2013年全国高考理科数学试题分类汇编_导数与积分

合集下载

2013年高考试题分项版解析数学(理) 专题03 导数(Word精析版)

2013年高考试题分项版解析数学(理) 专题03 导数(Word精析版)

第三章 导数(理)一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理】22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰若 ,则s 1,s 2,s 3的大小关系为( )A. s 1<s 2<s 3B. s 2<s 1<s 3C. s 2<s 3<s 1D. s 3<s 2<s 12.【2013年普通高等学校招生全国统一考试福建卷】设函数)(x f 的定义域为R ,()000≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A . )()(,0x f x f R x ≤∈∀ B.0x -是)-(x f 的极小值点C. 0x -是)(-x f 的极小值点D.0x -是)-(-x f 的极小值点3.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知函数f(x)=32x ax bx c +++,下列结论中错误的是( )(A )∃0x R ∈, f(0x )=0(B )函数y=f(x)的图像是中心对称图形(C )若0x 是f(x)的极小值点,则f(x)在区间(-∞, 0x )单调递减 (D )若0x 是f (x )的极值点,则 'f (0x )=04.【2013年普通高等学校招生全国统一考试湖北卷理科】一辆汽车在高速公路上行驶,由于遇到紧急情 况而刹车,以速度25()731v t t t=-++(t 的单位:s ,v 的单位:m/s )行驶至停止. 在此期间汽车继续行驶 的距离(单位:m )是( )125ln5+ B .11825ln 3+ C .425ln5+ D .450ln2+5.【2013年普通高等学校招生全国统一考试(广东卷)理】若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.6.【2013年普通高等学校招生全国统一考试(湖南卷)】若209,Tx dx T =⎰则常数的值为 .7.【2013年普通高等学校招生全国统一考试(江西卷)理】设函数()f x 在(0,)+∞内可导,且(),x x f e x e =+则(1)f '=__________.二.能力题组8.【2013年普通高等学校招生全国统一考试(北京卷)理】直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B.2C.83D.39.【2013年普通高等学校招生全国统一考试湖北卷理科】已知a 为常数,函数()(ln )f x x x ax =-有两个极值点1x ,212()x x x <,则( )A .1()0f x >,21()2f x >-B .1()0f x <,21()2f x <- C .1()0f x >,21()2f x <- D .1()0f x <,21()2f x >-10.【2013年普通高等学校统一考试试题大纲全国理科】若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( )A .[1,0]-B .[1,)-+∞C .[0,3]D .[3,)+∞11.【2013年普通高等学校招生全国统一考试(辽宁卷)理科】设函数()f x 满足()()()()222,2,0,8x e e x f x xf x f x f x x '+==>则时,( ) (A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值[考点定位]:本题考查导数的应用.12.【2013年普通高等学校招生全国统一考试数学浙江理】已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( )A. 当1=k 时,)(x f 在1=x 处取得极小值B. 当1=k 时,)(x f 在1=x 处取得极大值C. 当2=k 时,)(x f 在1=x 处取得极小值D. 当2=k 时,)(x f 在1=x 处取得极大值三.拔高题组13.【2013年普通高等学校招生全国统一考试(广东卷)理】设函数()()21x f x x e kx =--(其中k ∈R ). (Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M . 【答案】 (Ⅰ) 当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-令()0f x '=,得10x =,2ln 2x =当x 变化时,()(),f x f x '的变化如下表:【考点定位】本题考查函数的单调性和函数的最值问题,考查学生的分类讨论思想和构造函数的解题能力.14.【2013年普通高等学校统一考试试题大纲全国理科】 已知函数(1)()ln(1)1x x f x x xλ+=+-+. (Ⅰ)若0x ≥时,()0f x ≤,求λ的最小值;(Ⅱ)设数列{}n a 的通项111123n a n =++++,证明:21ln 24n n a a n-+>.15.【2013年普通高等学校统一考试江苏数学试题】设函数()ln f x x ax =-,()xg x e ax =-,其中a 为 实数.(1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围;(2)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论.[考点定位]本小题主要考查导数的运算及用导数研究函数的性质,考查函数、方程及不等式的相互转化,考查综合运用数学思想方法分析与解决问题及推理论证能力.16.【2013年普通高等学校招生全国统一考试福建卷】已知函数)(ln )(R a x a x x f ∈-=(1)当2=a 时,求曲线)(x f y =在点))1(,1(f A 处的切线方程;(2)求函数)(x f 的极值.17.【2013年普通高等学校招生全国统一考试(辽宁卷)理科】已知函数()()()[]321,12cos .0,12x x f x x e g x ax x x x -=+=+++∈当时, (I )求证:()11;1x f x x-≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.18.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理)卷】已知函数()ln().xf x e x m =-+(Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >.19.【2013年普通高等学校招生全国统一考试(山东卷)理】已知函数()2x x f x c e=+( 2.71828...e =是自然对数的底数,c R ∈). (Ⅰ)求()f x 的单调区间、最大值;(Ⅱ)讨论关于x 的方程()ln x f x =根的个数.(Ⅱ)因为22(1,)x e e ∈,210x e x >>>,又211x -<【考点定位】本题考查了函数的单调性、函数的最值等主干知识,考查了数形结合思想、分类讨论思想、函数与方程思想的综合应用.第一问的研究为第二问进行数形结合铺平了“道路”,使()2ln ,xx y x f x c e ==+的相对位置关系更明晰.20【2013年普通高等学校招生全国统一考试(陕西卷)理】已知函数()e ,x f x x =∈R .(Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值; (Ⅱ) 设x>0, 讨论曲线y =f (x) 与曲线2(0)y mx m => 公共点的个数.(Ⅲ) 设a<b, 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.,能够比较清晰的分类,做到不吃不漏.最后一问,考查函数的凹凸性,富有明显的几何意义,为考生探索结论提供了明确的方向,对代数手段的解决起到导航作用.【考点定位】本题考查考查函数的凹凸性、导数、不等式、参数等问题.属于难题.21.【2013年普通高等学校招生全国统一考试数学(浙江卷)理】已知R a ∈,函数.3333)(23+-+-=a ax x x x f (Ⅰ)求曲线)(x f y =在点))1(,1(f 处的切线方程;(Ⅱ)当]2,0[∈x 时,求|)(|x f 的最大值.综上所诉,4,0142()1,12aaag aa-⎧<≤⎪⎪+=⎨⎪>⎪⎩;23.【2013年普通高等学校招生全国统一考试(江西卷)理】已知函数1()(12),2f x a x=--a为常数且0.a>(1)证明:函数f(x)的图像关于直线x=错误!未找到引用源。

2013年高考理科数学试题分类汇:导数与积分

2013年高考理科数学试题分类汇:导数与积分

请考生在第 以以 以3 以4 题中任选一题做答,如果多做,则按所做的第一题计 .作答时 用 以B 铅笔在答题卡 把所选题目对 题号 方的方框涂黑. 答案
令3. 以0令3 普通高等学校招生全 统一招生考试江 卷 数学 题 本小题满 令6 . 设函数 f ( x) = ln x − ax , g ( x ) = e x − ax ,其中 a 为实数. Ⅲ令)若 f ( x ) 在 (1,+∞ ) 围; 是单调 函数,且 g ( x ) 在 (1,+∞ )
以0令3
一 选择题 高考湖
高考理科数学试题
类汇编:令4 导数
令 . 以0令3


已知 a 为常数,函数
f ( x ) = x ( ln x − ax )
有两个极值点
x1 , x2 ( x1 < x2 ) ,则
A.
f ( x1 ) > 0, f ( x2 ) > − f ( x1 ) > 0, f ( x2 ) < −
已校对纯 上OR价 版含 加
有最小值,求 a 的取值范
Ⅲ以)若 g ( x ) 在 ( −1,+∞ )
是单调增函数,试求 f ( x ) 的零点个数,并证明你的结论.
卷 加题部 答案 wor北 版 与选做题成第 以令 题,本题包括 A B 件 价 四小题,请选定其中两题 ,并在相 的答题区域 ...... 内作答,若多做,则按作答的前两题评 .解答时 写出文 说明 证明过程或演算 答案 解:Ⅲ令)由 f ' ( x) = 而由 x ∈ (1,+∞ ) 知 由 g ' ( x) = e x − a 骤.

2
1
x 2 dx, S , S3 = ∫ e x dx, 则 S1S2 S3 的大小 1 x

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编(45页)

2013年全国高考理科数学分类汇编一、集合与简易逻辑辽宁2013(2)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 辽宁2013(4)下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列; {}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p江西2013.1.已知集合M={1,2,zi},i ,为虚数单位,N={3,4},则复数z=A.-2iB.2iC.-4iD.4i全国1.1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B全国2.1.已知集合{}{}3,2,1,0,1,,4)1(|2-=∈<-=N R x x x M ,则=⋂N M ( ) A {}2,1,0 B {}2,1,0,1- C {}3,2,0,1- D {}3,2,1,0北京2013.1.已知集合A={-1,0,1},B={x |-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}四川1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅重庆(1)已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =ð(A ){1,3,4} (B ){3,4} (C ){3} (D ){4}天津卷(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1]2013安微(1)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B ====+∈∈则M 中元素的个数为(A )3 (B )4 (C )5 (D )6山东(2)设集合A={0,1,2},则集合B={x-y|x ∈A, y ∈A }中元素的个数是( )A. 1B. 3C. 5D.9重庆(2)命题“对任意x R ∈,都有20x ≥”的否定为(A )对任意x R ∈,使得20x < (B )不存在x R ∈,使得20x <(C )存在0x R ∈,都有200x ≥ (D )存在0x R ∈,都有200x <2013广东1.设集合M={x ∣x 2+2x=0,x ∈R},N={x ∣x 2-2x=0,x ∈R},则M ∪N=A. {0}B. {0,2}C. {-2,0} D {-2,0,2}北京2013.3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件四川4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉(C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈2013广东8.设整数n ≥4,集合X={1,2,3……,n }。

2013年全国高考理科数学试题分类汇编(含答案):导数与积分

2013年全国高考理科数学试题分类汇编(含答案):导数与积分

2013年各省高考理科数学试题分类导数与积分一、选择题错误!未指定书签。

(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x ===⎰⎰⎰则123S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B错误!未指定书签。

(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值 【答案】D错误!未指定书签。

(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是 ( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点【答案】D错误!未指定书签。

(2013年高考湖北卷(理))已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则 ( )A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-【答案】D错误!未指定书签。

(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知函数32()f x x ax bx c =+++,下列结论中错误的是A .0x ∃∈R,0()0f x = B .函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0f x =【答案】C错误!未指定书签。

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)1.(2013广东.理)(14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .2.(本小题满分14分)(2013广东文)设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .3(本小题共13分)(2013北京.理)设l 为曲线ln :x C y x =在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.4.(13分)(2013•北京.文)已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值;(2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.5.(2013大纲版.文)(12分)已知函数32()331f x x ax x =+++(1)求当a =,讨论()f x 的单调性;(1)若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围.6.(13分)(2013•福建)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值.7.(14分)(2013•福建)已知函数()1(),xa f x x a R e =-+∈(e 为自然对数的底数) (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.8.(13分)(2013•安徽)设函数23*222()1(,)23nn x x x f x x x R n N n=-+++++∈∈ ,证明: (1)对每个*n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (2)对于任意*p N ∈,由(1)中n x 构成数列{}n x 满足10n n p x x n+<-<. 9. (本小题满分14分) (2013陕西.理)已知函数()e ,x f x x =∈R . (Ⅰ) 若直线1y kx =+与()f x 的反函数的图像相切, 求实数k 的值;(Ⅱ) 设0x >, 讨论曲线()y f x =与曲线2(0)y mx m => 公共点的个数.(Ⅲ) 设a b < , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.10. (本小题满分14分) (2013陕西.文)已知函数()e ,x f x x =∈R .(Ⅰ) 求()f x 的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线()y f x =与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a b <, 比较2a b f +⎛⎫ ⎪⎝⎭与()()f b f a b a --的大小, 并说明理由.14(本小题满分13分)(2013湖南.理)已知0a >,函数()2x a f x x a-=+ (1) 记()f x 在区间[0,4]上的最大值为()g a ,求()g a 的表达式(2) 是否存在a ,使函数()y f x =在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若村子啊,求出a 的取值范围,若不存在,请说明理由(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.17(山东.文)(本小题满分12分)已知函数2()ln (,)f x ax bx x a b R =+-∈(Ⅰ)设0a ≥,求)(x f 的单调区间(Ⅱ) 设0a >,且对于任意0x >,()(1)f x f ≥。

2013年全国高考函数与导数真题汇编 -

2013年全国高考函数与导数真题汇编 -

2013年全国高考函数与导数真题汇编一、选择题1. 【2013·安徽理·4】" a≤0"是"函数f(x)=∣(ax−1)x∣在区间(0,+∞)内单调递增"的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2. 【2013·安徽理·8】函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,⋯,x n,使得f(x1)x1=f(x2)x2=⋯=f(x n)x n,则n的取值范围是( )A. {3,4}B. {2,3,4}C. {3,4,5}D. {2,3}3. 【2013·安徽理·10】若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数是( )A. 3B. 4C. 5D. 64. 【2013·北京理·10】函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y轴对称,则f(x)=( )A. e x+1B. e x−1C. e−x+1D. e−x−15. 【2013·福建理·8】设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A. ∀x∈R,f(x)≤f(x0)B. −x0是f(−x)的极小值点C. −x0是−f(x)的极小值点D. −x0是−f(−x)的极小值点6. 【2013·广东理·8】定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( )A. 4B. 3C. 2D. 17. 【2013·湖北理·8】已知a为常数,函数f(x)=x(lnx−ax)有两个极值点x1,x2(x1<x2),则( )A. f(x1)>0,f(x2)>−12B. f(x1)<0,f(x2)<−12C. f(x1)>0,f(x2)<−12D. f(x1)<0,f(x2)>−128. 【2013·湖南理·8】函数f(x)=2lnx的图象与函数g(x)=x2−4x+5的图象的交点个数为( )A. 3B. 2C. 1D. 09. 【2013·江西理·2】函数y=√xln(1−x)的定义域为( )A. (0,1)B. [0,1)C. (0,1]D. [0,1]10.【2013·江西理·10】如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧FG⏜的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是( )A. B.C. D.11. 【2013·辽宁理·11】已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8,设H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A−B=( )A. 16B. −16C. a2−2a−16D. a2+2a−1612. 【2013·辽宁理·12】设函数f(x)满足x2fʹ(x)+2xf(x)=e xx ,f(2)=e28,则x>0时,f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值又有极小值D. 既无极大值也无极小值13. 【2013·全国大纲理·4】已知函数f(x)的定义域为(−1,0),则函数f(2x+1)的定义域为( )A. (−1,1)B. (−1,−12)C. (−1,0)D. (12,1)14. 【2013·全国大纲理·5】函数f(x)=log2(1+1x)(x>0)的反函数f−1(x)=( )A. 12x−1(x>0) B. 12x−1(x≠0)C. 2x−1(x∈R)D. 2x−1(x>0)15. 【2013·全国大纲理·9】若函数f(x)=x2+ax+1x 在(12,+∞)是增函数,则a的取值范围是( )A. [−1,0]B. [−1,+∞)C. [0,3]D. [3,+∞)16. 【2013·新课标Ⅱ理·8】设a=log36,b=log510,c=log714,则( )A. c>b>aB. b>c>aC. a>c>bD. a>b>c17. 【2013·新课标Ⅱ理·10】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A. ∃x0∈R,f(x0)=0B. 函数y=f(x)的图象是中心对称图形C. 若x0是f(x)的极小值点,则f(x)在区间(−∞,x0)单调递减D. 若x0是f(x)的极值点,则fʹ(x0)=018. 【2013·陕西理·3】已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(−1)=( )A. 2B. 1C. 0D. −219. 【2013·四川理·7】函数y=x33x−1的图象大致是( )A. B. C. D.20. 【2013·四川理·10】设函数 f (x )=√e x +x −a (a ∈R ,e 为自然对数的底数).若曲线 y =sinx 上存在 (x 0,y 0) 使得 f(f (y 0))=y 0,则 a 的取值范围是 ( ) A. [1,e ] B. [e −1−1,1] C. [1,1+e ] D . [e −1−1,e +1]21. 【2013·天津理·7】函数 f (x )=2x ∣log 0.5x ∣−1 的零点个数为 ( ) A. 1 B. 2 C. 3 D. 422. 【2013·天津理·8】已知函数 f (x )=x (1+a∣x∣).设关于 x 的不等式 f (x +a )<f (x ) 的解集为 A ,若 [−12,12]⊆A ,则实数 a 的取值范围是 ( ) A. (1−√52,0) B. (1−√32,0)C. (1−√52,0)∪(0,1+√32) D. (−∞,1−√52)23. 【2013·浙江理·3】已知 x ,y 为正实数,则 ( )A. 2lgx+lgy =2lgx +2lgyB. 2lg (x+y )=2lgx ⋅2lgyC. 2lgx⋅lgy =2lgx +2lgyD. 2lg (xy )=2lgx ⋅2lgy 24. 【2013·浙江理·8】已知 e 为自然对数的底数,设函数 f (x )=(e x −1)(x −1)k (k =1,2) ,则 ( ) A. 当 k =1 时, f (x ) 在 x =1 处取得极小值 B. 当 k =1 时, f (x ) 在 x =1 处取得极大值 C. 当 k =2 时, f (x ) 在 x =1 处取得极小值 D. 当 k =2 时, f (x ) 在 x =1 处取得极大值25. 【2013·重庆理·6】若 a <b <c ,则函数 f (x )=(x −a )(x −b )+(x −b )(x −c )+(x −c )(x −a ) 的两个零点分别位于区间 ( ) A. (a,b ) 和 (b,c ) 内 B. (−∞,a ) 和 (a,b ) 内 C. (b,c ) 和 (c,+∞) 内 D. (−∞,a ) 和 (c,+∞) 内二、填空题1.【2013·湖北理·12】若曲线 y =kx +lnx 在点 (1,k ) 处的切线平行于 x 轴, 则 k = .2. 【2013·湖南理·12】若 ∫x 2T0dx =9,则常数 T 的值为________________ .3. 【2013·湖南理·16】设函数 f (x )=a x +b x −c x ,其中 c >a >0,c >b >0. (1)记集合 M ={(a,b,c )∣ a,b,c 不能构成一个三角形的三条边长,且 a =b},则 (a,b,c )∈M 所对应的 f (x ) 的零点的取值集合为________________ ;(2)若 a ,b ,c 是 △ABC 的三条边长,则下列结论正确的是________________ .(写出所有正确结论的序号) ① ∀x ∈(−∞,1),f (x )>0; ② ∃x ∈R ,使 a x ,b x ,c x 不能构成一个三角形的三条边长; ③若 △ABC 为钝角三角形,则 ∃x ∈(1,2),使 f (x )=0.4. 【2013·江苏理·11】已知 f (x ) 是定义在 R 上的奇函数.当 x >0 时, f (x )=x 2−4x ,则不等式 f (x )>x 的解集用区间表示为________________ .5. 【2013·江苏理·13】在平面直角坐标系 xOy 中,设定点 A (a,a ) , P 是函数 y =1x(x >0) 图象上一动点,若点 P,A 之间的最短距离为 2√2 ,则满足条件的实数 a 的所有值为________________ .6. 【2013·江西理·13】设函数 f (x ) 在 (0,+∞) 内可导,且 f (e x )=x +e x ,则 fʹ(1)=________________ .7. 【2013·新课标Ⅰ理·16】若函数 f (x )=(1−x 2)(x 2+ax +b ) 的图象关于直线 x =−2 对称,则 f (x ) 的最大值是________________ .8. 【2013·陕西理·16】定义"正对数":ln +x ={0,0<x <1lnx,x ≥1,现有四个命题:①若 a >0,b >0,则 ln +(a b )=bln +a ;②若 a >0,b >0,则 ln +(ab )=ln +a +ln +b ; ③若 a >0,b >0,则 ln +(ab)≥ln +a −ln +b ;④若 a >0,b >0,则 ln +(a +b )≤ln +a +ln +b +ln2.其中真命题有________________ (写出所有真命题的编号).9. 【2013·上海理·12】设 a 为实常数,y =f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=9x +a 2x+7,若 f (x )≥a +1 对一切 x ≥0 成立,则 a 的取值范围为________________ .10. 【2013·上海理·14】对区间 I 上有定义的函数 g (x ),记 g (I )={y∣ y =g (x ),x ∈I },已知定义域为 [0,3] 的函数 y =f (x ) 有反函数 y =f −1(x ),且 f −1([0,1))=[1,2),f −1((2,4])=[0,1),若方程 f (x )−x =0 有解 x 0,则 x 0=________________ .11. 【2013·四川理·14】已知 f (x ) 是定义域为 R 的偶函数,当 x ≥0 时, f (x )=x 2−4x ,那么,不等式 f (x +2)<5 的解集是________________ .2013参考答案一、选择题1. C2. B3. A4. D5. D6. C7. D8. B9. B 10. D 11. B 12. D 13. B 14. A 15 D 16. D 17. C 18. D 19. C 20. A 21. B 22. A 23. D 24. C 25. A二、填空题1. -12. 33. {x∣ 0<x≤1};①②③4. (−5,0)∪(5,+∞)5. −1;√106. 27. 168. ①③④9. a≤−8710. 211. {x∣ −7<x<3}2013年高考真题1. 【2013·安徽理·20】设函数f n(x)=−1+x+x222+x332+⋯+x nn2(x∈R,n∈N∗).证明:Ⅰ 对每个n∈N∗,存在唯一的x n∈[23,1],满足f n(x n)=0;Ⅰ 对任意p∈N∗,由(1)中x n构成的数列{x n}满足0<x n−x n+p<1n.2. 【2013·北京理·20】设L为曲线C:y=lnxx在点(1,0)处的切线.Ⅰ 求L的方程;Ⅰ 证明:除切点(1,0)之外,曲线C在直线L的下方.3. 【2013·广东理·17】已知函数f(x)=x−alnx(a∈R).Ⅰ 当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;Ⅰ 求函数f(x)的极值.4. 【2013·福建理·17】设函数 f (x )=(x −1)e x −kx 2(k ∈R ). Ⅰ 当 k =1 时,求函数 f (x ) 的单调区间;Ⅰ 当 k ∈(12,1] 时,求函数 f (x ) 在 [0,k ] 上的最大值 M .5. 【2013·湖北理·22】设 n 为正整数,r 为正有理数. Ⅰ 求函数 f (x )=(1+x )r+1−(r +1)x −1(x >−1) 的最小值; Ⅰ 证明:n r+1−(n−1)r+1r+1<n r <(n+1)r+1−n r+1r+1;Ⅰ 设 x ∈R ,记 [x ] 为不小于 x 的最小整数,例如 [2]=2,[π]=4,[−32]=−1.令 S =√813+√823+√833+⋯+√1253,求 [S ] 的值.(参考数据:8043≈344.7,8143≈350.5,12443≈618.3,12643≈631.7)6. 【2013·湖南理·22】已知 a >0,函数 f (x )=∣∣x−a x+2a ∣∣.Ⅰ 记 f (x ) 在区间 [0,4] 上的最大值为 g (a ),求 g (a ) 的表达式;Ⅰ 是否存在 a ,使函数 y =f (x ) 在区间 (0,4) 内的图象上存在两点,在该两点处的切线相互垂直?若存在,求 a 的取值范围;若不存在,请说明理由.7. 【2013·江苏理·20】设函数 f (x )=lnx −ax,g (x )=e x −ax ,其中 a 为实数.Ⅰ 若 f (x ) 在 (1,+∞) 上是单调减函数,且 g (x ) 在 (1,+∞) 上有最小值,求 a 的取值范围;Ⅰ 若 g (x ) 在 (−1,+∞) 上是单调增函数,试求 f (x ) 的零点个数,并证明你的结论.8. 已知函数f(x)=a(1−2∣∣x−12∣∣),a为常数且a>0.Ⅰ 证明:函数f(x)的图象关于直线x=12对称;Ⅰ 若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为函数f(x)的二阶周期点,如果f(x)有两个二阶周期点x1,x2,试确定a的取值范围;Ⅰ 对于(2)中的x1,x2和a,设x3为函数f(f(x))的最大值点,A(x1,f(f(x1))),B(x2,f(f(x2))),C(x3,0),记△ABC的面积为S(a),讨论S(a)的单调性9. 【2013·辽宁理·21】已知函数f(x)=(1+x)e−2x,g(x)=ax+x32+1+2xcosx,当x∈[0,1]时,Ⅰ 求证:1−x≤f(x)≤11+x;Ⅰ 若f(x)≥g(x)恒成立,求实数a的取值范围.10. 【2013·全国大纲理·22】已知函数f(x)=ln(1+x)−x(1+λx)1+x.Ⅰ 若x≥0时f(x)≤0,求λ的最小值;Ⅰ 设数列{a n}的通项a n=1+12+13+⋯+1n,证明:a2n−a n+14n>ln2.11. 【2013·新课标Ⅰ理·21】设函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+ 2.Ⅰ 求a,b,c,d的值;Ⅰ 若 x ≥−2 时, f (x )≤kg (x ) ,求 k 的取值范围.12. 【2013·新课标Ⅱ理·21】已知函数 f (x )=e x −ln (x +m ). Ⅰ 设 x =0 是 f (x ) 的极值点,求 m ,并讨论 f (x ) 的单调性; Ⅰ 当 m ≤2 时,证明 f (x )>0.13. 【2013·陕西理·21】设函数 f (x )=xe 2x +c (e =2.71828⋯ 是自然对数的底数,c ∈R ). Ⅰ 求f (x ) 的单调区间、最大值;Ⅰ 讨论关于 x 的方程 ∣lnx∣=f (x ) 根的个数14. 【2013·四川理·21】已知函数 f (x )={x 2+2x +a,x <0lnx,x >0,其中 a 是实数.设A(x 1,f (x 1)),B(x 2,f (x 2)) 为该函数图象上的两点,且 x 1<x 2.Ⅰ 指出函数 f (x ) 的单调区间;Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线互相垂直,且 x 2<0,求 x 2−x 1 的最小值; Ⅰ 若函数 f (x ) 的图象在点 A ,B 处的切线重合,求 a 的取值范围.15. 【2013·天津理·20】 已知函数 f (x )=x 2lnx . Ⅰ 求函数 f (x ) 的单调区间;Ⅰ 证明:对任意的t>0,存在唯一的s,使t=f(s).Ⅰ 设(2)中所确定的s关于t的函数为s=g(t),证明:当t>e2时,有25<lng(t)lnt<12.16. 【2013·浙江理·20】已知a∈R,函数f(x)=x3−3x2+3ax−3a+3Ⅰ 求曲线y=f(x)在点(1,f(1))处的切线方程;Ⅰ 当x∈[0,2]时,求∣f(x)∣的最大值.17. 【2013·重庆理·17】设f(x)=a(x−5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).Ⅰ 确定a的值;Ⅰ 求函数f(x)的单调区间与极值.2013参考答案1. (1) 对每个 n ∈N ∗,当 x >0 时,f n ′(x )=1+x 2+⋯+x n−1n>0,故 f n (x ) 在 (0,+∞) 内单调递增. 由于 f 1(1)=0,当 n ≥2,f n (1)=122+132+⋯+1n 2>0, 故 f n (1)≥0.又f n (23)=−1+23+∑(23)kk2nk=2≤−13+14∑(23)knk=2=−13+14⋅(23)2[1−(23)n−1]1−23=−13⋅(23)n−1<0,所以存在唯一的 x n ∈[23,1],满足 f n (x n )=0.(2) 当 x >0 时,f n+1(x )=f n (x )+x n+1(n +1)2>f n (x ),故f n+1(x n )>f n (x n )=f n+1(x n+1)=0.由 f n+1(x ) 在 (0,+∞) 内单调递增知,x n+1<x n ,故 {x n } 为单调递减数列.从而对任意的 n,p ∈N ∗,x n+p <x n ,对任意的 p ∈N ∗,由于f n (x n )=−1+x n +x n 222+⋯+x n nn2=0, ⋯⋯①f n+p (x n+p )=−1+x n+p +x n+p 222+⋯+x n+p n n 2+x n+pn+1(n +1)2+⋯+x n+p n+p (n +p )2=0, ⋯⋯②①式减去②式并移项,利用 0<x n+p <x n ≤1,得x n −x n+p=∑x n+pk−x nk k 2nk=2+∑x n+pk k 2n+pk=n+1≤∑x n+pk k 2n+pk=n+1≤∑12n+pk=n+1<∑1k (k −1)n+pk=n+1=1n −1n +p <1n .因此,对任意 p ∈N ∗,都有0<x n −x n+p <1n.2(1) 设 f (x )=lnx x,则fʹ(x )=1−lnxx 2. 所以 fʹ(1)=1 ,所以 L 的方程为 y =x −1 .(2) 令 g (x )=x −1−f (x ) ,则除切点之外,曲线 C 在直线 L 的下方等价于g (x )>0(∀x >0,x ≠1).g (x ) 满足 g (1)=0 ,且gʹ(x )=1−fʹ(x )=x 2−1+lnx x 2.当 0<x <1 时,x 2−1<0,lnx <0,所以 gʹ(x )<0 ,故 g (x ) 单调递减; 当 x >1 时,x 2−1>0,lnx >0,所以 gʹ(x )>0 ,故 g (x ) 单调递增.所以,g (x )>g (1)=0(∀x >0,x ≠1).所以除切点之外,曲线 C 在直线 L 的下方.3(1) 当 a =2 时,f (x )=x −2lnx,fʹ(x )=1−2x(x >0),因而f (1)=1,fʹ(1)=−1,所以曲线 y =f (x ) 在点 A(1,f (1)) 处的切线方程为y −1=−(x −1),即x +y −2=0.(2) 由fʹ(x )=1−a x =x −ax,x >0知:①当 a ≤0 时,fʹ(x )>0,函数 f (x ) 为 (0,+∞) 上是增函数,函数 f (x ) 无极值. ②当 a >0 时,由 fʹ(x )=0,解得 x =a . 又当 x ∈(0,a ) 时,fʹ(x )<0; 当 x ∈(a,+∞) 时,fʹ(x )>0,从而函数 f (x ) 在 x =a 处取得极小值,且极小值为f (a )=a −alna,无极大值.综上,当 a ≤0 时,函数 f (x ) 无极值;当 a >0 时,函数 f (x ) 在 x =a 处取得极小值 a −alna ,无极大值. 4(1)fʹ(x )=(x −1)e x +e x −2kx=xe x −2kx=x (e x−2k ).当 k =1 时,令 fʹ(x )=x (e x −2)=0,得x 1=0,x 2=ln2;当 x <0 时,fʹ(x )>0;当 0<x <ln2 时,fʹ(x )<0;当 x >ln2 时,fʹ(x )>0; Ⅰ函数 f (x ) 的单调递增区间为 (−∞,0),(ln2,+∞);单调递减区间为 (0,ln2). (2) Ⅰ 12<k ≤1,Ⅰ 1<2k ≤2,所以0<ln (2k )<ln2.记 h (k )=k −ln (2k ),则 hʹ(k )=1−22k=k−1k在 k ∈(12,1) 有 hʹ(k )<0,Ⅰ当 k ∈(12,1) 时,h (k )=k −ln (2k )>h (1)=1−ln2>0,即k >ln (2k )>0.Ⅰ当 k ∈(12,1) 时,函数 f (x ) 在 [0,ln (2k )) 单调递减,在 (ln (2k ),k ] 单调递增. f (0)=−1,f (k )=(k −1)e k −k 3,记 g (k )=f (k )=(k −1)e k −k 3,下证明 g (k )≥−1.gʹ(k )=k(e k −3k),设 p (k )=e k −3k ,令pʹ(k )=e k −3=0,得k =ln3>1, Ⅰ p (k )=e k −3k 在 (12,1] 为单调递减函数,而p (12)=√e −32>√2.25−1.5=0,p (1)=e −3<0,Ⅰ gʹ(k )=k(e k −3k)=0 的一个非零的根为 k 0∈(12,1],且 e k 0=3k 0. 显然 g (k )=(k −1)e k −k 3 在 (12,k 0) 单调递增,在 (k 0,1] 单调递减, Ⅰ g (k )=f (k )=(k −1)e k −k 3 在 (12,1) 上的最大值为g (k 0)=(k 0−1)3k 0−k 03=−k 03+3k 02−3k 0=(1−k 0)3−1>−1,g (12)=−12√e −18>−1⇔74>√e 而 74>√3>√e 成立,Ⅰ g (12)>−1,g (1)=−1.综上所述,当 k ∈(12,1] 时,函数 f (x ) 在 [0,k ] 的最大值M =(k −1)e k −k 3.5(1)因为fʹ(x)=(r+1)(1+x)r−(r+1)=(r+1)[(1+x)r−1],令fʹ(x)=0,解得x=0.当−1<x<0时,fʹ(x)<0,所以f(x)在(−1,0)内是减函数;当x>0时,fʹ(x)>0,所以f(x)在(0,+∞)内是增函数.故函数f(x)在x=0处取得最小值f(0)=0.(2)由(1)知,当x∈(−1,+∞)时,f(x)≥f(0)=0,即(1+x)r+1≥1+(r+1)x,当且仅当x=0时等号成立,故当x>−1且x≠0时,有(1+x)r+1>1+(r+1)x. ⋯⋯①在①中,令x=1n(这时x>−1且x≠0),得(1+1n)r+1>1+r+1n.上式两边同乘n r+1,得(n+1)r+1>n r+1+n r(r+1),即n r<(n+1)r+1−n r+1r+1. ⋯⋯②当n>1时,在①中令x=−1n(这时x>−1且x≠0),类似可得n r>n r+1−(n−1)r+1r+1. ⋯⋯③且当n=1时,③也成立.综合②③,得n r+1−(n−1)r+1r+1<n r<(n+1)r+1−n r+1r+1. ⋯⋯④(3)在④中,令r=13,n分别取值81,82,83,⋯,125,得34(8143−8043)<√813<34(8243−8143),34(8243−8143)<√823<34(8343−8243),34(8343−8243)<√833<34(8443−8343),⋯⋯,34(12543−12443)<√1253<34(12643−12543). 将以上各式相加并整理,得34(12543−8043)<S <34(12643−8143). 代入数据计算,可得34(12543−8043)≈210.2,34(12643−8143)≈210.9. 由 [S ] 的定义,得 [S ]=211.6(1) 当 0≤x ≤a 时,f (x )=a−x x+2a ;当 x >a 时,f (x )=x−a x+2a.因此,当 x ∈(0,a ) 时,fʹ(x )=−3a(x+2a )2<0,f (x ) 在 (0,a ) 上单调递减; 当 x ∈(a,+∞) 时,fʹ(x )=3a(x+2a )2>0,f (x ) 在 (a,+∞) 上单调递增. ①当 a ≥4 时,则 f (x ) 在 x ∈(0,4) 上单调递减,g (a )=f (0)=12.②当 0<a <4 时,则 f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增,所以g (a )=max {f (0),f (4)}. 而f (0)−f (4)=12−4−a 4+2a =a −12+a, 故当 0<a ≤1 时,g (a )=f (4)=4−a4+2a ;当 1<a <4 时,g (a )=f (0)=12. 综上所述,g (a )={4−a4+2a ,0<a ≤1,12,a >1.(2) 由(1)知,当 a ≥4 时,f (x ) 在 x ∈(0,4) 上单调递减,故不满足要求. 当 0<a <4 时,f (x ) 在 (0,a ) 上单调递减,在 (a,4) 上单调递增.若存在x1,x2∈(0,4)(x1<x2)使曲线y=f(x)在(x1,f(x1)),(x2,f(x2))两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且fʹ(x1)⋅fʹ(x2)=−1,即−3a (x1+2a)2⋅3a(x2+2a)2=−1亦即x1+2a=3ax2+2a. ⋯⋯①由x1∈(0,a),x2∈(a,4)得x1+2a∈(2a,3a),3ax2+2a ∈(3a4+2a,1).故①成立等价于集合A={x∣ 2a<x<3a}与集合B={x∣ 3a4+2a<x<1}的交集非空.因为3a4+2a <3a,所以当且仅当0<2a<1,即0<a<12时,A∩B≠∅.综上所述,存在a使函数f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,12).7(1)令fʹ(x)=1−a=1−ax<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a−1,即f(x)在(a−1,+∞)上是单调减函数.同理,f(x)在(0,a−1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a−1,+∞),从而a−1≤1,即a≥1.令gʹ(x)=e x−a=0,得x=lna.当x<lna时,gʹ(x)<0;当x>lna时,gʹ(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.综上可知,a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令gʹ(x)=e x−a>0,解得a<e x,即x>lna.因为g(x)在(−1,+∞)上是单调增函数,类似(1)有lna≤−1,即0<a≤e−1.结合上述两种情况,得a≤e−1.①当a=0时,由f(1)=0以及fʹ(x)=1x>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a−ae a=a(1−e a)<0,f(1)=−a>0,且函数f(x)在[e a,1]上的图象连续,所以f(x)在(e a,1)上存在零点.另外,当x>0时,fʹ(x)=1x−a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤e−1时,令fʹ(x)=1−a=0,解得x=a−1.当0<x<a−1时,fʹ(x)>0;当x>a−1时,fʹ(x)<0,所以,x=a−1是f(x)的最大值点,且最大值为f(a−1)=−lna−1.a.当−lna−1=0,即a=e−1时,f(x)有一个零点x=e.b.当−lna−1>0,即0<a<e−1时,f(x)有两个零点.实际上,对于0<a<e−1,由于f(e−1)=−1−ae−1<0,f(a−1)>0,且函数f(x)在[e−1,a−1]上的图象连续,所以f(x)在(e−1,a−1)上存在零点.另外,当x∈(0,a−1)时,fʹ(x)=1x−a>0,故f(x)在(0,a−1)上是单调增函数,所以f(x)在(0,a−1)上只有一个零点.下面考虑f(x)在(a−1,+∞)上的情况.先证f(e a−1)=a(a−2−e a−1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x−x2,则hʹ(x)=e x−2x,再设l(x)=hʹ(x)=e x−2x,则lʹ(x)=e x−2.当x>1时,lʹ(x)=e x−2>e−2>0,所以l(x)=hʹ(x)在(1,+∞)上是单调增函数.故当x>2时,hʹ(x)=e x−2x>hʹ(2)=e2−4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h (x )=e x −x 2>h (e )=e e −e 2>0,即当 x >e 时,e x >x 2.当 0<a <e −1,即 a −1>e 时,f(e a −1)=a −1−ae a−1=a(a −2−e a −1)<0. 又 f (a −1)>0,且函数 f (x ) 在 [a −1,e a −1] 上的图象连续,所以 f (x ) 在 (a −1,e a −1) 上存在零点. 又当 x >a −1 时,fʹ(x )=1x−a <0, 故 f (x ) 在 (a −1,+∞) 上是单调减函数, 所以 f (x ) 在 (a −1,+∞) 上只有一个零点. 综合①②③可知,当 a ≤0 或 a =e −1 时,f (x ) 的零点个数为 1,当 0<a <e −1 时,f (x ) 的零点个数为 2.8(1) 因为f (1+x)=a (1−2∣x∣), f (12−x)=a (1−2∣x∣), 有f (1+x)=f (1−x). 所以函数 f (x ) 的图象关于直线 x =12 对称. (2) 当 0<a <12 时,有f(f (x ))={4a 2x,x ≤12,4a 2(1−x ),x >12,所以 f(f (x ))=x 只有一个解 x =0. 又 f (0)=0,故 0 不是二阶周期点. 当 a =12 时,有f(f (x ))={x,x ≤12,1−x,x >12,所以 f(f (x ))=x 有解集 {x∣ x ≤12}.又当 x ≤12时,f (x )=x ,故 {x∣ x ≤12} 中的所有点都不是二阶周期点.当 a >12 时,有f(f (x ))={4a 2x,x ≤14a ,2a −4a 2x,14a <x ≤12,2a (1−2a )+4a 2x,12<x ≤4a −14a ,4a 2−4a 2x,x >4a −14a,所以 f(f (x ))=x 有四个解:0,2a 1+4a2,2a1+2a ,4a 21+4a 2.又f (0)=0,f (2a )=2a,f (2a 1+4a 2)≠2a 1+4a 2,f (4a 21+4a 2)≠4a 21+4a 2, 故只有 2a1+4a 2,4a 21+4a 2 是 f (x ) 的二阶周期点. 综上所述,所求 a 的取值范围为 a >12. (3) 由(2)得x 1=2a1+4a 2,x 2=4a 21+4a 2, 因为 x 3 为函数 f(f (x )) 的最大值点,所以x 3=14a 或 x 3=4a −14a. 当 x 3=14a 时,S (a )=2a−14(1+4a 2),求导得Sʹ(a )=2(a −1+√22)(a −1−√22)(1+4a 2)2,所以当 a ∈(12,1+√22) 时,S (a ) 单调递增,当 a ∈(1+√22,+∞) 时,S (a ) 单调递减;当x3=4a−14a 时,S(a)=8a2−6a+14(1+4a2),求导得Sʹ(a)=12a2+4a−32(1+4a2)2,因为a>12,从而有Sʹ(a)=12a2+4a−32(1+4a2)2>0,所以当a∈(12,+∞)时,S(a)单调递增.9(1)要证x∈[0,1]时,(1+x)e−2x≥1−x,只需证明(1+x)e−x≥(1−x)e x.记h(x)=(1+x)e−x−(1−x)e x,则hʹ(x)=x(e x−e−x),当x∈(0,1)时,hʹ(x)>0,因此h(x)在[0,1]上是增函数,故h(x)≥h(0)=0.所以f(x)≥1−x,x∈[0,1].要证x∈[0,1]时,(1+x)e−2x≤11+x,只需证明e x≥x+1.记K(x)=e x−x−1,则Kʹ(x)=e x−1,当x∈(0,1)时,Kʹ(x)>0,因此K(x)在[0,1]上是增函数,故K(x)≥K(0)=0.所以f(x)≤11+x,x∈[0,1].综上,1−x≤f(x)≤11+x,x∈[0,1].(2)方法一:f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥1−x−ax−1−x32−2xcosx=−x(a+1+x22+2cosx).设G(x)=x22+2cosx,则Gʹ(x)=x−2sinx.记H(x)=x−2sinx,则Hʹ(x)=1−2cosx,当x∈(0,1)时,Hʹ(x)<0,于是Gʹ(x)在[0,1]上是减函数,从而当x∈(0,1)时,Gʹ(x)<Gʹ(0)=0,故G(x)在[0,1]上是减函数,于是G(x)≤G(0)=2,从而a+1+G(x)≤a+3,所以,当a≤−3时,f(x)≥g(x)在[0,1]上恒成立,下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)−g(x)≤11+x−1−ax−x32−2xcosx=−x1+x−ax−x32−2xcosx=−x(11+x +a+x22+2cosx).记I(x)=11+x+a+x22+2cosx=11+x+a+G(x),则Iʹ(x)=−1(1+x)2+Gʹ(x),当x∈(0,1)时,Iʹ(x)<0.故I(x)在[0,1]上是减函数.于是I(x)在[0,1]上的值域为[a+1+2cos1,a+3].因为当a>−3时,a+3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].方法二:先证当x∈[0,1]时,1−12x2≤cosx≤1−14x2.记F(x)=cosx−1+12x2,则Fʹ(x)=−sinx+x.记G(x)=−sinx+x,则Gʹ(x)=−cosx+1,当x∈(0,1)时,Gʹ(x)>0,于是G(x)在[0,1]上是增函数,因此当x∈(0,1)时,G(x)>G(0)=0,从而F(x)在[0,1]上是增函数,因此F(x)≥F(0)=0,所以当x∈[0,1]时,1−12x2≤cosx.同理可证,当x∈[0,1]时,cosx≤1−14x2.综上,当x∈[0,1]时,1−12x2≤cosx≤1−14x2.因为当x∈[0,1]时,f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≥(1−x)−ax−x32−1−2x(1−14x2)=−(a+3)x.所以当a≤−3时,f(x)≥g(x)在[0,1]上恒成立.下面证明,当a>−3时,f(x)≥g(x)在[0,1]上不恒成立.因为f(x)−g(x)=(1+x)e−2x−(ax+x32+1+2xcosx)≤1−1−ax−x3−2x(1−1x2)=x2+x3−(a+3)x≤32x[x−23(a+3)],所以存在x0∈(0,1)(例如x0取a+33和12中的较小值)满足f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a的取值范围是(−∞,−3].10(1) 由已知f (0)=0,fʹ(x )=(1−2λ)x −λx 2(1+x )2,fʹ(0)=0.若 λ≤0,则在 (0,+∞) 上,fʹ(x )>0,f (x ) 单调递增,f (x )>f (0)=0,不符题意; 若 0<λ<12,则当 0<x <1−2λλ时,fʹ(x )>0,所以 f (x )>0.若 λ≥12,则当 x >0 时,fʹ(x )<0,f (x ) 单调递减,所以当 x >0 时,f (x )<0. 综上,λ 的最小值是 12.(2) 令 λ=12.由(1)知,当 x >0 时,f (x )<0,即x (2+x )2+2x>ln (1+x ).取 x =1k ,则2k +12k (k +1)>ln (k +1k).于是a 2n −a n +14n =∑(12k +12(k +1))2n−1k=n=∑2k +12k (k +1)2n−1k=n >∑lnk +1k2n−1k=n=ln2n −lnn =ln2,所以a 2n −a n +14n>ln2.11. (1) 由已知得 f (0)=2,g (0)=2,fʹ(0)=4,gʹ(0)=4. 而fʹ(x)=2x+a,gʹ(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)−f(x)=2ke x(x+1)−x2−4x−2,则Fʹ(x)=2ke x(x+2)−2x−4=2(x+2)(ke x−1).由题设可得F(0)≥0,即k≥1.令Fʹ(x)=0,得x1=−lnk,x2=−2.(i)若1≤k<e2,则−2<x1≤0,从而当x∈(−2,x1)时,Fʹ(x)<0;当x∈(x1,+∞)时,Fʹ(x)>0,即F(x)在(−2,x1)上单调递减,在(x1,+∞)上单调递增,故F(x)在[−2,+∞)上的最小值为F(x1),而F(x1)=2x1+2−x12−4x1−2=−x1(x1+2)≥0.故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(ii)若k=e2,则Fʹ(x)=2e2(x+2)(e x−e−2),从而当x>−2时,Fʹ(x)>0,即F(x)在(−2,+∞)上单调递增,而F(−2)=0,故当x≥−2时,F(x)≥0,即f(x)≤kg(x)恒成立.(iii)若k>e2,则F(−2)=−2ke−2+2=−2e−2(k−e2)<0.从而当x≥−2时,f(x)≤kg(x)不可能恒成立.综上,k的取值范围是[1,e2].12. (1)fʹ(x)=e x−1x+m.由x=0是f(x)的极值点得fʹ(0)=0,所以m=1.于是f(x)=e x−ln(x+1),定义域为(−1,+∞),fʹ(x)=e x−1 x+1.函数fʹ(x)=e x−1x+1在(−1,+∞)上单调递增,且fʹ(0)=0,因此,当x∈(−1,0)时,fʹ(x)<0;当x∈(0,+∞)时,fʹ(x)>0.所以f(x)在(−1,0)上单调递减,在(0,+∞)上单调递增.(2)当m≤2,x∈(−m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时,f(x)>0.当m=2时,函数fʹ(x)=e x−1 x+2在(−2,+∞)上单调递增.又fʹ(−1)<0,fʹ(0)>0,故fʹ(x)=0在(−2,+∞)上有唯一实根x0,且x0∈(−1,0).当x∈(−2,x0)时,fʹ(x)<0;当x∈(x0,+∞)时,fʹ(x)>0,从而当x=x0时,f(x)取得最小值.由fʹ(x0)=0得e x0=1x0+2,ln(x0+2)=−x0,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2 x0+2>0.综上,当m≤2时,f(x)>0.13. (1)因为fʹ(x)=(1−2x)e−2x,由fʹ(x)=0,解得x=1 2 .当x<12时,fʹ(x)>0,f(x)单调递增;当x>12时,fʹ(x)<0,f(x)单调递减.所以,函数f(x)的单调递增区间是(−∞,12),单调递减区间是(12,+∞),最大值为f(12)=12e−1+c.(2)令g(x)=∣lnx∣−f(x)=∣lnx∣−xe−2x−c,x∈(0,+∞).(1)当x∈(1,+∞)时,lnx>0,则g (x )=lnx −xe −2x −c,所以gʹ(x )=e−2x(e 2x x+2x −1). 因为e 2x x>0,2x −1>0,所以gʹ(x )>0.因此 g (x ) 在 (1,+∞) 上单调递增. (2)当 x ∈(0,1) 时,lnx <0,则g (x )=−lnx −xe −2x −c,所以gʹ(x )=e −2x(−e 2xx +2x −1).因为 e 2x ∈(1,e 2),e 2x >1>x >0,所以−e 2x x<−1. 又 2x −1<1,所以 −e 2x x+2x −1<0,即gʹ(x )<0.因此 g (x ) 在 (0,1) 上单调递减. 综合(1)(2)可知,g (x ) 在 (0,1) 单调递减,在 (1,+∞) 单调递增; 所以,g (x ) 的最小值是 g (1)=−e −2−c .①当 g (1)=−e −2−c >0,即 c <−e −2 时,g (x ) 没有零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0;②当 g (1)=−e −2−c =0,即 c =−e −2 时,g (x ) 只有一个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1;③当 g (1)=−e −2−c <0,即 c >−e −2 时, 当 x ∈(1,+∞) 时,由(1)知g (x )=lnx −xe −2x −c ≥lnx −(12e −1+c)>lnx −1−c,要使 g (x )>0,只需 lnx −1−c >0,,即 x ∈(e 1+c ,+∞); 当 x ∈(0,1) 时,由(1)知g (x )=−lnx −xe −2x −c ≥−lnx −(12e −1+c)>−lnx −1−c,要使 g (x )>0,只需 −lnx −1−c >0,即 x ∈(0,e −1−c ).所以当 c >−e −2 时,g (x ) 有两个零点,故关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2. 综上所述,当 c <−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 0; 当 c =−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 1; 当 c >−e −2 时,关于 x 的方程 ∣lnx ∣=f (x ) 根的个数为 2.14. (1)函数f(x)的单调递减区间为(−∞,−1),单调递增区间为[−1,0),(0,+∞).(2)由导数的几何意义可知,点A处的切线斜率为fʹ(x1),点B处的切线斜率为fʹ(x2),故当点A处的切线与点B处的切线垂直时,有fʹ(x1)fʹ(x2)=−1.当x<0时,对函数f(x)求导,得fʹ(x)=2x+2.因为x1<x2<0,所以(2x1+2)(2x2+2)=−1,所以2x1+2<0,2x2+2>0.因此x2−x1=12[−(2x1+2)+2x2+2]≥√[−(2x1+2)](2x2+2)=1,当且仅当−(2x1+2)=2x2+2=1,即x1=−32且x2=−12时,等号成立.所以函数f(x)的图象在点A,B处的切线互相垂直时,x2−x1的最小值为1.(3)当x1<x2<0或x2>x1>0时,fʹ(x1)≠fʹ(x2),故x1<0<x2.当x1<0时,函数f(x)的图象在点(x1,f(x1))处的切线方程为y−(x12+2x1+a)=(2x1+2)(x−x1),即y=(2x1+2)x−x12+a.当x2>0时,函数f(x)的图象在点(x2,f(x2))处的切线方程为y−lnx2=1x2(x−x2),即y=12⋅x+lnx2−1.两切线重合的充要条件是{1x2=2x1+2, ⋯⋯①lnx2−1=−x12+a. ⋯⋯②由①及x1<0<x2知,−1<x1<0.由①②,得a=x12+ln12x1+2−1=x12−ln(2x1+2)−1.∵函数y=x12−1,y=−ln(x1+2)在区间(−1,0)上单调递减,∴a(x1)=x12−ln(2x1+2)−1在(−1,0)上单调递减,且x1→−1时,a(x1)→+∞;x1→0时,a(x1)→−1−ln2.∴a的取值范围是(−1−ln2,+∞).15. (1)函数f(x)的定义域为(0,+∞).fʹ(x)=2xlnx+x=x(2lnx+1),令fʹ(x)=0,得x=√e.当x变化时,fʹ(x),f(x)的变化情况如下表:所以函数f(x)的单调递减区间是√e ),单调递增区间是(√e+∞).(2)当0<x≤1时,f(x)≤0.t>0,令h(x)=f(x)−t,x∈[1,+∞).由(1)知,h(x)在区间(1,+∞)内单调递增.h(1)=−t<0,h(e t)=e2t lne t−t=t(e2t−1)>0.故存在唯一的s∈(1,+∞),使得t=f(s)成立.(3)因为s=g(t),由(2)知,t=f(s),且s>1,从而lng(t)=lns ()=lnsln(s2lns)=lns2lns+ln(lns)=u2u+lnu,其中u=lns.要使2 5<lng(t)lnt<12成立,只需0<lnu<u2.当t>e2时,若s=g(t)≤e,则由f(s)的单调性,有t=f(s)≤f(e)=e2,矛盾,所以s>e,即u>1,从而lnu>0成立.另一方面,令F(u)=lnu−u,u>1,Fʹ(u)=1u−12,令Fʹ(u)=0,得u=2,当1<u<2时,Fʹ(u)>0,当u>2时,Fʹ(u)<0.故对u>1,F(u)≤F(2)<0,因此lnu<u2成立.综上,当t>e2时,有2 5<lng(t)lnt<12.16. (1)由题意fʹ(x)=3x2−6x+3a,故fʹ(1)=3a−3.又f(1)=1,所以所求的切线方程为y=(3a−3)x−3a+4.(2)由于fʹ(x)=3(x−1)2+3(a−1),0≤x≤2.故①当a≤0时,有fʹ(x)≤0,此时f(x)在[0,2]上单调递减,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3−3a.② 当a≥1时,有fʹ(x)≥0,此时f(x)在[0,2]上单调递增,故∣f(x)∣max=max{∣f(0)∣,∣f(2)∣}=3a−1.③ 当0<a<1时,设x1=1−√1−a,x2=1+√1−a,则0<x1<x2<2,fʹ(x)=3(x−x1)(x−x2).列表如下:由于 f (x 1)=1+2(1−a )√1−a,f (x 2)=1−2(1−a )√1−a,故f (x 1)+f (x 2)=2>0,f (x 1)−f (x 2)=4(1−a )√1−a >0,从而f (x 1)>∣f (x 2)∣.所以∣f (x )∣max =max {f (0),∣f (2)∣,f (x 1)}.① 当 0<a <23 时,f (0)>∣f (2)∣.又f (x 1)−f (0)=2(1−a )√1−a −(2−3a )=a 2(3−4a )2(1−a )√1−a +2−3a>0,故 ∣f (x )∣max=f (x 1)=1+2(1−a )√1−a . ② 当 23≤a <1 时,∣f (2)∣=f (2),且 f (2)≥f (0). 又f (x 1)−∣f (2)∣=2(1−a )√1−a −(3a −2)=a 2(3−4a )2(1−a )√1−a +3a −2所以1)当 23≤a <34 时,f (x 1)>∣f (2)∣.故∣f (x )∣max =f (x 1)=1+2(1−a )√1−a.2)当 34≤a <1 时,f (x 1)≤∣f (2)∣.故∣f (x )∣max =∣f (2)∣=3a −1.综上所述,∣f (x )∣max={ 3−3a,a ≤0,1+2(1−a )√1−a,0<a <34,3a −1,a ≥34.17. (1)因为f(x)=a(x−5)2+6lnx,故fʹ(x)=2a(x−5)+6 x .令x=1,得f(1)=16a,fʹ(1)=6−8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−16a=(6−8a)(x−1).由点(0,6)在切线上可得6−16a=8a−6,故a=1 2 .(2)由(1)知,f(x)=12(x−5)2+6lnx(x>0),fʹ(x)=x−5+6x=(x−2)(x−3)x.令fʹ(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,fʹ(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2<x<3时,fʹ(x)<0,故f(x)在(2,3)上为减函数.由此可知,f(x)在x=2处取得极大值f(2)=9+6ln2,在x=3处取得极小值f(3)=2+6ln3.。

2013年高考理科数学.函数和导数大题目

2013年高考理科数学.函数和导数大题目

2013年高考理科数学——函数与导数大题目1.(2013广西卷22题).(本小题满分12分)已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若()0,0,x f x λ≥≤时求的最小值;; (II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2.(2013全国新课标二卷21题)(本小题满分12分)已知函数f(x)=e x -ln(x+m)(Ι)设x=0是f(x)的极值点,求m ,并讨论f(x)的单调性; (Ⅱ)当m ≤2时,证明f(x)>03.(2013北京卷18题)(本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方4.(2013安徽卷20题)(本小题满分13分)设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈,证明: (Ⅰ)对每个nn N∈,存在唯一的2[,1]3nx ∈,满足()0n n f x =;(Ⅱ)对任意n p N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<。

5.(2013福建卷17题)(本小题满分13分)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.6.(2013广东卷21题).(本小题满分14分)设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .7.(2013年河南山西河北卷 21)(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

2013年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2013年全国各地高考数学试题及解答分类汇编大全(04 导数及其应用)

2013年全国各地高考数学试题及解答分类汇编大全(04导数及其应用)一、选择题:1.(2013安徽理)若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是( )(A )3 (B )4 (C ) 5 (D )6 【答案】 A【解析】 使用代值法。

设c x x x x f x x x x x f +-+=⇒-+=+-=623)(633)2)(1(3)('232. ,令29)(2,10)('1121=⇒=⇒-==⇒=c x x f x x x f 1)1()12()2,()(上单调递增,极小值为,上单调递减,在,上单调递增,在在∞+---∞⇒x f ..3)()(0))(('21个根解得有一个根,共解得有二个根,由x x f x x f x f f ==⇒=所以选A2、(2013湖北理) 一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度()25731v t t t=-++(t 的单位:s ,v 的单位:/m s )行驶至停止。

在此期间汽车继续行驶的距离(单位;m )是( )A. 125ln5+B. 11825ln3+ C. 425ln5+ D. 450ln 2+ 【解析与答案】令 ()257301v t t t=-+=+,则4t =。

汽车刹车的距离是402573425ln51t dt t ⎛⎫-+=+ ⎪+⎝⎭⎰,故选C 。

【相关知识点】定积分在实际问题中的应用3.(2013湖北文) 已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞答案 B解析 f ′(x )=(ln x -ax )+x (1x-a )=ln x +1-2ax (x >0)令f ′(x )=0得2a =ln x +1x ,设φ(x )=ln x +1x ,则φ′(x )=-ln xx2易知φ(x )在(0,1)上递增,在(1,+∞)上递减, 大致图象如下若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点,∴0<2a <1,∴0<a <12.4.(2013江西理) 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1 答案 B解析 利用定积分的几何意义知B 正确.5.(2013辽宁理) 设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,(A )有极大值,无极小值 (B )有极小值,无极大值(C )既有极大值又有极小值 (D )既无极大值也无极小值 5.【答案】D【解析】由已知,2[()]x e x f x x '=(1)。

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示、在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知、过原点的直线与曲线相交的个数即n 的取值.用尺规作图、交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度、所得图象与y =e x 关于y 轴对称、则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<、则112x -<<-。

故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-、 因此、故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象、可得交点数。

2013年全国各地高考试题分类汇编(函数与导数)

2013年全国各地高考试题分类汇编(函数与导数)

函数与导数1.设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .2.设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M .3设l 为曲线ln :x C y x=在点(1,0)处的切线. (Ⅰ)求l 的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方.4.已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.5.已知函数32()331f x x ax x =+++(1)求当a =,讨论()f x 的单调性;(2)若[2,)x ∈+∞时,()0f x ≥,求a 的取值范围.6.已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)求函数()f x 的极值. 当0a >时,函数()f x 在x a =处取得极小值()ln f a a a a =-,无极大值.7.已知函数()1(),xaf x x a R e =-+∈(e 为自然对数的底数) (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值; (3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.9. 已知函数()e ,x f x x =∈R .(Ⅰ) 若直线1y kx =+与()f x 的反函数的图像相切, 求实数k 的值; (Ⅱ) 设0x >, 讨论曲线()y f x =与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a b < , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.10. (本小题满分14分) (2013陕西.文) 已知函数()e ,x f x x =∈R .(Ⅰ) 求()f x 的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ) 证明: 曲线()y f x =与曲线2112y x x =++有唯一公共点. (Ⅲ) 设a b <, 比较2a b f +⎛⎫⎪⎝⎭与()()f b f a b a --的大小, 并说明理由. 解(Ⅰ)1y x =+.(Ⅱ) 证明曲线()y f x =与曲线1212++=x x y 有唯一公共点,过程如下。

2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分

2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分

备战2014年高考之2013届全国统考区(甘肃、贵州、云南)精选理科试题(大部分详解)分类汇编14:导数与积分一、选择题1 .(云南师大附中2013届高三高考适应性月考卷(三)理科数学试题)如图3,直线y=2x 与抛物线y=3-x 2所围成的阴影部分的面积是( )A .353 B. C.2 D .323【答案】D 【解析】12332(32)d 3S x x x -=--=⎰,故选D. 2 .(云南省昆明一中2013届高三新课程第一次摸底测试数学理)函数22ln yx x e ==在处的切线与坐标轴所围成的三角形的面积为A .292e B .212Se = C .22e D .2e 【答案】D 【解析】212'2y x x x =⨯=,所以在2x e =处的切线效率为22k e=,所以切线方程为2224()y x e e -=-,令0x =,得2y =,令0y =,得2x e =-,所以所求三角形的面积为22122e e ⨯⨯=,选D. 3 .(贵州省六校联盟2013届高三第一次联考理科数学试题)已知函数()y xf x ='的图象如图3所示(其中()f x '是函数)(x f 的导函数).下面四个图象中,)(x f y =的图象大致是( )图3-11OxyyxO 1-1y xO 1-1y xO 1-1-11O xyA .B .C .D .【答案】C 【解析】由条件可知当01x <<时,'()0f x <,函数递减,当1x >时,'()0f x >,函数递增,所以当1x =时,函数取得极小值.当1x <-时,'()0xf x <,所以'()0f x >,函数递增,当10x -<<,'()0xf x >,所以'()0f x <,函数递减,所以当1x =-时,函数取得极大值.所以选C.4 .(【解析】云南省玉溪一中2013届高三上学期期中考试理科数学)已知曲线x x y ln 342-=的一条切线的斜率为21,则切点的横坐标为( ) A. 3B. 2C. 1D.21 【答案】A 【解析】函数的定义域为(0,)+∞,函数的导数为3'2x y x =-,由31'22x y x =-=,得260x x --=,解得3x =或1x =-(舍去),选A. 5 .(云南省昆明一中2013届高三第二次高中新课程双基检测数学理)曲线sin (0)yx x x π=≤≤与轴所围成图形的面积为A .1B .2C .2πD .π【答案】B 【解析】根据积分的应用可知所求面积为sin (cos )2xdx x ππ=-=⎰,选B.6 .(【解析】贵州省四校2013届高三上学期期末联考数学(理)试题)如果231()x x+的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为( )A.272B. 9C.92D.274【答案】C 【解析】展开式的通项为32331331()()kkk k k k T C x C x x--+==,所以当330k -=时,1k =。

2013高考(理数)分类解析(概率统计-函数导数)word版

2013高考(理数)分类解析(概率统计-函数导数)word版

2013高考(理数)分类解析(概率统计-函数导数)word版2013年全国各省(市)高考数学试题分类汇编(概率统计)1.(2013福建卷.理16题)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品. (1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X12(2)(3)>E X E X∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.2.(本小题满分12分)(福建卷.文)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名。

2013高考(理数)分类解析(概率统计-函数导数)word版

2013高考(理数)分类解析(概率统计-函数导数)word版

2013年全国各省(市)高考数学试题分类汇编(概率统计)1.(2013福建卷.理16题)(本小题满分13分)某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为23,中将可以获得2分;方案乙的中奖率为25,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,X Y ,求3X ≤的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?本小题主要考查古典概型.离散型随机变量的分布列.数学期望等基础知识,考查数据处理能力.运算求解能力.应用意识,考查必然和或然思想,满分13分.解:(Ⅰ)由已知得:小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分3≤X ”的事件为A ,则A 事件的对立事件为“5=X ”,224(5)3515==⨯=P X ,11()1(5)15∴=-==P A P X ∴这两人的累计得分3≤X 的概率为1115. (Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为1X ,都选择方案乙抽奖中奖的次数为2X ,则这两人选择方案甲抽奖累计得分的数学期望为1(2)E X ,选择方案乙抽奖累计得分的数学期望为2(3)E X 由已知:12~(2,)3X B ,22~(2,)5X B124()233∴=⨯=E X ,224()255=⨯=E X 118(2)2()3∴==E X E X ,2212(3)3()5==E X E X ∴他们都在选择方案甲进行抽奖时,累计得分的数学期望最大.2.(本小题满分12分)(福建卷.文)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名。

为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:))50,60,60,70,⎡⎡⎣⎣)70,80,⎡⎣))80,90,90,100⎡⎡⎣⎣分别加以统计,得到如图所示的频率分布直方图.(I )从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(II )规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?(注:此公式也可以写成22()()()()()n ad bc k a b c d a c b d -=++++) ××=40名工人所有可能的结果共周岁以下组”工人的结果共+故所求的概率为:所以可得==第17题图3.(2013广东卷.理17题).(本小题满分12分)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率.【解析】(Ⅰ) 样本均值为1719202125301322266+++++==; (Ⅱ) 由(Ⅰ)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人. (Ⅲ) 设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=. 4.(本小题满分13分)(2013广东文)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.;【解析】(1)苹果的重量在[)95,90的频率为20=0.450(2)重量在[)85,80的有54=1⋅个;5+15(3)设这4个苹果中[)85,80分段的为1,[)95分段的为2、3、4,,100从中任取两个,可能的情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)95中各有1个的事件为A,则事件A包含有100,(1,2)(1,3)(1,4)共3种,所以31(A)P==.625.(2013全国新课标二卷.理18题)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。

2013届全国各地高考押题数学(理科)精选试题分类汇编15:导数与积分

2013届全国各地高考押题数学(理科)精选试题分类汇编15:导数与积分
A. 2 x 3 y 12 0 B. 2 x 3 y 12 0 C. 2 x y 2 0 D. 2 x y 2 0
【答案】 B 【解析】 本题考查复合函数导数的求法和利用导数求曲线的切线方程问题,难度中等.令 x 1
1 f (1) 12 1 2 , f (1) 4 ,两边取导数得, 2 1 1 2 2 f (2 x 1) f ( x) 2 x 1 ,令 x 1 得, 2 f (1) f (1) 2 1 , f (1) ,所以 2 2 3 2 函数 f ( x) 在 1,f (1) 的切线方程是 y 4 ( x 1), 即 2 x 3 y 12 0 ,选 3
1 h( e ) ≤ 0, 1 则方程 h x 0 在 [ , e] 内有两个不等实根的充要条件是 h(1) 0, e h(e) ≤ 0.
即 1 m≤ e2 2 . (Ⅲ) g x 2 ln x x nx , g x
x 与直线 x a, y 0 所围成封闭图形的面积
为 a 2 .则正实数 a ___.
a 2 3 4 2 xdx a , 所以 x 2 【答案】 a 【解析】 0 3 9
a 0
4 a2 , a . 9
12. (2013 届辽宁省高考压轴卷数学理试题) 已知函数
f x 的定义域为 1,5 ,部分对应值如下表, f x 的
x1 ( x12 x2 2 ) n( ∴n 2 x1 x2
由④得 n
ln
2 2 x0 , x0
x x1 ln 1 x2 2 x2 1 ∴ . .即 x1 x2 x1 x2 x1 x2 x0

2013全国各地高考理科数学试题及详解汇编(一)

2013全国各地高考理科数学试题及详解汇编(一)

A ( a 0, b 0 )的离心率为 ,则 C 的渐近线方程为 2 a b 2 1 1 C.y x B.y x D . y x 3 2
【命题意图】本题主要考查双曲线的几何性质,是简单题.
5 c 2 a 2 b2 b 1 b2 1 c 5 【解析】由题知, ,即 = 2 = ,∴ 2 = ,∴ = ,∴ C 的渐近线 2 4 a a 2 a a 4 a 2 1 方程为 y x ,故选 C . 2 5、运行如下程序框图,如果输入的 t [1,3] ,则输出 s 属于
| 4 3i | 4 42 32 (3 4i) 3 4 = = i ,故 z 的虚部为 ,故选 D. 3 4i 5 (3 4i)(3 4i) 5 5
3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查, 事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生 视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A、简单随机抽样 B、按性别分层抽样 C、按学段分层抽样 D、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题. 【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽 样方法是按学段分层抽样,故选 C. 4、已知双曲线 C :
C .[-4,3] D .[-2,5] A .[-3,4] B .[-5,2] 【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.
【解析】有题意知,当 t [1,1) 时, s 3t [3,3) ,当 t [1,3] 时, s 4t t [3, 4] , ∴输出 s 属于[-3,4],故选 A .
1 22 4 4 2 2 = 16 8 ,故选 A . 2 2m 9、设 m 为正整数,( x y) 展开式的二项式系数的最大值为 a , ( x y)2m1 展开式的二项式系数的最大值为 b ,若 13 a =7 b ,

2013全国各地高考理科数学试题及详解汇编(上,78页)

2013全国各地高考理科数学试题及详解汇编(上,78页)

2 1 a1 ,解得 a1 =1, 3 3 2 1 2 2 1 2 当 n ≥2 时, an = Sn Sn1 = an -( an 1 )= an an 1 ,即 an = 2an1 , 3 3 3 3 3 3 n 1 ∴{ an }是首项为 1,公比为-2 的等比数列,∴ an = (2) .
2013 年高考理科数学试题解析(课标Ⅰ) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 4 页。全卷满分 150 分。考试时间 120 分钟。 注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页。 2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。 3. 全部答案在答题卡上完成,答在本试题上无效。 4. 考试结束,将本试题和答题卡一并交回。 第Ⅰ卷 一、 选择题共 12 小题。每小题 5 分,共 60 分。在每个小题给出的四个选项中,只有一项 是符合题目要求的一项。 1、已知集合 A={x|x2-2x>0} ,B={x|- 5<x< 5},则 ( ) A、A∩B= B、A∪B=R C、B⊆A D、A⊆B 【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(- ,0)∪(2,+ ), ∴A∪B=R,故选 B. 2、若复数 z 满足 (3-4i)z=|4+3i |,则 z 的虚部为 ( ) 4 4 A、-4 (B)- (C)4 (D) 5 5 【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题. 1 ,故选 D. 18 9 x 2 2 x, x 0 11、已知函数 f ( x ) = ,若| f ( x ) |≥ ax ,则 a 的取值范围是 ln( x 1), x 0 A . (, 0] B . (,1] C .[-2,1] D .[-2,0]

2013年全国高考理科数学试题分类汇编1:集合Word版含答案

2013年全国高考理科数学试题分类汇编1:集合Word版含答案

2013 年全国高考理科数学试题分类汇编1:会合一、选择题1 (. 2013 年一般高等学校招生一致考试重庆数学(理)试题(含答案))已知全集 U1,2,3,4 ,会合 A= 1,2 ,B= 2,3 ,则 e U A B = ( )A. 13,,4B.3,4C.3D.4【答案】 D2 .( 2013 年一般高等学校招生一致考试辽宁数学(理)试题(WORD版))已知会合A x | 0log4 x 1 ,B x | x 2 ,则A BA. 01,B.0,2C.1,2D.1,2【答案】 D3 .( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案))已知会合 A = { x∈ R| | x| ≤2}, A = {x∈ R| x≤1},则 A B(A)(,2](B) [1,2](C) [2,2](D) [-2,1]【答案】 D4 .( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯WORD版))设S,T,是R的两个非空子集 , 假如存在一个从S 到 T 的函数y f ( x) 知足: (i )T{ f (x) | x S};(ii ) 对任意 x1 , x2S, 当 x1x2时,恒有 f ( x1 ) f ( x2 ) ,那么称这两个会合“保序同构”. 以下会合对不是“保序同构”的是()A. A N*, B NB. A{ x |1x3}, B{ x | x8或0x 10}C. A{ x | 0x1}, B RD.A Z , B Q【答案】 D5.(2013年高考上海卷(理))设常数 a R,集合A{ x |( x1)x(a)B0},x,若 x A B a R ,则a的取值范围为()(A)(,2)(B)(, 2](C)(2,)(D)[2,)【答案】 B.6.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))已知会合 A ={0,1,2},则会合 B x y x A, y A 中元素的个数是(A) 1(B) 3(C)5(D)9【答案】 C7.(2013年高考陕西卷(理))设全集为R函数f (x) 1 x2M C M为的定义域为则,R(A) [-1,1](B) (-1,1)(C)(,1] [1, ) (D) ( , 1) (1,)【答案】 D8.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD版含答案(已校正))设会合A1,2,3, B4,5 ,M x | x a b,a A,b B, 则 M 中的元素个数为(A)3(B)4(C)5(D)6【答案】 B9.( 2013年高考四川卷(理))设会合 A{ x | x20},会合 B{ x | x240} ,则A B()(A) {2}(B){2}(C){2,2}(D)【答案】 A10.( 2013年高考新课标 1(理))已知会合A x | x22x0, B x |5x5,则()A. A∩B=B. A∪B=RC.B?AD.A? B【答案】 B.11.( 2013年高考湖北卷(理))已知全集为R,集合1xA x 1 ,B x | x26x 8 0 ,则 AC R B ( )2A.x | x 0B.x | 2 x 4C. x |0 x 2或x 4D.x | 0 x 2或 x 4【答案】 C12.( 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))已知会合M x | ( x1)24, x R, N1,0,1,2,3, 则M N(A)0,1,2(B)1,0,1,2(C)1,0,2,3(D)0,1,2,3【答案】 A13.( 2013年一般高等学校招生一致考试广东省数学(理)卷(纯WORD版))设会合M x | x2 2 x 0, x R, N x | x22x 0, x R,则 M N()A .00,2C.2,02,0,2B. D.【答案】 D14 .( 2013年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))设会合S{ x | x2}, T { x | x23x 40} ,则 (C R S)TA. (2,1] B.(, 4] C.(,1] D.[1,)【答案】 C15.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯WORD版))设整数n4, 集合 X 1,2,3,,n .令会合S x, y, z | x, y, z X , 且三条件 x y z, y z x, z x y恰有一个建立,若x, y, z 和 z, w, x 都在 S 中,则以下选项正确的选项是()A .y, z, w S , x, y, w S B.y, z, w S , x, y, w SC.y, z, w S ,x, y, w SD.y, z, w S ,x, y, w S( 一 ) 必做题 (9~13 题)【答案】 B16.( 2013 年高考北京卷(理))已知会合A={-1,0,1},B={x|- 1≤ x<1},则A∩B= ()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】 B17.( 2013 年上海市春天高考数学试卷( 含答案 ) )设全集U R ,以下会合运算结果为R 的是( )(A) Z e N (B) N e N(C)痧() (D) e {0}u u u u u【答案】 A二、填空题18.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯WORD版含附带题))会合 {1,0,1} 共有___________个子集.【答案】 8三、解答题19 .( 2013 年一般高等学校招生一致考试重庆数学(理)试题(含答案))对正整数n ,记I m1,2,3, , n , P m m m I m,k I m.k(1)求会合 P7中元素的个数;(2) 若P m 的子集A中随意两个元素之和不是整数的平方 , 则称A为“稀少集” . 求n的最大..值, 使P m能分红两人上不订交的稀少集的并.【答案】。

2013年理科数学各地高考题分类汇编 (1)

2013年理科数学各地高考题分类汇编 (1)

2013年高考真题理科数学解析分类汇编1 集合与简易逻辑一选择题1.陕西1. 设全集为R , 函数()f x =M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-【答案】D【解析】),1()1,(],1,1[.11,0-12∞--∞=-=≤≤-∴≥ MR C M x x 即,所以选D2.(新课标Ⅰ)1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.3.[新课标II ]1、已知集合{}R x x x M ∈<-=),4)1(|2,{}3,2,1,0,1-=N ,则M N =( )(A ){0,1,2} (B ){-1,0,1,2}(C ){-1,0,2,3} (D ){0,1,2,3} 【答案】A【解析】因为{}31|<<-=x x M ,{}3,2,1,0,1-=N ,所以MN {}2,1,0=,选A.4.安徽理(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编:导数与积分一、选择题1 .(2013年高考湖北卷(理))已知a 为常数,函数()()ln f x x x ax =-有两个极值点1212,()x x x x <,则( ) A .121()0,()2f x f x >>- B .121()0,()2f x f x <<-C .121()0,()2f x f x ><-D .121()0,()2f x f x <>-2 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理))已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0'()0f x =3 .(2013年高考江西卷(理))若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123S S S 的大小关系为( ) A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<4 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设函数()f x 的定义域为R,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )A .0,()()x R f x f x ∀∈≤B .0x -是()f x -的极小值点C .0x -是()f x -的极小值点D .0x -是()f x --的极小值点6 .(2013年高考北京卷(理))直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l与C 所围成的图形的面积等于( )A .43B .2C .83D.37 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知e 为自然对数的底数,设函数)2,1()1)(1()(=--=k x e x f k x ,则( ) A .当1=k 时,)(x f 在1=x 处取得极小值B .当1=k 时,)(x f 在1=x 处取得极大值C .当2=k 时,)(x f 在1=x 处取得极小值D .当2=k 时,)(x f 在1=x 处取得极大值二、填空题8 .(2013年高考江西卷(理))设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)x f =______________9 .(2013年高考湖南卷(理))若209,Tx dx T =⎰则常数的值为_________.10.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k =______.三、解答题11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)) 已知函数)ln()(m x e x f x +-=.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >.12.(2013年普通高等学校招生统一考试辽宁数学(理)) 已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I)求证:()11-;1x f x x≤≤+ (II)若()()f x g x ≥恒成立,求实数a 取值范围.13.(2013年普通高等学校招生全国统一招生考试江苏卷(数学))设函数ax x x f -=ln )(,ax e x g x -=)(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围;(2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论.14.(2013年普通高等学校招生统一考试广东省数学(理)卷) 设函数()()21xf x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .15.(2013年高考江西卷(理))已知函数1()=(1-2-)2f x a x ,a 为常数且>0a . (1) 证明:函数()f x 的图像关于直线1=2x 对称; (2) 若0x 满足00(())=f f x x ,但00()f x x ≠,则称0x 为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,,x x 试确定a 的取值范围;(3) 对于(2)中的12,x x 和a , 设x 3为函数f(f(x))的最大值点,A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(x 3,0),记△ABC 的面积为S(a),讨论S(a)的单调性.16.(2013年高考四川卷(理))已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <. (Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.17.(2013年高考湖南卷(理))已知0a >,函数()2x af x x a-=+.(I)记[]()0,4f x a 在区间上的最大值为g(),求a g()的表达式; (II)是否存在a ,使函数()y f x =在区间()0,4内的图像上存在两点,在该两点处的切线相互垂直?若存在,求a 的取值范围;若不存在,请说明理由.18.(2013年普通高等学校招生统一考试福建数学(理)试题)已知函数()ln ()f x x a x a R =-∈(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程; (2)求函数()f x 的极值.19.(2013年高考新课标1(理))(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+ (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围.20.(2013年高考湖北卷(理))设n 是正整数,r 为正有理数.(I)求函数()()1()111(1)r f x x r x x +=+-+->-的最小值;(II)证明:()()11111111r r r r rn n n n nr r ++++--+-<<++;(III)设x R ∈,记x ⎡⎤⎢⎥为不小于x 的最小整数,例如22=⎡⎤⎢⎥,4π=⎡⎤⎢⎥,312⎡⎤-=-⎢⎥⎢⎥.令S =+++,求S ⎡⎤⎢⎥的值.(参考数据:4380344.7≈,4381350.5≈,43124618.3≈,43126631.7≈)21.(2013年高考陕西卷(理))已知函数()e ,x f x x =∈R .(Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值; (Ⅱ) 设x >0, 讨论曲线y =f (x) 与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a <b , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.22.(2013年普通高等学校招生统一考试山东数学(理)试题) 设函数2()x xf x c e=+(e =2.71828是自然对数的底数,c R ∈). (Ⅰ)求()f x 的单调区间、最大值; (Ⅱ)讨论关于x 的方程ln ()x f x =根的个数.23.(2013年普通高等学校招生统一考试浙江数学(理)试题) 已知R a ∈,函数.3333)(23+-+-=a ax x x x f(1)求曲线)(x f y =在点))1(,1(f 处的切线方程; (2)当]2,0[∈x 时,求|)(|x f 的最大值.24.(2013年普通高等学校招生统一考试大纲版数学(理)) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I)若0x ≥时,()0f x ≤,求λ的最小值;(II)设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:25.(2013年普通高等学校招生统一考试天津数学(理)试题)已知函数2l ()n f x x x =. (Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.26.(2013年高考北京卷(理))设L 为曲线C:ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方.。

相关文档
最新文档