安尔达AD238
SP238A中文资料
s Operates from Single +5V Power Supply (+5V and +12V – SP239A)s Meets All RS-232D and V.28 Specifications s ±9V Output Swing with +5V Supply s Improved Driver Output Capacity for Mouse Applicationss Low Power Shutdown – 1µAs WakeUp Feature in Shutdown Mode s 3–State TTL/CMOS Receiver Outputs s ±30V Receiver Input Levelss Low Power CMOS – 5mA Operation s Wide Charge Pump Capacitor Value Range – 1-10µF DESCRIPTION…The SP230A Series are multi–channel RS-232 line drivers/receivers that provide a variety of configurations to fit most communication needs, especially where ±12V is not available. Some models feature a shutdown mode to conserve power in battery-powered systems. Some require no external components. All, except one model, feature a built-in charge pump voltage converter, allowing them to operate from a single +5V power supply. All drivers and receivers meet all EIA RS-232D and CCITT V.28 requirements. The Series is available in plastic and ceramic DIP and SOIC packages.SELECTION TABLEABSOLUTE MAXIMUM RATINGS This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.VCC ...............................................................................................................................................................+6VV+...................................................................................................................(Vcc–0.3V) to +13.2V V–.............................................................................................................................................................13.2V Input Voltages:T IN .......................................................................................................................–0.3 to (Vcc +0.3V)RIN ............................................................................................................................................................±30VOutput Voltages:TOUT.................................................................................................(V+, +0.3V) to (V–, –0.3V)ROUT..............................................................................................................–0.3V to (Vcc +0.3V)Short Circuit Duration:TOUT.........................................................................................................................................ContinuousPower Dissipation:CERDIP..............................................................................675mW(derate 9.5mW/°C above +70°C)Plastic DIP..........................................................................375mW(derate 7mW/°C above +70°C)Small Outline......................................................................375mW(derate 7mW/°C above +70°C)SPECIFICATIONS0V 5V 0V5V 0V0VT INT INT OUTT OUTR L = 3k Ω, C L = 2,500pFNo loadTransmitter Propagation DelayTransmitter Output WaveformsReceiver Output WaveformShutdown to V+, V– Rise TimeInOut5V 0V 0VSDV +V –Rise TimeR L = 3k Ω; C L = 2,500pF All inputs = 20kHzT INT OUTT INT OUTFall TimeR L = 3k Ω; C L = 2,500pFReceiver Propagation DelayRIN 5V 0VR OUT5V 0VR IN5V 0VR OUTPINOUTFall Time Rise TimeReceiver Output Enable/Disable TimesDisable5V 0V5V 0VEN INR OUTEnable5V 0V5V 0VEN INR OUTPINOUTFEATURES…The multi–channel RS-232 line drivers/receivers pro-vides a variety of configurations to fit most communi-cation needs, especially those applications where ±12V is not available. The SP230A, SP235A/B, SP236A/B, SP240A/B, and SP241A/B feature ashutdown mode which reduces device power dissipa-tion to less than 5µW. All feature low power CMOS operation, which is particularly beneficial in battery-powered systems. The SP235A/B use no external components and are ideally suited where printed circuit board space is limited.All products in the Series, except the S P239A, includetwo charge pump voltage converters which allowthem to operate from a single +5V supply. These converters convert the +5V input power to the ±10V needed to generate the RS-232 output levels. The SP239A is designed to operate from +5V and +12V supplies. An internal charge pump converter produces the necessary –12V supply. All drivers and receivers meet all EIA RS-232D and CCITT V.28 specifications.The Series are available for use over the commer-cial, industrial and military temperature ranges. They are packaged in plastic and ceramic DIP, and SOIC packages. For product processed and screened to MIL–M–38510 and MIL–STD–883C requirements, please consult the factory.THEORY OF OPERATIONThe SP230A/B–241A/B series devices are made up of t hree b asic c ircuit b locks –1) t ransmitter, 2) r eceiver and 3) charge pump. Each model within the series incorporates variations of these circuits to achieve the desired configuration and performance.Driver/TransmitterThe drivers are inverting transmitters, which accept TTL or CMOS inputs and output the RS-232 signals with an inverted sense relative to the input logic levels. Typically the RS-232 output voltage swing is ±9V. Even under worst-case loading conditions of 3kΩ and 2500pF, the output is guaranteed to be ±5V, which is consistent with the RS-232 standard specifications. The transmitter outputs are protected against infi-nite short-circuits to ground without degradation in reliability.The drivers of the SP230A, SP235A/B, SP236A/B, SP240A/B and SP241A/B can be tri-stated by using the SHUTDOWN function. In this “power-off” state, the output impedance will remain greater than 300 Ohms, again satisfying the RS-232 specifications. Should the input of the driver be left open, an internal 400kΩ pull–up resistor to VCCforces the input high, thus committing the output to a low state.The slew rate of the transmitter output is internally limited to a maximum of 30V/µs in order to meet theTable 1. EIA Standards DefinitionCharge Pump Output Loading versus VCC; a) V+; b) V–ENABLE Input (EN)The SP235A/B , SP236A/B , SP239A, SP240A/B, and SP241A/B all feature an enable input (EN), which allows the receiver outputs to be either tri–stated or enabled. The enable input is receiver outputs. This can be especially useful when the receiver is tied directly to a micropro-cessor data bus.Protection From Shorts to >±15VThe driver outputs are protected against shorts to ground, other driver outputs, and V + or V -.For protection against voltages exceeding ±15V,two back–to–back zener diodes connected to clamp the outputs to an acceptable voltage level are recommended. (Refer to Figure 3.)Improved Drive Capability for Mouse ApplicationsEach of the devices in this data sheet have improved drive capability for non-standard ap-plications. Although the EIA RS-232D stan-dards specify the maximum loading to be 3k Ωand 2500pF, the SP230A , SP234A , SP235A/B ,SP236A/B , SP237A , SP238A , SP239, SP240A/B, and SP241A/B can typically drive loads as low as 1k Ω and still maintain ±5V outputs. This feature is especially useful when the serial port is intended to be used for a “self-powered”mouse. In this case the voltage necessary to operate the circuits in the mouse can be derived from the RS-232 driver output as long as the loading is ≥1k Ω (refer to Figure 4). For applica-tions which even exceed this requirement, driv-ers can be connected in parallel, increasing the drive capability to 750Ω, while maintaining the ±5V V OH and V OL levels (refer to Figure 5).Figure 3. High Voltage Short Circuit ProtectionFigure 2. Charge Pump Voltage Inverter output impedance of V + and V -, which will degrade V OH and V OL . Capacitor values can be as low as 1.0µF.Shutdown (SD)The SP230A , SP235A/B , SP236A/B ,SP240A/B and SP241A/B all feature a control input which will disable the part and reduce V CC current typically to less than 5µA, which is especially useful to designers of battery–pow-ered systems. In the “power–off” mode the receiver and transmitter will both be tri-stated.V + will discharge to V CC , and V - will discharge to ground.For complete shutdown to occur and the 10µA current drain to be realized, the following con-ditions must be met:• +5.00V must be applied to the SD pin;• ENABLE must either 0V, +5.0V or not connected;• the transmitter inputs must be either +5.0V or not connected;• V CC must be +5V;• Receiver inputs must be >0V and <+5VPlease note that for proper operation, the SD input pin must never be left floating.Table 2. Wake–Up Truth TableFigure 4. Mouse Application Drive Capability 109876543210V O L /V O H (V o l t s )246810121820I OL /I OH (mA)161422V OL vs I OLV OH vs I OHFigure 5. Parallel DriversWake-Up FeatureThe SP235B , SP236B , SP240B and SP241B have a wake-up feature that keeps all receivers in an enabled state when the device is in the shutdown mode. Table 2 defines the truth table for the wake-up function. Timing for the wake-up function is shown in Figure 6.If the SP235B , SP236B , SP240B and SP241B are powered up in the shutdown state (SD driven high during V CC power up), the part must remain in a powered on state for a minimum of 3ms before the wake-up function can be used. After the 3ms wait time, there is a 2ms delay time before data is valid for both enable and disableFigure 6. Wake–Up and Shutdown Timingof the charge pump. If the SP2XXB is powered up with SD low, then only the 2ms delay time will apply (refer to Figure 6). Under normal operation, both the wait time and delay time should be transparent to the user.With only the receivers activated, the device typically draws less than 5µA (10µA max) sup-ply current. In the case of a modem interfaced to a computer in power-down mode, the RI (ring indicator) signal from the modem would be used to “wake up” the computer, allowing it to accept the data transmission.After the ring indicator signal has propagated through the SP2XXB receiver, it can be used to trigger the power management circuitry of the computer to power up the microprocessor and bring the SD pin to the SP2XXB low, taking it out of shutdown. The receiver propagation de-lay is typically 1µs. The enable time for V+ and V- is typically 2ms. After V+ and V- have settled to their final values, a signal can be sent back to the modem on the DTR (Data Terminal Ready) pin signifying that the computer is ready to accept and transmit data.All receivers that are active during shutdown maintain 500mV (typ.) of hysteresis.Varying Capacitor ValuesAs stated earlier, the capacitor values are some-what non-critical. Since they are an actual compo-nent of the charge pump circuitry, their value will affect its performance, which in turn affects the V OH and V OL levels. There is no upper limit for the value of any of the four capacitors; lower values will impact performance. C 1 and C 2 are respon-sible for the charge accumulation and can be reduced to 1µF; this will increase the output im-pedance of V + and V –. Reducing these capacitor values will limit the ability of the SP2XXA/B to maintain the dc voltages needed to generate the RS-232 output levels. Capacitors C 3 and C 4 can also be reduced to 1µF; doing so will increase the ripple on V + and V–.Typically each driver will require 1µF of capaci-tance as a minimum to operate within all specified parameters; if five drivers are active in the circuit,then C 3 and C 4 should be 5µF. In order to operateat these minimum values, the supply voltage must be maintained at +5.0V ±5%. Also, the ambient operating temperature must be less than 60°C.The capacitor values must be chosen to suit the particular application. The designer must bal-ance board space, cost and performance to maxi-mize the design. The capacitors can be polarized or non–polarized, axial-leaded or surface-mount.As the size and value decrease, so does the cost;however, the value should be chosen to accom-modate worst-case load conditions.IBM Modem Port InterconnectionsINTERFACE EXAMPLE – A MODEM ON THE IBM PC SERIAL PORTThe RS-232 standard defines 22 serial interface signals. These signals consist of ground lines,timing, data, control and test signals, plus a set of signals rarely used for a second data channel.Many of these signal lines are not used in typical RS-232 applications; in fact, the IBM ® PC serial port is implemented using only nine pins.For example, consider the case of a PC using this nine pin port to communicate with a peripheral device such as a modem. We see the following activity on each of the RS-232 lines as the computer and modem are activated and commu-nicate with each other as well as the remote modem at the other end of the phone line.Signal Ground (GND)The Signal Ground pin acts as a reference for all the other signals. This pin is simply maintained at a 0V level to serve as a level to which all other signals are referenced. Both the PC and the modem will have this line connected to their respective internal ground lines.Data Terminal Ready (DTR)This is the pin the computer uses to tell periph-eral devices that it is on–line and ready to communicate.Data Set Ready (DSR)Peripheral devices use this line to tell the com-puter that they are on–line and ready to commu-nicate. When the modem is turned on and has completed its self–test routine (assuming it does one), it will send a signal to the PC by asserting this line.Request To Send (RTS)The computer activates this line to notify the peripheral device that it is ready to send data. In this example, the computer notifies the modem that it is ready to send data to be transmitted by the modem.Clear To Send (CTS)This is the line on which the peripheral device tells the computer that it is ready to receive data from the computer. If the modem was not ready, i.e. it was performing a loop–back self–test, for example, it would not assert this line. Once the modem was ready to receive data from the PC, it would assert this line. When it receives the CTS signal from the modem, the PC knows that a data transmission path has been established between itself and the modem.Transmitted Data (TD or TX)This is the pin on which the computer sends the actual data signal to be transmitted, i.e. a posi-tive voltage (+3V to +15V) to represent a logic “0”, and a negative voltage (–3V to –15V) to represent a logic “1”. The PC would send the data on this line to be transmitted by the modem. Ring Indicator (RI)This line is used by the peripheral device to tell the computer that a remote device wants to start communicating. The modem would activate the RI line to tell the computer that the remote modem was calling, i.e. the phone is ringing. Data Carrier Detect (DCD)This line is used by the modem to tell the computer that it has completed a transmission path with the remote modem, and to expect to start receiving data at any time.Received Data (RD or RX)This is the pin on which the modem sends the computer the incoming data signal, i.e. a posi-tive voltage (+3V to +15V) to represent a logic “0”, and a negative voltage (-3V to -15V) to represent a logic “1”.INTERFACE EXAMPLE – A PRINTER ON THE IBM PC SERIAL PORTThe RS-232 standard defines 22 serial interface signals. These signals consist of ground lines, timing, data, control and test signals, plus a set of signals rarely used for a second data channel. Many of these signal lines are not used in typical RS-232 applications; in fact, the IBM® PC serial port is implemented using only nine pins.For example, consider the case of a PC using this nine pin port to communicate with a peripheral device such as a printer. We see the following activity on each of the RS-232 lines as the com-puter and printer are activated and communicate. Signal Ground (GND)The Signal Ground pin acts as a reference for all the other signals. This pin is simply maintained at a 0V level to serve as a level to which all other signals are referenced. Both the PC and the printer will have this line connected to their respective internal ground lines.Data Terminal Ready (DTR)This is the pin the computer uses to tell peripheral devices that it is on–line and ready to communi-IBM Printer Port Interconnectionscate. Once the computer is powered–up and ready, it will send out a signal on the DTR to inform the printer that it is powered–up and ready to go. The printer really doesn’t care, since it will simply print data as it is received. Accordingly, this pin is not needed at the printer.Data Set Ready (DSR)Peripheral devices use this line to tell the computer that they are on–line and ready to communicate. When the printer is turned on and has completed its self–test routine (assuming it does one), it will send a signal to the PC by asserting this line. Request To Send (RTS)The computer activates this line to notify the peripheral device that it is ready to send data. In this example, the computer notifies the printer that it is ready to send data to be printed by the printer. Clear To Send (CTS)This is the line on which the peripheral device tells the computer that it is ready to receive data from the computer. If the printer was not ready, i.e. it was out of paper, for example, it would not assert this line. Once the printer was ready to receive data from the PC, it would assert this line. When it receives the CTS signal from the printer, the PC knows that a data transmission path has been established between itself and the printer. Transmitted Data (TD or TX)This is the pin on which the computer sends the actual data signal representing the actual informa-tion to be printed, i.e. a positive voltage (+3V to +15V) to represent a logic “0”, and a negative voltage (-3V to -15V) to represent a logic “1”. Ring Indicator (RI)This line is used by the peripheral device to tell the computer that a remote device wants to start com-municating. A modem would activate the RI line to tell the computer that a remote modem was calling, i.e. the phone is ringing. In the case of a printer, this line is unused.Data Carrier Detect (DCD)This line is used by a peripheral device to tell the computer to expect to start receiving data at any time. Since the printer would not be sending data to the PC in this case this line is not needed.Received Data (RD or RX)This is the pin on which the computer receives the incoming data signal, i.e. a positive voltage (+3V to +15V) to represent a logic “0”, and a negative voltage (-3V to -15V) to represent a logic “1”. Again, in this instance, since the printer will not be sending the PC any data, this line is not needed.ORDERING INFORMATION Model.......................................................................................Temperature Range....................................................................PackageSP230ACP.....................................................................................0°C to +70°C.....................................................................20–pin Plastic DIP SP230ACT.....................................................................................0°C to +70°C..............................................................................20–pin SOIC SP230ACX.....................................................................................0°C to +70°C............................................................................................Dice SP230AEP...................................................................................–40°C to +85°C...................................................................20–pin Plastic DIP SP230AET...................................................................................–40°C to +85°C............................................................................20–pin SOIC SP234ACP.....................................................................................0°C to +70°C.....................................................................16–pin Plastic DIP SP234ACT.....................................................................................0°C to +70°C..............................................................................16–pin SOIC SP234ACX.....................................................................................0°C to +70°C............................................................................................Dice SP234AEP...................................................................................–40°C to +85°C...................................................................16–pin Plastic DIP SP234AET...................................................................................–40°C to +85°C............................................................................16–pin SOIC SP235ACP.....................................................................................0°C to +70°C.............................................24–pin Plastic Double–width DIP SP235AEP...................................................................................–40°C to +85°C...........................................24–pin Plastic Double–width DIP SP235BCP.....................................................................................0°C to +70°C.............................................24–pin Plastic Double–width DIP SP235BEP...................................................................................–40°C to +85°C...........................................24–pin Plastic Double–width DIP SP236ACS.....................................................................................0°C to +70°C.....................................................................24–pin Plastic DIP SP236ACT.....................................................................................0°C to +70°C..............................................................................24–pin SOIC SP236ACX.....................................................................................0°C to +70°C............................................................................................Dice SP236AES...................................................................................–40°C to +85°C...................................................................24–pin Plastic DIP SP236AET...................................................................................–40°C to +85°C............................................................................24–pin SOIC SP236BCS.....................................................................................0°C to +70°C.................................................................... 24–pin Plastic DIP SP236BCT.....................................................................................0°C to +70°C..............................................................................24–pin SOIC SP236BCX.....................................................................................0°C to +70°C............................................................................................Dice SP236BES...................................................................................–40°C to +85°C...................................................................24–pin Plastic DIP SP236BET...................................................................................–40°C to +85°C............................................................................24–pin SOIC SP237ACS.....................................................................................0°C to +70°C.....................................................................24–pin Plastic DIP SP237ACT.....................................................................................0°C to +70°C..............................................................................24–pin SOIC SP237ACX.....................................................................................0°C to +70°C............................................................................................Dice SP237AES...................................................................................–40°C to +85°C...................................................................24–pin Plastic DIP SP237AET...................................................................................–40°C to +85°C............................................................................24–pin SOIC SP238ACS.....................................................................................0°C to +70°C.....................................................................24–pin Plastic DIP SP238ACT.....................................................................................0°C to +70°C..............................................................................24–pin SOIC SP238ACX.....................................................................................0°C to +70°C............................................................................................Dice SP238AES...................................................................................–40°C to +85°C...................................................................24–pin Plastic DIP SP238AET...................................................................................–40°C to +85°C............................................................................24–pin SOIC SP239ACS.....................................................................................0°C to +70°C.....................................................................24–pin Plastic DIP SP239ACT.....................................................................................0°C to +70°C..............................................................................24–pin SOIC SP239ACX.....................................................................................0°C to +70°C............................................................................................Dice SP239AES...................................................................................–40°C to +85°C...................................................................24–pin Plastic DIP SP239AET...................................................................................–40°C to +85°C............................................................................24–pin SOIC SP240ACF.....................................................................................0°C to +70°C...............................................................44–pin Quad Flatpack SP240BCF.....................................................................................0°C to +70°C.............................................................. 44–pin Quad Flatpack SP241ACT.....................................................................................0°C to +70°C..............................................................................28–pin SOIC SP241AET...................................................................................–40°C to +85°C............................................................................28–pin SOIC SP241BCT.....................................................................................0°C to +70°C..............................................................................28–pin SOIC SP241BET...................................................................................–40°C to +85°C............................................................................28–pin SOICSome –CT and –ET packages available Tape–on–Reel; please consult the factory.。
新版围墙监控布线方案(围墙感应报警器)
实用标准文案围墙周边视频监控及防范防盗报警系统最佳方案一、项目需求视频监控项目是根据新址建设安防需要由XXXXXXXXXX公司提出。
根据系统实现的目标,提出以下要求:1、对围墙周围情况的全天候实时监控。
新址围墙长度见总图。
东围墙长度为:390米;西围墙长度为:400米;南围墙长度为:600米;北围墙长度为:610米。
2、采用系统集成,实现集中管理。
设立监控中心,实现集中控制。
新址建设期间,监控室设在临建办公地点,实行人员值守、监看、管理。
办公设施完备后,网络和主要存储设备移往机房,监控室迁至武保部门。
3、有良好的扩展性。
系统应具有与局域网连接,形成综合应用平台,实现网络访问的能力;具有远程访问、实时查看的能力;具有与生产监控、厂内主干和重要部位监控系统连接的能力;能够实现与门禁、报警系统相连构成安防系统。
二、公司安防系统总体构架文档大全实用标准文案信息中心规划的安防系统总构架:公司未来视频监控系统应由前端系统、传输系统、控制系统、显示系统四个部分构成,还具有对图像信号的分配切换、存储、处理、还原等功能。
三、提供选择的实施方案根据公司对安防的具体要求,结合监控的围墙、通道及周边实际,经过方案技术咨询、现场实地考察、专题方案讨论,确定了四套方案提供公司选定,组织实施。
方案一:围墙周边全部采用红外对射报警系统。
红外对射周界防范能够最早地发现异常情况,实现报警。
保卫值班人员可以及时赶往现场有效制止犯罪。
红外周界防范的优点:造价低、隐蔽性好、无盲区和死角;防卫能力完备、可全天侯工作。
提高了整体防护的安全性。
缺点:容易受环境、安装方式、角度、位置等因素都很的影响。
造价为:红外对射报警系统概算为 38714元;施工、材料费(含围墙照明工程共用部文档大全实用标准文案分)概算 115762元。
方案二:围墙周边全部采用视频监视。
视频监控系统可采集、记录、回放监视现场的实时图像,可追溯事件发生过程。
如果实行人员值守,监看、管理,可立即发现异常情况,采取手段,及时处置,达到防范的目的。
旗舰起航九款LGA2011散热器对比评测
旗舰起航:九款LGA2011散热器对比评测在硬件发烧友的圈子中,LGA2011平台一直享有极高的声誉。
为了满足玩家们对散热性能的极致追求,市面上涌现出众多旗舰级LGA2011散热器。
今天,我们将对九款热门LGA2011散热器进行全方位对比评测,助您找到最适合的散热利器。
一、参评散热器简介1. Noctua NHD14作为散热器界的翘楚,Noctua NHD14凭借其双塔式设计和出色的散热性能,赢得了众多玩家的喜爱。
此次评测,它能否继续保持领先地位?2. Be Quiet! Dark Rock Pro 3来自德国的Be Quiet!品牌,以其静音性能著称。
Dark Rock Pro3散热器在保持静音的同时,能否在散热性能上有所突破?3. Corsair H100i水冷散热器代表之作,Corsair H100i凭借其出色的散热性能和易安装性,受到了许多玩家的青睐。
本次评测,我们将看看它是否能够继续领跑。
4. Cooler Master V8Cooler Master V8散热器以其独特的散热鳍片设计和强大的散热性能,成为玩家们心中的性价比之选。
它能否在此次评测中脱颖而出?5. Thermalright Silver Arrow IBE Extreme作为散热器界的重量级选手,Thermalright Silver Arrow IBE Extreme凭借其超大的散热鳍片面积,能否在散热性能上独占鳌头?6. Scythe Mugen 4Scythe Mugen 4散热器凭借其扎实的做工和稳定的性能,赢得了不少玩家的好评。
此次评测,它能否继续延续辉煌?7. Zalman CNPS10X PerformaZalman CNPS10X Performa散热器以其独特的造型和优秀的散热性能,吸引了众多玩家的目光。
它能否在此次评测中一鸣惊人?8. Deepcool Lucifer K2国产散热器品牌Deepcool的旗舰产品Lucifer K2,凭借其出色的散热性能和亲民价格,备受关注。
Hasuncast品牌产品选择指南
Hasuncast品牌产品选择指南美国Hasuncast高导热硅胶、环氧和硅脂广泛应用于电子产品的灌封、密封、涂敷上。
它们专业为保护元件在应用中能较好的散热以及为模块型安装致使散热困难而设计制造的。
产品型号功能描述特性指标RTVS187进口电子封装胶灌封胶硅酮弹性体有机硅灌封胶高导热性和绝缘性,优秀的高温运用范围,UL 94V-0认证,能满足电子机械和航天、航空工业的需要。
灰色:Gray黏度Viscosity:5000cps硬度Hardness:60A混合比Mix ratio:1:1导热:0.92W·M/KRTVS27进口电子封装胶灌封胶硅酮弹性体导热灌封胶密封胶低粘度,易浇注的灌封材料,高导热性,简单的混合比,UL 94V-0认证,广泛应用于精密电子、电气产品的灌封、密封上。
深灰色:Dark Gray黏度Viscosity:4000cps硬度Hardness:58A混合比Mix ratio:1:1导热:0.80W·M/KRTVS189进口电子封装胶灌封胶硅酮弹性体导热灌封胶低粘度,自熄性,用于零件的粘合与防震需要,固化后的凝胶对于精密电子组件有着良好的机械缓冲和减振作用。
白色:White黏度Viscosity:4500cps硬度Hardness:60A混合比Mix ratio:1:1导热:0.80W·M/KRTVS49进口电子封装胶灌封胶极高导热有机硅灌封胶极高的导热性和绝缘性,优秀的高温运用范围,UL 94V-0认证,能满足电子机械和航天、航空工业的需要。
红色Red粘度:10,000cps导热率:1.50w/m.K耐温:-60-260℃H-CAST112FR进口电子封装胶灌封胶环氧灌封胶AB胶低粘度,易浇注的灌封材料,简单的混合比,UL 94V-0认证,广泛应用于变压器,线路板等电子产品的灌封、保密和密封。
黑色:Black黏度Viscosity:1500cps硬度Hardness:80D混合比Mix ratio:5:1H-CAST141进口电子封装胶灌封胶高导热环氧树脂广泛应用于各类小型电器如变压器、点火器、微电机、线路板、继电器、电容器等电子元件及机械设备电器部件的绝缘浇注黑色:Black黏度Viscosity:3000cps硬度Hardness:82D混合比Mix ratio:5:1导热:1.20W·M/KH-CAST985FR&11B进口电子封装胶灌封胶导热自熄环氧树脂低粘度,具有自熄特点易浇注的环氧树脂灌封密封化合物,广泛应用于各类小型电器如变压器、点火器、电机、线路板、继电器、电容器等电子元件及机械设备电器部件的绝缘浇注,可耐-40-200度的高温黑色:Black黏度Viscosity:3000cps硬度Hardness:82D混合比Mix ratio:5:2导热:0.8W·M/KH-CAST147进口电子封装胶灌封胶白色半弹性环氧树脂类似于硅胶的弹性,应用于各种精密组件的灌封、密封上,UL认证,固化后成为白色的半弹性体,表面光滑平整。
派克液压密封件说明书
派克汉尼汾公司版权所有未经许可不能摘录,翻印。
保留修改权利2021年6月警告销售条件本样本中产品和/或系统或相关产品出现故障,选型不当或使用不当,均可能导致人身伤亡和财产损失。
本文档以及由派克·汉尼汾公司及其子公司和授权经销商提供的其他资料,为具有技术知识的用户提供进一步研究所需的产品和/或系统选项。
重要的是,用户必须对您的应用进行全面的分析,并对当前产品样本中与产品或系统相关的资料进行评估。
由于工作条件以及产品或系统的多样性,用户必须自行分析和测试,并独自承担一切后果,包括:产品和系统的最终选型以及确保满足应用的所有性能、安全和警告等方面的要求。
派克·汉尼汾及其子公司可能会随时对本样本中的产品,包括但不限于:产品的特性、产品的规格、产品的结构、产品的有效性以及产品的价格作出变更而不另行通知.本样本中的所有产品均由派克·汉尼汾公司及其子公司和援权经销商销售。
与派克签订的任何销售合同均按照派克标准条件和销售条件中规定的条款执行(提供复印件备索)。
本公司的密封件,只能在本公司的文件资料述及的应用参数范围与接触介质、压力、温度和存放时间相一致的情况下才能使用。
在规定的应用参数范围外使用以及错误选用不同的材料都可能导致密封件寿命的缩短以及设备的损坏,甚至更严重的后果(如生命安全,环境污染等)。
样本中所列出的工作压力、温度范围、运动速度是极限值,它们之间相互关联、相互影响;在极端的工况下,建议不要同时把各个参数都同时用到极限值。
对于特殊的要求(压力、温度、速度、介质等),请联系派克汉尼汾公司以咨询合适的密封结构、材料、配置、安装建议等。
由于诸多工作参数会影响到流体传动系统及密封元件,这些设备的制造商必须在实际工作条件下测试、验证并批准密封系统的功能与可靠性。
此外,对于不断出现的新的介质(液压油、润滑脂、清洗剂等),用户特别注意它们与目前所用的密封件弹性体材料的兼容性。
我们建议用户在大批量应用之前,在厂内或现场先做密封材料的兼容性能测试,作为密封产品与系统供应商,我们建议用户遵循我们的这些建议。
SUPERLUX PRO238MKII 手握式大极头电容麦克风--使用手册说明书
FREQUENCY IN HzFrequency ResponseR E L A T I V E R E S P O N S E I N d BdB 10-10-2020501002005001000200050001000020000 Hz净重量350克 (13.78盎司)外型尺寸Φ49.5mm(1.95in.) X 183.0mm (7.20in .) (图 3)环境要求麦克风的工作温度范围-10℃~50℃(14℉~122℉),相对湿度范围0~95%外观颜色金属结构,灰色涂装面漆。
输出接插件3 pin male XLR 型输出端子相位膜片受到正压力时2脚(相对于3脚)产生一正电压电流耗量<3.5mA电源9~52VDC 幻像供电低频衰减100Hz 以下 12dB/倍频程技术数据-3--1--2-信噪比78dB动态范围 (1k Ω负载)120dB最大声压级 (1k Ω负载)136dB SPL (THD ≦1% 1kHz)等效噪声级 (A 计权)16dB (IEC/DIN 651)最小负载阻抗1000Ω标称阻抗200Ω灵敏度(1,000Hz 开路电压)-40dBV /Pa (10mV /Pa ) ±3dB 1Pa=94dB SPL频率响应20~20,000 Hz (图2)指向性心型(定向),绕麦克风轴线旋转并对称,频率均匀。
(图1)类型电容式麦克风PRO238MKII 手握式大极头电容麦克风,在PRO238优性能越的基础上,频率响应、手持杂音及机械结构均有可喜提升,引用模块化方便拆卸式结构,隐藏式低频衰减开关防止工作中误操作,一同融入在更趋于舒适手握感的PRO238MKII 里。
宽阔的频率响应和改良的声阻尼,使心型指向性的PRO238MKII 音色更逼真温暖。
对于现场演出、无线电广播及录音等有不俗的表现,配以Superlux 的便携式周边附件,能有更广阔的用途。
概述特征1"直径纯金蒸发 3μm 超薄型膜片,封闭式音头。
AL-238T、2316T说明书
目录前言 (1)第一章:概述 (2)第二章:安装 (3)一.系统方框图 (3)二.系统安装 (3)三.技术参数 (4)四.接线图 (5)第三章:编程设置 (6)一.编程键盘显示及编程命令 (6)二.编程项目 (7)三.编程指南 (8)第四章:附录 (20)一.故障排除指南 (20)二.防区编程记录表 (21)前言感谢您选用我公司的防盗报警控制主机,希望我们先进、可靠的防盗系统给您的工作、生活带来安全与方便。
本安装编程手册适用于AL-238T/AL-2316T系列防盗报警控制主机的工程安装技术人员及用户日常使用。
本手册分五部分:概述、安装、编程、使用、附录。
第一章概述部分:包含主机功能说明。
第二章安装部分:包含防盗系统的原理框图,详细的连接、安装说明。
第三章编程设置部分:包含防盗报警系统的详细说明每一个编程步骤,实现每一个功能的方法。
第四章附录部分:包含故障排除、主机防区编程记录表等。
丢失密码(断开主机供电电源,重新上电10秒钟内进行以下操作)功能:将所有的编程学习资料全部恢复出厂状态(空机)操作步骤:同时按下编程地址★10~★62及用户密码恢复出厂状态清除所有无线设备(探头及遥控器)的学习码退出编程(蜂鸣器一长响)- 1 -AL-238T/AL-2316T防盗报警控制主机是集多项先进技术、功能于一体的卓越的智能安全技术防范产品。
它由可编程用户主机、分离式键盘、遥控器、红外探测器、门磁开关、烟雾探测器和强音警笛等组成。
安装容易、操作简便、可拨打多至八组报警电话,既可单独使用,亦可通过电话线实现区域联网,是家居、营业场所、金融系统等单位安装防盗报警设备的理想选择。
AL-238T系列为8有线防区接入,AL-2316T系列-2-一、系统方框图二、系统安装1.安装固定:主机的控制主板、变压器、后备电池等均安装在所配的主机箱内。
主机箱固定于隐蔽处,安装要牢固。
安装主板时应注意检查附配的塑料、金属柱等在安装箱的固定孔上是否安装好,以免短路主机板。
线性技术 LTC2380-24 和 LTC2368-24 24 位 SAR ADC 数据手册说明书
1dc2289afaThe L TC ®2380-24 and LTC2368-24 are low power, low noise, high speed, 24-bit SAR ADCs with an integrated digital averaging filter that operates from a single 2.5V supply. The following text refers to the LTC2380-24 but applies to both parts. The LTC2380-24 has fully differential inputs and samples at 2Msps, while the LTC2368-24 has pseudo-differential inputs and samples at 1Msps. The LTC2380-24 has –117dB THD, consumes only 28mW and achieves ±3.5ppm INL max with no missing codes at 24 bits. The DC2289A demonstrates the DC and AC perfor-mance of the LTC2380-24 in conjunction with the DC590 or DC2026 QuikEval™ and DC890 PScope™ data collection boards. Use the DC590 or DC2026 to demonstrate DC L , L T , L TC, L TM, Linear Technology and the Linear logo are registered trademarks and QuikEval and PScope are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.BOARD PHOTOperformance such as peak-to-peak noise and DC linearity. Use the DC890 if precise sampling rates are required or to demonstrate AC performance such as SNR, THD, SINAD and SFDR. The Demonstration Circuit 2289A is intended to show recommended grounding, component placement and selection, routing and bypassing for this ADC.Design files for this circuit board including the schematic, BOM and layout are available at /demo/DC2289A or scan the QR code on the back of the board.Figure 1. DC2289A Connection DiagramTO DC890TO DC590 OR DC20260V TO V 0V TO V 2.5V P-P DC2089A F012dc2289afa DC890 QUICK START PROCEDURECheck to make sure that all jumpers are set as described in the DC2289A Jumpers paragraph. In particular make sure that VCCIO (JP3) is set to the 2.5V position. Con-trolling the DC2289A with the DC890 while JP3 of the DC2289A is in the 3.3V position will cause noticeable performance degradation in SNR and THD. The default jumper connections configure the ADC to use the onboard reference and regulators. The analog input is DC coupled by default. Connect the DC2289A to a DC890 USB High Speed Data Collection Board using connector P1. (Do not connect a PScope controller and QuikEval controller at the same time.) Next, connect the DC890 to a host PC with a standard USB A/B cable. Apply ±9V to the indicated terminals. Next apply a low jitter differential sine source to J2 and J4. (The voltage applied at the inputs J2 and J4 should be out of phase and have a common mode voltage of V REF /2 ±100mV.) Connect a low jitter 2.5V P-P sine wave or square wave to connector J1, using Table 1 as a guide for the appropriate clock frequency. Note that J1 has a 49.9Ω termination resistor to ground.Run the PScope software (PScope.exe version K80 or later) supplied with the DC890 or download it from /software .Complete software documentation is available from the Help menu. Updates can be downloaded from the Tools menu. Check for updates periodically as new features may be added.The PScope software should recognize the DC2289A and configure itself automatically. The default setup is for a normal data capture with the number of averages set to one. To change this, click on the Set Demo Bd Options setting of the PScope Tool Bar as shown in Figure 2. The Configuration Options box shown in Figure 3 allows the number of averages and data capture mode to be selected. Normal mode clocks out 24 bits of data. If Verify is selected the number of bits clocked out is increased to 40 which includes the number of samples taken for the current output. Distributed Read allows a slow clock (one clock pulse per conversion) but requires the number of averages to be at least 25. With Distributed Read selected, Verify is not allowed. The number of averages can be set to an integer between 1 and 65535. Increasing N will improve the SNR. Theoretically, SNR will improve by 6dB if the number of averages is increased by a factor of four. In practice, reference noise will eventually limit the SNR improvement. Increasing the REF bypass capacitor (C20) or using a lower noise external reference will extend this limit.Click the Collect button (see Figure 4) to begin acquiring data. The Collect button then changes to Pause, which can be clicked to stop data acquisition.Figure 2. PScope ToolbarDC2289A-A LTC2380IMS-24 1.51524100Normal 661.205100Normal/Verify 831.923100Distributed Read 52DC2289A-B LTC2368IMS-240.9092460Normal 660.74662Normal/Verify 831.052Distributed Read 52Figure 3. Configuration OptionsFigure 4. PScope Screen Shot3dc2289afa4dc2289afaVCCIO (JP3) of the DC2289A should be in the 3.3V posi-tion for DC590 or DC2026 (QuikEval) operation. To use a QuikEval controller with the DC2289A, it is necessary to apply –9V and ground to the –9V and GND terminals. Connect the QuikEval controller to a host PC with a stan-dard USB A/B cable. Connect the DC2289A to a QuikEval controller using the supplied 14-conductor ribbon cable. (Do not connect both a QuikEval and PScope controller at the same time.) Apply a fully differential signal source to J4 and J2. The voltage inputs at J2 and J4 should be out of phase and have a common mode voltage of V REF /2 ±100mV. No clock signal is necessary at J1 when using a QuikEval controller. The clock signal is provided through the QuikEval connector (J3). +9V for the DC2289A is also provided through the QuikEval connector.Figure 5) to begin reading the ADC.Increasing the number of averages will reduce the noise as shown in the histogram of Figure 6. The noise will be reduced by the square root of the number of times the number of samples is increased. In practice, reference noise will eventually limit the noise improvement. Increas-ing the REF bypass capacitor (C20) or using a lower noise external reference will extend this limit.The maximum number of averages allowed by QuikEvalis 65535.Figure 5. QuikEval Histogram with Number of Averages = 1Figure 6. QuikEval Histogram with Number of Averages = 64 HARDWARE SETUPDC2289A JUMPERS DEFINITIONSJP1 – EEPROM is for factory use only. Leave this in the default WP position.JP2 – V+ Selects 8V or 5V for the positive op amp supply. The default position is 8V. Setting V+ to 5V is useful for evaluating single 5V supply operation of the buffer when operating the ADC with Digital Gain Compression turned on. JP3 – VCCIO sets the output levels at P1 to either 3.3V or 2.5V. Use 2.5V to interface to the DC890 which is the default setting. Use 3.3V to interface to the DC590 or DC2026. JP4 – VCM sets the DC bias for A IN+ and A IN– if the inputs are AC coupled. To enable AC coupling, R35 and R36 (R = 1k) must be installed. Installing these resistors will degrade the THD of the input signal to the ADC. V REF/2 is the default setting.JP5 – V– Selects –3.6V or ground for the negative op amp supply. The default is setting is –3.6V. Setting V– to ground is useful for evaluating single supply operation of the buffer when operating the ADC with Digital Gain Compression turned on.JP6 – FS selects whether the Digital Gain Compression is on or off. In the V REF position, Digital Gain Compression is off and the analog input range at A IN+ and A IN– is 0V to V REF. In the 0.8V REF position, Digital Gain Compres-sion is turned on and the analog input range at A IN+ and A IN– is 0.1V REF to 0.9V REF. The default setting is V REF, disabling DGC.JP7 – Coupling selects AC or DC coupling of A IN+. The default setting is DC.JP8 – Coupling selects AC or DC coupling of A IN–. The default setting is DC.5dc2289afaMost of the supply current is consumed by the CPLD, op amps, regulators and discrete logic on the board. The +9VDC input voltage powers the ADC through L T®1763 regulators which provide protection against accidental reverse bias. Additional regulators provide power for the CPLD and op amps. See Figure 1 for connection details.CLOCK SOURCEYou must provide a low jitter 2.5V P-P (If VCCIO is in the 3.3V position, the clock amplitude should be 3.3V P-P.) sine or square wave to J1. The clock input is AC coupled so the DC level of the clock signal is not important. A clock generator like the Rohde & Schwarz SMB100A or the DC1216A is recommended. Even a good clock generator can start to produce noticeable jitter at low frequencies. Therefore it is recommended for lower sample rates to divide down a higher frequency clock to the desired input frequency. The ratio of clock frequency to conversion rate is shown in Table 1. If the clock input is to be driven with logic, it is recommended that the 50Ω terminator (R5) be removed. Slow rising edges may compromise the SNR of the converter in the presence of high-amplitude higher frequency input signals.DATA OUTPUTParallel data output from this board (0V to 2.5V by default), if not connected to the DC890, can be acquired by a logic analyzer, and subsequently imported into a spreadsheet, or mathematical package depending on what form of digital signal processing is desired. Alternatively, the data can be fed directly into an application circuit. Use pin 50 of P1 to latch the data. The data can be latched using the falling edge of this signal. In Verify mode, two falling edges are required for each data sample with the data output as indicated on the P1 connector of the schematic. The data output signal levels at P1 can also be changed to 0V to 3.3V if the application circuit requires a higher voltage. This is accomplished by moving VCCIO (JP3) to the 3.3V position.presence of glitches on the REF pin. To use an external reference, unsolder R37 and apply the reference voltage to the V REF terminal.ANALOG INPUTThe default driver for the analog inputs of the LTC2380-24 on the DC2289A is shown in Figure 7. This circuit buffers a fully differential 0V to 5V input signal applied at A IN+ and A IN-. (The inputs at J2 and J4 should be out of phase and have a common mode voltage of V REF/2 ±100mV.) In addition, this circuit band limits the input frequencies at the ADC input to approximately 940kHz.Figure 7. Fully Differential DriverL T6203DATA COLLECTIONFor SINAD, THD or SNR testing a low noise, low distortion differential output sine generator such as the Stanford Research SR1 should be used. A low jitter RF oscillator such as the Rohde & Schwarz SMB100A or DC1216A is used as the clock source.This demo board is tested in house by attempting to duplicate the FFT plot shown in the typical performance characteristics of the LTC2380-24 data sheet. This involves using a 100MHz clock source, along with a differential output sinusoidal generator at a frequency of 2kHz. The input signal level is approximately –1dBFS. The input is level shifted and filtered with the circuit shown in Figure 8.A typical FFT obtained with DC2289A is shown in Figure 4.6dc2289afa7dc2289afaInformation furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.Note that to calculate the real SNR, the signal level (F1 amplitude = –1.151dB) has to be added back to the SNR that PScope displays. With the example shown in Figure 4, this means that the actual SNR would be 101.251dB instead of the 100.10dB that PScope displays. Taking the RMS sum of the recalculated SNR and the THD yields a SINAD of 101.06dB which is fairly close to the typical number for this ADC.There are a number of scenarios that can produce mislead-ing results when evaluating an ADC. One that is common is feeding the converter with a frequency, that is a sub-multiple of the sample rate, and which will only exercise a small subset of the possible output codes. The proper method is to pick an M/N frequency for the input sine wave frequency. N is the number of samples in the FFT. M is a prime number between one and N/2. Multiply M/N by the sample rate to obtain the input sine wave frequency. Another scenario that can yield poor results is if you do not have a sine generator capable of ppm frequency ac-curacy or if it cannot be locked to the clock frequency. You can use an FFT with windowing to reduce the “leakage” or spreading of the fundamental, to get a close approxima-tion of the ADC performance. If windowing is required, the Blackman-Harris 92dB window is recommended. If an amplifier or clock source with poor phase noise is used, windowing will not improve the SNR.the DC2289A should be used as a guideline for placement and routing of the various components associated with the ADC. Here are some things to remember when laying out a board for the LTC2380-24. A ground plane is necessary to obtain maximum performance. Keep bypass capacitors as close to supply pins as possible. Use low impedance returns directly to the ground plane for each bypass capacitor. Use of a symmetrical layout around the analog inputs will minimize the effects of parasitic elements. Shield analog input traces with ground to minimize coupling from other traces. Keep traces as short as possible. COMPONENT SELECTION When driving a low noise, low distortion ADC such as the LTC2380-24, component selection is important so as to not degrade performance. Resistors should have low values to minimize noise and distortion. Metal film resistors are recommended to reduce distortion caused by self heating. Because of their low voltage coefficients, to further reduce distortion NPO or silver mica capacitors should be used. Any buffer used to drive the LTC2380-24 should have low distortion, low noise and a fast settling time such as the LT6203.Figure 8. Differential Level ShifterIN –+V REF –V8dc2289afa Linear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX : (408) 434-0507 ● www.linear .com LINEAR TECHNOLOGY CORPORA TION 2015LT 1115 REV A • PRINTED IN USA directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive .Please read the DEMO BOARD manual prior to handling the product . Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged .This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.Mailing Address:Linear Technology1630 McCarthy Blvd.Milpitas, CA 95035Copyright © 2004, Linear Technology Corporation。
安森美 ADR380 ADR381 精密低漂移 2.048 V 2.500 V SOT-23 电压参
REV. AInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for itsuse, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 ADR380/ADR381Precision Low-Drift 2.048 V/2.500 VSOT-23 Voltage ReferenceFEATURESInitial Accuracy: ؎5 mV/؎6 mV maxInitial Accuracy Error: ؎0.24%/؎0.24%Low TCV O: 25 ppm/؇C maxLoad Regulation: 70 ppm/mALine Regulation: 25 ppm/VWide Operating Range:2.4 V to 18 V for ADR3802.8 V to 18 V for ADR381Low Power: 120A maxHigh Output Current: 5mAWide Temperature Range: –40؇C to +85؇CTiny 3-Lead SOT-23 Package with Standard Pinout APPLICATIONSBattery-Powered InstrumentationPortable Medical InstrumentsData Acquisition SystemsIndustrial Process Control SystemsHard Disk DrivesAutomotive PIN CONFIGURATION 3-Lead SOT-23(RT Suffix)12ADR380/ADR381(Not to Scale)3V INGNDV OUTGENERAL DESCRIPTIONThe ADR380 and ADR381 are precision 2.048 V and 2.500 V band gap voltage references featuring high accuracy, high stabil-ity, and low-power consumption in a tiny footprint. Patented temperature drift curvature correction techniques minimize nonlinearity of the voltage change with temperature. The wide operating range and low power consumption make them ideal for 3V to 5V battery-powered applications.The ADR380 and ADR381 are micropower, low dropout voltage (LDV) devices that provide a stable output voltage from supplies as low as 300mV above the output voltage. They are specified over the industrial (–40°C to +85°C) temperature range. ADR380/ADR381 is available in the tiny 3-lead SOT-23 package.Table I.ADR38x ProductsPart Number Nominal Output Voltage (V) ADR380 2.048ADR381 2.500查询ADR380供应商捷多邦,专业PCB打样工厂,24小时加急出货ADR380/ADR381–SPECIFICATIONSADR380 ELECTRICAL CHARACTERISTICS(@ V IN = 5.0 V, T A = 25؇C unless otherwise noted.)Parameter Symbol Conditions Min Typ Max Unit Output Voltage V O 2.043 2.048 2.053VInitial Accuracy Error V OERR–5+5mV–0.24+0.24% Temperature Coefficient TCV O–40°C < T A < +85°C525ppm/°C0°C < T A< 70°C321ppm/°C Minimum Supply Voltage Headroom V IN – V O I L≤ 3 mA300mV Line Regulation⌬V O/DV IN V IN = 2.5 V to 15 V1025ppm/V–40°C < T A < +85°CLoad Regulation⌬V O/DI LOAD V IN = 3 V, I LOAD = 0 mA to 5 mA70ppm/mA–40°C < T A < +85°CQuiescent Current I IN No Load100120µA–40°C < T A < +85°C140µA Voltage Noise e N0.1 Hz to 10 Hz5µV p-p Turn-On Settling Time t R20µsLong-Term Stability⌬V O1,000 Hrs50ppm Output Voltage Hysteresis V O_HYS40ppm Ripple Rejection Ratio RRR f IN = 60 Hz85dB Short Circuit to GND I SC25mA Specifications subject to change without notice.ADR380 ELECTRICAL CHARACTERISTICS (@ V IN = 15.0 V, T A = 25؇C unless otherwise noted.)Parameter Symbol Conditions Min Typ Max Unit Output Voltage V O 2.043 2.048 2.053VInitial Accuracy Error V OERR–5+5mV–0.24+0.24% Temperature Coefficient TCV O–40°C < T A < +85°C525ppm/°C0°C < T A < 70°C321ppm/°C Minimum Supply Voltage Headroom V IN – V O I L≤ 3 mA300mV Line Regulation⌬V O/DV IN V IN = 2.5 V to 15 V–40°C < T A < +85°C1025ppm/V Load Regulation⌬V O/DI LOAD V IN = 3 V, I LOAD = 0 mA to 5 mA–40°C < T A < +85°C70ppm/mA Quiescent Current I IN No Load100120µA–40°C < T A < +85°C140µA Voltage Noise e N0.1 Hz to 10 Hz5µV p-p Turn-On Settling Time t R20µsLong-Term Stability⌬V O1,000 Hrs50ppm Output Voltage Hysteresis V O_HYS40ppm Ripple Rejection Ratio RRR f IN = 60 Hz85dB Short Circuit to GND I SC25mA Specifications subject to change without notice.ADR381 ELECTRICAL CHARACTERISTICS SPECIFICATIONS (continued)(@ V IN= 5.0 V, T A= 25؇C unless otherwise noted.)ParameterSymbol Conditions Min Typ Max Unit Output VoltageV O 2.494 2.5 2.506V Initial Accuracy Error V OERR –6+6mV –0.24+0.24%Temperature CoefficientTCV O –40°C < T A < +85°C 525ppm/°C 0°C < T A < 70°C 321ppm/°C Minimum Supply Voltage Headroom V IN – V O I L ≤ 2 mA300mV Line Regulation ⌬V O /DV IN V IN = 2.8 V to 15 V 1025ppm/V –40°C < T A < +85°CLoad Regulation ⌬V O /DI LOAD V IN = 3.5 V, I LOAD = 0 mA to 5 mA 70ppm/mA –40°C < T A < +85°C Quiescent Current I IN No Load100120µA –40°C < T A < +85°C 140µA Voltage Noisee N 0.1 Hz to 10 Hz 5µV p-p Turn-On Settling Time t R 20µs Long-Term Stability⌬V O 1,000 Hrs 50ppm Output Voltage Hysteresis V O_HYS 75ppm Ripple Rejection Ratio RRR f IN = 60 Hz85dB Short Circuit to GNDI SC25mASpecifications subject to change without notice.ADR381 ELECTRICAL CHARACTERISTICS (@ V IN= 15.0 V, T A= 25؇C unless otherwise noted.)ParameterSymbol Conditions Min Typ Max Unit Output VoltageV O 2.494 2.5 2.506V Initial Accuracy Error V OERR –6+6mV –0.24+0.24%Temperature CoefficientTCV O –40°C < T A < +85°C 525ppm/°C 0°C < T A < 70°C 321ppm/°C Minimum Supply Voltage Headroom V IN – V O I L ≤ 2 mA300mV Line Regulation ⌬V O /DV IN V IN = 2.8 V to 15 V 1025ppm/V –40°C < T A < +85°CLoad Regulation ⌬V O /DI LOAD V IN = 3.5 V, I LOAD = 0 mA to 5 mA 70ppm/mA –40°C < T A < +85°C Quiescent Current I IN No Load100120µA –40°C < T A < +85°C 140µA Voltage Noisee N 0.1 Hz to 10 Hz 5µV p-p Turn-On Settling Time t R 20µs Long-Term Stability⌬V O 1,000 Hrs 50ppm Output Voltage Hysteresis V O_HYS 75ppm Ripple Rejection Ratio RRR f IN = 60 Hz85dB Short Circuit to GNDI SC25mASpecifications subject to change without notice.ADR380/ADR381ADR380/ADR381CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4,000V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADR380/ADR381 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions arerecommended to avoid performance degradation or loss of functionality.ABSOLUTE MAXIMUM RATINGS 1Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 V Output Short-Circuit Duration to GNDV IN > 15 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 sec V IN ≤ 15 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite Storage Temperature RangeRT Package . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C Operating Temperature RangeADR380/ADR381 . . . . . . . . . . . . . . . . . . . .–40°C to +85°C Junction Temperature RangeRT Package . . . . . . . . . . . . . . . . . . . . . . . .–65°C to +150°C Lead Temperature Range (Soldering, 60 Sec) . . . . . . . .300°C Package Type JA 2JC Unit 3-Lead SOT-23 (RT)333—°C/WNOTES 1Absolute maximum ratings apply at 25°C, unless otherwise noted.2θJA is specified for the worst-case conditions, i.e., θJA is specified for device soldered in circuit board for surface-mount packages.ORDERING GUIDETemperature Package Package Output Number of ModelRange Description Option Branding Voltage Parts per Reel ADR380ART-R2–40°C to +85°C SOT-23RT-3R2A 2.048250ADR380ART-REEL7–40°C to +85°C SOT-23RT-3R2A 2.0483,000ADR380ARTZ-REEL7*–40°C to +85°C SOT-23RT-3R2A 2.0483,000ADR381ART-R2–40°C to +85°C SOT-23RT-3R3A 2.500250ADR381ART-REEL7–40°C to +85°C SOT-23RT-3R3A 2.5003,000ADR381ARTZ-REEL7*–40°C to +85°CSOT-23RT-3R3A2.5003,000*Z = Pb-free partPIN CONFIGURATION3-Lead SOT-23(RT Suffix)V IN GNDV OUTADR380/ADR381PARAMETER DEFINITIONS Temperature CoefficientThe change of output voltage over the operating temperature change and normalized by the output voltage at 25°C, expressed in ppm/°C. The equation follows:TCV ppm C V T V T V C T T O O O O /––°[]=()()°()×()×212162510where:V O (25°C ) = V O at 25°C .V O (T 1) = V O at Temperature 1.V O (T 2) = V O at Temperature 2.Line RegulationThe change in output voltage due to a specified change in input voltage. It includes the effects of self-heating. Line regulation is expressed in either percent per volt, parts-per-million per volt,or microvolts per volt change in input voltage.Load RegulationThe change in output voltage due to a specified change in load current. It includes the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts-per-million per milliampere, or ohms of dc output resistance.Long-Term StabilityA typical shift in output voltage over 1,000 hours at a controlled temperature. The graphs TPC 24 and TPC 25 show a sample of parts measured at different intervals in a controlled environ-ment of 50°C for 1,000 hours.∆∆V V t –V t V ppm V t –V t V t O O O O O O O =()()[]=()()()×01010610where:V O (t 0) = V O at Time 0.V O (t 1) = V O after 1,000 hours’ operation at a controlled temperature.Note that 50°C was chosen since most applications we have experienced run at a higher temperature than 25°C.Thermal HysteresisThe change of output voltage after the device is cycled through temperature from +25°C to –40°C to +85°C and back to +25°C.This is a typical value from a sample of parts put through such a cycle.V V C V V ppm V C V V C O_HYS O O_TCO_HYS O O_TCO =°()[]=°()°()×252525106––where:V O (25°C ) = V O at 25°C.V O _TC = V O at 25°C after temperature cycle at +25°C to –40°C to +85°C and back to +25°C.Typical Performance CharacteristicsTEMPERATURE (؇C)V O U T (V )2.0442.0462.0482.0502.0522.054TPC 1.ADR380 Output Voltage vs. Temperature TEMPERATURE(؇C)2.494V O U T (V )2.4962.4982.5002.5022.5042.506TPC 2.ADR381 Output Voltage vs. TemperatureADR380/ADR381PPM (؇C)F R E Q U E N C YTPC 3.ADR380 Output Voltage Temperature Coefficient PPM (؇C)F R E Q U E N C YTPC 4.ADR381 Output Voltage Temperature Coefficient INPUT VOLTAGE (V)0S U P P L Y C U R R E N T (A )20408010012014060TPC 5.ADR380 Supply Current vs. Input Voltage INPUT VOLTAGE (V)0S U P P L Y C U R R E N T (A )100120140TPC 6.ADR381 Supply Current vs. Input VoltageTEMPERATURE (؇C)0L O AD RE G U L A T I O N (p p m /m A )TPC 7.ADR380 Load Regulation vs. TemperatureTEMPERATURE (؇C)0L O A D R E G U L A T I O N (p p m /m A )10204050607030TPC 8.ADR381 Load Regulation vs. TemperatureADR380/ADR381TEMPERATURE (؇C)0L I N E R E G U L A T I O N (p p m /V )2453TPC 9.ADR380 Line Regulation vs. TemperatureTEMPERATURE (؇C)0L I N E R E G U L A T I O N (p p m /V )2453TPC 10.ADR381 Line Regulation vs. TemperatureLOAD CURRENT (mA)D I F FE R E N T I A L V O L T A G E (V )0.20.40.6TPC 11.ADR380 Minimum Input/OutputVoltage Differential vs. Load CurrentLOAD CURRENT (mA)D I F FE R E N T I A L V O L T A G E (V )0.20.40.6TPC 12.ADR381 Minimum Input/Output Voltage Differential vs. Load CurrentV OUT DEVIATION (ppm)F R E Q U E N C YTPC 13.ADR381 V OUT HysteresisTIME (1s/DIV)2 TPC 14.ADR381 Typical Noise Voltage 0.1Hz to 10HzADR380/ADR381TIME (10ms/DIV)100TPC 15.ADR381 Typical Noise Voltage 10Hz to 10kHzTIME (10s/DIV)TPC 16.ADR381 Line Transient ResponseTIME (10s/DIV)0.5V/DIVTPC 17.ADR381 Line Transient ResponseTIME (200s/DIV)TPC 18.ADR381 Load Transient Response with C L = 0 µFTIME (200s/DIV)TPC 19.ADR381 Load Transient Response with C L = 1nFTIME (200s/DIV)TPC 20.ADR381 Load Transient Response with C L = 100nFADR380/ADR381TIME (200s/DIV)TPC 21.ADR381 Turn-On/Turn-Off Response at 5VZ O U T (10⍀/D I V )FREQUENCY (Hz)TPC 22.ADR381 Output Impedance vs. Frequency HOURS–150100D R IF T (p p m )–100–501001502003004005006007008009001000TPC 23.ADR380 Long-Term DriftHOURS100D R I F T (p p m )2003004005006007008009001000TPC 24.ADR381 Long-Term DriftADR380/ADR381THEORY OF OPERATIONBand gap references are the high performance solution for low supply voltage and low power voltage reference applications,and the ADR380/ADR381 are no exception. But the unique-ness of this product lies in its architecture. By observing Figure 1, the ideal zero TC band gap voltage is referenced to the output, not to ground. The band gap cell consists of the PNP pair Q51 and Q52, running at unequal current densities. The difference in V BE results in a voltage with a positive TC which is amplified up by the ratio of 2 × R58/R54. This PTAT voltage,combined with V BEs of Q51 and Q52, produce the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of the two resistors R44 and R59. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance.OUTV INFigure 1.Simplified SchematicDevice Power Dissipation ConsiderationsThe ADR380/ADR381 are capable of delivering load currents to 5mA with an input voltage that ranges from 2.8V (ADR381only) to 15V. When this device is used in applications withlarge input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature that could result in premature device failure. The following formula should be used to calculate a device’s maximum junc-tion temperature or dissipation:P T T D A A=J J –θwhere:P D is the device power dissipation,T J and T A are junction and ambient temperatures,respectively, andθJ A is the device package thermal resistance.Input CapacitorInput capacitor is not required on the ADR380/ADR381. There is no limit for the value of the capacitor used on the input, but a capacitor on the input will improve transient response in appli-cations where the load current suddenly increases.Output CapacitorThe ADR380/ADR381 do not need an output capacitor for stability under any load condition. An output capacitor, typically 0.1 µF, will take out any very low level noise voltage, and will not affect the operation of the part. The only parameter that willdegrade by putting an output capacitor here is turn-on time.(This will vary depending on the size of the capacitor.) Load transient response is also improved with an output capacitor. A capacitor will act as a source of stored energy for a sudden in-crease in load current.APPLICATIONSStacking Reference ICs for Arbitrary OutputsSome applications may require two reference voltage sources which are a combined sum of standard outputs. The following circuit shows how this stacked outputreference can be imple-mented:⍀V OUT2V OUT1V Figure 2.Stacking Voltage References with the ADR380/ADR381Two ADR380s or ADR381s are used; the outputs of the indi-vidual references are simply cascaded to reduce the supply current. Such configuration provides two output voltages—V OUT1 and V OUT2. V OUT1 is the terminal voltage of U1, while V OUT2 is the sum of this voltage and the terminal voltage of U2.U1 and U2 can be chosen for the two different voltages that supply the required outputs.While this concept is simple, a precaution is in order. Since the lower reference circuit must sink a small bias current from U2,plus the base current from the series PNP output transistor in U2, the external load of either U1 or R1 must provide a path for this current. If the U1 minimum load is not well-defined, the resistor R1 should be used, set to a value that will conservatively pass 600 µA of current with the applicable V OUT1 across it. Note that the two U1 and U2 reference circuits are locally treated as macrocells, each having its own bypasses at input and output for optimum stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, V S ,is determined by the sum of the outputs, V OUT2, plus the 300mV dropout voltage of U2.A Negative Precision Reference Without Precision ResistorsIn many current-output CMOS DAC applications where the output signal voltage must be of the same polarity as the refer-ence voltage, it is often required to reconfigure a current-switching DAC into a voltage-switching DAC through the use of a 1.25V reference, an op amp, and a pair of resistors. Using a current-switching DAC directly requires an additional operational amplifier at the output to reinvert the signal. A negative voltageADR380/ADR381reference is then desirable from the point that an additional operational amplifier is not required for either reinversion (current-switching mode) or amplification (voltage-switching mode) of the DAC output voltage. In general, any positivevoltage reference can be converted into a negative voltage refer-ence through the use of an operational amplifier and a pair of matched resistors in an inverting configuration. The disadvan-tage to this approach is that the largest single source of error in the circuit is the relative matching of the resistors used.The circuit in Figure 3 avoids the need for tightly matched resistors with the use of an active integrator circuit. In this circuit,the output of the voltage reference provides the input drive for the integrator. The integrator, to maintain circuit equilibrium,adjusts its output to establish the proper relationship between the reference’s V OUT and GND. Thus, any negative output voltage desired can be chosen by simply substituting for the appropriate reference IC. A precaution should be noted with this approach: although rail-to-rail output amplifiers work best in the application, these operational amplifiers require a finite amount (mV) of headroom when required to provide any load current. The choice for the circuit’s negative supply should take this issue into account.REFV IN 1Figure 3.A Negative Precision Voltage Reference Uses No Precision Resistors Precision Current SourceMany times in low power applications, the need arises for a pre-cision current source that can operate on low supply voltages.As shown in Figure 4, the ADR380/ADR381 can be configured as a precision current source. The circuit configuration illustrated is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across R SET (R1 + P1), which sets the output current into the load. With this configuration, circuit precision is maintained for load currents in the range from the reference’s supply current, typically 90 µA to approximately 5mA.V INFigure 4.A Precision Current SourcePrecision High Current Voltage SourceIn some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR380/ADR381. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current.The circuit in Figure 5 provides high current without compro-mising the accuracy of the ADR380/ADR381. By op amp action,V O follows V REF with very low drop in R1. To maintain circuit equilibrium, the op amp also drives the N-Ch MOSFET Q1 intosaturation to maintain the current needed at different loads. R2is optional to prevent oscillation at Q1. In such an approach, hun-dreds of milliamps of load current can be achieved and the current is limited by the thermal limitation of Q1. V IN = V O + 300 mV.OV Figure 5.ADR380/ADR381 for Precision High Current Voltage SourceC 02175–0–7/04(A )ADR380/ADR381OUTLINE DIMENSIONS3-Lead Small Outline Transistor Package [SOT-23-3](RT-3)Dimensions shown in millimetersCOMPLIANT TO JEDEC STANDARDS TO-236ABTape and Reel DimensionsDimensions shown in millimetersRevision HistoryLocationPage7/04—Data Sheet Changed from Rev. 0 to Rev. A.Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12。
AL238报警主机安装指南
AL238报警主机安装指南1.0 概述AL238报警主机最多带有8个有线/无线防区,1个报警开关输出;以及支持6组密码,包括1组主密码,4组用户码,1组挟持码;可以通过电话网报警,最多支持9组电话,其中3组为中心号码,报警到中心时采用Contact ID协议,可与安定宝等一些支持该协议的中心连接。
2.0 规格工作电压: 直流10~15伏工作电流: 30毫安(待机状态)报警输出: 12伏直流/1安培工作温度: -10℃~ +50℃防区响应时间:500毫秒探测器接法: 常闭防拆装置: 自带外壳/背板防拆开关防拆键: 上电10秒钟之内,如果没有按下防拆键,则该功能失效3.0 安装● AL238报警主机应安装在适当的高度,以方便所有操作人员进行操作。
● 在机壳下方的槽口位置插入一小的扁口螺丝刀,将前壳同后面底壳分开。
墙面安装: 利用底壳对安装孔和进线孔位置定位。
电气盒上安装:AL238可直接安装在电气开关盒上。
4.0 接线● 确定在布线和对AL238接线前不接通电源。
● 通过AL238底壳的进线孔对电源、警号输入和探测器进行布线。
5.0 遥控器的使用● “B”键:布防,对报警主机进行布防● “C”键:撤防,对报警主机进行撤防● “D”键:留守布防,旁路报警主机所允许旁路的防区,同时对报警主机进行布防● “A”键:按3秒钟后,紧急求助,通过电话网向中心和用户电话报警,可编程选择就地报警6.0 编程步骤 操作 提示1 输入主密码[x][x][x][x] 只有主密码才具有编程功能。
其他两个用户密码不能用于编程。
2 按住[*]键3秒,然后进行编程输入 主机蜂鸣器鸣音1秒,状态指示灯常亮,表示你已经进入了编程模式。
3 输入编程功能码:[x][x]+[*] 功能码输入2位数字,输入正确后,会提示当前的编程状态4 输入编程值:[x]或[x][x]或[x][x][x]或[x][x][x][x] 根据不同的功能码,输入的数字位数不一样. 若设置正确,主机将鸣音1秒进行确认,提示正确; 若设置错误,主机将有错误提示,必须重新输入编程值。
音乐运放闲聊
AD828AR运放:AD设计制造的高性能运放AD828AR,性能指标比著名的发烧运放AD827JN更好。
音质全频中性,中频解析度好,低频有极佳的跳感,高频晶莹剔透,延伸无穷无尽,性能无可挑剔。
AD828AR适合使用在数码设备,如声卡运放、DVD输出运放等。
youp|pax|YouP-PAX|PAX A4|PAX Fi|游飘驱动|X-Fi|创新&k9B C |(IAD828AR的低压性能很好,摩各种声卡上效果都很出色,比如在创新Audigy2 ZS声卡上应用就非常成功,使这块中档声卡有比试高级声卡的实力!创新声卡改造篇之运放情缘:近段时间身边几个朋友玩了音响又开始迷上了磨机换运放,CD机、功放,连电脑上声卡也弄个827、275什么的。
所以周末,特意去拿了堆运放回来测试,简单谈谈感受吧。
NE5532:确实有点胆味,解析力一般,高频比较燥,低频比较糊且肥。
价廉物美足已弥补一切!op275:和5532比,胆性还重一点,解析力、低频、音场更好一点,可以买贴片的来打磨声卡用(特别是创新的),可以改善硬冷的数码声。
EL2244:音色中性,音场比较宽,高频还可以,中频音乐味差,有人说解析力很高,其实是因为低频量感少,中频薄,高频显得突出而已。
要用好比较难。
LT1057:两端延伸不错,速度、动态和解析力也挺好,就是属冷色调,放出的音乐好象有种不食人间烟火的味道,让你可以静静的听,却燃不起对音乐的那份激情。
AD827:延伸非常好,解析力高,高频华丽,中频纯厚,低频下潜和力度都不错,音场向前后左右拓展,有了凹凸感(这一点比其它运放强),速度快,动态好,感觉很大气,初换上此运放后确实有让人为之一振的感觉。
但久听之下,也发现很多问题,1虽然三频段、音场很宽,气势足,大开大合,但总感觉结构有点松,不够紧溱,2人声部份一般,有时大动态时,人声被配乐声淹没3不够细腻,属于激情有余而柔情不足,4音乐味不够。
不过很多的人喜欢这种风格。
OPA类TI免费芯片汇集
OPA1013- 精密单电源双路运算放大器OPA1013CN8P 所有无铅库存$0.00OPA124- 低噪声的精密差动运算放大器OPA124U D 所有无铅库存$0.00OPA124UA D 所有无铅库存$0.00OPA129- 超低偏置电流差动运算放大器OPA129U D 所有无铅库存$0.00OPA129UB D 所有无铅库存$0.00OPA131- 通用 FET- 输入运算放大器OPA131UA D 所有无铅库存$0.00OPA1602- OPA1602、OPA1604 SoundPlus 高性能、双极输入音频运算放大器OPA1602AID D 暂时缺货$0.00OPA1642- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1642AID D 暂时缺货$0.00OPA2130- 低功耗精密 FET 输入运算放大器OPA2130UA D 所有无铅库存$0.00OPA2137- 低成本 FET 输入运算放大器OPA2137P P 所有无铅库存$0.00OPA2141- 10MHz 单电源低噪声 JFET 精密放大器 ]]OPA2141AID D 所有无铅库存$0.00OPA2141AIDR D 所有无铅库存$0.00OPA2227- 高精度、低噪声运算放大器OPA2227P P 所有无铅库存$0.00OPA2227U D 所有无铅库存$0.00OPA2227UA D 所有无铅库存$0.00OPA2228- 高精度低噪声运算放大器OPA2228P P 所有无铅/绿色环保库存$0.00OPA2228PA P 所有无铅库存$0.00OPA2228U D 所有无铅库存$0.00OPA2228UA D 所有无铅库存$0.00OPA2333-HT- 1.8V 微功耗 CMOS 运算放大器OPA2333SJD JD 所有无铅无偏好** 库存$0.00OPA2334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2334AIDGST DGS 所有无铅/绿色环保库存$0.00 OPA2335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2335AIDGKT DGK 所有无铅库存$0.00 OPA2335AIDR D 所有无铅/绿色环保库存$0.00 OPA2338- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2338EA/250DCN 所有无铅/绿色环保库存$0.00OPA2354- 250MHz 轨至轨 I/O CMOS 双路运算放大器OPA2354AIDDA DDA 所有无铅库存$0.00 OPA2354AIDGKT DGK 所有无铅库存$0.00 OPA2376- 精密、低噪声、低静态电流运算放大器OPA2376AIDR D 所有无铅/绿色环保库存$0.00 OPA2376AIYZDT YZD 所有无铅/绿色环保库存$0.00 OPA2380- 高速精确互阻抗放大器OPA2380AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2652- SpeedPlus(TM) 双路 700MHz 电压反馈运算放大器OPA2652U D 所有无铅/绿色环保库存$0.00 OPA2684- 双路低功耗电流反馈运算放大器OPA2684ID D 暂时缺$0.00货OPA2690- 具有禁用功能的双路宽带电压反馈运算放大器OPA2690ID D 所有无铅/绿色环保库存$0.00 OPA2703- 12V CMOS 轨至轨 I/O 运算放大器OPA2703UA D 所有无铅/绿色环保库存$0.00 OPA2703UAG4 D 所有无铅库存$0.00 OPA2704- 12V CMOS 轨至轨 I/O 运算放大器OPA2704EA/250DGK 所有无铅库存$0.00 OPA2704EA/250G4 DGK 所有无铅库存$0.00 OPA2704PA P 所有无铅/绿色环保库存$0.00 OPA2890- 具有禁用功能的双路低功耗宽带电压反馈运算放大器OPA2890ID D 所有无铅/绿色环保库存$0.00 OPA320- 20MHz、0.9pA Ib、RRIO、精密 CMOS 运算放大器OPA320AIDBVT DBV 所有无铅库存$0.00 OPA320SAIDBVT DBV 暂时缺$0.00货OPA3355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 三路运算放大器OPA3355EA/250PW 所有无铅/绿色环保库存$0.00 OPA3355UA D 所有无铅库存$0.00 OPA337- MicroAmplifier(TM) 系列微型单电源 CMOS 运算放大器OPA337NA/250DBV 所有无铅/绿色环保库存$0.00 OPA343- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA343UA D 所有无铅/绿色环保库存$0.00 OPA347- 微功耗轨至轨运算放大器OPA347NA/250DBV 所有无铅/绿色环保库存$0.00 OPA347PA P 所有无铅/绿色环保暂时缺$0.00货OPA347SA/250DCK 所有无铅库存$0.00 OPA353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA353UA D 所有无铅/绿色环保库存$0.00 OPA364- 1.8V、高 CMR、RRIO 运算放大器OPA364AID D 所有无铅/绿色环保库存$0.00 OPA364AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA364IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA3692- 具有禁用功能的三路宽带固定增益缓冲器OPA3692ID D 所有无铅/绿色环保库存$0.00 OPA3692IDBQT DBQ 所有无铅/绿色环保库存$0.00 OPA379- 1.8V、2.9µA、90kHz、轨至轨 I/O 运算放大器OPA379AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA380- 高速精密互阻抗放大器OPA380AIDGKT DGK 所有无铅库存$0.00 OPA4134- SoundPlus(TM) 高性能音频运算放大器OPA4134UA D 所有无铅库存$0.00 OPA4170- 36V、微功耗、轨至轨输出、四路、通用运算放大器OPA4170AID D 所有无铅库存$0.00 OPA4170AIPW PW 所有无铅库存$0.00 OPA4350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4350EA/250DBQ 所有无铅/绿色环保库存$0.00 OPA4350UA D 所有无铅/绿色环保库存$0.00 OPA4353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4353UA D 所有无铅/绿色环保库存$0.00 OPA4364- 1.8V、高 CMR、RRIO 运算放大器OPA4364AID D 所有无铅/绿色环保库存$0.00 OPA4704- 12V CMOS 轨至轨 I/O 运算放大器OPA4704UA D 所有无铅库存$0.00 OPA548- 高电压大电流运算放大器,出色的输出摆幅OPA548FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA548T KVT 所有无铅/绿色环保库存$0.00 OPA561- 大电流运算放大器OPA561PWP PWP 所有无铅/绿色环保库存$0.00 OPA606- Wide-Bandwidth Difet(R) 运算放大器OPA606KP P 所有无铅/绿色环保库存$0.00 OPA656- 宽带单位增益稳定 FET 输入运算放大器OPA656N/250DBV 所有无铅库存$0.00 OPA656N/250G4DBV 所有无铅库存$0.00 OPA656NB/250DBV 所有无铅库存$0.00 OPA656U D 所有无铅库存$0.00 OPA656UB D 所有无铅库存$0.00 OPA694- 宽带、低功耗、电流反馈放大器OPA694ID D 所有无铅库存$0.00OPA1013- 精密单电源双路运算放大器OPA1013CN8P 所有无铅库存$0.00 OPA121- 低成本的精密差动运算放大器OPA121KU D 所有无铅库存$0.00 OPA124- 低噪声的精密差动运算放大器OPA124U D 所有无铅库存$0.00 OPA124UA D 所有无铅库存$0.00 OPA129- 超低偏置电流差动运算放大器OPA129U D 所有无铅库存$0.00 OPA129UB D 所有无铅库存$0.00 OPA130- 低功耗精密 FET 输入运算放大器OPA130UA D 所有无铅库存$0.00 OPA131- 通用 FET- 输入运算放大器OPA131UA D 所有无铅库存$0.00 OPA132- 高速 FET 输入运算放大器OPA132U D 所有无铅库存$0.00 OPA132UA D 所有无铅库存$0.00 OPA134- SoundPlus(TM) 高性能音频运算放大器OPA134PA P 所有无铅/绿色环保库存$0.00OPA134UA D 所有无铅无偏好** 库存$0.00OPA137- 低成本 FET 输入运算放大器OPA137P P 所有无铅无偏好** 库存$0.00OPA137PA P 库存$0.00 OPA140- 11MHz 单电源、低噪声、精密轨至轨输出 JFET 放大器OPA140AID D 所有无铅库存$0.00 OPA140AIDBVT DBV 所有无铅库存$0.00 OPA140AIDGKT DGK 所有无铅库存$0.00 OPA141- 10MHz 单电源低噪声 JFET 精密放大器OPA141AID D 所有无铅无偏好** 库存$0.00OPA141AIDGKT DGK 所有无铅库存$0.00OPA1602- OPA1602、OPA1604 SoundPlus 高性能、双极输入音频运算放大器OPA1602AID D 暂时缺货$0.00OPA1611- 1.1nV/√Hz 噪声、低功耗精密运算放大器OPA1611AID D 所有无铅库存$0.00OPA1612- 1.1nV/√Hz 噪声、低功耗精密运算放大器OPA1612AID D 所有无铅库存$0.00OPA1632- 全差动 I/O 音频放大器OPA1632D D 所有无铅/绿色环保库存$0.00OPA1632DR D 所有无铅库存$0.00OPA1641- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1641AID D 所有无铅库存$0.00OPA1642- Sound-Plus 高性能、JFET 输入音频运算放大器OPA1642AID D 暂时缺货$0.00OPA1644- OPA1641/1642/1644 SoundPLUS™ 高性能 JFET 输入音频运算放大器OPA1644AID D 所有无铅无偏好** 库存$0.00OPA1654- Sound Plus 低噪声和低失真通用 FET 输入音频运算放大器OPA1654AID D 所有无铅库存$0.00OPA1654AIPW PW 所有无铅库存$0.00OPA1662-Q1- 汽车类 Sound Plus、低功耗、低噪声和低失真音频运算放大器OPA1662AIDGKRQ1 DGK 所有无铅库存$0.00OPA1662AIDRQ1 D 库存$0.00OPA1664- Sound Plus 低功耗、低噪声和低失真音频运算放大器OPA1664AID D 所有无铅库存$0.00OPA1664AIPW PW 所有无铅无偏好** 库存$0.00OPA170- 采用微型封装的 36V、微功耗、轨至轨输出、通用运算放大器OPA170AID D 所有无铅库存$0.00OPA170AIDBVT DBV 所有无铅库存$0.00OPA170AIDRLR DRL 所有无铅库存$0.00OPA170AIDRLT DRL 所有无铅库存$0.00OPA171- 采用微型封装的 36V 通用低功耗 RRO 运算放大器OPA171AID D 所有无铅库存$0.00OPA171AIDBVT DBV 所有无铅库存$0.00OPA171AIDRLT DRL 所有无铅库存$0.00OPA177- 精密运算放大器OPA177FP P 库存$0.00OPA177GP P 所有无铅库存$0.00OPA177GS D 所有无铅库存$0.00OPA177GS/2K5 D 所有无铅库存$0.00OPA188- 0.03μV/°C、6μV Vos、低噪声、轨至轨输出、36V 零漂移运算放大器OPA188AIDGKT DGK 所有无铅库存$0.00OPA1S2385- 具有集成开关和缓冲器的 200-MHz CMOS 跨阻放大器 (TIA)OPA1S2385IDRCT DRC 暂时缺货$0.00OPA211- 1.1nV/(sqrt)Hz Noise, Low Power, Precision Operational Amplifier in DFN-8 Pkg OPA211AIDR D 所有无铅/绿色环保库存$0.00OPA211ID D 所有无铅/绿色环保库存$0.00OPA211IDRGT DRG 所有无铅/绿色环保库存$0.00 OPA2130- 低功耗精密 FET 输入运算放大器OPA2130UA D 所有无铅库存$0.00 OPA2131- 通用 FET 输入运算放大器OPA2131UA D 所有无铅无偏好** 库存$0.00OPA2131UJ D 所有无铅库存$0.00 OPA2132- 高速 FET 输入运算放大器OPA2132P P 库存$0.00OPA2132PA P 所有无铅无偏好** 库存$0.00OPA2132U D 所有无铅无偏好** 库存$0.00OPA2132UA D 所有无铅库存$0.00OPA2134- SoundPlus(TM) 高性能音频运算放大器OPA2134PA P 所有无铅库存$0.00OPA2134UA D 所有无铅库存$0.00OPA2137- 低成本 FET 输入运算放大器OPA2137P P 所有无铅库存$0.00OPA2141- 10MHz 单电源低噪声 JFET 精密放大器 ]]OPA2141AID D 所有无铅库存$0.00OPA2141AIDR D 所有无铅库存$0.00OPA2170- 采用微型封装的 36V、微功耗、轨至轨输出、双路通用运算放大器OPA2170AID D 暂时缺货$0.00OPA2170AIDGK DGK 所有无铅库存$0.00OPA2171- 采用微型封装的 36V 通用低功耗 RRO 运算放大器OPA2171AID D 所有无铅库存$0.00OPA2171AIDCUT DCU 所有无铅库存$0.00OPA2227- 高精度、低噪声运算放大器OPA2227P P 所有无铅库存$0.00OPA2227U D 所有无铅库存$0.00OPA2227UA D 所有无铅库存$0.00OPA2228- 高精度低噪声运算放大器OPA2228P P 所有无铅/绿色环保库存$0.00OPA2228PA P 所有无铅库存$0.00OPA2228U D 所有无铅库存$0.00OPA2228UA D 所有无铅库存$0.00OPA2244- MicroAmplifier(TM) 系列微功耗单电源运算放大器OPA2244EA/250DGK 所有无铅/绿色环保库存$0.00OPA2244PA P 所有无铅库存$0.00OPA2244UA D 所有无铅库存$0.00 OPA2277- 高精度运算放大器OPA2277P P 所有无铅/绿色环保库存$0.00 OPA2277PA P 库存$0.00 OPA2277U D 所有无铅库存$0.00OPA2277UA D 所有无铅无偏好** 库存$0.00OPA2314-EP- 低功耗、低噪声 RRI/O 1.8V CMOS 运算放大器OPA2314ASDRBTEP DRB 库存$0.00 OPA2333- 1.8V、17µA、微功耗、精密、零漂移 CMOS 运算放大器OPA2333AID D 所有无铅/绿色环保库存$0.00 OPA2333AIDGKT DGK 所有无铅库存$0.00 OPA2333AIDRBT DRB 所有无铅/绿色环保库存$0.00 OPA2333-HT- 1.8V 微功耗 CMOS 运算放大器OPA2333SJD JD 所有无铅无偏好** 库存$0.00OPA2334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2334AIDGST DGS 所有无铅/绿色环保库存$0.00 OPA2335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA2335AIDGKT DGK 所有无铅库存$0.00 OPA2335AIDR D 所有无铅/绿色环保库存$0.00 OPA2336- MicroAmplifier 系列单电源微功耗 CMOS 运算放大器OPA2336E/250DGK 所有无铅库存$0.00 OPA2336PA P 所有无铅库存$0.00 OPA2336U D 所有无铅库存$0.00 OPA2336UA D 所有无铅/绿色环保库存$0.00 OPA2337- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2337UA D 所有无铅/绿色环保库存$0.00 OPA2338- MicroSIZE、单电源 CMOS 运算放大器微放大器系列OPA2338EA/250DCN 所有无铅/绿色环保库存$0.00 OPA2338UA D 所有无铅库存$0.00 OPA2345- MicroAmplifier(TM) 系列低功耗单电源轨至轨运算放大器OPA2345EA/250DGK 所有无铅库存$0.00 OPA2345UA D 所有无铅库存$0.00 OPA2347- 采用 WCSP-8 封装的微功耗轨至轨运算放大器OPA2347EA/250DCN 所有无铅/绿色环保库存$0.00 OPA2347UA D 所有无铅/绿色环保库存$0.00 OPA2347UAG4 D 所有无铅库存$0.00 OPA2354- 250MHz 轨至轨 I/O CMOS 双路运算放大器OPA2354AIDDA DDA 所有无铅库存$0.00 OPA2354AIDGKT DGK 所有无铅库存$0.00 OPA2355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 双路运算放大器OPA2355DGSA/250 DGS 所有无铅/绿色环保库存$0.00 OPA2356- 2.5V 200MHz 的 GBW CMOS 双路运算放大器OPA2356AID D 所有无铅库存$0.00 OPA2356AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2356AIDR D 库存$0.00 OPA237- MicroAmplifier(TM) 系列单电源运算放大器OPA237NA/250DBV 库存$0.00 OPA237NA/3K DBV 暂时缺货$0.00 OPA237UA D 所有无铅库存$0.00 OPA2376- 精密、低噪声、低静态电流运算放大器OPA2376AIDR D 所有无铅/绿色环保库存$0.00 OPA2376AIYZDT YZD 所有无铅/绿色环保库存$0.00 OPA2380- 高速精确互阻抗放大器OPA2380AIDGKT DGK 所有无铅/绿色环保库存$0.00 OPA244- 微功耗单电源运算放大器 MicroAmplifier(TM) 系列OPA244NA/250DBV 所有无铅库存$0.00 OPA244UA D 所有无铅库存$0.00 OPA251- 单电源、微功耗运算放大器OPA251PA P 所有无铅无偏好** 库存$0.00OPA2544- 高电压(大电流)双路运算放大器OPA2544T KV 所有无铅/绿色环保库存$0.00OPA2613- 具有电流限制的双宽带高输出电流运算放大器OPA2613ID D 所有无铅/绿色环保库存$0.00OPA2652- SpeedPlus(TM) 双路 700MHz 电压反馈运算放大器OPA2652U D 所有无铅/绿色环保库存$0.00OPA2673- Dual Wideband High Output Current Operational Amplifier with Current Limit OPA2673IRGVT RGV 所有无铅/绿色环保库存$0.00OPA2684- 双路低功耗电流反馈运算放大器OPA2684ID D 暂时缺货$0.00OPA2690- 具有禁用功能的双路宽带电压反馈运算放大器OPA2690ID D 所有无铅/绿色环保库存$0.00OPA27- 超低噪声精度运算放大器OPA27GP P 所有无铅无偏好** 库存$0.00OPA27GU D 所有无铅库存$0.00 OPA2703- 12V CMOS 轨至轨 I/O 运算放大器OPA2703UA D 所有无铅/绿色环保库存$0.00 OPA2703UAG4 D 所有无铅库存$0.00 OPA2704- 12V CMOS 轨至轨 I/O 运算放大器OPA2704EA/250DGK 所有无铅库存$0.00 OPA2704EA/250G4 DGK 所有无铅库存$0.00 OPA2704PA P 所有无铅/绿色环保库存$0.00 OPA2743- 12V 7MHz 轨至轨 I/O 双路运算放大器OPA2743UA D 所有无铅库存$0.00 OPA2830- 二路、低功耗、单电源宽带运算放大器OPA2830ID D 所有无铅/绿色环保库存$0.00 OPA2830IDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2832- 双通道低功耗高速固定增益运算放大器OPA2832ID D 所有无铅/绿色环保库存$0.00 OPA2832IDGKT DGK 所有无铅/绿色环保库存$0.00 OPA2890- 具有禁用功能的双路低功耗宽带电压反馈运算放大器OPA2890ID D 所有无铅/绿色环保库存$0.00 OPA314- 3MHz、低功耗、低噪声、RRI/O 1.8V CMOS 运算放大器OPA314AIDBVT DBV 库存$0.00OPA320- 20MHz、0.9pA Ib、RRIO、精密 CMOS 运算放大器OPA320AIDBVT DBV 所有无铅库存$0.00OPA320SAIDBVT DBV 暂时缺$0.00货OPA322- 具有关断状态的 20MHz、低噪声、1.8V RRIO、CMOS 运算放大器OPA322AIDBVT DBV 所有无铅库存$0.00OPA330- 1.8V、35µA、微功耗、精密、零漂移 CMOS 运算放大器OPA330AID D 所有无铅库存$0.00OPA330AIDBVT DBV 所有无铅库存$0.00OPA330AIDCKT DCK 所有无铅库存$0.00OPA333- 1.8V、17µA、微功耗、精密、零漂移 CMOS 运算放大器OPA333AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA333AIDCKRG4 DCK 所有无铅库存$0.00OPA333AIDCKT DCK 所有无铅库存$0.00OPA333AIDR D 所有无铅库存$0.00OPA334- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA334AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA335- 最大漂移0.05uV/℃ 的单电源 CMOS 运算放大器OPA335AID D 所有无铅库存$0.00OPA335AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA3355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 三路运算放大器OPA3355EA/250PW 所有无铅/绿色环保库存$0.00OPA3355UA D 所有无铅库存$0.00OPA336- MicroAmplifier(TM) 系列单电源、微功耗 CMOS 运算放大器OPA336N/250DBV 所有无铅/绿色环保库存$0.00OPA336NA/250DBV 所有无铅/绿色环保库存$0.00OPA336NJ/3K DBV 所有无铅库存$0.00OPA336U D 所有无铅/绿色环保库存$0.00 OPA336UA D 所有无铅库存$0.00 OPA337- MicroAmplifier(TM) 系列微型单电源 CMOS 运算放大器OPA337NA/250DBV 所有无铅/绿色环保库存$0.00 OPA340- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA340NA/250DBV 库存$0.00 OPA340UA D 所有无铅/绿色环保库存$0.00 OPA342- MicroAmplifier(TM) 系列低成本低功耗轨至轨运算放大器OPA342NA/250DBV 所有无铅/绿色环保库存$0.00 OPA343- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA343UA D 所有无铅/绿色环保库存$0.00 OPA344- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA344NA/250DBV 所有无铅/绿色环保库存$0.00 OPA344PA P 所有无铅/绿色环保库存$0.00 OPA344UA D 库存$0.00 OPA345- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA345NA/250DBV 所有无铅/绿色环保库存$0.00 OPA345UA D 所有无铅/绿色环保库存$0.00 OPA347- 微功耗轨至轨运算放大器OPA347NA/250DBV 所有无铅/绿色环保库存$0.00 OPA347PA P 所有无铅/绿色环保暂时缺货$0.00 OPA347SA/250DCK 所有无铅库存$0.00 OPA348- 1MHz、45uA、RRIO、单路运算放大器OPA348AID D 所有无铅无偏好** 库存$0.00OPA348AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA348AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA350EA/250DGK 库存$0.00 OPA350PA P 所有无铅库存$0.00 OPA350UA D 所有无铅/绿色环保库存$0.00 OPA353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA353NA/250DBV 所有无铅库存$0.00 OPA353UA D 所有无铅/绿色环保库存$0.00 OPA354- 250MHz 轨至轨 I/O CMOS 单路运算放大器OPA354AIDBVT DBV 所有无铅/绿色环保库存$0.00 OPA354AIDDA DDA 所有无铅/绿色环保暂时缺货$0.00 OPA355- 具有关断状态的 2.5V 200MHz 的 GBW CMOS 单路运算放大器OPA355NA/250DBV 所有无铅库存$0.00 OPA355UA D 所有无铅/绿色环保库存$0.00OPA357- 具有关断状态的 250MHz 轨至轨 I/O 单路 CMOS 运算放大器OPA357AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA357AIDDA DDA 所有无铅/绿色环保库存$0.00OPA360- 采用 SC70 封装具有低通滤波器、内部 G=2 和 SAG 校正的 3V 视频放大器OPA360AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA361- 具有内部增益和滤波器的 3V 视频放大器OPA361AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA363- 具有关断状态的 1.8V、高 CMR、RRIO 运算放大器OPA363AID D 所有无铅库存$0.00OPA363AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA363IDBVT DBV 所有无铅/绿色环保库存$0.00OPA364- 1.8V、高 CMR、RRIO 运算放大器OPA364AID D 所有无铅/绿色环保库存$0.00OPA364AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA364IDBVT DBV 所有无铅/绿色环保库存$0.00OPA365- 2.2V、50MHz 低噪声单电源轨至轨运算放大器OPA365AID D 所有无铅/绿色环保库存$0.00OPA365AIDBVT DBV 所有无铅库存$0.00OPA365-EP- 增强型产品 2.2V、50MHz 低噪声单电源轨至轨运算放大器OPA365AMDBVTEP DBV 所有无铅库存$0.00OPA3684- 具有禁用功能的低功耗三路电流反馈运算放大器OPA3684ID D 所有无铅/绿色环保库存$0.00OPA3691- 具有禁用功能的三路宽带电流反馈运算放大器OPA3691ID D 所有无铅/绿色环保库存$0.00OPA3691IDBQT DBQ 所有无铅/绿色环保库存$0.00OPA3692- 具有禁用功能的三路宽带固定增益缓冲器OPA3692ID D 所有无铅/绿色环保库存$0.00OPA3692IDBQT DBQ 所有无铅/绿色环保库存$0.00OPA3693- 具有禁用功能的超宽带电流反馈运算放大器OPA3693IDBQ DBQ 所有无铅/绿色环保库存$0.00OPA3695- 具有禁用功能的超宽带电流反馈运算放大器OPA3695IDBQ DBQ 所有无铅/绿色环保库存$0.00OPA373- 6.5MHz 585uA 轨至轨 I/O CMOS 运算放大器OPA373AIDBVT DBV 所有无铅库存$0.00OPA374- 6.5MHz、585uA、轨至轨 I/O CMOS 运算放大器$0.00OPA374AID D 暂时缺货OPA374AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA376- 低噪声、低 IQ 精密运算放大器OPA376AID D 所有无铅/绿色环保库存$0.00OPA376AIDBVT DBV 所有无铅/绿色环保库存$0.00OPA376AIDCKT DCK 所有无铅/绿色环保库存$0.00OPA378- 低噪声、900kHz、RRIO 零漂移系列的精密运算放大器OPA378AIDBVT DBV 所有无铅库存$0.00 OPA379- 1.8V、2.9µA、90kHz、轨至轨 I/O 运算放大器OPA379AIDCKT DCK 所有无铅/绿色环保库存$0.00 OPA380- 高速精密互阻抗放大器OPA380AIDGKT DGK 所有无铅库存$0.00 OPA381- 精确低功耗高速互阻抗放大器OPA381AIDGKT DGK 所有无铅库存$0.00 OPA3875- OPA3875: Triple 2-to-1 High-Speed Video Multiplexer OPA3875IDBQ DBQ 所有无铅/绿色环保库存$0.00 OPA404- 四路高速精密 Difet(R) 运算放大器OPA404KP N 所有无铅/绿色环保库存$0.00OPA404KU DW 所有无铅无偏好** 库存$0.00OPA4130- 低功耗精密 FET 输入运算放大器OPA4130UA D 所有无铅库存$0.00OPA4131- 通用 FET 输入运算放大器OPA4131NA D 所有无铅库存$0.00OPA4131PA N 所有无铅/绿色环保库存$0.00OPA4131UA DW 所有无铅库存$0.00OPA4132- 高速 FET 输入运算放大器OPA4132UA D 所有无铅库存$0.00OPA4134- SoundPlus(TM) 高性能音频运算放大器OPA4134UA D 所有无铅库存$0.00OPA4137- 低成本 FET 输入运算放大器OPA4137P N 库存$0.00OPA4137U D 所有无铅库存$0.00OPA4137UA D 所有无铅库存$0.00OPA4170- 36V、微功耗、轨至轨输出、四路、通用运算放大器OPA4170AID D 所有无铅库存$0.00OPA4170AIPW PW 所有无铅库存$0.00OPA4171- 36V 通用低功耗 RRO 运算放大器OPA4171AID D 所有无铅库存$0.00OPA4171AIPW PW 所有无铅库存$0.00OPA4180- 0.1 uV/C 漂移、四通道、低噪声、轨到轨、36V 零漂移运算放大器OPA4180ID D 暂时缺货$0.00OPA4180IPW PW 暂时缺货$0.00OPA4209- 2.2nV/rtHz、18MHz、36V RRO 精密运算放大器OPA4209AIPW PW 所有无铅库存$0.00OPA4227- 高精度低噪声运算放大器OPA4227PA N 所有无铅/绿色环保库存$0.00 OPA4227UA D 所有无铅库存$0.00 OPA4228- 高精度低噪声运算放大器OPA4228PA N 所有无铅无偏好** 库存$0.00OPA4228UA D 所有无铅库存$0.00 OPA4234- 低功耗、精密单电源运算放大器OPA4234U D 所有无铅库存$0.00 OPA4241- 单电源、微功耗运算放大器OPA4241UA D 所有无铅库存$0.00 OPA4243- 四路运算放大器,微功耗、单电源OPA4243EA/250PW 所有无铅库存$0.00 OPA4244- MicroAmplifier(TM) 系列微功耗单电源运算放大器OPA4244EA/250PW 所有无铅库存$0.00 OPA4251- 单电源、微功耗运算放大器OPA4251PA N 所有无铅/绿色环保库存$0.00 OPA4251UA D 所有无铅库存$0.00 OPA4277- 高精度运算放大器OPA4277PA N 所有无铅无偏好** 库存$0.00OPA4277UA D 所有无铅库存$0.00OPA4314- 四路、3MHz、低功耗、低噪声、RRI/O、1.8V CMOS 运算放大器OPA4314AIPW PW 所有无铅库存$0.00OPA4317- 四路、低偏移、轨到轨 I/O 运算放大器OPA4317ID D 暂时缺货$0.00OPA4317IPW PW 所有无铅库存$0.00OPA4322- 20MHz、低噪声、1.8V、RRIO、CMOS 运算放大器OPA4322AIPW PW 所有无铅库存$0.00OPA4322SAIPW PW 所有无铅库存$0.00OPA4340- MicroAmplifier(TM) 系列单电源轨至轨运算放大器OPA4340EA/250DBQ 所有无铅/绿色环保库存$0.00OPA4340UA D 所有无铅库存$0.00OPA4343- MicroAmplifier™ 系列单电源轨至轨运算放大器OPA4343NA/250PW 所有无铅/绿色环保库存$0.00OPA4343UA D 所有无铅库存$0.00OPA4344- 低功耗单电源轨至轨运算放大器 MicroAmplifier(TM) 系列OPA4344EA/250PW 所有无铅/绿色环保库存$0.00OPA4344UA D 所有无铅/绿色环保库存$0.00OPA4347- 微功耗轨至轨运算放大器OPA4347UA D 库存$0.00OPA4347UAG4 D 所有无铅暂时缺$0.00货OPA4348- 1MHz、45uA、RRIO、四路运算放大器OPA4348AID D 所有无铅库存$0.00 OPA4348AIPWT PW 所有无铅/绿色环保库存$0.00 OPA4348AIPWTG4 PW 所有无铅库存$0.00 OPA4350- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4350EA/250DBQ 所有无铅/绿色环保库存$0.00 OPA4350UA D 所有无铅/绿色环保库存$0.00 OPA4353- MicroAmplifier(TM) 系列高速单电源轨至轨运算放大器OPA4353UA D 所有无铅/绿色环保库存$0.00 OPA4354- 250MHz 轨至轨 I/O CMOS 四路运算放大器OPA4354AIPWT PW 所有无铅库存$0.00 OPA4364- 1.8V、高 CMR、RRIO 运算放大器OPA4364AID D 所有无铅/绿色环保库存$0.00 OPA4376- 精密、低噪声、低静态电流运算放大器OPA4376AIPW PW 所有无铅无偏好** 库存$0.00OPA4377- 低成本、低噪声、5.5MHz CMOS 运算放大器OPA4377AIPW PW 所有无铅库存$0.00 OPA4379- 1.8V、2.5µA、90kHz、轨至轨 I/O 运算放大器OPA4379AIPWR PW 所有无铅/绿色环保库存$0.00 OPA445- 高电压 FET 输入运算放大器OPA445AP P 所有无铅库存$0.00 OPA445AU D 所有无铅库存$0.00 OPA452- 80V 50mA 运算放大器OPA452TA KC 所有无铅库存$0.00 OPA453- 80V 50mA 运算放大器OPA453TA KC 所有无铅库存$0.00 OPA454- 高电压 (100V) 和高电流 (50mA) 运算放大器,G = 1 稳定OPA454AIDDA DDA 所有无铅/绿色环保库存$0.00 OPA4704- 12V CMOS 轨至轨 I/O 运算放大器OPA4704UA D 所有无铅库存$0.00 OPA4743- 12V 7MHz CMOS 轨至轨 I/O 四路运算放大器OPA4743EA/250PW 所有无铅库存$0.00 OPA4820- 四路、单位增益、低噪声、电压反馈运算放大器OPA4820IPWT PW 所有无铅/绿色环保库存$0.00 OPA4830- 低功耗单电源宽带运算放大器OPA4830IPW PW 库存$0.00 OPA4872- 4:1 高速多路复用器OPA4872ID D 所有无铅/绿色环保库存$0.00 OPA541- 高功率单片运算放大器OPA541AP KV 所有无铅/绿色环保库存$0.00OPA544- 高电压、大电流运算放大器OPA544FKTTT KTT 所有无铅/绿色环保库存$0.00 OPA544T KC 所有无铅库存$0.00 OPA547- 高电压、大电流运算放大器、优异的输出摆幅OPA547FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA547T KVT 所有无铅/绿色环保库存$0.00 OPA548- 高电压大电流运算放大器,出色的输出摆幅OPA548FKTWT KTW 所有无铅/绿色环保库存$0.00 OPA548T KVT 所有无铅/绿色环保库存$0.00 OPA549- 高电压大电流运算放大器,出色的输出摆幅OPA549S KVC 所有无铅/绿色环保库存$0.00 OPA549T KV 所有无铅/绿色环保暂时缺货$0.00 OPA551- 高电压、大电流运算放大器OPA551FA/500 KTW 所有无铅库存$0.00 OPA551FAKTWT KTW 所有无铅/绿色环保库存$0.00 OPA551PA P 所有无铅/绿色环保库存$0.00 OPA551UA D 所有无铅库存$0.00 OPA552- 高电压、大电流运算放大器OPA552FAKTWT KTW 所有无铅/绿色环保库存$0.00OPA552PA P 所有无铅无偏好** 库存$0.00OPA552UA D 所有无铅库存$0.00OPA561- 大电流运算放大器OPA561PWP PWP 所有无铅/绿色环保库存$0.00OPA567- 轨至轨 I/O 2A 功率放大器OPA567AIRHGT RHG 所有无铅/绿色环保库存$0.00OPA569- 2A 输出电流时输出信号摆幅在 200mV 轨之内的功率运算放大器OPA569AIDWP DWP 所有无铅/绿色环保库存$0.00OPA602- 高速精密 Difet(R) 运算放大器OPA602AP P 所有无铅/绿色环保库存$0.00OPA602AU D 所有无铅库存$0.00OPA602BP P 所有无铅/绿色环保库存$0.00OPA604- FET 输入音频运算放大器OPA604AP P 所有无铅/绿色环保库存$0.00OPA604APG4P 所有无铅库存$0.00OPA604AU D 所有无铅无偏好** 库存$0.00OPA606- Wide-Bandwidth Difet(R) 运算放大器OPA606KP P 所有无铅/绿色环保库存$0.00 OPA627- 精密高速 Difet(R) 运算放大器OPA627AU D 所有无铅/绿色环保库存$0.00OPA627BP P 所有无铅/绿色环保库存$0.00 OPA637- 精密高速 Difet(R) 运算放大器OPA637AP P 所有无铅无偏好** 库存$0.00OPA637AU D 所有无铅库存$0.00OPA637BP P 所有无铅无偏好** 库存$0.00OPA656- 宽带单位增益稳定 FET 输入运算放大器OPA656N/250DBV 所有无铅库存$0.00 OPA656N/250G4 DBV 所有无铅库存$0.00 OPA656NB/250DBV 所有无铅库存$0.00 OPA656U D 所有无铅库存$0.00 OPA656UB D 所有无铅库存$0.00 OPA657- 1.6GHz 低噪声 FET 输入运算放大器OPA657N/250DBV 所有无铅库存$0.00 OPA657NB/250DBV 所有无铅库存$0.00 OPA657U D 暂时缺货$0.00 OPA657UB D 所有无铅库存$0.00 OPA683- 具有禁用功能的极低功耗电流反馈放大器OPA683IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA684- 具有禁用功能的低功耗电流反馈运算放大器OPA684ID D 所有无铅/绿色环保库存$0.00 OPA690- 具有禁用功能的宽带电压反馈运算放大器OPA690ID D 所有无铅/绿色环保库存$0.00 OPA690IDBVT DBV 所有无铅/绿色环保暂时缺货$0.00 OPA691- 具有禁用功能的宽带电流反馈运算放大器OPA691ID D 所有无铅/绿色环保暂时缺货$0.00 OPA692- 具有禁用功能的宽带固定增益缓冲放大器OPA692ID D 所有无铅/绿色环保库存$0.00 OPA692IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA694- 宽带、低功耗、电流反馈放大器OPA694ID D 所有无铅库存$0.00 OPA695- 具有禁用功能的超宽带电流反馈运算放大器OPA695ID D 所有无铅/绿色环保库存$0.00 OPA695IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA698- 单位增益稳定宽带限压放大器OPA698ID D 所有无铅/绿色环保库存$0.00 OPA699- OPA699:宽带高增益限压放大器OPA699ID D 所有无铅/绿色环保库存$0.00OPA703- 12V CMOS 轨至轨 I/O 运算放大器OPA703UA D 所有无铅/绿色环保库存$0.00 OPA703UAG4 D 所有无铅库存$0.00 OPA704- 12V CMOS 轨至轨 I/O 运算放大器OPA704PA P 所有无铅无偏好** 库存$0.00OPA704PAG4P 所有无铅库存$0.00OPA705- 12V 低成本 CMOS 轨至轨 I/O 运算放大器OPA705UA D 所有无铅库存$0.00OPA725- OPA725 和 OPA726 系列:极低噪声、高速、12V CMOS 运算放大器OPA725AID D 所有无铅/绿色环保库存$0.00OPA725AIDG4 D 所有无铅库存$0.00OPA726- OPA725 和 OPA726 系列:极低噪声、高速、12V CMOS 运算放大器OPA726AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA726AIDGKTG4 DGK 所有无铅库存$0.00OPA727- 电子微调 20MHz、高精度 CMOS 运算放大器OPA727AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA727AIDRBT DRB 所有无铅/绿色环保暂时缺货$0.00OPA728- 电子微调 20MHz、高精度 CMOS 运算放大器OPA728AIDGKT DGK 所有无铅/绿色环保库存$0.00OPA734- 最大漂移0.05uV/℃ 单电源 CMOS 零漂移运算放大器OPA734AID D 所有无铅库存$0.00OPA735- 最大漂移0.05uV/℃ 单电源 CMOS 零漂移系列运算放大器OPA735AID D 所有无铅库存$0.00OPA820- 单位增益稳定低噪声电压反馈运算放大器OPA820ID D 所有无铅/绿色环保暂时缺货$0.00OPA827- 低噪声、高精度、JFET 输入运算放大器OPA827AID D 所有无铅/绿色环保库存$0.00OPA832- 低功耗单电源固定增益视频缓冲放大器OPA832ID D 所有无铅库存$0.00OPA832IDBVT DBV 所有无铅/绿色环保库存$0.00OPA835- 超低功耗、轨至轨输出、负轨输入、VFB 放大器OPA835IDBVT DBV 所有无铅库存$0.00OPA842- 宽带低失真单位增益稳定的电压反馈运算放大器OPA842IDBVT DBV 所有无铅/绿色环保库存$0.00OPA842IDR D 所有无铅无偏好** 库存$0.00OPA843- 宽带低失真中等增益的电压反馈运算放大器OPA843ID D 所有无铅/绿色环保库存$0.00 OPA843IDBVT DBV 所有无铅/绿色环保库存$0.00OPA846- OPA846:宽带低噪声电压反馈运算放大器OPA846IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA847- 具有关断状态的宽带超低噪声电压反馈运算放大器OPA847ID D 所有无铅/绿色环保库存$0.00 OPA847IDBVT DBV 所有无铅/绿色环保库存$0.00 OPA860- 宽带运算跨导放大器和缓冲器OPA860ID D 所有无铅/绿色环保库存$0.00 OPA875- Single 2:1 High-Speed Video MultiplexerOPA875ID D 所有无铅/绿色环保库存$0.00。
Raveon技术有限公司应用说明书AN238:GPIO开路 放电输出
Application NoteAN238 Raveon Technologies CorpCopyright 2018 1Raveon Technologies Corp.GPIO Open Collector/Drain OutputBy John SonnenbergRaveon Technologies CorpS u m m a r yRaveon has products with various IO options, some of which include Open Drain (OD) or Open Collector (OC) outputs. This Application Note AN238 describes how these kinds of features can be used. These IOs are used to turn things on and off. The RV-M21G and RV-M22G Tech Series radios with the GPIO interface can be configured to have an Open Collector output. Here is a picture of the RV-M21G. This document refers to these M21 and M22 radios at RV-M2x data radios. The RV-M22 is smaller than the RV-M21 version, but less RF output power also.Open Drain outputs are great for turning on lights, valves, relays, and many other devices. Open Drain (OD) connects the load to ground when it is turned on.G P I O I n t e r f a c e o n R V -M 21 a n d R V -M 22 D a t a R a d i o sThe General Purpose IO (GPIO) front panel interface has many IO options on 3 pins to remotely control things or monitor things. Pins 3,4,5 are configurable.A : Digital TTL Inputs, C : Open Drain MOSFETD : DC Power switch outputs.E : Analog Voltage Inputs.GPIO uses the same IO connector as the RS-485, and has serial IO and general purpose IO functions that are software configurable. .Applicatoin NoteAN238 Rev A2O p e n D r a i n v s O p e n C o l l e c t o rOpen Drain means the semiconductor’s output port is directly connected to the "drain" pin of a MOSFET. It is similar to "Open Collector", where the output port is on a collector of a TRANSISTOR. OC is a traditional way, but OD is more power full and more reliable, so we provide Open Drain output to drive relays, lights, and other devices.E n a b l i n g t h e G P I O O p e n D r a i n f e a t u r eRaveon’s Tech Series Radios GPIO General Purpose IO interface pins can be configured in different ways.Connect an RS232 serial port to the RX in and TX outpins of the GPIO interface to send commands anddata into the product. See the user manual on how toenter the command mode. (+++ enters commandmode)To set the IO pin to Open Drain mode, have Raveonconfigure the radio before shipped to you, or use theIOPIN command to configure it.Application NoteAN238 Raveon Technologies Corp IOPIN XX M is the command to set the GPIO bits on the Tech Series GPIO front panel to inputs or outputs. Enter IOPIN <enter> in command mode to read pin settings.XX parameter are the Hexadecimal representation of the pins being configured. For example, to configure bits 0 and 1, XX should be set to 3. FYI: GPIO pin #4 is called IO1 and isdesignated as XX bit 1, which in hex is XX=02.XX is Hexadecimal. To specify all 3 IO pins IO0-IO2, the XX value is 7. (4+2+1)M is the IO Type code A: Digital TTL Inputs, B: Digital TTL Outputs, C: Open Drain MOSFET outputs, D: DC Power switch outputs, E: Analog Voltage Inputs. Different products have different varieties of GPIO features. Check your product’s data sheets to see what GPIO features it supports on which IO pins.IOPIN 1 C command sets The IO pin 0 (first pin) to Open Drain mode.IOPIN 1 C command sets The IO pin 0 (first pin) to Open Drain mode.IOPIN 2 C command sets The IO pin 1 to Open Drain mode.IOPIN 7 C command sets all 3 IO pins to Open Drain mode.H o w O p e n D r a i n w o r k sInside Raveon’s products with GPIO and Open Collector (OD) features, there is an OD output pin connected to the collector of a MOSFET inside the product. The MOSFET is also connected to the ground of the product.Copyright 2018 3 Raveon Technologies Corp.Use Open Drain for enabling: Lights, Relays, LEDs, Valves, AC power switches …When the GPIO pin is OD mode, and the output is SET, the MOSFET is turned on, and the IO pin is shored to ground (GND). The device connected to OD will normally be connected to a voltage power supply (Vcc) or a battery. When the OD pin shorts to ground the device will turn on. The device can be an LED, light, relay, valve, or many other devices. Devices with inductors, such as a relays, should have a diode connected to the device so that the voltage spike that is generated when its turns on and off gets limited.Use a diode to protect the GPIO interface and keep the wires safe. There are many ways to reduce voltage spikes when switching a relay. Some add capacitors, some add extra diodes with resistors. Do the right thing for your system. The Tech Series GPIO interface uses a MOSFET like the NXP PMV130ENEA . Its specs are:drain-source voltage : 40VMax drain current: 2.1Ajunction temperature -55 to 150Celectrostatic discharge voltage 1000VU s i n g t h e O p e n D r a i n(O D)f e a t u r ePower on default mode on OD IO pins is open. The OD output is not shorted to ground when the device powers on. When the device receives an command via the local serial port or over the air using the radio modem, a command can turn on the OD making the OD IO pin short to ground.See the product’s data sheet for information about resi stance to ground and maximum current that should be drawn from the IO pin when the open drain is shored to ground.There are a number of ways to enable on the Open Drain output.A.Local commands in the command mode.B.Remote Over The Air (OTA) commands sent to the products.C.Remote Over The Air (OTA) MODBUS messages sent to the product.L o c a l c o m m a n d s i n t h e c o m m a n d m o d eSee the product’s Technical Manual or User Manual for a list of commands that the product supports. Most products with GPIO support these local commands that can by typed into the product, or sent via software, when the product is in the Command Mode. Raveon products can also utilize a serial port protocol called WMX. WMX enables a user to send commands into a data radio product when it is in operating mode, not command mode, and the WMX command will still be executed in operating mode.Here are the commands the RV-M21 and RV-M22 Tech Series radios support.Application NoteAN238 Raveon Technologies CorpCopyright 2018 5 Raveon Technologies Corp.CBIT command is to clear a bit. It will disable the Open Drain, and the IO output will not connect to ground if the output is cleared with the CBIT command.SBIT command is to set a bit. It will turn on the Open Drain, and the IO output willconnect to ground with the SBIT command if the parameters of the SBIT are for the OD IO pin that is used and configured for OD.TBIT command is to set a bit for some time. It will turn on the Open Drain for some time. The IO output will connect to ground with the SBIT command if the parameters of the SBIT are for the OD IO pin that is used and configured for OD. The specified OD IO pin will stay shored to ground for the number of mS specified in the TBIT command. To enable MODBUS protocol reception on the device, execute the MODB X command. MODB 1 to enable RTU MODBUS.W M X c o m m a n d sAll of the Local Commands specified above can be executed with the WMX message. WMX can be enabled on the product with the command WMX 1.See the WMX Technical Node .PDF and the WMX user manual for more WMX information.Your custom software can issue WMX messages into a data radio and the message will be processed. If you pass in a WMX message to a modem, that has the TOID set to the ID of a remote radio you want the message to be sent to, the radio will send the data in the WMX message to the remote radio. If you tagged the WMX message as a “Command” the remote radio will execute the command when it receives the transmission from the radio that you passed the WMX message into.WMX can pass over two types of data: 1) Actual rad message data. 2)Commands to be executed. Because it has the command feature, you can pass those SBIT, CBIT, TBIT or any other command into a modem using WMX commands messages, and the get sent over-the-air to the remote radio or SCADA device and the command is executed remotely.Over the air WMX command can set and clear the Open Drain IO pins. Most WMX users have incorporated the WMX protocol into their master controller software. OneRaveon’s website is a free software tool called Radio Manager. Radio Manager is for communication to radios via serial ports or TCP/IP connects. It also has a WMX feature to send and receive WMX messages so you can experiment with WMX.M O D B U S c o m m a n d sThe RV-M21 and RV-M22 Tech Series radios have a communication feature option thatis compatible with the MODBUS RTU protocol.You Master Controller computer will pass aMODBUS message to a Data Radio modem. TheRadio modem connected to your PC will transmitthe message to the RV-M2x Tech Series radio thatwill process the MODBUS message, and send the response.For more information about MODBUS RTU messages, seehttps:///modbus-information/or read Raveon’s app note AN234 for SCADA and MODBUS info about Raveon’s SCADA products. In the RV-M21 data radio modem’s software m ust be version D30 or larger to utilize MODBUS.Raveon Application note AN230 contains all information about using the MODBUS protocol AN230 (ModbusMx)With Raveon’s Pro ducts that have GPIO interfaces with Open Drain, such as the RV-M21 and RV-M2 data radio modems.M O D B U S R T U C o m m a n d sModbus is a registered trademark of MODICON, Inc.Messages sent from devices that utilize SCADA and Telemetry protocols such as MODBUS RTU are often called “Telegrams”. The MODBUS function 5 (Force single coil) can be used to set of clear the Open Drain IO pins.Modbus data is specified as big-endian, which means the most significant value is at the lowest address.(05) Force single coil to turn on the Open Drain.To set the state of output bits and Open Drain (OD) pins (MODBUS refers to them “coils”), function code 05 is used to send the set command to the remote device. To set a OD open (coil off) (0) send 0x0000 and to enable and Open Drain output (coil on) (1) send 0x00FF. The data per OD output are two bytes.When broadcast, the same function forces the same data output in all attached slave devices.Function code 05 (Force Coil Status) is the code used in MODBUS to send a message to control an Open Drain. The command structure is:Application NoteAN238 Raveon Technologies CorpThe structure of the 05 (Force Coil Status) response back is:Request:96 05 00 02 FF 00 31 1DResponse:96 05 00 02 FF 00 31 1D (it reported coil 2 is on)The Register control coils in MODBUS is referred to as a “Coil Address” In Applciation note AN230, Raveon’s register list has the register number (Coil address) for all the IO pins and SCADA features that can be accessed with the MODBUS SCADA protocol.IO0 is Register 1. IO1 is Register 2, IO2 is Register 3. Use these register numbers to execute MODBUS messages that set coils or read coil status.For Example, to turn on the Open Drain output (Pin to Ground) for device 30 (0x1E) using a MODBUS “Force Single Coil” message which used function code 5, here are some example messages in hex bytes. Each are 8 bytes long.Device Function Register Data CRCIO0 On:1E 05 00 01 FF 00 DF 95IO1 On:1E 05 00 02 FF 00 2F 95IO2 On:1E 05 00 03 FF 00 7E 55Copyright 2018 7 Raveon Technologies Corp.For additional information, contact: Raveon Technologies Corporation 2320 Cousteau CourtVista, CA 92081 - USAPhone: 1-760-444-5995Fax: 1-760-444-5997Email:****************。
国产品牌划时代的见证为ATC音箱而生的声雅A-238全平衡甲类合并放大器
2不別ff旬粪国产品牌划时代的见证为ATC音箱而生的声雅A-238全平衡甲类合并放大器文/阿毕鸣谢力高音响提供器材和场地试听!玩音响,万变不离其中的就是"搭配”二字。
以往,可能是由店家给出搭配建议,顾客参照店家的意见或根据自己的经验、听音□味进行选择。
近年来,越来越多的音箱厂家,根据自家的产品定制功放进行搭配,让自家的产品发挥出应有的出色效果。
而近日,英国音箱品牌ATC的国内总代理力高音响,联合中国音响品牌声雅音响,推出了专属的A-238全平衡甲类合并放大器,可谓是大陆音响业首例国产与进□品牌联姻推出定制产品的个案。
为客户搭配功放而诞生定制产品的想法力高音响创立于1993年,经营全进口高级音响与线材,是英国音箱品牌ATC的国内总代理。
力高音响刘总介绍到,力高音响成立二十多年来,一直都是销售国外音响品牌。
然而,音响并不是一味追求贵,而是讲求搭配得好。
在代理ATC的过程中出现过很多案例,就是面临功放搭配的问题,ATC音箱有着灵敏度低、难推动的问题,需要大功率和大电流功放来推动,适合搭配的进□功放价格相对偏高,是客户会顾虑的因素之一。
最近,刘总灵光一闪突发奇想,现在有没有一款国产的功放能够与ATC音箱完美搭配呢?寻寻觅觅之间,刘总征询了玩家与音响媒体的专业意见,反馈的意见都非常地统-------能跟ATC音箱搭配的国产胆石混合功放非声雅莫属。
两家公司老板是多年的老相识,刘总将想法告诉声雅何总后,两人一拍即合,随即开展合作模式。
声雅音响可以说是中国胆石混合功放的代表。
声雅音响自1991年成立以来,凭着勇于创新的设计理念、诚恳热忱的服务态度、积极进取的事业精神、诚实守信的企业信誉,赢得了一批又一批客户的信赖和支持。
同时,能通过德国人严格的实验室与音乐家检测考验,能二十多年在欧洲市场站稳脚跟,绝非浪得虚名。
3这次声雅音响与英国音箱品牌ATC 的"联姻",实属 是国产品牌划时代的见证。
FA-238_238V_TSX-3225_无源贴片晶振规格书
ISO 14000 是国际标准化组织于 1996 年在全球化变暖、 臭 氧层破坏、以及全球毁林等环境问题日益严重的背景下提 出的环境管理国际标准。
追求高品质
Seiko Epson 为了向顾客提供高品质、卓越信赖性的产品、服务,迅 速着手通过 ISO 9000 系列资格认证的工作,其日本和海外工厂也在通 过 ISO 9001 认证。 同时, 也在通过大型汽车制造厂商要求规格的 ISO/TS 16949 认证。 ISO/TS16949 是一项国际标准,是在 ISO9001 的基础上增 加了对汽车工业的特殊要求部分。
MHz 频率范围晶体单元
FA - 238V / FA - 238 TSX - 3225
频率范围 外部尺寸规格 谐波次数 应用 : : : : : 12 MHz ~ 60 MHz (FA-238,238V) 3.2 × 2.5 × 0.6 mm ···TSX-3225 3.2 × 2.5 × 0.7 mm ···FA-238V / FA-238 基频 移动电话,蓝牙,无线-局域网 ISM 频段电台广播,MPU 时钟等 实际尺寸 FA-238V/ FA-238 TSX-3225
50 10-6 (标准), (15 10-6 ~ 50 10-6 可用) 30 10-6/-20 C ~ +70 C
串联电阻(ESR) R1 如下表所示 如下表所示 频率老化 f_age 5 10-6 / year Max. 1 10-6 / year Max. *2 -6 *1 FA-238:对于超出 40 MHz 的频率,只有标准规格适用。 *2 40.0 MHz f_nom : 2 10 / year Max.
规格(特征)
项目 额定频率范围 储存温度 工作温度 激励功率 频率公差 频率温度特征 负载电容 符号 f_nom T_stg T_use DL f_tol f_tem CL 用于时钟 FA-238V 12.000 MHz ~ 15.999 MHz FA-238 16.000 MHz ~ 60.000 MHz -40 C ~ +125 C -40 C ~ +85 C 200 W Max. 10 10-6 10 10-6/-20 C ~ +75 C 7 pF ~ 用于 RF 参考 TSX-3225 16.000 MHz ~ 48.000 MHz 条件 基频 *1 对于超出标准的规格说明, 请联系我们以便获取相关信息 裸存 推荐: 1 W ~ 100 W +25 C 对于超出标准的规格说明, 请联系我们以便获取相关的信息*1 对于超出标准的规格说明, 请联系我们以便获取相关的信息*1 对于超出标准的规格说明, 请联系我们以便获取相关的信息 -40 C ~ +85 C, DL = 100 W +25 C, 第一年
常用的AD和DA芯片汇总
常⽤的AD和DA芯⽚汇总1. AD公司 AD/DA 器件AD公司⽣产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)⼀直保持市场领导地位,包括⾼速、⾼精度数据转换器和⽬前流⾏的微转换器系统(microConvertersTM )。
01带信号调理、1mW 功耗、双通道 16 位 AD 转换器:AD7705AD7705 是 AD 公司出品的适⽤于低频测量仪器的 AD 转换器。
它能将从传感器接收到的很弱的输⼊信号直接转换成串⾏数字信号输出,⽽⽆需外部仪表放⼤器。
采⽤Σ-Δ的 ADC,实现 16 位⽆误码的良好性能,⽚内可编程放⼤器可设置输⼊信号增益。
通过⽚内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置数字滤波器的第⼀个凹⼝。
在 3V 电源和 1MHz 主时钟时, AD7705 功耗仅是 1mW。
AD7705 是基于微控制器(MCU)、数字信号处理器(DSP)系统的理想电路,能够进⼀步节省成本、缩⼩体积、减⼩系统的复杂性。
应⽤于微处理器(MCU)、数字信号处理(DSP)系统,⼿持式仪器,分布式数据采集系统。
023V/5V CMOS 信号调节 AD 转换器:AD7714AD7714 是⼀个完整的⽤于低频测量应⽤场合的模拟前端,⽤于直接从传感器接收⼩信号并输出串⾏数字量。
它使⽤Σ-Δ转换技术实现⾼达 24 位精度的代码⽽不会丢失。
输⼊信号加⾄位于模拟调制器前端的专⽤可编程增益放⼤器。
调制器的输出经⽚内数字滤波器进⾏处理。
数字滤波器的第⼀次陷波通过⽚内控制寄存器来编程,此寄存器可以调节滤波的截⽌时间和建⽴时间。
AD7714 有 3 个差分模拟输⼊(也可以是 5 个伪差分模拟输⼊)和⼀个差分基准输⼊。
单电源⼯作( 3V 或 5V)。
因此,AD7714 能够为含有多达 5 个通道的系统进⾏所有的信号调节和转换。
AD7714 很适合于灵敏的基于微控制器或 DSP 的系统,它的串⾏接⼝可进⾏ 3 线操作,通过串⾏端⼝可⽤软件设置增益、信号极性和通道选择。
Moxa DA-820系列3U电脑机,Intel 3rd Gen Core CPU,IEC-6185
DA-820SeriesIntel®3rd Gen Core™CPU,IEC-61850,3U rackmount computer with PRP/HSR card supportFeatures and Benefits•IEC61850-3,IEEE1613,and IEC60255compliant for power substationautomation systems•Intel®Celeron™/Intel®Core™i3and i7CPU and QM77chipset•1CFast slot for the OS and4SATA III slots for storage expansion(supportsIntel®RST RAID0/1/5/10)•6USB2.0ports for high-speed peripherals•3PCIe x1slots and2PCI slots for expansion modules•1PCIe x16slot for an additional video card•Highly reliable design,supporting dual power and PRP/HSR technology(withPRP/HSR expansion module)•Onboard TPM module for enhanced cybersecurityCertificationsIntroductionThe DA-820Series is based on the Intel®Celeron™/Intel®Core™i3or i7CPU,and QM77chipset,which supports the standard x86OS and comes with2VGA ports,6USB ports,4Gigabit LAN ports,and23-in-1RS-232/422/485serial ports.The DA-820is equipped with a4SATA disk interface and supports RAID0/1/5/10functionality.The DA-820is specifically designed for substation applications that require precise time synchronization and adherence to the IEC61850-3standards.The flexible design makes the DA-820suitable for local SCADA,environmental monitoring,video surveillance,protocol conversion,and PRP/HSR redundancy applications.In addition,the cybersecurity functions make the DA-820an ideal solution for secure network communication applications.The DA-820complies with the IEC60255standard to enable the protection of electrical relays in a smart substation.IEC60255is one of the most widely used standards for testing relays and protection equipment,and compliance ensures that the DA-820will work reliably and seamlessly with IEDs(intelligent electronic devices)as a part of a robust substation automation system.The housing is a standard3U,19-inch wide,rack-mountable rugged enclosure.This robust,rack-mountable design provides the hardened protection needed for industrial environment applications.Smart Recovery FunctionThe DA-820’s Smart Recovery function makes it easy to troubleshoot system software errors on computers to minimize downtime.Engineers who are experts in a particular vertical market may not have enough computer domain knowledge to know how to fix operating system problems.Moxa Smart Recovery™is an automated BIOS-level recovery system tool that allows engineers to automatically trigger OS recovery to minimize downtime.Proactive Monitoring FunctionMoxa Proactive Monitoring is a small-footprint,resource-friendly,easy-to-use utility that allows users to track a number of system parameters. Users can view the current parameter values for these key parts by simply clicking on the icons corresponding to the parameters in the user er-defined key part indicators(KPIs)are used to monitor the computer’s key parts.Visible and/or audio alerts are triggered automatically via relay and SNMP traps when these KPIs exceed their preset threshold values,making it extremely convenient for operators to avoid system downtime by setting up predictive maintenance tasks well in advance.AppearanceFront View Rear ViewSpecificationsComputerCPU Intel®Celeron®Processor1047UE(2M cache,1.40GHz)Intel®Core™i3-3217UE Processor(3M cache,1.6GHz)Intel®Core™i7-3555LE Processor(4M cache,up to3.20GHz)Intel®Core™i7-3612QE Processor(6M cache,up to3.10GHz)System Chipset Mobile Intel®QM77Express ChipsetGraphics Controller Intel®HD Graphics4000(integrated)System Memory Slot SODIMM DDR3/DDR3L slot x2DRAM16GB max.capacity(204-pin SODIMM x2,each supporting unbuffered ECC DDR3memory at1333and1600MT/s and8GB maximum per module)Supported OS Windows7Pro for Embedded SystemsWindows Embedded Standard7(WS7P)64-bitLinux Debian7Note:OS available by CTOSStorage Slot 2.5-inch HDD/SSD slots x4CFast slot x1Computer InterfaceEthernet Ports Auto-sensing10/100/1000Mbps ports(RJ45connector)x4Serial Ports RS-232/422/485ports x2,software selectable(DB9male)USB2.0USB2.0hosts x6,type-A connectorsExpansion Slots PCIe x1slots x3PCIe x16slot x1PCI slots x2Video Input VGA x2,15-pin D-sub connector(female)LED IndicatorsSystem Power x1Storage x1Programmable x8LAN8per port(10/100/1000Mbps)Serial2per port(Tx,Rx)Serial InterfaceBaudrate50bps to115.2kbpsConnector DB9maleESD8kV(level4)Isolation2kVSerial Standards RS-232/422/485Surge2kVSerial SignalsRS-232TxD,RxD,RTS,CTS,DTR,DSR,DCD,GND RS-422Tx+,Tx-,Rx+,Rx-,GNDRS-485-2w Data+,Data-,GNDRS-485-4w Tx+,Tx-,Rx+,Rx-,GNDPower ParametersPower Button Reset button(front panel)ON/OFF(rear panel)Power Consumption60W(max.)Physical CharacteristicsHousing MetalDimensions(without ears)361x440x133mm(14.23x17.32x5.24in) Weight14,000g(31.11lb)Installation19-inch rack mountingEnvironmental LimitsOperating Temperature Standard Models:-40to60°C(-40to140°F)Wide Temp.Models:-40to75°C(-40to167°F) Storage Temperature(package included)-40to85°C(-40to185°F)Ambient Relative Humidity5to95%(non-condensing)Standards and CertificationsEMC EN61000-6-2/-6-4EMI CISPR32,FCC Part15B Class AEMS IEC61000-4-11DIPsIEC61000-4-2ESD:Contact:8kV;Air:15kVIEC61000-4-3RS:80MHz to1GHz:10V/mIEC61000-4-4EFT:Power:4kV;Signal:4kVIEC61000-4-5Surge:Power:4kV;Signal:4kVIEC61000-4-6CS:10VIEC61000-4-8:20A/mPower Substation IEC61850-3,IEEE1613Protection Relay IEC60255Safety EN60950-1,IEC60950-1,UL60950-1Shock IEC60068-2-27,IEC60870-2-2,IEC61850-3Edition1.0 DeclarationGreen Product RoHS,CRoHS,WEEEMTBFTime DA-820-C1-SP-HV-T:193,537hrsDA-820-C1-DP-HV-T:222,207hrsDA-820-C1-SP-LV-T:283,281hrsDA-820-C1-DP-LV-T:288,116hrsDA-820-C3-SP-HV-T:193,537hrsDA-820-C3-DP-HV-T:222,207hrsDA-820-C3-SP-LV-T:283,281hrsDA-820-C3-DP-LV-T:288,116hrsDA-820-C7-SP-HV-T:191,570hrsDA-820-C7-DP-HV-T:219,618hrsDA-820-C7-SP-LV-T:240,015hrsDA-820-C7-DP-LV-T:285,508hrsDA-820-C8-SP-HV:172,182hrsDA-820-C8-DP-HV:194,509hrsDA-820-C8-SP-LV:240,015hrsDA-820-C8-DP-LV:285,508hrsStandards Telcordia(Bellcore)Standard TR/SRWarrantyWarranty Period3yearsDetails See /warrantyPackage ContentsDevice1x DA-820Series computerInstallation Kit1x rack-mounting earDocumentation1x quick installation guide1x warranty cardNote This product requires additional modules(sold separately)to function. DimensionsOrdering InformationDA-820-C8-SP-HV i7-3612QE Single✓–-40to60°C DA-820-C8-DP-HV i7-3612QE Dual✓–-40to60°C DA-820-C8-SP-LV i7-3612QE Single–✓-40to60°C DA-820-C8-DP-LV i7-3612QE Dual–✓-40to60°C DA-820-C7-SP-HV i7-3555LE Single✓–-40to60°C DA-820-C7-SP-HV-T i7-3555LE Single✓–-40to75°C DA-820-C7-DP-HV i7-3555LE Dual✓–-40to60°C DA-820-C7-DP-HV-T i7-3555LE Dual✓–-40to75°C DA-820-C7-SP-LV-T i7-3555LE Single–✓-40to75°C DA-820-C7-DP-LV-T i7-3555LE Dual–✓-40to75°C DA-820-C3-SP-HV-T i3-3217UE Single✓–-40to75°C DA-820-C3-DP-HV-T i3-3217UE Dual✓–-40to75°C DA-820-C3-SP-LV-T i3-3217UE Single–✓-40to75°C DA-820-C3-DP-LV-T i3-3217UE Dual–✓-40to75°C DA-820-C1-SP-HV-T Celeron1047UE Single✓–-40to75°C DA-820-C1-DP-HV-T Celeron1047UE Dual✓–-40to75°C DA-820-C1-SP-LV-T Celeron1047UE Single–✓-40to75°C DA-820-C1-DP-LV-T Celeron1047UE Dual–✓-40to75°C Accessories(sold separately)Expansion ModulesDA-IRIG-B-S-02-T IRIG-B expansion module,PCI interface,1fiber IRIG-B in,1DB9M in/out,1DB9M outDA-IRIG-B-S-04-T IRIG-B expansion module,PCI interface,1fiber IRIG-B in,1DB9M in/out,3DB9M outDA-PRP-HSR2-port Gigabit Ethernet expansion module compliant with IEC62439-3protocol for DA-820Seriesindustrial computersDE-GX02-SFP-T2-port1000Mbps fiber card,SFP slot x2,PCIe interface(SFP module excluded)DE-FX02-SFP-T2-port100Mbps fiber card,SFP slot x2,PCIe interface(SFP module excluded)CablesCBL-RG58AUBNCMF9-150DB9female to BNC male cable for the DA-IRIG-B-S-02-T and DA-IRIG-B-S-04-T,1.5m ConnectorsMini DB9F-to-TB DB9female to terminal block connectorStorage KitsFAN-KIT-82001DA-820HDD/SSD kit with heat dissipation vent for heat dispatch and lock for securityFAN-KIT-82002DA-820HDD/SSD kit with heat dissipation vent for heat dispatch(lock not included)HDD-DOOR-LOCK-82001DA-820HDD/SSD kit with lock for securityUSB Dongle KitsUSB Dongle Kit Internal USB dongle kit installation packageThermal KitsDDR3-THERMAL-KIT-82001DDR3SDRAM thermal kit©Moxa Inc.All rights reserved.Updated Feb21,2020.This document and any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of Moxa Inc.Product specifications subject to change without notice.Visit our website for the most up-to-date product information.。