第届全国中学生物理竞赛复赛试题及参考答案精校版
全国中学生物理竞赛复赛试卷及参考解答
全国中学生物理竞赛复赛试卷(本题共七大题,满分160分)一、(20分)如图所示,一块长为m L 00.1=的光滑平板PQ 固定在轻质弹簧上端,弹簧的下端与地面固定连接。
平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。
平板与弹簧构成的振动系统的振动周期s T 00.2=。
一小球B 放在光滑的水平台面上,台面的右侧边缘正好在平板P 端的正上方,到P 端的距离为m h 80.9=。
平板静止在其平衡位置。
水球B 与平板PQ 的质量相等。
现给小球一水平向右的速度0μ,使它从水平台面抛出。
已知小球B 与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。
要使小球与平板PQ 发生一次碰撞而且只发生一次碰撞,0μ的值应在什么范围内?取2/8.9s m g =二、(25分)图中所示为用三角形刚性细杆AB 、BC 、CD 连成的平面连杆结构图。
AB 和CD 杆可分别绕过A 、D 的垂直于纸面的固定轴转动,A 、D 两点位于同一水平线上。
BC 杆的两端分别与AB 杆和CD 杆相连,可绕连接处转动(类似铰链)。
当AB 杆绕A 轴以恒定的角速度ω转到图中所示的位置时,AB 杆处于竖直位置。
BC 杆与CD 杆都与水平方向成45°角,已知AB 杆的长度为l ,BC 杆和CD 杆的长度由图给定。
求此时C 点加速度c a 的大小和方向(用与CD 杆之间的夹角表示)三、(20分)如图所示,一容器左侧装有活门1K ,右侧装有活塞B ,一厚度可以忽略的隔板M 将容器隔成a 、b 两室,M 上装有活门2K 。
容器、隔板、活塞及活门都是绝热的。
隔板和活塞可用销钉固定,拔掉销钉即可在容器内左右平移,移动时不受摩擦作用且不漏气。
整个容器置于压强为P 0、温度为T 0的大气中。
初始时将活塞B 用销钉固定在图示的位置,隔板M 固定在容器PQ 处,使a 、b 两室体积都等于V 0;1K 、2K 关闭。
第精编全国中学生物理竞赛复赛试题及参考答案精校版
除卫星旋转的一种方法就是所谓消旋法,其原理如图所示半径为R,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条第28届全国中学生物理竞赛复赛试题(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1 年,1986年它过近日点P o 时与太阳S 的距离r °=0.590AU, AU 是天文单位, 与太阳的平均距离,经过一段时间, 它等于地球 彗星到达 轨道上的P 点,SP 与SP 的夹角9 已知:1AU=1.50X 1011m,弓I 力常量 10一 11Nrr/kg 2,太阳质量 m=1.99 X 求P 到太阳S 的距离r p 及彗星过P 的大小及方向(用速度方向与SR 的 示)。
p =72.0 °。
G=6.67 X 1030kg ,试 点时速度 夹角表 二、 (20分)质量均匀分布的刚性杆 AB 点与水平地面接触,与地面间的静摩擦系数为点与光滑竖直墙面接触,杆 AB 和CD 接触处的 为卩c ,两杆的质量均为m 长度均为I 。
1、 已知系统平衡时AB 杆与墙面夹角为9,求 夹角a 应该满足的条件(用a 及已知量满足的 示)。
2、 若卩 A =1.00,卩 c =0.866, 9 =60.0 °。
求系 的取值范围(用数值计算求出)。
三、 (25分)在人造卫星绕星球运行的过程中, 对称转轴稳定在规定指向,一种最简单的办法 在其运行过程中同时绕自身的对称轴转,但有CD 如图放置,A (1 A , B 、D 两静摩擦系数 CD 杆与墙面方程式表 统平衡时a 为了保持其 _就是让卫星 时为了改变 卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消足够长的不可伸长的结实的长度相等的轻绳的 一端分别固 定在圆筒表面上的Q Q'(位于圆筒直径两端) 拴有一个质量为m 的小球,正常情况下,绳绕2 面上,两小球用插销分别锁定在圆筒表面上的 与卫星形成一体,绕卫星的对称轴旋转,卫星 度为3 0。
第届全国中学生物理竞赛复赛试卷及答案
2010 年全国中学生物理比赛复赛试卷(第二十七届)本卷共九题,满分 160 分.计算题的解答应写出必需的文字说明、方程式和重要的演算步骤.只写出最后结果的不可以得分.有数字计算的题.答案中一定明确写出数值和单位.填空题把答案填在题中的横线上,只需给出结果,不需写出求解的过程.一、( 15 分)蛇形摆是一个用于演示单摆周期与摆长关系的实验仪器(见图).若干个摆球位于同一高度并等间距地排成一条直线,它们的悬挂点在不一样的高度上,摆长挨次减小.设重力加快度g = 9 . 80 m/ s2 , 1.试设计一个包括十个单摆的蛇形摆(即求出每个摆的摆长),要求知足: ( a )每个摆的摆长不小于 0 . 450m ,不大于 1.00m ;( b )初始时将所有摆球由均衡点沿x 轴正方向挪动相同的一个小位移xo ( xo <<0.45m ),而后同时开释,经过40s 后,所有的摆能够同时回到初始状态.2.在上述情况中,从所有的摆球开始摇动起,到它们的速率初次所有为零所经过的时间为________________________________________.二、(20 分)距离我们为L 处有一恒星,其质量为M ,观察发现其地点呈周期性摇动,周期为T ,摇动范围的最大张角为△θ.假定该星体的周期性摇动是因为有一颗环绕它作圆周运动的行星惹起的,试给出这颗行星的质量m 所知足的方程.若 L=10 光年, T =10 年, △θ = 3 毫角秒, M = Ms(Ms 为太阳质量),则此行星的质量和它运动的轨道半径 r 各为多少分别用太阳质量Ms 和国际单位AU (均匀日地距离)作为单位,只保存一位有效数字. 已知 1 毫角秒 = 11000 角秒,1角秒=1度,1AU=1. 5×10 8km,光速 c = 3.0 × 105km/s.3600三、( 22 分)如图,一质量均匀散布的刚性螺旋环质量为m ,半径为 R ,螺距 H =π R ,可绕竖直的对称轴OO ′,无摩擦地转动, 连结螺旋环与转轴的两支撑杆的质量可忽视不计.一质量也为m 的小球穿在螺旋环上并可沿螺旋环无摩擦地滑动 ,第一扶住小球使其静止于螺旋环上的某一点 A ,这时螺旋环也处于静止状态. 而后松开小球, 让小球沿螺旋环下滑,螺旋环便绕转轴 OO ′,转动.求当小球下滑到离其初始地点沿竖直方向的距离为 h 时,螺旋环转动的角速度和小球对螺旋环作使劲的大小.四、( 12 分)以下图,一质量为m 、电荷量为 q ( q >0 )的粒子作角速度为ω、 半径为 R 的匀速圆周运动 . 一长直细导线位于圆周所在的平面内,离圆心的距离为d ( d > R ),在导线上通有随时间变化的电流I, t= 0时辰,粒子速度的方向与导线平行,离导线的距离为d+ R . 若粒子做圆周运动的向心力等于电流i, 的磁场对粒子的作使劲,试求出电流i随时间的变化规律.不考虑变化的磁场产生的感生电场及重力的影响.长直导线电流产生的磁感觉强度表示式中的比率系数k已知.五、( 20 分)以下图,两个固定的均匀带电球面,所带电荷量分别为+Q和 -Q (Q >0),半径分别为R 和R/2 ,小球面与大球面内切于C点,两球面球心O和 O’的连线 MN沿竖直方在MN与两球面的交点B、0 和 C 处各开有足够小的孔因小孔损失的电荷量忽视不计,有一质量为 m,带电荷为q(q>0 的质点自 MN线上离 B 点距离为 R 的 A 点竖直上抛。
2023年全国中学生物理竞赛复赛试题参考解答
全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令 表达质子的质量, 和 分别表达质子的初速度和到达a 球球面处的速度, 表达元电荷, 由能量守恒可知2201122mv mv eU =+ (1)由于a 不动, 可取其球心 为原点, 由于质子所受的a 球对它的静电库仑力总是通过a 球的球心, 所以此力对原点的力矩始终为零, 质子对 点的角动量守恒。
所求 的最大值相应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。
以 表达 的最大值, 由角动量守恒有 max 0mv l mvR = (2)由式(1)、(2)可得20max 1/2eU l R mv =- (3) 代入数据, 可得max 22l R = (4) 若把质子换成电子, 则如图复解20-1-2所示, 此时式(1)中 改为 。
同理可求得 max 62l R =(5)评分标准: 本题15分。
式(1)、(2)各4分, 式(4)2分, 式(5)5分。
二、参考解答在温度为 时, 气柱中的空气的压强和体积分别为, (1)1C V lS = (2)当气柱中空气的温度升高时, 气柱两侧的水银将被缓慢压入A 管和B 管。
设温度升高届时 , 气柱右侧水银刚好所有压到B 管中, 使管中水银高度增大C BbS h S ∆= (3) 由此导致气柱中空气体积的增大量为C V bS '∆= (4)与此同时, 气柱左侧的水银也有一部分进入A 管, 进入A 管的水银使A 管中的水银高度也应增大 , 使两支管的压强平衡, 由此导致气柱空气体积增大量为A V hS ''∆=∆ (5)所以, 当温度为 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T = (8) 由以上各式, 代入数据可得2347.7T =K (9)此值小于题给的最终温度 K, 所以温度将继续升高。
全国高中生物理竞赛复赛试题含答案
全国中学生物理竞赛复赛试卷、参考答案全卷共六题,总分140分。
一、(22分)有一放在空气中的玻璃棒,折射率n= 1.5 ,中心轴线长L= 45cm,一端是半径为R1= 10cm的凸球面.1.要使玻璃棒的作用相当于一架理想的天文望远镜(使主光轴上无限远处物成像于主光轴上无限远处的望远系统),取中心轴线为主光轴,玻璃棒另一端应磨成什么样的球面?2.对于这个玻璃棒,由无限远物点射来的平行入射光束与玻璃棒的主光轴成小角度φ1时,从棒射出的平行光束与主光轴成小角度φ2,求φ2/φ1(此比值等于此玻璃棒望远系统的视角放大率).解:1.对于一个望远系统来说,从主光轴上无限远处的物点发出的入射光为平行于光轴的光线,它经过系统后的出射光线也应与主光轴平行,即像点也在主光轴上无限远处,如图18-2-6所示,图中C1为左端球面的球心.图18-2-6由正弦定理、折射定律和小角度近似得(-R1)/R1=sinr1/sin(i1-r1)≈r1/(i1-r1)=1/((i1/r1)-1)≈1/(n-1),...①即..(/R1)-1=1/(n-1)....②光线PF1射到另一端面时,其折射光线为平行于主光轴的光线,由此可知该端面的球心C2一定在端面顶点B的左方,C2B等于球面的半径R2,如图18-2-6所示.仿照上面对左端球面上折射的关系可得(/R2)-1=1/(n-1),...③又有=L-,④由②、③、④式并代入数值可得R2=5cm.则右端为半径等于5cm的向外凸的球面.图18-2-7.设从无限远处物点射入的平行光线用①、②表示,令①过C1,②过A,如图18-2-7所示,则这两条光线经左端球面折射后的相交点M,即为左端球面对此无限远物点成的像点.现在求M点的位置,在△AC1M中,有/sin(π-φ1)=/sinφ1=R1/sin(φ1-φ1′),又..nsinφ1′=sinφ1,已知φ1、φ1′均为小角度,则有/φ1=R1/φ1(1-(1/n)).与②式比较可知,≈,即M位于过F1垂直于主光轴的平面上.上面已知,玻璃棒为天文望远系统,则凡是过M点的傍轴光线从棒的右端面射出时都将是相互平行的光线.容易看出,从M射出C2的光线将沿原方向射出,这也就是过M点的任意光线(包括光线①、②)从玻璃棒射出的平行光线的方向,此方向与主光轴的夹角即为φ2,由图18-2-7可得/φ1=/=(-R1)/(-R2),由②、③式可得(-R1)/(-R2)=R1/R2,则φ2/φ1=R1/R2=2.二、(22分)正确使用压力锅的方法是:将已盖好密封锅盖的压力锅(如图复18-2-1)加热,当锅内水沸腾时再加盖压力阀S,此时可以认为锅内只有水的饱和蒸气,空气已全部排除.然后继续加热,直到压力阀被锅内的水蒸气顶起时,锅内即已达到预期温度(即设计时希望达到的温度).现有一压力锅,在海平面处加热能达到的预期温度为120℃,某人在海拔5000m的高山上使用此压力锅,锅内有足量的水.1.若不加盖压力阀,锅内水的温度最高可达多少?2.若按正确方法使用压力锅,锅内水的温度最高可达多少?3.若未按正确方法使用压力锅,即盖好密封锅盖一段时间后,在点火前就加上压力阀,此时水温为27℃,那么加热到压力阀刚被顶起时,锅内水的温度是多少?若继续加热,锅内水的温度最高可达多少?假设空气不溶于水.已知:水的饱和蒸气压pW(t)与温度t的关系图线如图18-2-2所示.大气压强p(z)与高度z的关系的简化图线如图18-2-3所示.当t=27℃时,pW(27°)=3.6×103Pa;z= 0处,p(0)= 1.013×105Pa.解:1.由图18-2-8知在海平面处,大气压强p(0)=101.3×103Pa.在z=5000m时,大气压强为p(5000)=53×103Pa.图18-2-8图18-2-9此处水沸腾时的饱和蒸气压pW应等于此值.由图18-2-9可知,对应的温度即沸点为t2=82℃.达到此温度时,锅内水开始沸腾,温度不再升高,故在5000m高山上,若不加盖压力锅,锅内温度最高可达82℃..由图18-2-9可知,在t=120℃时,水的饱和蒸气压pW(120°)=198×103Pa,而在海平面处,大气压强p(0)=101×103Pa.可见压力阀的附加压强为pS=pW(120°)-p(0)=(198×103-101.3×103)Pa=96.7×103Pa.在5000m高山上,大气压强与压力阀的附加压强之和为p′=pS+p(5000)=(96.7×103+53×103)Pa=149.7×103Pa.若在t=t2时阀被顶起,则此时的pW应等于p′,即pW=p′,由图18-2-9可知t2=112℃.此时锅内水开始沸腾,温度不再升高,故按正确方法使用此压力锅,在5000m高山上锅内水的温度最高可达112℃..在未按正确方法使用压力锅时,锅内有空气,设加压力阀时,内部水蒸汽已饱和.由图18-2-9可知,在t=27℃时,题中已给出水的饱和蒸气压pW(27°)=3.6×103Pa,这时锅内空气的压强(用pa表示)为pa(27°)=p(5000)-pW(27°)=(53×103-3.6×103)Pa=49.4×103Pa.当温度升高时,锅内空气的压强也随之升高,设在温度为t(℃)时,锅内空气压强为pa(t),则有pa(t)/(273+t)=pa(27℃)/(273+27),pa(t)=(164.7t+45.0×103)Pa.若在t=t′时压力阀刚好开始被顶起,则有pW(t′)+pa(t′)=p′,由此得pW(t′)=p′-pa(t′)=(105×103-164.7t′)Pa,画出函数p′-pa(t′)的图线,取t=0℃,有..p′-pa(0℃)=105×103Pa,取t=100℃,有.p′-pa(100℃)=88.6×103Pa.由此二点便可在图18-2-9上画出此直线,此直线与图18-2-9中的pW(t)-t曲线的交点为A,A即为所求的满足上式的点,由图可看出与A点对应的温度为t′=97℃.即在压力阀刚开始被顶起时,锅内水的温度是97℃,若继续加热,压力阀被顶起后,锅内空气随水蒸汽一起被排出,最终空气排净,锅内水温仍可达112℃.三、(22分)有两个处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.已知:碰撞后二者的速度vA和vB在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.如欲碰后发出一个光子,试论证:速度v0至少需要多大(以m/s表示)?已知电子电量e= 1.602×10-19C,质子质量为mp= 1.673×10-27kg,电子质量为me= 0.911×10-31kg,氢原子的基态能量为E1=-13.58eV.解:为使氢原子从基态跃迁到激发态,需要能量最小的激发态是n=2的第一激发态.已知氢原子的能量与其主量子数的平方成反比.即En=k1/n2,...①又知基态(n=1)的能量为-13.58eV,即E1=k1/12=-13.58eV,所以..k=-13.58eV.n=2的第一激发态的能量为E2=k1/22=-13.58×(1/4)=-3.39eV....②为使基态的氢原子激发到第一激发态所需能量为E内=E2-E1=(-3.39+13.58)eV=10.19eV....③这就是氢原子从第一激发态跃迁到基态时发出的光子的能量,即hν=E内=10.19eV=10.19×1.602×10-19J=1.632×10-18J....④式中ν为光子的频率,从开始碰到发射出光子,根据动量和能量守恒定律有mv0=mvA+mvB+光子的动量,...⑤(1/2)mv02=(1/2)m(vA2+vB2)+hν,...⑥光子的动量pν=hν/c.由⑥式可推得mv0>2hν/v0,因为v0<<c,所以mv0>>hν/c,故⑤式中光子的动量与mv0相比较可忽略不计.⑤式变为mv0=mvA+mvB=m(vA+vB),⑦符合⑥、⑦两式的v0的最小值可推求如下:由⑥式及⑦式可推得(1/2)mv02=(1/2)m(vA+vB)2-mvAvB+hν=(1/2)mv02-mvA(v0-vA)+hν,mvA2-mvAv0+hν=0,经配方得m(vA-(1/2)v0)2-(1/4)mv02+hν=0,(1/4)mv02=hν+m(vA-(1/2)v0)2,...⑧由⑧式可看出,当vA=(1/2)v0时,v0达到最小值v0min,此时vA=vB,v0min=2,代入有关数值,得v0min=6.25×104m/s.答:B原子的速度至少应为6.25×104m/s.四、(22分)如图18-4所示,均匀磁场的方向垂直纸面向里,磁感应强度B随时间t变化,B=B0-kt(k为大于零的常数).现有两个完全相同的均匀金属圆环相互交叠并固定在图中所示位置,环面处于图中纸面内.圆环的半径为R,电阻为r,相交点的电接触良好,两个环的接触点A与C间的劣弧对圆心O的张角为60°,求t=t0时,每个环所受的均匀磁场的作用力,不考虑感应电流之间的作用.解:1.求网络各支路的电流.因磁感应强度大小随时间减少,考虑到电路的对称性,可设两环各支路的感应电流I1、I2的方向如图18-2-10所示,对左环电路ADCFA,有图18-2-10.E=I1rCFA+I2rADC,因..rCFA=5r/6,rADC=r/6,E=kπR2,故..kπR2=I1(5r/6)+I2(r/6)....①因回路ADCEA所围的面积为((2π-3)/12)R2,故对该回路有k[2((2π-3)/12)R2]=2I2(r/6),解得..I2=((2π-3)R2/2r)k,代入①式,得.I1=((10π+3)R2/10r)k..求每个圆环所受的力.图18-2-11先求左环所受的力,如图18-2-11所示,将圆环分割成很多小圆弧,由左手定则可知,每段圆弧所受的力的方向均为径向,根据对称性分析,因圆弧PMA与圆弧CNQ中的电流方向相反,所以在磁场中受的安培力相互抵消,而弧PQ与弧AC的电流相对x轴上下是对称的,因而每段载流导体所受的安培力在y方向的合力为零,以载流导体弧PQ上的线段Δl′为例,安培力ΔF为径向,其x分量的大小表示为|ΔFx|=I1BΔl′cosα,因..Δl′cosα=Δl,故..|ΔFx|=I1BΔl,|Fx|=ΣI1BΔl=I1B=I1BR.由于导体弧PQ在y方向的合力为零,所以在t0时刻所受安培力的合力F1仅有x分量,即F1=|Fx|=I1BR=((10π+3)R2/10r)kBR=((10π+3)R2/10r)k(B0-kt0)R,方向向左.同理,载流导体弧AC在t0时刻所受的安培力为F2=I2BR=((2π-3)R2/2r)kBR=((2π-3)R2/2r)k(B0-kt0)R,方向向右.左环所受的合力大小为F=F1-F2=(9/5r)k(B0-kt0)R3.方向向左.五、(25分)如图18-5所示,一薄壁导体球壳(以下简称为球壳)的球心在O点.球壳通过一细导线与端电压U= 90V的电池的正极相连,电池负极接地.在球壳外A点有一电量为q1=10×10-9C的点电荷,B点有一电量为q2=16×10-9C的点电荷.点O、A之间的距离d1= 20cm,点O、B之间的距离d2= 40cm.现设想球壳的半径从a= 10cm开始缓慢地增大到50cm,问:在此过程中的不同阶段,大地流向球壳的电量各是多少?已知静电力常量k=9×109N·m2/C2.假设点电荷能穿过球壳壁进入导体球壳内而不与导体壁接触..解:分以下几个阶段讨论:.由于球壳外空间点电荷q1、q2的存在,球壳外壁的电荷分布不均匀,用σ表示面电荷密度.设球壳半径a=10cm时球壳外壁带的电量为Q1,因为电荷q1、q2与球壳外壁的电量Q1在球壳内产生的合场强为零,球壳内为电势等于U的等势区,在导体表面上的面元ΔS所带的电量为σΔS,它在球壳的球心O处产生的电势为ΔU1=kσΔS/a,球壳外壁所有电荷在球心O产生的电势U1为U1=ΣΔU1=kΣσΔS/α=kQ1/a.点电荷q1、q2在球壳的球心O处产生的电势分别为kq1/d1与kq2/d2,因球心O处的电势等于球壳的电势,按电势叠加原理,即有(kq1/d1)+(kq2/d2)+(kQ1/a)=U,代入数值后可解得球壳外壁的电量Q1为Q1=(aU/k)-a((q1/d1)+(q2/d2))=-8×10-9C.因球壳内壁无电荷,所以球壳的电量QⅠ等于球壳外壁的电量Q1,即QⅠ=Q1=-8×10-9C..当球壳半径趋于d1时(点电荷仍在球壳外),设球壳外壁的电量变为Q2,球壳外的电荷q1、q2与球壳外壁的电量Q2在壳内产生的合场强仍为零,因球壳内仍无电荷,球壳内仍保持电势值为U的等势区,则有(kq1/d1)+(kq2/d2)+(kQ2/d1)=U,解得球壳外壁的电量Q2=(d1U/k)-(d1(q1/d1+q2/d2))=-16×10-9C.因为此时球壳内壁的电量仍为零,所以球壳的电量就等于球壳外壁的电量,即QⅡ=Q2=-16×10-9C,在a=10cm到趋于d1的过程中,大地流向球壳的电量为ΔQⅠ=QⅡ-Q1=-8×10-9C..当点电荷q1穿过球壳,刚进入球壳内(导体半径仍为d1),点电荷q1在球壳内壁感应出电量-q1,因球壳的静电屏蔽,球壳内电荷q1与球壳内壁电荷-q1在球壳外产生的合电场为零,表明球壳外电场仅由球壳外电荷q2与球壳外壁的电荷Q3所决定.由于球壳的静电屏蔽,球壳外电荷q2与球壳外壁的电荷Q3在球壳内产生的合电场为零,表明对电荷q2与Q3产生的合电场而言,球壳内空间是电势值为U的等势区.q2与Q3在球心O处产生的电势等于球壳的电势,即(kq2/d2)+(kQ3/d1)=U,解得球壳外壁电量Q3=(d1U/k)-(d1q2/d2)=-6×10-9C,球壳外壁和内壁带的总电量应为QⅢ=Q3+(-q1)=-16×10-9C,在这过程中,大地流向球壳的电量为ΔQⅡ=QⅢ-QⅡ=0.这个结果表明:电荷q1由球壳外极近处的位置进入壳内,只是将它在球壳外壁感应的电荷转至球壳内壁,整个球壳与大地没有电荷交换..当球壳半径趋于d2时(点电荷q2仍在球壳外),令Q4表示此时球壳外壁的电量,类似前面第3阶段中的分析,可得(kq2/d2)+(kQ4/d2)=U,由此得Q4=(d2U/k)-(d2(q2/d2))=-12×10-9C,球壳的电量QⅣ等于球壳内外壁电量的和,即QⅣ=Q4+(-q1)=-22×10-9C,大地流向球壳的电量为ΔQⅢ=QⅣ-QⅢ=-6×10-9C..当点电荷q2穿过球壳,刚进入球壳内时(球壳半径仍为d2),球壳内壁的感应电荷变为-(q1+q2),由于球壳的静电屏蔽,类似前面的分析可知,球壳外电场仅由球壳外壁的电量Q5决定,即kQ5/d2=U,可得..Q5=d2U/k=4×10-9C,球壳的总电量是QⅤ=Q5-(q1+q2)=-22×10-9C,..(15)在这个过程中,大地流向球壳的电量是ΔQⅣ=QⅤ-QⅣ=0...(16).当球壳的半径由d2增至a1=50cm时,令Q6表示此时球壳外壁的电量,有k(Q6/a1)=U,..(17)可得..Q6=a1(U/k)=5×10-9C,球壳的总电量为QⅥ=Q6-(q1+q2)=-21×10-9C,大地流向球壳的电量为ΔQⅤ=QⅥ-QⅤ=1×10-9C.六、(27分)一玩具“火箭”由上下两部分和一短而硬(即劲度系数很大)的轻质弹簧构成.上部分G1的质量为m1,下部分G2的质量为m2,弹簧夹在G1与G2之间,与二者接触而不固连.让G1、G2压紧弹簧,并将它们锁定,此时弹簧的弹性势能为已知的定值E0.通过遥控可解除锁定,让弹簧恢复至原长并释放其弹性势能,设这一释放过程的时间极短.第一种方案是让玩具位于一枯井的井口处并处于静止状态时解除锁定,从而使上部分G1升空.第二种方案是让玩具在井口处从静止开始自由下落,撞击井底(井足够深)后以原速率反弹,反弹后当玩具垂直向上运动到离井口深度为某值h的时刻解除锁定.1.在第一种方案中,玩具的上部分G1升空到达的最大高度(从井口算起)为多少?其能量是从何种形式的能量转化而来的?2.在第二种方案中,玩具的上部分G1升空可能达到的最大高度(亦从井口算起)为多少?并定量讨论其能量可能是从何种形式的能量转化而来的.解:.1.在弹簧刚伸长至原长的时刻,设G1的速度的大小为v,方向向上,G2的速度大小为v1,方向向下,则有m1v1-m2v2=0,...①(1/2)m1v12+(1/2)m2v22=E0,...②解①、②两式,得v1=,...③v2=....④设G1升空到达的最高点到井口的距离为H1,则H1=v12/2g=((m2/m1g(m1+m2))E0,...⑤G1上升到最高点的重力势能为Ep1=m1gH1=(m2/(m1+m2))E0....⑥它来自弹簧的弹性势能,且仅为弹性势能的一部分..在玩具自井底反弹向上运动至离井口的深度为h时,玩具向上的速度为u=....⑦设解除锁定后,弹簧刚伸长至原长时,G1的速度大小为v1′,方向向上,G2的速度大小为v,方向向下,则有m1v1′-m2v2′=(m1+m2)u,...⑧(1/2)m1v1′+(1/2)m2v2′=(1/2)(m1+m2)u2+E0,...⑨消去⑧、⑨两式中的v2′,得v1′的方程式为m1(1+(m1/m2))v1′-2m1(1+(m1/m2))uv1′+m1(1+m1/m2)u2-2E0=0,由此可求得弹簧刚伸长至原长时,G1和G2的速度分别为v1′=u+,v2′=-u+,设G1从解除锁定处向上运动到达的最大高度为H2′,则有H2′=v1′/2g=(1/2g)(u+)2=h+(m2E0/m1g(m1+m2))+2,从井口算起,G1上升的最大高度为H2=H2′-h=(m2E0/m1g(m1+m2))+2.讨论:可以看出,在第二方案中,G1上升的最大高度H2大于第一方案中的最大高度H1,超出的高度与解除锁定处到井口的深度h有关.到达H2时,其重力势能为Ep2=m1gH2=(m2E0/(m1+m2))+2,(i)若Ep2<E0,即..2<m1E0/(m1+m2),这要求..h<E0m1/4m2g(m1+m2).这时,G1升至最高处的重力势能来自压紧的弹性势能,但仅是弹性势能的一部分.在这一条件下上升的最大高度为H2<E0/m1g.(ii)若Ep2=E0,2=m1E0/(m1+m2),这要求..h=E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能来自压紧的弹簧的弹性势能,且等于全部弹性势能.在这一条件下,G1上升的高度为H2=E0/m1g.(iii)若Ep2>E0,2>m1E0/(m1+m2),这要求..h>E0m1/4m2g(m1+m2).此时G1升至最高处的重力势能大于压紧的弹簧的弹性势能,超出部分的能量只能来自G2的机械能.在这个条件下,G1上升的最大高度为H2>E0/m1g.。
第届全国中学生物理竞赛复赛理论考试试题及答案
第32届全国中学生物理竞赛复赛理论考试试题2015年9月19日说明:所有解答必须写在答题纸上,写在试题纸上无效。
一、(15分)在太阳内部存在两个主要的核聚变反应过程:碳循环和质子-质子循环;其中碳循环是贝蒂在1938年提出的,碳循环反应过程如图所示。
图中p 、+e 和e ν分别表示质子、正电子和电子型中微子;粗箭头表示循环反应进行的先后次序。
当从循环图顶端开始,质子p 与12C 核发生反应生成13N 核,反应按粗箭头所示的次序进行,直到完成一个循环后,重新开始下一个循环。
已知+e 、p 和He 核的质量分别为0.511 MeV/c 2、1.0078 u 和4.0026 u (1u≈931.494 MeV/c 2),电子型中微子e ν的质量可以忽略。
(1)写出图中X 和Y 代表的核素;(2)写出一个碳循环所有的核反应方程式; (3)计算完成一个碳循环过程释放的核能。
二、(15分)如图,在光滑水平桌面上有一长为L 的轻杆,轻杆两端各固定一质量均为M 的小球A 和B 。
开始时细杆静止;有一质量为m 的小球C 以垂直于杆的速度0v 运动,与A 球碰撞。
将小球和细杆视为一个系统。
(1)求碰后系统的动能(用已知条件和球C 碰后的速度表出); (2)若碰后系统动能恰好达到极小值,求此时球C 的速度和系统的动能。
三、(20分)如图,一质量分布均匀、半径为r 的刚性薄圆环落到粗糙的水平地面前的瞬间,圆环质心速度v 0与竖直方向成θ(π3π22θ<<)角,并同时以角速度0ω(0ω的正方向如图中箭头所示)绕通过其质心O 、且垂直环面的轴转动。
已知圆环仅在其所在的竖直平面内运动,在弹起前刚好与地面无相对滑动,圆环与地面碰撞的恢复系数为k ,重力加速度大小为g 。
忽略空气阻力。
(1)求圆环与地面碰后圆环质心的速度和圆环转动的角速度; (2)求使圆环在与地面碰后能竖直弹起的条件和在此条件下圆环能上升的最大高度;(3)若让θ角可变,求圆环第二次落地点到首次落地点之间的水平距离s 随θ变化的函数关系式、s 的最大值以及s 取最大值时r 、0v 和0ω应满足的条件。
第 届全国物理竞赛复赛试题解答f
1M
M (1 2)m
v0 g
,
s1
v02 2a1
1M
M (1
2 )m
v02 2g
②
重物 B 在卡车 A 的车厢底板上做匀减速直线运动,设 B 相对于地面的加速度大小为 a2 。
4
由牛顿第二定律有
2mg ma2
③
由③式得
a2
2mg m
2 g
从卡车制动开始到重物对地面速度为零时所用的时间 t2 和重物移动的距离 s2 分别为
②
由②式得, a 与 的关系为
a
r
d 21 dt 2
(R
r)
d 2 dt 2
③
考虑小圆柱绕其自身轴的转动,由转动定理得
R
1
rF
I
d 21 dt 2
④
式中, I 是小圆柱绕其自身轴的转动惯量
I 1 mr2
⑤
2
由①②③④⑤式及小角近似
sin
⑥
得
d 2 dt 2
t2
v0 a2
v0 , 2 g
s2
v02 2a2
v02 22 g
④
由于 2 1 ,由②④二式比较可知, t2 t1 ,即卡车先停,重物后停。
若 s2 s1 L ,重物 B 与车厢前壁不会发生碰撞,因此不发生碰撞的条件是
L
s2
s1
v02 2a2
v02 2a1
(1 2 )( M m) 2[1M ( 1 2 )m]
第届全国中学生物理竞赛复赛试题及答案
第31届全国中学生物理竞赛复赛理论考试试题解答2014年9月20日一、(12 分) (1) 球形(2) 液滴的半径r 、密度和表面张力系数(或液滴的质量 m 和表面张力系数)(3)解法一假设液滴振动频率与上述物理量的关系式为f k r①式中,比例系数k 是一个待定常数.任一物理量a 可写成在某一单位制中的单位 [a]和相应的数值{a}的乘 积a {a}[ a].按照这一约定,①式在同一单位制中可写成由于取同一单位制,上述等式可分解为相互独立的数值等式和单位等式,因而[f] [r][][]②力学的基本物理量有三个:质量 m 、长度I 和时间t ,按照前述约定,在该单位制中有m {m}[ m],I {l}[l],t {t}[ t]式中,比例系数k 是一个待定常数.任一物理量a 可写成在某一单位制中的单位 积a {a}[ a].在同一单位制中,①式两边的物理量的单位的乘积必须相等[f ] [r][][]②力学的基本物理量有三个:质量M 、长度L 和时间T ,对应的国际单位分别为千克 f 的单位[f ]为s 1,半径r 的单位[门为m ,密度 的单位[]为1 2 1 2的单位[]为N m 二kg (m s ) m kg s ,即有[f] s 1③[r] m④[]kg m 3⑤[]kg s 2⑥若要使①式成立,必须满足s 1 m kg m 3 kg s 2 (kg ) m 3 s 2⑦由于在力学中质量 M 、长度L 和时间T 的单位三者之间的相互独立性,有3 0,⑧于是[f][t] 1 ③ [][m][l] 3⑤将③④⑤⑥式代入②式得[t] [r] [I][][m][t][I] ([m][l]3) ([m][t]2) 即[t] 1[l] 3 [m] [t] 2由于在力学中[m]、[l]和[t]三者之间的相互独立性,有解为3 0, 0,21 3 112,2,2?将?式代入①式得解法二假设液滴振动频率与上述物理量的关系式为kr[a]和相应的数值{a}的乘 (kg )、米(m )、秒(s ).在国际单位制中,振动频率3 __kg m ,表面张力系数0,⑨解为3 1 1 2,2,2将?式代入①式得问2分,答案正确2分;第(2)问3分,答案正确3分;第(3)问7分, ⑦式2分,?式3分,?式2分(答案为f 二、(16 分)解法一:瓶内理想气体经历如下两个气体过程: 其中,(P i ,V o ,T o ,NJ,( p o ,V o ,T,N f )和(p f ,V o ,T o ,N f )分别是瓶内气体在初态、中间态与末态的压强、 体积、温度和摩尔数.根据理想气体方程 pV NkT ,考虑到由于气体初、末态的体积和温度相等,有P f N f P iN i另一方面,设V 是初态气体在保持其摩尔数不变的条件下绝热膨胀到压强为p 0时的体积,即此绝热过程满足1/V o V _P oP i②由状态方程有p o vN i kT 和 p o V ofkT ,所以N f N i V o V③联立①②③式得P f 1/Po ④pP i此即lnRP o⑤In P iP f由力学平衡条件有P P o gh i⑥P f P ogh f⑦式中,p ogh o 为瓶外的大气压强,是U 形管中液体的密度,g 是重力加速度的大小•由⑤⑥⑦式得lnd P ) _________ h oh i h fln(1 十)ln(1 -)h o h o当 x = 1, ln(1 x) x ,以及 h / 馆=1, h f / h 0 = 1,有h /h °h h i /h o h f /h oh h f⑨评分标准:本题16分•①②③⑤⑥⑦⑧⑨式各 2分.解法二:若仅考虑留在容器内的气体:它首先经历了一个绝热膨胀过程 末态评分标准:本题12分.第(1)利用近似关系式:ab,再通过等容升温过程 be 达到其中,(P iM ,T o ),( P O ,V O ,T )和(P f ,V o ,T o )分别是留在瓶内的气体在初态、中间态和末态的压强、体积与 温度•留在瓶内的气体先后满足绝热方程和等容过程方程P f由力学平衡条件有|n(1却h i h f ln(1 -) ln(1 -)h o h o利用近似关系式:当x = 1, ln(1 x) x ,以及h / h o = 1, h f / h o = 1,有h /h o h h i /h o h f /h oh h f⑧评分标准:本题16分.①②式各3分,④⑤⑥⑦⑧式各 2分. 三、(20分) (1)平板受到重力F C 、拉力Q M O 、铰链对三角形板的作用力N A 和N B ,各力及其作用点的坐标分别为:F C (O, mg sin , mg cos ), (O,O, h)QM O(O,Q,O), (X o ,O, Z o );N A b(N Ax ,N Ay ,N Az ),(JO,。
第 届全国物理竞赛复赛试题与解答
第 35 届全国中学生物理竞赛复赛理论考试试题解答
2018 年 9 月 22 日
一、(40 分)假设地球是一个质量分布各向同性的球体,地球自转及地球大气的影响可忽略。 从地球上空离地面高度为 h 的空间站发射一个小物体,该物体相对于地球以某一初速度运 动,初速度方向与其到地心的连线垂直。已知地球半径为 R ,质量为 M ,引力常量为 G 。
该物体能绕地球做周期运动,其能量应
E0
由此条件以及 E 的表达式,得
v02
2GM Rh
,即
v0
2GM Rh
①
物体能绕地球做持续的周期运动,不能坠落到地球表面。当物体初始速度 v0 降低到某
个值 v0min 时,物体运动的椭圆轨道将与地球表面相切,设这种情况下物体在与地球表面相
切时的运动速度为 v ,由角动量守恒定律
B
(2)求撤除转轴前,杆被撞击后转过 ( 0 π )角时转轴对杆的作用力;
(3)以撤除转轴的瞬间为计时零点,求撤除转轴后直至杆着地前,杆端 B 的位置随时间 t 变
化的表达式 xB t 和 yB t ;
(4)求在撤除转轴后,杆再转半圈时 O 、 B 两点的高度差。
-1-
四、(40 分)Ioffe-Pritchard 磁阱可用来束缚原子的运动,其主要部
(3)证明在实验室参考系中原子发出的圆频率为 0 的谱线在磁场中一分为三;并对弱磁场
(即 L 0 )情形,求出三条谱线的频率间隔。
已知:在转动角速度为 的转动参考系中,运动电子受到的惯性力除惯性离心力外还受
到科里奥利力作用,当电子相对于转动参考系运动速度为 v 时,作用于电子的科里奥利力
第 35 届全国中学生物理竞赛复赛理论考试试题
全国生物高中物理竞赛复赛试题及答案
全国中学生物理竞赛复赛试题全卷共六题,总分140分一、(20分)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管的长度76cm l =,管内封闭有31.010mol n =⨯-的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cm 汞柱高,每摩尔空气的内能V U C T =,其中T 为绝对温度,常量1V 20.5J (mol K)C =⋅⋅-,普适气体常量18.31J (mol K)R =⋅⋅-。
二、(20分)如图复17-2所示,在真空中有一个折射率为n (0n n >,0n 为真空的折射率)、半径为r 的质地均匀的小球。
频率为ν的细激光束在真空中沿直线BC 传播,直线BC 与小球球心O 的距离为l (l r <),光束于小球体表面的点C 点经折射进入小球(小球成为光传播的介质),并于小球表面的点D 点又经折射进入真空.设激光束的频率在上述两次折射后保持不变.求在两次折射过程中激光束中一个光子对小球作用的平均力的大小. 三、(25分)1995年,美国费米国家实验室CDF 实验组和DO 实验组在质子反质子对撞机TEV A TRON 的实验中,观察到了顶夸克,测得它的静止质量112251 1.7510eV/c 3.110kg m =⨯=⨯-,寿命240.410s τ=⨯-,这是近十几年来粒子物理研究最重要的实验进展之一.1.正、反顶夸克之间的强相互作用势能可写为4()3Sa U r kr=-,式中r 是正、反顶夸克之间的距离,0.12S a =是强相互作用耦合常数,k 是与单位制有关的常数,在国际单位制中250.31910J m k =⨯⋅-.为估算正、反顶夸克能否构成一个处在束缚状态的系统,可把束缚状态设想为正反顶夸克在彼此间的吸引力作用下绕它们连线的中点做匀速圆周运动.如能构成束缚态,试用玻尔理论确定系统处于基态中正、反顶夸克之间的距离0r .已知处于束缚态的正、反夸克粒子满足量子化条件,即021,2,3,22r h mv nn π⎛⎫== ⎪⎝⎭式中02r mv ⎛⎫⎪⎝⎭为一个粒子的动量mv 与其轨道半径02r 的乘积,n 为量子数,346.6310J sh =⨯⋅-为普朗克常量.2.试求正、反顶夸克在上述设想的基态中做匀速圆周运动的周期T .你认为正、反顶夸克的这种束缚态能存在吗? 四、(25分)宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小得很多,飞行器的速率为0v ,小行星的轨道半径为飞行器轨道半径的6倍.有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ. 当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ. 飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ. 小行星与飞行器的碰撞是弹性正碰,不计燃烧的燃料质量. 1.试通过计算证明按上述方案能使飞行器飞出太阳系;2.设在上述方案中,飞行器从发动机取得的能量为1E .如果不采取上述方案而是令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时,飞行器从发动机取得的能量的最小值用2E 表示,问12E E 为多少? 五、(25分)在真空中建立一坐标系,以水平向右为x 轴正方向,竖直向下为y 轴正方向,z 轴垂直纸面向里(图复17-5).在0y L ≤≤的区域内有匀强磁场,0.80m L =,磁场的磁感强度的方向沿z 轴的正方向,其大小0.10T B =.今把一荷质比1/50C kg q m =⋅-的带正电质点在0x =,0.20m y =-,0z =处静止释放,将带电质点过原点的时刻定为0t =时刻,求带电质点在磁场中任一时刻t 的位置坐标.并求它刚离开磁场时的位置和速度.取重力加速度210m s g =⋅-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28届全国中学生物理竞赛复赛试题一、(20分)如图所示,哈雷彗星绕太阳S 沿椭圆轨道逆时针方向运动,其周期T 为76.1年,1986年它过近日点P 0时与太阳S 的距离r 0=0.590AU ,AU 是天文单位,它等于地球与太阳的平均距离,经过一段时间,彗星到达轨道上的P 点,SP 与SP 0的夹角θP =72.0°。
已知:1AU=1.50×1011m ,引力常量G=6.67×10-11Nm 2/kg 2,太阳质量m S =1.99×1030kg ,试求P 到太阳S 的距离r P 及彗星过P 点时速度的大小及方向(用速度方向与SP 0的夹角表示)。
二、(20分)质量均匀分布的刚性杆AB 、CD 如图放置,A 点与水平地面接触,与地面间的静摩擦系数为μA ,B 、D 两点与光滑竖直墙面接触,杆AB 和CD 接触处的静摩擦系数为μC ,两杆的质量均为m ,长度均为l 。
1、已知系统平衡时AB 杆与墙面夹角为θ,求CD 杆与墙面夹角α应该满足的条件(用α及已知量满足的方程式表示)。
2、若μA =1.00,μC =0.866,θ=60.0°。
求系统平衡时α的取值范围(用数值计算求出)。
三、(25分)在人造卫星绕星球运行的过程中,为了保持其对称转轴稳定在规定指向,一种最简单的办法就是让卫星在其运行过程中同时绕自身的对称轴转,但有时为了改变卫星的指向,又要求减慢或者消除卫星的旋转,减慢或者消除卫星旋转的一种方法就是所谓消旋法,其原理如图所示。
一半径为R ,质量为M 的薄壁圆筒,,其横截面如图所示,图中O 是圆筒的对称轴,两条足够长的不可伸长的结实的长度相等的轻绳的一端分别固定在圆筒表面上的Q 、Q ′(位于圆筒直径两端)处,另一端各拴有一个质量为2m的小球,正常情况下,绳绕在圆筒外表面上,两小球用插销分别锁定在圆筒表面上的P 0、P 0′处,与卫星形成一体,绕卫星的对称轴旋转,卫星自转的角速度为ω0。
若要使卫星减慢或者停止旋转(消旋),可瞬间撤去插销释放小球,让小球从圆筒表面甩开,在甩开的整个过程中,从绳与圆筒表面相切点到小球的那段绳都是拉直的。
当卫星转速逐渐减小到零时,立即使绳与卫星脱离,解除小球与卫星的联系,于是卫星转动停止。
已知此时绳与圆筒的相切点刚好在Q 、Q ′处。
1、 求当卫星角速度减至ω时绳拉直部分的长度l ;2、 求绳的总长度L ;3、 求卫星从ω0到停转所经历的时间t 。
四、(20分)空间某区域存在匀强电场和匀强磁场,在此区域建立直角坐标系O-xyz ,如图所示,匀强电场沿x 方向,电场强度i E E 01=,匀强磁场沿z 方向,磁感应强度k B B 0=,E 0、B 0分别为已知常量,k i 、分别为x 方向和z 方向的单位矢量。
1、有一束带电量都为+q 、质量都为m 的粒子,同时从Oyz 平面内的某点射出,它们的初速度均在Oyz 平面内,速度的大小和方向各不相同,问经过多少时间这些粒子又能同时回到Oyz 平面内。
2、现在该区域内再增加一个沿x 方向随时间变化的匀强电场,电场强度k t E E z )cos (0ω=,式中mqB 0=ω,若有一电荷量为正q 、质量为m 的粒子,在t=0时刻从坐标原点O 射出,初速度v 0在Oyz 平面内,试求以后此粒子的坐标随时间变化的规律。
不计粒子所受重力以及各带电粒子之间的相互作用,也不考虑变化的电场产生的磁场。
五、(15分)半导体pn 结太阳能电池是根据光生伏打效应工作的。
当有光照射pn 结时,pn 结两端会产生电势差,这就是光生伏打效应。
当pn 结两端接有负载时,光照使pn 结内部产生由负极指向正极的电流即光电流,照射光的强度恒定时,光电流是恒定的,已知该光电流为I L ;同时,pn 结又是一个二极管,当有电流流过负载时,负载两端的电压V 使二极管正向导通,其电流为)1(0-=VrV D eI I ,式中Vr 和I 0在一定条件下均为已知常数。
1、在照射光的强度不变时,通过负载的电流I 与负载两端的电压V 的关系是I=__________________。
太阳能电池的短路电流I S =_______________,开路电压V OC =___________________,负载获得的功率P=______________。
2、已知一硅pn 结太阳能电池的I L =95mA ,I 0=4.1×10-9mA ,Vr=0.026V 。
则此太阳能电池的开路电压V OC =___________________V ,若太阳能电池输出功率最大时,负载两端的电压可近似表示为)/(1)/(1ln0Vr V I I Vr V OC L mP ++=,则V mP =______________V 。
太阳能电池输出的最大功率P max =_______________mW 。
若负载为欧姆电阻,则输出最大功率时,负载电阻R=_____________Ω。
六、(20分)图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p 0。
用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A 室中有一电加热器Ω。
已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0。
现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体末态体积和A 室中气体的末态温度。
设A 、B 两室中气体1摩尔的内能U=5/2RT 。
R 为普适恒量,T 为热力学温度。
七、(20分)如图所示,L 是一焦距为2R 的薄凸透镜,MN 为其主光轴。
在L 的右侧与它共轴地放置两个半径皆为R 的很薄的球面镜A 和B 。
每个球面镜的凹面和凸面都是能反光的镜面。
A 、B 顶点间的距离为R 23。
在B 的顶点C 处开有一个透光的小圆孔(圆心为C ),圆孔的直径为h 。
现于凸透镜L 左方距L 为6R 处放一与主轴垂直的高度也为h (h<<R )的细短杆PQ (P 点在主轴上)。
PQ 发出的光经L 后,其中一部分穿过B 上的小圆孔正好成像在球面镜A 的顶点D 处,形成物PQ 的像I 。
则1、 像I 与透镜L 的距离等于___________。
2、 形成像I 的光线经A 反射,直接通过小孔后经L 所成的像I 1与透镜L 的距离等于_____________________。
3、 形成像I 的光线经A 反射,再经B 反射,再经A 反射,最后通过L 成像I2,将I2的有关信息填在下表中:I 2与L 的距离 I 2在L 左方还是右方 I 2的大小 I 2是正立还是倒立I 2是实像还是虚像4、 物PQ 发出的光经L 后未进入B 上的小圆孔C 的那一部分最后通过L 成像I3,将I3的有关信息填在下表中:八、(20分)有一核反应其反应式为n He H p 10323111+→+,反应中所有粒子的速度均远小于光速,试问:1、它是吸能反应还是放能反应,反应能Q 为多少?2、在该核反应中,若H 31静止,入射质子的阈能T th 为多少?阈能是使该核反应能够发生的入射粒子的最小动能(相对实验室参考系)。
3、已知在该反应中入射质子的动能为 1.21MeV ,若所产生中子的出射方向与质子的入射方向成60.0°角,则该中子的动能Tn 为多少?已知p 11、n 10、H 31核、He 32核的静止质量分别为:m P =1.007276u ,m n =1.008665u ,m 3H =3.015501u ,m 3He =3.014932u ,u 是原子质量单位,1u 对应的能量为931.5MeV 。
结果取三位有效数字。
第28届全国中学生物理竞赛复赛试题参考解答及评分标准一、参考解答:解法一取直角坐标系Oxy ,原点O 位于椭圆的中心,则哈雷彗星的椭圆轨道方程为22221x y a b+=(1)a 、b 分别为椭圆的半长轴和半短轴,太阳S 位于椭圆的一个焦点处,如图1所示.以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(2)设c 为椭圆中心到焦点的距离,由几何关系得c a r =-0 (3)22c a b -= (4)由图1可知,P 点的坐标cos P P x c r θ=+ (5) sin P P y r θ= (6) 把(5)、(6)式代入(1)式化简得()2222222222sin cos 2cos 0P P P P P ab r b cr bc a b θθθ+++-=(7) 根据求根公式可得()22222cos sin cos P P P Pb ac r a b θθθ-=+(8)由(2)、(3)、(4)、(8)各式并代入有关数据得0.896AU P r = (9)可以证明,彗星绕太阳作椭圆运动的机械能为图1s2Gmm E =a- (10)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v(11)得P =v(12)代入有关数据得414.3910m s P -⨯⋅v = (13)设P 点速度方向与0SP 的夹角为ϕ(见图2),根据开普勒第二定律[]sin 2P P P r ϕθσ-=v(14)其中σ为面积速度,并有πabTσ=(15) 由(9)、(13)、(14)、(15)式并代入有关数据可得127ϕ=o(16)解法二取极坐标,极点位于太阳S 所在的焦点处,由S 引向近日点的射线为极轴,极角为θ,取逆时针为正向,用r 、θ表示彗星的椭圆轨道方程为1cos p r e θ=+(1)其中,e 为椭圆偏心率,p 是过焦点的半正焦弦,若椭圆的半长轴为a ,根据解析几何可知()21p a e =-(2)将(2)式代入(1)式可得()θcos 112e e a r +-=(3)以e T 表示地球绕太阳运动的周期,则e 1.00T =年;以e a 表示地球到太阳的距离(认为地球绕太阳作圆周运动),则e 1.00AU a =,根据开普勒第三定律,有3232a T a T =e e(4)在近日点0=θ,由(3)式可得1r e a=-(5)将P θ、a 、e 的数据代入(3)式即得0.895AUP r =(6)可以证明,彗星绕太阳作椭圆运动的机械能 s2Gmm E =a- (7)式中m 为彗星的质量.以P v 表示彗星在P 点时速度的大小,根据机械能守恒定律有2s s 122P P Gmm Gmm m r a ⎛⎫+-=- ⎪⎝⎭v(8)可得P =v(9)代入有关数据得414.3910m s P -⨯⋅v = (10)设P 点速度方向与极轴的夹角为ϕ,彗星在近日点的速度为0v ,再根据角动量守恒定律,有()sin P P P r r ϕθ-=v v 00(11)根据(8)式,同理可得=v(12)由(6)、(10)、(11)、(12)式并代入其它有关数据127ϕ=o(13)评分标准:本题20分解法一(2)式3分,(8)式4分,(9)式2分,(11)式3分,(13) 式2分,(14)式3分,(15)式1分,(16)式2分.解法二(3)式2分,(4)式3分,(5)式2分,(6)式2分,(8)式3分,(10) 式2分,(11)式3分,(12)式1分,(13)式2分.二、参考解答:1.建立如图所示坐标系Oxy.两杆的受力情况如图:1f为地面作用于杆AB的摩擦力,1N为地面对杆AB的支持力,2f、2N为杆AB作用于杆CD的摩擦力和支持力,3N、4N分别为墙对杆AB和CD的作用力,mg为重力.取杆AB和CD构成的系统为研究对象,系统平衡时,由平衡条件有431N N f+-=(1)120N mg-=(2)以及对A点的力矩()3411sin sin sin cos cos cos 022mgl mg l l N l N l l CF θθαθθα⎛⎫+---+-= ⎪⎝⎭即()3431sin sin cos cos cos 022mgl mgl N l N l l CF θαθθα---+-=(3)式中CF 待求.F 是过C 的竖直线与过B 的水平线的交点,E 为BF 与CD 的交点.由几何关系有sin cot CF l αθ= (4)取杆CD 为研究对象,由平衡条件有422cos sin 0N N f θθ+-=(5)22sin cos 0N f mg θθ+-= (6)以及对C 点的力矩41cos sin 02N l mgl αα-= (7)解以上各式可得41tan 2N mg α= (8)331sin 1tan sin tan tan 22cos 2sin N mg αααθαθθ⎛⎫=--+⎪⎝⎭(9)13tan sin 1tan sin 2cos 2sin f mg θαααθθ⎛⎫=-+⎪⎝⎭(10)12N mg =(11)21sin tan cos 2N mg θαθ⎛⎫=- ⎪⎝⎭(12)21cos tan sin 2f mg θαθ⎛⎫=+ ⎪⎝⎭(13)CD 杆平衡的必要条件为22c f N μ≤(14)由(12)、(13)、(14)式得()2sin cos tan cos sin C C μθθαμθθ-≤+(15)AB 杆平衡的必要条件为11A f N μ≤(16) 由(10)、(11)、(16)式得tan sin 2sin 43tan sin cos A αααμθθθ-≤-(17)因此,使系统平衡,α应满足的条件为(15)式和(17)式.2.将题给的数据代入(15)式可得arctan 0.38521.1α︒≤= (18)将题给的数据代入(17)式,经数值计算可得19.5α≥︒(19)因此,α的取值范围为19.521.1α≤≤oo(20) 评分标准:本题20分 第1问15分(1)、(2)、(3)式共3分,(4)式1分,(5)、(6)、(7)式共3分,(9) 、(10) 式各1分,(12)到(17)式各1分.第2问5分(18)式1分,(19)式3分,(20)式1分.三、参考解答: 解法一1. 设在时刻t ,小球和圆筒的运动状态如图1所示,小球位于P 点,绳与圆筒的切点为T ,P 到T 的距离即绳的拉直部分的长度为l ,圆筒的角速度为ω,小球的速度为v .小球的速度可以分解成沿着绳子方向的速度1v 和垂直于绳子方向的速度2v 两个分量.根据机械能守恒定律和角动量守恒定律有 ()()()()22222001211112222M R m R M R m ωωω+=++v v (1)2220012+=++MR mR MR mR ml ωωωv v(2)因为绳子不可伸长,1v 与切点T 的速度相等,即ωR =1v (3)解(1)、(2)、(3)式得()()02222ωωmlR m M ml R m M ++-+= (4)()()022222ωmlR m M lR m M +++=v (5)由(4)式可得l =(6)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(6)式,当0=ω得=L (7)这便是绳的总长度L .2()2t3.如图2所示,从时刻t 到t t +∆,切点T 跟随圆筒转过一角度1t ωθ∆=∆,由于绳子的拉直部分的长度增加了l ∆,切点相对圆筒又转过一角度2lRθ∆=∆,到达T '处,所以在t ∆时间内,切点转过的角度12lt Rθθωθ∆∆=∆=+∆+∆ (8)切点从T 变到T '也使切线方向改变了一个同样的角度θ∆,而切线方向的改变是小球具有垂直于绳子方向的速度2v 引起的,故有 2tlθ∆∆=v (9)由(1)、(2)、(3)式可得()20l ωω=+v (10)由(8)、(9)、(10)三式得0l R t ω∆=∆ (11)(11)式表示l 随t 均匀增加,故l 由0增加到L 所需的时间为0s L t R ω==(12)解法二1.撤去插销后两个小球的运动情况相同,故可取一个小球作为对象进行研究,先研究任何时刻小球的速度.在t 时刻,相对卫星系统质心参考系小球运动状态如图1所示,绳子的拉直部分与圆筒面的切点为T ,小球到切点T 的距离即绳的拉直部分的长度为l ,小球到转轴O 的距离为r ,圆筒的角速度为ω.由于圆筒的转动和小球相对圆筒的运动,绳将2m1'展开,切点位置和绳的拉直部分的长度都要改变.首先考察小球相对于圆筒的运动.在t 时刻,OT 与固定在圆筒上的半径0OP 的夹角为φ,如图2所示.由于小球相对圆筒的运动,经过时间t ∆,切点从圆筒上的T 点移到T '点,OT '与0OP 的夹角变为φφ+∆,绳的拉直部分的长度由l 变为l ',小球由P 运动到P ',PP 'u u u r便是小球相对圆筒的位移.当t ∆很小时l l '≈,故PP l l φφ''=∆≈∆u u u r于是小球相对圆筒的速度大小为l l tφφφω∆==∆v (1)方向垂直于TP .φω是切点相对圆筒转动的角速度.再考察圆筒相对质心参考系的转动,即与圆筒固连在一起的转动参考系相对质心参考系的运动.当圆筒的角速度为ω时,位于转动参考系中的P 点(小球所在处)相对质心系的速度r ωω=v方向垂直于OP .可以把ωv 分解成沿着TP 方向的分量1ωv 和垂直TP 方向的分量2ωv ,如图3所示,即1R ωω=v(3)2l ωω=v (4)小球相对质心系的速度rv 是小球相对圆筒的速度和圆筒参考系中的P 点相对质心系速度的合成,由图3可得rv 的大小=v (5) 因r 2φω+r vl R φ= (6)故有=v(7)因为系统不受外力作用,故系统的动能和角动量守恒,故有 ()()222220*********M R mR M R m ωωω+=+v (8)()2220012MR mR MR mR ml ωωφωωω+=+++v v v(9)由(7)、(8)两式有()22220mM mφωωωωφ=+++(10)由(1)、(3)、(4)、(6)、(9)各式得()20mM mφωωφωω=+++(11)由(10)、(11)两式得φωωωω+=+0故有ωωφ=(12)上式说明绳子与圆筒的切点相对圆筒转动的角速度等于卫星的初始角速度,是一个恒量,将(12)式代入(11)式得φ=(13)由(6)、(13)两式得l =(14)这便是在卫星角速度减至ω时绳的拉直部分的长度l .2.由(14)式,当0=ω得绳总长度, 即L =(15)3.因φω是一个恒量,φ随时间的t 的变化规律为t0ωφ=(16)当0=ω时,由(13)式可得卫星停旋时的φs φ=(17)设卫星停转所用的时间为s t ,由(16)、(17)式得0s s t φω==(18) 评分标准:本题25分. 解法一第1问12分.(1)、(2)式各3分,(3)式2分,(6)式4分. 第2问3分.(7)式3分.第3问10分.(8)、(9)式各3分,(10)式2分,(11)、(12)式各1分. 解法二第1问18分.(1)式3分,(2)式2分,(7)式2分,(8)式3分,(9)式3分,(12)式2分,(14)式3分,第2问3分.(15)式3分.第3问4分.(16)式2分,(17)式1分,(18)式1分. 四、参考解答:1.根据题意,粒子的初速度只有y 方向和z 方向的分量,设它们为0y v 和0z v .因为粒子在z 方向不受电场力和磁场力作用,故粒子在z 方向以初速度0z v 作匀速运动.粒子在Oxy 面内的运动可以看作由以下两部分运动的合成:可把粒子在y 方向的初速度表示为001001y y y y =-++v v v v (1) 其中0010y E B =-v(2)沿y 负方向.与01y v 相关的磁场力010Bx y f q B =-v (3)沿x 负方向.粒子受到的电场力0E Ex f f qE == (4)沿x 正方向.由(2)、(3)、(4)式可知,粒子在x 方向受到的电场力和磁场力正好抵消,故粒子以大小为E B 的速度沿y 负方向运动.除此之外,由(1)式可知,粒子还具有初速度 00200y y E B =+v v (5)沿y 正方向,与02y v 相关的磁场力使粒子以速率02y v 在Oxy 面内作匀速圆周运动,以r 表示圆周运动的半径,有202020y y q B mr=v v(6) 可得020y m r qB =v(7)由周期的定义和(7)式可得圆周运动的周期2m T =qB π(8)(8)式表明,粒子运动的周期与粒子在y 方向的初速度无关.经过时间T 或T 的整数倍所考察的粒子就能同时回到Oyz 平面.2.增加的电场2E ρ对粒子在Oxy 平面内的运动无影响,但粒子在z 方向要受到此电场力作用.以z a 表示在此电场力作用下的加速度,有0cos z ma qE t ω= (9) 或cos z qE a =t mω (10)这是简谐运动的加速度,因而有2z a =z ω-(11) 由(10)、(11)可得t mqE z ωωcos 102-= (12)因未增加电场时,粒子在z 方向作初速度为0z v 的匀速运动,增加电场后,粒子在z 方向的运动是匀速运动与简谐运动的叠加,即有 0021cos z qE z t t mωω=-v (13)粒子在Oxy 平面内的运动不受电场2E v的影响.设0ω为粒子在Oxy平面内作圆周运动的角速度,则有 002πqB T mω==由图示可得与圆周运动相联系的粒子坐标随时间t 的变化关系()01cos x r t ω'=- 0sin y r t ω'=考虑到粒子在y 方向还具有速度为01y v 的匀速运动,并利用(2)、(5)、(7)、(14)以及己知条件,可得带电粒子的运动规律:000001cos y E qB m x t qB B m ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭v(17)0000000sin y E E qB m y t t B qB B m⎛⎫=-++ ⎪⎝⎭v2(18)00020cos z mE qB z t t qB m=-v(19)评分标准:本题20分.第1问12分.(2)、(3)、(4)式共5分,(5)、(6)、(7)式共4分,(8)式及相关说明共3分.第2问8分.(12)式2分,(14)式到(19)式各1分. 五、答案与评分标准 本题15分.1.01TV V L I I e ⎛⎫-- ⎪ ⎪⎝⎭ (2分),L I (2分),0ln 1L T I V I ⎛⎫+ ⎪⎝⎭ (2分),01TVV L VI VI e ⎛⎫-- ⎪ ⎪⎝⎭(1分).2.0.62V (2分);0.54V (2分);49mW (2分);6.0Ω (2分).六、参考解答:在电加热器对A 室中气体加热的过程中,由于隔板N 是导热的,B 室中气体的温度要升高,活塞M 将向右移动.当加热停止时,活塞M 有可能刚移到气缸最右端,亦可能尚未移到气缸最右端. 当然亦可能活塞已移到气缸最右端但加热过程尚未停止.1. 设加热恰好能使活塞M 移到气缸的最右端,则B 室气体末态的体积2B V V =(1)根据题意,活塞M 向右移动过程中,B 中气体压强不变,用B T 表示B 室中气体末态的温度,有00BBV V T T =(2)由(1)、(2)式得02B T T =(3)由于隔板N 是导热的,故A 室中气体末态的温度02A T T = (4)下面计算此过程中的热量m Q .在加热过程中,A 室中气体经历的是等容过程,根据热力学第一定律,气体吸收的热量等于其内能的增加量,即05()2A A Q R T T =- (5)由(4)、(5)两式得052A Q RT =(6)B 室中气体经历的是等压过程,在过程中B 室气体对外做功为00()B B W p V V =-(7)由(1)、(7)式及理想气体状态方程得0B W RT = (8)内能改变为05()2B B U R T T ∆=-(9)由(4)、(9)两式得052∆=B U RT (10)根据热力学第一定律和(8)、(10)两式,B 室气体吸收的热量为072=∆+=B B B Q U W RT (11)由(6)、(11) 两式可知电加热器提供的热量为6m A B Q Q Q RT =+=(12)若0m Q Q =,B 室中气体末态体积为02V ,A 室中气体的末态温度02T .2.若0m Q Q >,则当加热器供应的热量达到m Q 时,活塞刚好到达气缸最右端,但这时加热尚未停止,只是在以后的加热过程中气体的体积保持不变,故热量0m Q Q -是A 、B中气体在等容升温过程中吸收的热量.由于等容过程中气体不做功,根据热力学第一定律,若A 室中气体末态的温度为AT ',有 00055(2)(2)22m AA Q Q R T T R T T ''-=-+-(13)由(12)、(13)两式可求得00455AQ T T R '=+ (14)B 中气体的末态的体积02BV =V ' (15)3. 若0m Q Q <,则隔板尚未移到气缸最右端,加热停止,故B 室中气体末态的体积BV ''小于02V ,即02BV V ''<.设A 、B 两室中气体末态的温度为A T '',根据热力学第一定律,注意到A 室中气体经历的是等容过程,其吸收的热量05()2A AQ R T T ''=- (16)B 室中气体经历的是等压过程,吸收热量0005()()2B AB Q R T T p V V ''''=-+- (17)利用理想气体状态方程,上式变为 ()072B AQ R T T ''=- (18) 由上可知006()A B AQ Q Q R T T ''=+=- (19)所以A 室中气体的末态温度06AQ T T R''=+(20)B 室中气体的末态体积00000(1)6BAV QV T V T RT ''''==+ (21) 评分标准:本题20分.得到0m Q Q =的条件下(1)、(4)式各1分;(12)式6分,得到0m Q Q >的条件下的(14)式4分,(15)式2分;得到0m Q Q <的条件下的(20)式4分,(21)式2分.七、答案与评分标准: 本题20分.1. 3R (3分) 2. 6R (3分) 3.第1第3空格各2分;其余3个空格全对3分,有一个错则不给这3分. 4.八、参考解答: 1. 反应能()()332pn H He Q m m m m c ⎡⎤=+-+⎣⎦(1)式中c 为光速.代入数据得0.764MeV Q =- (2)上式表明这是一吸能核反应.2.为了求入射质子阈能,反应前后各粒子都应沿同一直线运动.设质子的入射速度大小为p v ,反应后32He 的速度大小为3He v ,中子的速度大小为n v ,根据动量守恒和能量守恒有33p p n n He He m m m =+v v v (3)33222p p n n He He 111222m m m Q =++v v v (4) 由(3)、(4)式可得3333322n n p p p n22He He n p n p He He He 220m m m m m m m m Q m m m ⎛⎫⎛⎫+--++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭v v v v (5)令333332n nHe He p n pHe 2p p 2Hep He22m m m a m m m b m m m m c Qm ⎫+⎪=⎪⎪⎪=-⎬⎪⎪-⎪=+⎪⎭v v (6)把(6)式代入(5)式得2n n 0a b c ++=v v(7)(7)式有解的条件是240b ac -≥ (8)由(6)式可知,c 可能大于零,亦可能小于零.若0c <,则(8)总成立,中子速度一定有解,反应一定能发生;若0c >,则由 (6)、(8)两式得 33n 2He p p n pHe 12m m m Q m m m +≥+-v (9)即只有当入射质子的动能满足(9)式时,中子速度才有解,反应才能发生,所以入射质子的阈能为3pn p He 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(10)利用(1)式,在忽略2Q 项的情况下,(10)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(11)代入有关数据得1.02MeV th T = (12)3.由动量守恒和能量守恒有33p p n n He He =+v v vm m m v v v33222p p n n He He 111222m m m Q =++v v v (13) 以θ表示反应中产生的中子速度方向与入射质子速度方向的夹角,如图所示,根据余弦定律有 ()()()33222n n p p n p n p He He 2cos m m m m m θ=+-v v v v v(14) 令2p p p12T m =v (15)2n n n12T m =v (16)3332He He He12=T m v (17)把(15)、(16)、(17)式代入(13)、(14)两式得3He Q T T T =--p n (18)33n n p p He He 222m T m T m T θ=+-(19)p p m v由(18)、(19)式,消去3HeT后,得()3333p pHe Henn nHe Hem m T Q mTm mθ----=+(20)令3nHeSθ=,()333p pHe HenHem m T Q mRm m--=+(21)得n20T R-=(22)根据题给的入射质子的动能和第1问求得的反应能Q的值,由(21)式可知0R>,故(22)式的符合物理意义的解为S=(23)将具体数据代入(21)、(23)式中,有n0.132MeVT=(24)(如果得到131.0=nT MeV,也是对的.)第2问的其他解法解法一为了研究阈能,只考虑碰撞前后各粒子都沿同一直线运动的情况.若碰撞后32He和中子的速度相同,即粘在一起运动(完全非弹性碰撞),则在碰撞过程中损失的机械能最多,若所损失的机械能正好等于反应能,则入射质子的动能最小,这最小动能便是阈能. 设质子的入射速度大小为pv,反应后32He和中子的速度大小为v,根据动量守恒和能量守恒有3p p nHe()m m m=+v v(1)322p p nHe11()22m m m Q=++v v(2)由(1)、(2)式可得33n2Hep pn pHe12m mm Qm m m+=+-v(3)所以阈能为3pn pHe 1th m T Q m m m ⎛⎫=+⎪ ⎪+-⎝⎭(4)利用第1问中的(1)式,并注意到 32H 1<<Q m c有333332n pHe H H 2H H 11111⎛⎫==- ⎪ ⎪+-⎛⎫⎝⎭+⎪ ⎪⎝⎭Q m m m m m c Q m m c 在忽略2Q 项的情况下,(4)式可简化为3pH1th m T Q m ⎛⎫=+⎪ ⎪⎝⎭(5)代入有关数据得1.02MeV th T = (6)第2问8分(1)、(2)式各3分,(4)式或(5)式1分,(6)式1分. 解法二在牛顿力学中可以证明,质点系的总动能可以表示为质点系的总质量以质心速度运动的动能即所谓质心动能与各质点相对质心运动的动能之和.若质点系不受外力作用,则质点系的动量守恒,质心速度不变,故质心动能亦恒定不变;如果质点系内部的相互作用导致质点系机械能的变化,则可变化的机械能只能是各质点相对质心运动的动能. 在本题中,如果质子p 与氚31H 发生反应后,生成的中子n 和氦32He 相对质心都静止,则质子p 与氚31H 相对质心运动的动能之和全部转化成反应能,反应后系统的动能只有质心的动能,在这请况下,转化成其他形式能量的机械能最多,入射质子的动能最小,这最小动能便是阈能.所以入射质子的阈能等于系统质心的动能与反应能之和.以p 'v 和3H 'v 分别表示质子p 和氚31H 相对质心的速度,有3322p p H H1122Q =m m ''+v v (1)因系统质心的速度3p p c p H=+m m m v v(2) 而33p H p p c p Hm m '=-=+v v v v m(3)33p pc H p H0m m '=-=-+v v v m(4)由(1)、(3)、(4)式得332H p pp H12m Q m m m =+v (5)在牛顿力学中,系统的总质量是恒定不变的,这就导致系统质心的动能在反应前后恒定不变的结论,但在本题中,损失掉的机械能导致系统总质量的变化,使反应前系统的总质量与反应后系统的总质量不相等,即33p n H He +≠+m m m m .如果仍沿用牛顿力学的结论,对一个孤立系统,其质心速度是不会改变的,故反应后质心的动能应为 ()()33222c n c p c c 2He H 111222=+=++Q E m m m m cv v v 而()33322p p p 2c 2222p H Hp HQ 1122m m Q QQ c c c m m m m m =⋅=⋅⋅++v v 由此可见,在忽略2Q 的条件下 ()()3322n p He H 1122c cm m m m +=+v v 而入射质子的阀能()32p H 12th c T m m Q =++v (6)由(2)、(5)、(6)式得3p H 1th m T Q m ⎛⎫=+ ⎪ ⎪⎝⎭(7)代入有关数据得1.02MeV th T = (8)第2问8分(1)、(5) 、(6)式各2分, (7)式1分,、(8)式1分. 解法三考虑反应前后各粒子都沿同一直线运动的情况,若入射质子与与静止的31H 发生完全非弹性碰撞,即反应后产生的中子和32He 以相同的速度运动,则入射质子的动能就是阈能.以10m 表示质子的静止质量,20m 表示31H 的静止质量,30m 表示中子的静止质量,40m 表示31He 的静止质量,设质子的入射速度大小为p v ,反应后32He 和中子的速度大小都为v ,根据动量守恒和能量守恒有1p m m m +=v(1)222120m m c m c m c++=(2)式中1m 是质子的动质量.由(1)、(2)两式得 1p 120+m m m v v =(3)把(3)式代入(1)式,经整理得()()2222221201p 3040+-=+m m c m m m c v(4)由1m =(5) 可得221p221102-=m m m c v(6)若入射质子的阈能为th E ,有22110th m c m c E =+(7)由(4)、(6)、(7)式可得 ()()2230401020202th m m m m E m +-+=(8)利用题给条件并引入反应能,得 333p n H HeH2th m m m m E Q m +++=(9) 或有()3333p 2H p HH H22th Q+m m m m c E Q Q m m ++=≈(10)代入有关数据得1.02MeV th T = (11)第2问8分(1)、(2) 、(8)式各2分, (9)或(10)式1分, (11)式1分.。