2=第2章模糊控制的数学基础

合集下载

第2章 模糊控制- 数学基础

第2章 模糊控制- 数学基础
24

同一语言变量的所有语言值间要遵循语意顺 序、并避免其隶属函数间的不恰当重叠。
隶属度
很低 1 低 适中 高 很高
0
10
20
25
30
40
温度
25

1
重叠范围
两个隶属函数的全部范围
26

1
1
27

1
1
28

1
1
1
1
29
2.2.2 模糊关系(模糊推理的基础之一)

30

31

英 甲 乙 丙
2
模糊控制的特点

无需知道被控对象的数学模型
以人们的控制经验为基础设计的控制器

与人类脑力活动的特点一致
模糊性:人类思维中采用模糊量,如:高、中、 低、大、小等。
经验性:模糊控制的核心是控制规则,模糊控 制中的知识表示、模糊规则和模糊推理是基于专家 知识或熟练操作工的成熟经验。模糊控制规则是用 人类语言表示的,如:衣服较脏,则投入洗涤剂较 多,洗涤时间较长。
45

⑥ ⑦
全由所考虑问题的目的或属性这样的外界因素 决定。一旦所考虑问题的目的或属性确定,关 系就客观存在了,但模糊关系中隶属度的确定 仍具主观性。 要完整确定出两个论域中的元素之间的关联性 (也即这两个论域间存在的关系),应该逐个考 虑这两个论域中的所有元素间的所有可能的配 对情况(所有配对的集合即为直积)。 数学上,关系体现为定义在两个论域的直积上 的(模糊)集合,也是该直积的子集。 两个有限论域之间的关系可以用矩阵表示,但 要将处于直积中前面论域中的所有元素排成列、 而将后面论域中的所有元素排成行。

第2章模煳控制的数学基础1-资料

第2章模煳控制的数学基础1-资料
A={10,12,14,16,18,20}
* 表征法
表征法将集合中所有元素的共同特征列在大括号中表征出来。
上例中的集合A也可用表征法表示为
A={a|a为偶数,10≤a ≤20}
*特征函数法:

设A是论域X上的一个集合,定义论域X上的函数
A(x)
μA(x)为集合A的特征函数。可简记为A(x)。

1, xA 0,xA
• 第二类是随机性数学模型 • 随机性数学模型常用于描述具有或然性或者随机性的事物,这类事物本身是确
定的,但是它的发生与否却不是确定的。概率论、随机过程 • 第三类是模糊性数学模型
• 模糊性数学模型适用于描述含义不清晰、概念界线不分明的事物,它的外延不 分明,在概念的归属上不明确。模糊数学、模糊逻辑、粗糙集、熵空间等
1)集合的概念
* 集合 具有特定属性的对象的全体,称为集 合。例如: “湖南大学的学生”可以 作为一个集合。集合通常用大写字母 A,B,……,Z来表示。
* 元素 组成集合的各个对象,称为元素,也 称为个体。通常用小写字母a, b,……,z来表示。
* 论域 所研究的全部对象的总和,叫做论域, 也叫全集合。
2019/10/24
人工智能与模糊控制
7
2.1 清晰向模糊的转换
• 三类数学模型
• 第一类是确定性数学模型 • 确定性数学模型往往用于描述具有清晰的确定性、归属界线分明、相互间关系
明确的事物。对这类事物可以用精确的数学函数予以描述,典型的代表学科就 是“数学分析”、“微分方程”、“矩阵分析”等常用的重要数学分支。
年轻(x)
1
0 15 25
35 x
2019/10/24
人工智能与模糊控制

第二章模糊控制的理论基础精品PPT课件

第二章模糊控制的理论基础精品PPT课件
若能把这些熟练操作员的实践经验加以总结和描述, 并用语言表达出来,它就是一种定性的、不精确的控制规 则。如果用模糊数学将其定量化,就转化为模糊控制算法, 从而形成了模糊控制理论。
模糊控制在最近的短短十多年来发展如此迅速,应主 要归结于模糊控制器的一些明显的特点:
(1) 无需知道被控对象的数学模型 模糊控制是以人对被控系统的
例如,对于一个炉温控制系统,人的控制规则是,若温 度高于某一设定值,操作者就减小给煤量,使之降温。 反之,若温度低于设定值,则加大给煤量,使之升温。 一个熟练的操作人员,凭借自己的经验和观察,经过大 脑的思维判断,给出控制量,可以手动操作达到较好的 控制效果。
以上过程包含了大量的模糊概念.如“高于”、“低于” 等等。而且操作者在观察温度的偏差时,偏差越大,给定的 变化也越大,设法使之变温越快。这里的“越高”、“越快” 也是模糊概念。因此,操作者的观察与思维判断过程,实际 上是一个模糊化及模糊计算的过程。
或者说B是A的一个子集,记为B A。
如果μB(u) =μA(u),则称B=A。
模糊集合的运算与经典集合的运算相类似,只是利用集 合中的特征函数或隶属度函数来定义类似的操作。
设A、B为U中两个模糊子集,隶属函数分别为μB(u) 和 μA(u),则模糊集合的并、交、补运算可以如下定义:
定义2-4 模糊并集运算
A={ (u, A (u)) u U}
μA(u)称为u对A的隶属度,它表示论域U中的元素u隶属
于其模糊子集A的程度,它在[0, 1]闭区间内可以连续取值
μA(u)=1, 表示u 完全属于A μA(u)=0, 表示u 完全不属于A 0<μA(u)<1, 表示u 部分属于A
显然,μA(u)越接近于1, 表示u从属于A的程度越大, 反之,μA(u)越接近于0, 表示u从属于A的程度越小。

第二章模糊控制理论基础

第二章模糊控制理论基础

u U u U
经典集合论中任意一个元素与任意一个集合之间的 关系,只是“属于”或“不属于”两种,两者必居其一 而且只居其一。它描述的是有明确分界线的元素的组合。
用经典集合来处理模糊性概念时,就不行。
对于诸如“速度的快慢”、“年龄的大小”、 “温度的高低”等模糊概念没有明确的界限。
经典集合对事物只用"1"、"0"简单地表示“属于” 或“不属于”的分类;而模糊集合则用“隶属度 (Degree of membership)”来描述元素的隶属程度, 隶属度是0到1之间连续变化的值。
四种方法: 1、模糊统计法
基本思想:论域U上的一个确定的元素v0是否属于一个可变动的清 晰集合A*作出清晰的判断。
对于不同的实验者,清晰集合A*可以有不同的边界。但它们都对 应于同一个模糊集A。
模糊集A 年轻人
v0
清晰集A1* 清晰集A2*

17-30岁 20-35岁
域 U
所有人
计隶算属步度骤函:数在确每立次的统方计法中:,v0是固定的(如某一年龄), A*的值是可变的,作n次试验,则
示。
uU表示元素(个体)u在集合论域(全体) U内。
集合表示法(经典集合):
(1)列举法:将集合的元素全部列出的方法。 (2)定义法:用集合中元素的共性来描述集合的方法。
(3)归纳法:通过一个递推公式来描述一个集合的方法。 (4)特征函数表示法:利用经典集合论非此即彼的明晰性 来表示集合。因为某一集合中的元素要么属于这个集合, 要么就不属于这个集合。
定义2-8 设A,B F(U),则定义代数运算: (1)A与B的代数积记作A • B,运算规则由下式确定:
A • B(u)= A(u)B(u)

智能控制第二章模糊控制的数学基础

智能控制第二章模糊控制的数学基础

智能控制第二章模糊控制的数学基础模糊控制数学基础模糊概念在经典集合论中,人们对事物的描述是精确的,这种集合论要求一个事物对于一个集合要么属于,要么不属于,二者必居其一,且仅居其一,绝不允许模棱两可。

比如,一个学生要么属于“大学生”,要么不属于。

但是在现实生活中,人们对事物的描述并非都可以精确的用“属于”或“不属于”这两种截然不同的状态来进行划分。

模糊性普遍存在于人类思维和语言交流中,是一种不确定性的表现。

在实际生活中,经常听到这样的话“他很高”、“她很年轻”、“她的成绩很好”等,其中的“高”、“年轻”、“成绩好”都是模糊的概念,究竟多高才算高,究竟多少岁才算老,或者说年轻和年老的分界线是多少岁,成绩多好才算好,都没有一个十分确定的界限。

模糊概念天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低模糊概念没有明确外延的概念,即没有明确符合某概念的对象的全体,如“天气冷热”、“雨的大小”、“风的强弱”、“人的胖瘦”、“年龄的大小”、“个子高低”。

是客观事物本质属性在人们头脑中的反映。

例:高温天气的定义,按照经典集合理论的表示方式,高温={TOT36℃}。

35.9℃不属于高温35.9℃当然属于高温天气,温度已经相当高,无非属于高温天气的程度99%,不如36℃的程度高,但是比30℃的程度高。

4模糊控制模糊控制人们已经无法回避客观上存在的模糊现象。

扎德(Zadeh)教授提出的模糊集合理论,其核心是对复杂系统或过程建立一种语言分析的数学模式,使自然语言能直接转化为计算机所能接受的算法语言。

正是在这种背景下,作为智能控制的一个重要分支的模糊控制理论产生了。

模糊数学和模糊控制理论的发展虽然只有几十年的历史,但其理论和引用的研究已取得了丰硕的成果。

尤其随着模糊逻辑在自动控制领域的成功应用,模糊控制理论和方法的研究引起了学术界和工业界的广泛关注。

2.1 概述模糊控制的定义对于一个熟练的操作人员,他往往凭借丰富的实践经验,采取适当的对策来巧妙地控制一个复杂过程,得到满意的控制效果。

模糊控制的数学基础

模糊控制的数学基础
10
关系:对于给定集合 X 、 Y 的直积 X Y 上的一个子集 R,
称为 X 到 Y 的二元关系,简称为关系。对于 X Y 的元
素 (x, y),若有 (x, y) R,则称 x 与 y 相关,记为 x R y
否则 (x, y) R ,记为 x R y 。 设 f : X Y ,显然有{(x, y) y f (x)} X Y ,可见
3. 集合(Set)
给定一个论域,其中具有相同属性的确定的可以彼此区别的元素的 全体称为集合。
4. 全集、空集、子集
全集:集合中包含了论域中的全部元素。
空集:不包含论域中任何元素的集合称为空集,记为Ø。
子集(Subset):对于x A x B , 称为A为B的一个子
集,
A B
7
二、集合的表示法 1. 列举法:
A (B C) (A B) (A C)
A (B C) (A B,) (A C)
A (A B) A
A (A B) A
AU U,
A U A
A Ø A , A Ø=Ø
7.复原律
(Ac )c A
12
8.互补律 A Ac U ,
A Ac Ø
9.对偶律
(A B)c Ac Bc (A B)c Ac Bc
4
美国加里福尼亚大学控制论专家扎德 (L.A.Zadeh)教授1965年创立了模糊集合论, 用隶属函数代替经典集合论中的特征函数,隶属 函数在[0, 1]间连续取值,以此来描述模糊现象的 中间过渡性,突破了经典集合论中或不属于的绝 对关系。
5
2.1.2 精确性、模糊性与随机性
确定性——经典数学
不确定性
Ac={x | x Α且x∈U}
4. 集合的直积 设有两个集合A和B,A和B的直积A×B定义为

智能控制02-模糊控制的数学基础ppt课件

智能控制02-模糊控制的数学基础ppt课件

x
5,
x 180
1,
x 150 x(150,180)
x 180
矮个子模糊集合 ppt精选版 高个子模糊集合 23
知识点:如何对变量进行模糊化
确定变量 定义变量的论域 定义变量的语言值(即模糊集合) 定义每个模糊集合的隶属函数
ppt精选版
24
An Example
1
速度:论域[0,200]
0
表 示 x完 全 不 属 于 A
A(x) 1
表 示 x完 全 属 于 A
0A(x)1 表 示 x部 分 属 于 A
ppt精选版
16
模糊集合的表示方法
Zadeh表示法 序偶表示法 隶属函数表示法
有限元素集合 连续元素集合
参见教材page13-14:例2-4,例2-5,例2-6.
ppt精选版
A1A(u)
ppt精选版
32
模糊集合运算举例
例:设论域为{u1,u2,u3,u4,u5}的两模糊集合分别为
A0.20.710.5, u1 u2 u3 u4
B0.10.30.810.5 u1 u2 u3 u4 u5

A B ,A B ,A ,和 B
完成教材P15:例2-7的练习
ppt精选版
33
模糊运算的性质
2.2 Fuzzy Sets
模糊集合是模糊控制的数学基础
经典集合 模糊集合
有明确分界限的元素 的组合
描绘模糊语言概念
ppt精选版
9
A={1,3,5,7, 9}
Classical Sets B={2,4,6,8,10}
十九世纪末,康托建立了经典集合理论 集合
具有某种特定属性的对象的全体。 通常用大写字母A, B, C, …表示

模糊控制 - 数学基础

模糊控制 - 数学基础

一、模糊集合
6、运算性质
F集幂等律: A A=A,A A=A F集两极律:A =,A U=U F集同一律: A U=A,A =A F集交换律: A B=B
A,A B =B A
F集结合律: A B C =A
B
C , A B C =A
4
一、模糊集合
例1 设集合U 由1到5的五个自然数组成,用上述前三 种方法写出该集合的表达式。
解:(1)列举法 U ={1,2,3,4,5} (2)定义法 U ={u|u为自然数 且 1u5 }
(3)归纳法 U ={ui+1 = ui+1, i = 1,2,3,4, u1 = 1}
(4)特征函数表示法:集合U通过特征函数来TU(u)表示 u U 1 TU (u) u U 0
A
其中隶属函数定义为
x, ( x) x U
A
A ( x)
1 1 10 x 2
“接近于0的实数”之模糊集合
12
一、模糊集合
例:拥有离散性论域的模糊集合 假设U ={ 0,1,2,...,9 } 为代表一个家庭中,所可能拥有子女个数的集 合,令三个模糊集合之定义为A:子女数众多,B:子女数适中,C:子 女数很少,其隶属函数的定义如表所示。
子女数 0 1 2 3 4 5 6 7 8 9 子女众多 (A) 0 0 0 0 0 0.1 0.3 0.8 1 1 子女适中 (B) 0 0 0.2 0.7 1 0.7 0.2 0 0 0 子女很少 (C) 1 1 0.8 0.2 0.1 0 0 0 0 0
一、模糊集合
3、模糊集合的表示
当论域U由有限多个元素组成时,模糊集合可用向量表示法或扎德 表示法表示。设 U {x1 , x2 , , xn } { 0,1, 2,..., 9 }

模糊控制理论基础知识

模糊控制理论基础知识

第二章 模糊控制理论基础知识2.1 模糊关系一、模糊关系R ~所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。

现在把它扩展到模糊集合中来,定义如下:所谓A ,B 两集合的直积A ×B={(a,b)|a ∈A ,b ∈B} 中的一个模糊关系R ~,是指以A ×B 为论域的一个模糊子集,其序偶(a,b)的隶属度为),(~b a Rμ,可见R ~是二元模糊关系。

若论域为n 个集合的直积,则A 1×A 2×A 3×……A n 称为n 元模糊关系R ~,它的隶属函数是n 个变量的函数。

例如,要求列出集合X={1,5,7,9,20}“序偶”上的“前元比后元大得多”的关系R ~。

因为直积空间R=X ×X 中有20个“序偶”,序偶(20,1)中的前元比后元大得多,可以认为它的隶属度为1,同理认为序偶(9,5)的隶属于“大得多”的程度为0.3,于是我们可以确定“大得多”的关系R ~为R ~=0.5/(5,1)+ 0.7/(7,1)+ 0.8/(9,1)+ 1/(20,1)+ 0.1/(7,5)+0.3/(9,5)+ 0.95/(20,5)+ 0.1/(9,7)+0.9/(20,7)+ 0.85/(20,9)综上所述,只要给出直积空间A ×B 中的模糊集R ~的隶属函数),(~b a R μ,集合A 到集合B 的模糊关系R ~也就确定了。

由于模糊关系,R ~实际上是一个模糊子集,因此它们的运算完全服从第一章所述的Fuzzy 子集的运算规则,这里不一一赘述了。

一个模糊关系R ~,若对∀x ∈X ,必有),(~x x R μ=1,即每个元素X 与自身隶属于模糊关系R ~的隶属度为1。

称这样的R ~为具有自返性的模糊关系。

一个模糊R ~,若对∀x ,y ∈X ,均有),(~y x Rμ=),(~x y Rμ 即(x,y)隶属于Fuzzy 关系R ~和(y,x)隶属于Fuzzy 关系R ~的隶属度相同,则称R ~为具有对称性的Fuzzy 关系。

2模糊控制的数学基础

2模糊控制的数学基础

分解定理
设A是论域X上的模糊集合,λ∈[0, 1],A是A的λ截集,则有
A A 0, 1 其中λAλ为x的一个特殊模糊集合,其隶属函数为
, A (x) 0,
x A x A
说明任何一个模糊集可由 一个普通集合簇来表示
Page 30
2.3 模糊集合与普通集合的联系
分解定理 为了对分解定理有一个直观的了解,在左图中,取λ1、 λ2∈[0,1]两个值
集合的直积 序偶 将不同的事物按一定顺序排列起来组成一个整体, 用以表达它们之间的关系,这就叫做序偶。 集合的直积 有两个集合X,Y,从X中取一个元素x,从Y中取一个元 素y,把它们组成一个序偶,所有元素序偶的全体组成一 个新的集合,这个集合叫做集合X,Y 的直积,表示为
X Y {(x, y) | x X , y Y}
A {x | x X , A (x) }
称 A为A的λ强截集
当λ=1时,得到的最小的水平截集A1称为模糊集合A的核。 当λ=0+时,得到的最大的水平截集称为模糊集合A的支集。 如果A的核A1非空,则称A为正规模糊集,否则称为非正规 模糊集。
Page 27
2.3 模糊集合与普通集合的联系
λ水平截集
0
25 50 75 100
u
Page 20
2.2 模糊集合
例2.2.3
“年轻”和“年老”模糊集合可以写为:
Y
1
1
(
x
25) 5
2
1
x 0x25
25x200
x
O
0
1
(
x
5 50
)
2
1
x 0x50
50x200
x
Page 21

模糊控制的理论基础.ppt

模糊控制的理论基础.ppt

模糊控制还需要解决的问题
1、人的知识和经验的表达;
2、知识推理的方法;
3、人的知识的获得和总结; 4、模糊控制系统稳定性判据; 5、模糊控制系统的学习; 6、模糊控制系统的分析;
7、模糊控制系统的设计方法
模糊控制系统人性化——模糊控制容忍噪声的干 扰和元器件的变化——模糊控制适应性好
第二节 模糊集合论基础
(u )/u
i 1 F i
n
i
例2-2 考虑论域U={0,1,2,……10}和模糊集F”接近 于0的整数“,它的隶属度函数表示法
F 1 . 0 / 0 0 . 9 / 1 0 . 75 / 2 0 . 5 / 3 0 . 2 / 4 0 . 1 / 5
2、序偶表示法:
输出模糊集的精确化——将模糊控制量转化为清晰的、确定的输出控制量。
模糊控制技术需要解决的具体问题
1、模糊控制器的构造:单片机、集成电路、可编程控制器 (PLC); 2、模糊信息与精确信息转换的物理结构和方法; 3、模糊控制器对外界环境的适应性及适应技术(A/D和 D/A技术); 4、实现模糊控制系统的软技术(仿真软件); 5、模糊控制器和被控对象的匹配技术(依赖人们的经验)。
0 x 0 F 1 x0 100 1 2 x
可以算出u(5)=0.2; u(10)=0.5; u(20)=0.8;表示5属 于大于零的程度为0.2,也就意味5算不上是远远大 于0的数。
若U为离散域,即论域U是有限集合时,模糊集合可以有以下 三种表示方法: 1、查德表示法 即: F
1965年,Zadeh提出模糊集理论——模糊控制理论(以模 糊集合为数学基础); 1974年,E.H.Mamdani首先利用模糊数学理论进行蒸汽机 和锅炉控制方面的研究; 模糊控制依赖操作者的经验;(传统的控制依赖于微分 方程组等); 改善模糊控制性能最有效的方法是优化模糊控制规则; 模糊规则是通过将人的操作经验转化为模糊语言形式获 取的,带有一定的主观性。

模糊控制的理论基础

模糊控制的理论基础
zmf(x,[a, b])
有关隶属函数的MATLAB设计,见著作:
楼顺天,胡昌华,张伟,基于MATLAB的系统分析 与设计-模糊系统,西安:西安电子科技大学出版 社,2001
例2.5 隶属函数的设计:针对上述描述的6种隶属 函数进行设计。M为隶属函数的类型,其中M=1 为高斯型隶属函数,M=2为广义钟形隶属函数, M=3 为 S 形 隶 属 函 数 , M=4 为 梯 形 隶 属 函 数 , M=5为三角形隶属函数,M=6为Z形隶属函数。 如图所示。
X Years
图2-1 “年轻”的隶属函数曲线
2.2.2 模糊集合的运算 1 模糊集合的基本运算
由于模糊集是用隶书函数来表征的,因此两 个子集之间的运算实际上就是逐点对隶属度作 相应的运算。
(1)空集 模糊集合的空集为普通集,它的隶属度为0,

A A (u) 0
(2)全集 模糊集合的全集为普通集,它的隶属度为1,
设A和B经过平衡运算得到C,则
c (x) A (x) B ( x) 1 1 (1 A (x)) (1 B (x))
其中γ取值为[0,1]。 当γ=0时,c (x) A (x) B (x),相当于A∩B时的算子。
当γ=1,c (x) A(x) B (x) A(x) B (x) ,相当于
B 0.3 0.1 0.4 0.6 u1 u2 u3 u4
求A∪B,A∩B
则 A B 0.9 0.2 0.8 0.6
u1 u2 u3 u4
A B 0.3 0.1 0.4 0.5 u1 u2 u3 u4
例2.4 试证普通集合中的互补律在模糊集
合中不成立,即 A (u) A (u) 1,
则 u0属于“成绩差”的隶属度为:
A (u0 ) 1 0.8 0.2

模糊控制的数学基础-2(3-1至3-15)模糊关系、逻辑及运算

模糊控制的数学基础-2(3-1至3-15)模糊关系、逻辑及运算

举例eg 1 y=sinx, x ∈(-∞,+∞),y ∈[-1,+1],由于[-1,+1]是y 轴的一个子集,故这个映射是x 到y 内的映射,是属于“非全射”。

eg 2 y=x 2, x ∈(-∞,+∞), y ∈(0,+∞)。

这是由x 到y 内的映射,也属于“非全射”。

eg 3 y=x 3, x ∈(-∞,+∞), y ∈(-∞,+∞)。

这个映射是由x 射到y 轴上的映射,属于“全射”。

并且也是“单射”,同时也是“一一映射”。

Ch 3 Fuzzy 控制理论的预备知识§3-1 Fuzzy 关系与Fuzzy 关系图一 Fuzzy 关系~R 第二章讲过,所谓关系R ,实际上是A 和B 两集合的直积A ×B 的一个子集。

现在把它扩展到Fuzzy 集合中来,可定义如下:所谓A 和B 两集合的直积A ×B =﹛(a ,b)|a ∈A ,b ∈B ﹜中的一个模糊关系~R ,是指以A ×B 为论域的一个Fuzzy 子集,其序偶(a ,b)的隶属度为 ~R μ (a ,b),可见~R 是二元Fuzzy 关系。

3-1Nose :当A=B 时,我们称之为“A 面上的Fuzzy 关系”R 。

eg . 要求列出集合A=﹛1,5,7,9,20﹜“序偶”上的“前元比后元大得多”的关系~R 。

解:直积空间R =A ×A 中有25个“序偶”,其中R 1=﹛(20,1),(20,9),(20,7),(20,5),(9,7),(9,5),(9,1),(7,5),(7,1),(5,1)﹜ 是满足“前元比后元大”的子集。

~0.50.70.810.10.30.950.10.90.85(5,1)(7,1)(9,1)(20,1)(7,5)(9,5)(20,5)(9,7)(20,7)(20,9)R =+++++++++ 上式中分子的值即是按人的判断结果给出的相应满足“前元比后元大得多”的程度,还有一种求法是利用适当的隶属函数来确定。

模糊控制技术第2章模糊逻辑的数学基础

模糊控制技术第2章模糊逻辑的数学基础
③ 序偶表示法: 将论域中元素ui与其隶属度μF(ui)构成序偶来表示F,则 F={(u1,μF(u1)),(u2,μF(u2)),…,(un,μF(un))} (2.7)
第2章 模糊逻辑的数学基础 例2.1 在论域U={1,2,3,4,5,6,7,8,9,10}中
讨论“小的数”F这一模糊概念,分别写出上述三种模糊集 合的表达式。
概念的外延,一个概念所包含的那些区别于其他概念的全体 本质属性就是这概念的内涵。用集合论的观点来看,内涵是 集合的定义,外延就是组成集合的所有元素。一个概念的外 延就是一个集合。
集合中的个体称为元素,通常用小写字母u、v表示; 集 合的全体又称为论域,通常用大写字母U、V表示; u∈U, 表示元素u在集合论域U内。一个集合如果由有限个元素 组成,则称为有限集合,不是有限集合的集合称为无限集合。 集合可以是连续的,也可以是离散的。
第2章 模糊逻辑的数学基础
定义2.2 支集(Support):模糊集合的支集是一个普
通集合,它是由论域U中满足μF(u)>0的所有u组成的,即
S={u∈U|μF(u)>0}
(2.3)
例如,在图2.1中,模糊集合B(“中年”)的支集是开
区间(35,60)。
定义2.3 模糊单点(Singleton): 如果模糊集合F的支
第2章 模糊逻辑的数学基础
在普通集合中,任何一个元素或个体与任何一个集合之 间的关系只有“属于”和“不属于”两种情况,两者必居其 一,而且只居其一,绝对不允许模棱两可。例如,“大于100 的自 然数”是一个清晰的概念,该概念的内涵和外延均是明确的。
1. 经典集合定义 依据一定的标准进行分类,可以把不同的事物归于这一 类,或不归于这一类。 集合是具有某种特定属性的对象的全体。

模糊控制数学基础2—模糊逻辑与推理(2)

模糊控制数学基础2—模糊逻辑与推理(2)

F F
隐含隶属函数表达式 pq ( x, y) 1 pq ( x, y) 1 min[ p ( x), (1 q ( y))] 或
pq ( x, y) pq ( x, y) max[ p ( x), q ( y)]
max[( p ( x)), q ( y)] 1
x y
(1 2 ) c ( z )
3) 多前提多规则
前提(事实) 1 前提 2 (规则1 ) 前提 (规则2 3 ) 结果(结论) x是A, y是B if x 是A1和 y是B1 , then Z是C1 if x 是A2和 y是B2 , then Z是C2 z是C
称为工程隐含
工程隐含
• (1) A B 解释为A与B相关,常用的两种三角范 式算子得到模糊关系 Rm A B A ( x) B ( y ) /( x, y )
X Y

A B ( x, y ) min{ A ( x), B ( y )}
Rp A B 或
p q,
“if then”
4) 逆操作 Inversion
5) q”。
~p 等效关系 Equivalence p q ,“p即
一个隐含是“真”,必须满足三个条件之一: 1) 前提是真,结论是真; 在教书,是教师;成立
2) 前提是假,结论是假;不教书,不是教师;成立
3) 前提是假,结论是真。
1单点模糊化max乘积复合运算乘积推理高度去模糊化2单点模糊化maxmin复合运算乘积推理高度去模糊化3非单点模糊化max乘积复合运算乘积推理高度去模糊化去下标上面几式可简化为单点模糊化
模糊逻辑与模糊推理
• 对模糊现象的机理进行分析、抽象,进 而用用模糊数学表达

2.2 模糊控制的理论基础

2.2 模糊控制的理论基础

图示 :
09:24:38
5
09:24:38
6
2. 模糊集合的表示法
a) Zadeh 表示法 ∑ x ∈X µ A ( xi ) / xi X 为离散对象集合 A = ∫ µ A ( xi ) / x X为连续空间(通常为实轴) X 注意 : ∑ 和 ∫ 并非求和和积分符号 .
i
b) 序偶表示法
09:24:38 13
隶属函数的建立
p 正确确定隶属函数是运用模糊集合理论解决实际 问题的基础。隶属函数是对模糊概念的定量描述。 而隶属函数是模糊控制的应用基础,正确构造隶属 函数是能否用好模糊控制的关键之一。由于模糊理 论的研究对象具有 “ 模糊性 ” 和经验性,隶属函数的 确定目前还没有一套成熟有效的方法,找到一种统 一的隶属度计算方法是不现实的。 p 大多数系统的确立方法还停留在经验和实验的基 础上。通常的方法是初步确定粗略的隶属函数,然 后再通过 “ 学习 ” 和不断的实践来完善和修整,从而 达到主观和客观的统一。
A = {( x1 , µ ( x1 )), ( x2 , µ ( x2 )),L , ( xn , µ ( xn ))}
其中,第一分量 xi表示论域中的元素, 第二分量μ (xi)表示相应元素的隶属度
A = {(上海 ,0.8),(北京 ,0.9), (天津 ,0.7),(西安 ,0.6)}
注意:隶属度为零的项可以省略 c) 向量表示法
09:24:38
µ 年轻 (18) = 1
µ 年轻 (38) = 0.3
2
二、关于模糊集合的三点说明
1. 论域X的二种表达形式:
1) 离散形式 (有序或无序 ): 举例 1: X ={上海 北京 天津 西安 }为城市的集合。

第2章模糊数学基础

第2章模糊数学基础

A A A a A , a A , , a , 12 r 1 1 2 2 rA r
由两个集合X和Y,各自的元素xX,yY构成序偶(x,y) 的集合称为集合X和Y的直积。 X Y
x 1 y X Y 1 x n
2019/2/16
பைடு நூலகம்
xy xy 11 1 2 xy 2 1 xy 2 2 y m xy n 1 xy n 2
[例2-2] 用序偶法在论域U=1,2,3,4,5,6,7,8, 9,10中讨论“几个”这一模糊概念。 [解]
F ( 1 , 0 ) , ( 2 , 0 ) , 3 , 0 . 2 , 4 , 0 . 7 , 5 , 1 , 6 , 1 , 7 , 0 . 7 , 8 , 0 . 3 , 9 , 0 , ( 1 0 , 0 )
S 3 , 0 . 2 , 4 , 0 . 7 , 5 , 1 , 6 , 1 , 7 , 0 . 7 , 8 , 0 . 3
20
2019/2/16
3)向量表示法 将论域U中的隶属度F(ui)用来表示模糊集合F,则:
F F u , F u ,, F u 1 2 n
F u F u F u 1 2 n F u u u 1 2 n
用扎德法在论域U=1,2,3,4,5,6,7,8,9, [例2-1] 10中讨论“几个”这一模糊概念。
0 0 0 . 2 0 . 7 1 1 0 . 7 0 . 3 0 0 [解] F 1 23 45 67 89 1 0
2019/2/16
11
(3)关系矩阵 二元关系R可用二维关系矩阵表示 设X = x ,,, x , Y y ,,, y , 1 2 x n 1 2 y m R是由X到Y的关系,则关系矩阵R的第i行第j列上的元素 rij定义为

模糊控制数学模型

模糊控制数学模型

⎩⎨⎧∉∈=Ax 0,A x ,1)(x Aμ=)(x A λχλ≥)(x A λ<)(x A 第二章 模糊控制的数学基础模糊数学并不是让数学变成模模糊糊的东西,而是用数学工具对模糊现象进行描述和分析。

模糊数学是对经典数学的扩展,它在经典集合理论的基础上引入了“隶属函数”的概念,来描述事物对模糊概念的从属程度。

2.1集合与关系集合的概念具有特定属性的对象的全体,称为集合。

例如: “湖南大学的学生”可以作为一个集合。

集合通常用大写字母A ,B ,……,Z 来表示。

集合的特征函数表示方法集合的表示方法在初等数学中,已经给出。

例如:列举法、表征法、描述法、文氏图法等,现给出另一种表示方法:特征函数法。

设x 为论域X 中的元素, A 为论域X 中定义的一个集合,则x 和A 的关系可以用集合A 的特征函数来表示。

它的值域是{0,1},它表示元素x 是否属于集合A 。

如果x 属于集合A ,那么的值为1;如果x 不属于集合A ,那么的值为0。

即 2.2模糊集合与普通集合的联系当我们处理实际问题的某个时刻,要对模糊概念有个明确的认识与判决时,要判断某个元素对模糊集的明确归属,这就要求模糊集与普通集合可以依某种法则相互转换。

模糊集合的截集,分解定理描述了模糊集合和普通集合之间的关系。

2.2.1水平截集的定义给定一个模糊集合A ,由对于A 的隶属度大于某一水平值λ的元素组成的集合,叫做该模糊集合的λ水平截集,那么模糊集合A 就变成了普通集合λA 。

设)(X F A ∈,任取∈λ[0,1],记}A(x):X {x A λλ≥∈=,称λA 为A 的λ 截集,其中λ称为阈值或置信水平。

当λ1≠时,}A(x):X {x A λλ≥∈=+,称+λA为A 的λ的强截集。

而λA 是X 对于A 的隶属度大于λ的元素集合。

λA 的特征函数为:1nn A A A x x x x x x A )()()(2211μμμ+++=2.2.2分解定理分解定理说明,任何一个模糊集可由一类普通集合套来表示设A 是普通集合,∈λ[0,1],做数量积运算,得到一个特殊的模糊集A λ,其隶属度函数为)(x A λμ=分解定理:设A 为论域X 上的模糊集合,λA 是A 的截集,则有λλλA A ]1,0[∈=2.3模糊集合2.3.1模糊集合的概念定义:设X 是论域,X 上的一个实值函数用A μ来表示,即]1,0[:→X A μ。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Beijing University of Posts and Telecommunications.
4
2.2 普通集合
3)集合的运算
* 集合交
设X,Y为两个集合,由既属于X又属于Y的元素组成的 集合P称为X,Y的交集,记作
P=X∩Y
* 集合并
设X,Y为两个集合,由属于X或者属于Y的元素组成的 集合Q称为X,Y的并集,记作
~ ~
~
~
A ( A(x1), A(x2), , A(xn))
~~
~
~
对于上例的模糊集“高个子”可以用序偶法表示为
高个子 ( 1 , 0 . 8 ) 7 ( 1 , , 0 . 7 2 ) 6 ( 1 , , 8 0 . 8 5 ) 7 ( 1 , , 5 0 . 9 5 ) 8 ( 1 , , 0 . 8 0 ) 7 8 8 或 高个子 0 .8 ,0 .7,0 .8,0 .5 9 ,0 .88
17
(2)模糊关系
2.5 模糊关系
人和人之间关系的“亲密”与否? 儿子和父亲之间长相的“相像”与否? 家庭是否“和睦”?
这些关系就无法简单的用“是”或“否”来描述,而只能描述为“在多 大程度上是”或“在多大程度上否“。这些关系就是模糊关系。我们可 以将普通关系的概念进行扩展,从而得出模糊关系的定义。
A 1 0 .5 1 0 .3 1 0 .4 1 0 .2 1 0 .10.50.70.60.80.9 ~a b c d e a b c d e
Beijing University of Posts and Telecommunications.
12
2.3 模糊集合
(4)模糊运算的性质:
(1) 普通关系
“关系”是集合论中的一个重要概念,它反映了不同集合的元素之间的关联。 普通关系是用数学方法描述不同普通集合中的元素之间有无关联。
例2.5.1 举行一次东西亚足球对抗赛,分两个小组 A={中国,日本,韩国},B={伊朗,沙特,阿联酋}。
抽签决定的对阵形势为: 中国-伊朗,日本-阿联酋,韩国-沙特。
2
2.2 普通集合
1)集合的概念
* 集合 具有特定属性的对象的全体,称为集 合。例如: “湖南大学的学生”可以 作为一个集合。集合通常用大写字母 A,B,……,Z来表示。
* 元素 组成集合的各个对象,称为元素,也 称为个体。通常用小写字母a, b,……,z来表示。
* 论域 所研究的全部对象的总和,叫做论域, 也叫全集合。
❖ 模糊数学并不是让数学变成模模糊糊的东西,而是用数学工具对模 糊现象进行描述和分析。模糊数学是对经典数学的扩展,它在经典 集合理论的基础上引入了“隶属函数”的概念,来描述事物对模糊 概念的从属程度。
Beijing University of Posts and Telecommunications.
,求A0.1、A0.2、A0.7
A 0 .1 { x 1 ,x 2 ,x 3 ,x 4 ,x 5 }
A 0 .2{x2,x3,x4,x5}
A0.7{x4,x5}
Beijing University of Posts and ቤተ መጻሕፍቲ ባይዱelecommunications.
14
2.4 λ水平截集
❖ 水平截集的性质
15x25 25x35
年轻(x)
1
0 15 25
35 x
Beijing University of Posts and Telecommunications.
10
2.3 模糊集合
(3) 模糊集合的运算
模糊集合与普通集合一样也有交、并、补的运算。
假设
A和
~
B为论域U上的两个模糊集,它们的隶属函数分别为 A ( x)
* 空集 不包含任何元素的集合,称为空集, 记做Φ。
* 子集 集合中的一部分元素组成的集合,称 为集合的子集。
* 属于
若元素 a 是集合 A 的元素,则称元素 a 属于集合 A ,记为a∈A;反之,称a不属 于集合A,记做 aA。
*包含
若集合A是集合B的子集,则称集合A包含于 集合B,记为AB;或者集合B包含集合A, 记为 B。A
7
2.3 模糊集合
(2) 模糊集合的表示法:
1) Zadeh表示法
当论域上的元素为有限个时,定义在该论域上的模糊集可表示为:
A(x1) A(x2)
A(xn)
A ~ ~ ~
~ x1
x2
xn
注意:式中的“+”和“/”,仅仅是分隔符号,并不代表“加”和“除”。
例2.3.2 假设论域为5个人的身高,分别为172cm、165cm、175cm、180cm、 178cm,他们的身高对于“高个子”的模糊概念的隶属度分别为0.8、0.78、 0.85、0.90、0.88。则模糊集“高个子”可以表示为
为0。即
A(x)
1, xA 0,xA
Beijing University of Posts and Telecommunications.
6
2.3 模糊集合
(1)模糊集合的定义:
给定论域E中的一个模糊集 A ,是指任意元素x∈E,都不同程度地属于这个 ~
集合,元素属于这个集合的程度可以用隶属函数 A(x) ∈[0,1]来表示。
~
例2.3.1 论域为15到35岁之间的人,模糊集 表示“年轻人”,则模糊集
的隶属函数可定义为
1
A(x)
~
1
1 x252
5
15x25 25x35
则年龄为30岁的人属于“年轻人”的程度为:
A(30)0.5
~
Beijing University of Posts and Telecommunications.
第二章 模糊控制的数学基础
2.1 概述
❖ 模糊数学(模糊集)是模糊控制的数学基础,它是由美国加利福尼 亚大学Zadeh教授最先提出的。他将模糊性和集合论统一起来,在 不放弃集合的数学严格性的同时,使其吸取人脑思维中对于模糊现 象认识和推理的优点。
❖ “模糊”,是指客观事物彼此间的差异在中间过渡时,界限不明 显,呈现出的“亦此亦彼”性。“模糊”是相对于“精确”而言 的。 “精确”:“老师”、“学生”、“工人” “模糊”:“高个子”、“热天气”、“年轻人”
成立,则称
A
~
包含B ~
,记作
AB
~~
Beijing University of Posts and Telecommunications.
11
2.3 模糊集合
例2.3.3:设论域U={a, b, c, d, e}上有两个模糊集分别为:
A0.50.30.40.20.1 ~a b c d e
求 A B
Beijing University of Posts and Telecommunications.
9
2.3 模糊集合
3)隶属函数描述法 论域U上的模糊子集可以完全由其隶属函数表示。
假设年龄的论域为U=[15,35],则模糊集“年轻”可用隶属函数表征为:
1
年轻(x)
1
1 x252
5
该隶属函数的形状如图
交换率 结合率 分配率
传递率 幂等率 摩根率 复原率
A BB A,ABBA
~ ~ ~ ~~ ~ ~ ~
A (B C )(A B ) C ,A (B C )(A B )C
~ ~~
~ ~ ~~ ~ ~
~~ ~
A (B C ) (A B )(A C )
~ ~~ ~~ ~~
A (B C ) (A B ) (A C )
*相等
对于两个集合A和B,如果AB 和AB同
时成立,则称A和B相等,记做A=B。此时A 和B有相同的元素,互为子集。
*有限集
如果一个集合包含的元素为有限个,就叫 做有限集;否则,叫做无限集。
Beijing University of Posts and Telecommunications.
3
2.2 普通集合
1)A∪B的λ水平截集是Aλ和Bλ的并集:
(AB)AB
~~
2)A∩B的λ水平截集是Aλ和Bλ的交集:
(A B)A B
~~
3)如果λ∈[0,1],α∈[0,1]
且λ≤α ,则
A A
Beijing University of Posts and Telecommunications.
15
2.5 模糊关系
~ ~~ ~~ ~~
A B ,B C ,则 A C
~
~~
~
~
~
AA A ,A A A
~~ ~ ~~ ~
AB A
B,AB AB
~ ~ ~ ~~ ~ ~ ~
AA
~~
Beijing University of Posts and Telecommunications.
13
2.4 λ水平截集
❖ 水平截集的定义
2)集合的表示法
* 列举法
将集合中的所有元素都列在大括号中表示出来,该方法只能用于有 限集的表示。 例如10-20之间的偶数组成集合A,则A可表示为
A={10,12,14,16,18,20}
* 表征法
表征法将集合中所有元素的共同特征列在大括号中表征出来。 上例中的集合A也可用表征法表示为
A={a|a为偶数,10≤a ≤20}
具体算法是:在X,Y中各取一个元素组成序偶(x,y),所 有序偶组成的集合,就是X,Y的直积。
4) 集合的特征函数
设x为论域X中的元素, A为论域X中定义的一个集合,则x和A的关系可以
用集合A的特征函数来表示。它的值域是{0,1},它表示元素x是否属于
集合A。如果x属于集合A,那么的值为1;如果x不属于集合A,那么的值
相关文档
最新文档