向特征;(3)空间图形的位置特征.(二)几种常用的投影画图方法:(1)多面投影法;(2)轴测法;(3)标高投影法.
二、教学目标设计
1、通过观察实例和操作实践,认识平行投影与中心投影;
2、初步掌握平行投影的基本性质.
三、教学重点及难点
1、平行投影的基本性质
2、投影画图的几种方法
四、教学过程设计
(一)情景引入
在工程设计、设备安装、动漫和广告制作等活动中,常常需要将空间图形画在平面上,并要求平面上的图形能有效地反映原空间图形的形状、结构、尺寸和直观效果.
(二)学习新课
1、空间图形在平面上的投影
空间图形在平面上的投影的形状和度量特征:
(1)投影线的结构特征
投影线有两种结构,相互平行的或共点的.如果投影线是相互平行的,
那么为平行投影;如果投影线是共点的,那么为中心投影.
在画图中需要应用平行投影的如下性质:
①直线的投影是直线;
②平行直线的投影是平行直线;
③线段上的定比分点投影后保持原比例不变.
(2)投影线的方向特征
(3)空间图形的位置特征
2、常用的投影画图方法
(1)多面投影法
(2)轴测法
(3)标高投影法
(三)课堂练习:P38
(四)课堂小结
(五)布置作业:见练习册
五、教学设计说明
1.通过情景引入空间图形的平面图,空间图形在平面上的投影. 2.介绍空间图形在平面上投影的形状和度量特征,重点介绍平行投影的性质.
3.介绍几种常用的画图方法.。