4.2 一次函数的应用(第2课时)演示文稿

合集下载

一次函数图象的应用(二)演示文稿

一次函数图象的应用(二)演示文稿
s/海里 海里 12 10 8 6 4 2 O 2 4 6 8 10 12 14 16
l2 l1
P
t/分 分
(5)当A逃到离海岸12海里的公海时,B将无法对其进行 检查。照此速度,B能否在A逃入公海前将其拦截? 从图中可以看出,l1与l1交点P的纵坐标小于12, 这说明在A逃入公海前,我边防快艇B能够追上A。 上 述 想 问 一 s/海里 海里 题 想 吗 你 12 ? 能 10 用 P l2 其 8 他 6 l1 方 法 4 解 2 决
4. 请你根据另一幅图表,充分发挥你的想象,自编 请你根据另一幅图表,充分发挥你的想象, 一则新的“龟免赛跑”的寓言故事,要求如下: 一则新的“龟免赛跑”的寓言故事,要求如下: (1)用简洁明快的语言概括大意,不能超过 )用简洁明快的语言概括大意,不能超过200字; 字 (2)图表中能确定的数值,在故事叙述中不得少于 )图表中能确定的数值, 3个,且要分别涉及时间、路和速度这三个量。 个 且要分别涉及时间、路和速度这三个量。
6000 5000 4000 3000 2000 1000
l2
O
1
2
3
4
5
6
x/ 吨
(2)当销售量为6吨时,销售收入= 6000 元, 销售成本= 5000 元; (3)当销售量为 4吨 时,销售收入等于销售成本;
y/元 元
6000 5000 4000 3000 2000 1000
l1 l2
O
1
2
=45km,此时S ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km。 当小聪到达“飞瀑” 所以小慧离“飞瀑”还有45-42.5=2.5(km) 所以小慧离“飞瀑”还有45-42.5=2.5( 45

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件
第四章
4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6

观察右边图象,你能从图象

中得到哪些信息?你是怎样得到?

与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。

所以这个函数的表达式为 y=- x+10.


把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,

把(0,10),(500,0)代入,可得 b=10,k=-,

北师大版八年级数学上册《一次函数的应用》第2课时示范公开课教学课件

北师大版八年级数学上册《一次函数的应用》第2课时示范公开课教学课件

某种摩托车加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:
(1)油箱最多可储油多少升?
解:观察图象,得
当x=0时,y=10.因此,油箱最多可储油10 L.
剩余油量
【分析】当车未行驶时,油箱油量最多.
某种摩托车加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:
已知一次函数的图象经过A(1,3),B(0,-2)两点,求此一次函数的表达式.
y=2x
一、三
y=5x-2
由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少.蓄水量V(万m3)与干旱持续时间t(天)的关系如图所示,回答下列问题:
(1)水库干旱前的蓄水量是多少?
蓄水量
干旱持续时间
解得b=100,k=-2.5.
∴函数关系式为y=-2.5x+100.
6.如图,是生活委员小华带着钱去给班上购买某种奖品,所剩钱数y(元)与所买奖品x(个)之间的关系图,根据图象回答下列问题:
(4)若买15个奖品,还剩多少元?
解:由(2)知每个奖品是2.5元,由题意得:100-15×2.5=62.5(元)
(1)小华买奖品的钱共是多少元?
解:根据题意知,小华买奖品的钱的总数就是没买奖品时所剩的钱数.
∴由图可知小华买奖品的钱共是100元.
6.如图,是生活委员小华带着钱去给班上购买某种奖品,所剩钱数y(元)与所买奖品x(个)之间的关系图,根据图象回答下列问题:
(2)每个奖品多少元?
解:由图知小华一共花100元买了40个奖品.
4
4.一元一次方程3x+2=1的解就是直线 与x轴的交点的横坐标.

《一次函数的应用》 示范公开课教学PPT课件【北师大版八年级数学上册】第2课时

《一次函数的应用》 示范公开课教学PPT课件【北师大版八年级数学上册】第2课时
根据图象回答下列问题: (1)一箱汽油可供摩托车行驶多少千米?
分析:函数图象与x轴交点的横坐标即为摩托车行驶的最长 路程.
解:观察图象,得:当y=0时,x=500,因此一箱汽油可供 摩托车行驶500千米.
典例精讲
(2)摩托车每行驶100千米消耗多少升汽油?
分析:x从0增加到100时,y从10开始减少,减少的数量即为 消耗的数量.
解:x从0增加到100时,y从10减少到8,减少了2,因此摩托 车每行驶100千米消耗2升汽油.
典例精讲
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行 驶多少千米后,摩托车将自动报警?
分析:当y小于1时,摩托车将自动报警.
解:当y=1时,x=450,因此行驶了450千米后,摩托车将自 动报警.
课堂练习
4.函数y=-3x-6中,当自变量x增加1时,函数值y就( C ). A.增加3 B.增加1 C.减少3 D.减少1
5.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返 回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反 映全程h与t的关系图是( D ).
课堂练习
6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步
课堂练习
(1)如果不采取任何措施,那么到第5年底,该地区沙漠 面积将增加多少万千米2?
解:如果不采取任何措施,那么到第5年底,该地区沙漠面 积将新增加10万千米2.
课堂练习
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在 开始,第几年底后,该地区将丧失土地资源?
解:从图象可知,每年的土地面积减少2万千米2,现有土 地面积100万千米2,100÷2=50,故从现在开始,第50年底后, 该地区将丧失土地资源.

八年级数学上册(北师大版)第四章第四节《一次函数的应用(第2课时)》课件

八年级数学上册(北师大版)第四章第四节《一次函数的应用(第2课时)》课件

全国每年都有大量土地 被沙漠吞没,改造沙漠, 保护土地资源已经成为 一项十分紧迫的任务.
某地区现有土地面积100万 千米2,沙漠面积200万千米2, 土地沙漠化的变化情况如图 所示. 根据图象回答下列问题:
(1)如果不采取任何措施, 那么到第5年底,该地区沙 漠面积将增加多少万千米2?
(10万千米2)
·
20t ( 天 )
根据图象回答下列问题: (7)写出活动开展的第t天节 约的水量y与天数t的函数关系。
()Y 4t 20
课堂小结
今天,你有什么收获?
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
课外作业:
习题4.6
23天呢?
(3)蓄水量小于400万米3时,将
发生严重干旱警报.干旱多少
天后将发出严重干旱警报?
(4)按照这个规律,预计 持续干旱多少天水库将干 涸?
当得知周边地区的干旱情况后,育才学校的 小明意识到节约用水的重要性,当天在班上 倡议节约用水,得到全班乃至全校师生的积 极响应。
做一做
从宣传活动开始,假设每天参加该活动的家庭 数增加数量相同,最后全校师生都参加了活动, 并且参加该活动的家庭数S(户)与宣传时间t (天)的函数关系如图所示。
·
20t ( 天 )
根据图象回答下列问题: (6)若每户每天节约用水0.1吨, 那么活动第20天可节约多少吨水?
(第20天可节约100吨水)
探究升级
S(户)
从宣传活动开始,假设每天参加 1000 该活动的家庭数增加数量相同, 最后都参加了活动,并且参加该 200 活动的家庭数S(户)与宣传时 0 间t(天)的函数关系如图所示。

《一次函数》PPT课件(第2课时)

《一次函数》PPT课件(第2课时)

k = -1,
{2k + b = 0,
由题意得
k = -1,
{b = 2.
解得
∴y=-x+2.
利用一次函数解决实际问题
例3“黄金1号”玉米种子的价格为5 元/kg,如果一次
购买2 kg 以上的种子,超过2 kg 部分的种子的价格打
8 折.
(1)填写下表:
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …
子按 4元/kg计价. 因此,写函数解析式与画函数图象时,
应对0 ≤ ≤ 2和x>2分段讨论.
解: (2)设购买量为x千克,付款金额为y元.
当0 ≤ ≤ 2时,y=5x;
当x>2时,y=4(x-2)+10=4x+2.
5 x(0≤x≤2),
y
4 x 2( x 2).
分段函数
注意:1.它是一个函数;
y
注意:此题有两种情况.
2
解:设一次函数的解析式为y=kx+b(k≠0).
∵一次函数y=kx+b的图象过点(0,2),
O
∴b=2.

2
∵一次函数的图象与x轴的交点是( ,0),
k
1
2
2
2
k
2, 解得k=1或-1.
∴此一次函数的解析式为y=x+2或y=-x+2.
x
y=kx+b(k≠0).
把x=3,y=5;x=-4,y=9 分别代入上式,得
3k+b=5,
-4k+b=-9,
k=2,
解方程组得
b=-1.
这个一次函数的解析式为 y=2x-1.

一次函数的应用(2)精品PPT教学课件

一次函数的应用(2)精品PPT教学课件

(2) yΒιβλιοθήκη 1 2x1
2020/12/6
10
1,一次招聘会上,A,B两公司都在招聘销 售人员。A公司给出的工资待遇是:每月1000 元基本工资,另加销售额的2﹪作为奖金;B 公司给出的工资待遇是:每月600元基本工资, 另加销售额的4%作为奖金。如果你去应聘, 那么你将怎样选择?
2020/12/6
11
2020/12/6
1
2020/12/6
2
用一次函数解决实际问题的基本步骤是:
(1)先判断问题中的两个变量之间是不 是一次函数关系。
(2)求得函数解析式。
(3)利用函数解析式或其图象解决实际 问题。
2020/12/6
3
确定两个变量是否构成一次函数的关系 的方法有:
1.图象法: ●通过实验、测量获得数量足够多的两 个变量的对应值;
(2)当小聪到达“飞瀑“时,小慧离“飞瀑”还有多少km?
解:设经过t小时,小聪与小慧离“古刹”的路程分别为s1,s2,由题意得 S1=36t,s2=26t+10.
在直角坐标系中画出直线
55
50
S1=36t和直线s2=26t+10.
45
观察图象,得
42.5 40
36
(1)两条直线S1=36t,
35 30
2,某商场要印制商品宣传材料,甲印刷厂的 收费标准是:每份材料收1元印刷费,另收 1500元制版费;乙印刷厂的收费标准是:每份 材料收2.5元印制费,不收制版费。 (1)分别写出两厂的收费y(元)与印制数量x (份)之间的关系式;
(2)在同一直角坐标系中画出它们的图象。 (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪一家印刷厂比较 合算?商场计划花费3000元用于印刷宣传材料, 找哪一家印刷厂能印刷宣传材料多一些?

一次函数的应用ppt

一次函数的应用ppt
解题思路
02
确定一次函数的表达式
03
04
代入已知条件求解
验证答案是否符合实际情况
经典的一次函数应用题解析
1 2 3
题型一
速度与时间问题
题目
一辆汽车以60千米/小时的速度匀速行驶,行驶 了3小时后,离目的地还有100千米,求目的地 与起始点的距离。
解析
设目的地与起始点的距离为 d 千米,根据速度、 时间和距离的关系,有 d = 60 × 3 + 100。
02
一次函数是线性函数的一种,其 图像是一条直线。
一次函数的性质
当 $a > 0$ 时,函数为增函数,即当 $x$ 增大时,$y$ 也随之增大;当 $a < 0$ 时,函数为减函数,即当 $x$ 增大时,$y$ 随之减小。
斜率 $k = a$,表示函数图像的倾斜程度。当 $k > 0$ 时,图像向右上方倾斜;当 $k < 0$ 时,图像向右下方倾斜。
VS
一次函数与预测模型
利用一次函数建立预测模型,可以预测未 来趋势或结果。例如,通过历史销售数据 建立一次函数模型,可以预测未来的销售 趋势。
04 一次函数的应用题解析
一次函数的应用题类型及解题思路
类型一:速度与时间问题 类型二:利润与销售量问题
类型三:几何问题
一次函数的应用题类型及解题思路
01
一次函数的应用
contents
目录
• 一次函数的定义和性质 • 一次函数在实际生活中的应用 • 一次函数与其他数学知识的综合应用 • 一次函数的应用题解析 • 一次函数的应用前景展望
01 一次函数的定义和性质
一次函数的定义
01
一次函数的一般形式为 $y = ax + b$,其中 $a$ 和 $b$ 是常数,且 $a neq 0$。

一次函数图象的应用(二)演示文稿-PPT课件

一次函数图象的应用(二)演示文稿-PPT课件
根据图象回答下列问题: 1)哪条线表示B到海岸的距离
与追赶时间之间的关系? (交流)
2)A、B哪个速度快?
11
我边防局接到情报,近海处有一可疑船只A正向公海方向行 使。边防局迅速派出快艇B追赶(如图(1)),图(2)中L1, L2分别表示两船相对海岸的距离S(海里)与追赶时间t(分) 之间的关系。
6000 5000 4000 3000 2000
1000
0
12
根据图象回答:
L1 3)当销售量为 4 时,
.
销售收入等于销售成本。 L2 4)当销售量大于4吨时,
该公司赢利。
(即收入大于成本)。
当销售量 小于4吨 时,
该公司亏损
3 4 5 6 x/吨(即收入小于成本)。 5
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
L2 销售成本是 3000 元。
3000
2)当销售为6吨时,
销售收入是 6000 元。
2000
1000
.
销售成本是 5000 元。 该公司赢利 元。
0 1 2 3 4 5 6 x/吨
4
2、试一试:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
1
班级:八年级(5、6) 授课教师:周末
2
1、想一想:
如下图,L1反映了某公司产品的销售收入与销售量的 关系,L2反映该公司产品的销售成本与销售量的关系。
y/元
6000
问1:这个图象与前一
L1
节课所看到的图
象有何不同?
5000 4000

北师大版八年级数学上册第四章一次函数第2课时一次函数的应用课件

北师大版八年级数学上册第四章一次函数第2课时一次函数的应用课件

5. 某拖拉机的油箱可储油40 L,加满油并开始工作后,油箱中的余油量y (L)与工作时间x(h)之间的关系如图所示.
(1)求y与x之间的函数关系式; (2)一箱油可供拖拉机工作几小时?
(1)y=-5x+40(0≤x≤8);(2)8 h.
B D
3. 汽车工作时油箱中的汽油量y(L)与汽车工作时间t(h)之间的函数关系
3. 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程 kx+b=0 的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程 kx+b=0 的解.
1. 一次函数y=-2x+4的图象与y轴的交点坐标是( B )
A. (4,0)
B. (0,4)
C. (2,0)
D. (0,2)
2. 直线y=kx+b与x轴的交点坐标是(-3,0),则方程kx+b=0的解是 ( D )
A. x=2
B. x=-2
C. x=3
D. x=-3
3. 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的方 程 x+1=mx+n的解为 x=1.
4. 已知一次函数y=ax+b的图象如图所示: (1)关于x的方程ax+b=0的解是_x_=_-_4________; (2)关于x的方程ax+b=2的解是_x_=_0_________; (3)关于x的方程ax+b+1=0的解是__x_=_-_6_______.
7. 某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过 规定,则需要购买行李票.行李票费用y(元)是行李质量x(kg)的一次函数,其图 象如图所示,求这个一次函数的关系式.

《一次函数的应用》一次函数PPT课件(第2课时)

《一次函数的应用》一次函数PPT课件(第2课时)
(2)只用语言叙述或用表格、图象提供一次函数的情境 时,应先求出关系式,进而利用函数性质解决问题.
2.要点精析:“建模”可以把实际问题转化为关于一次 函数的数学问题,它的关键是确定函数与自变量之间 的关系式,并确定实际问题中自变量的取值范围.
知1-讲
例1 某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车 行驶路程x ( km )之间的关系如图所示.根据图象回答下列问题: (1)油箱最多可储油多少升? (2)一箱汽油可供摩托车行驶多少 千米? (3)摩托车每行驶100 km消耗多少 升汽油? (4)油箱中的剩余油量小于1 L时, 摩托车将自动报警.行驶多少千
知1-练
1 (中考·北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年
卡,可享受如下优惠:
会员年卡类型
办卡费用/元
每次游泳收费/元
A类
50
25
B类
200
20
C类
400
15
例如,购买A类会C员年卡,一年内游泳20次,消费50+25×20=
550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最
知2-讲
1.一知次识函点数和一元一次方程的联系:任何一个以x为未知数的一元
一次方程都可以变形为ax+b=0(a≠0,a,b为常数)的形式, 所以解一元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映在图象上, 就是直线y=ax+b与x轴交点的横坐标. 2.利用一次函数图象解一元一次方程的步骤: (1)转化:将一元一次方程转化为一次函数; (2)画图象:画出一次函数的图象; (3)找交点:找出一次函数图象与x轴的交点,得到其横坐标,即为
第四章 一次函数

《一次函数的应用(第2课时)》PPT课件 北师大版八年级数学

《一次函数的应用(第2课时)》PPT课件 北师大版八年级数学

3
00
x
从“形” 上看
课堂检测
能力提升题
已知直线y=-2x+4与x轴交于点A,与y轴交于点B,
求△AOB的面积.
y
解:由已知可得: 当x=0时,y=4,即B(0,4) 当y=0时,x=2,即A(2,0) 则S △AOB=0.5× OA × OB
=0.5 × 2 × 4
=4
B
A
O
x
课堂小结 一次函数与一元一次方程的关系
探究新知
问题(1)解方程0.5x+1=0,得x=-2. 问题(2)就是要考虑当函数y=0.5x+1的值为( 0 )时
所对应的( 自变量x)为何值?
y
实质上这可以通过解方程0.5x+1=0,得出x=-2.因 此,这两个问题实际上是同一个问题.
从图象上看:作出函数y=0.5x+1的图象.
1
思考 函数图象哪一个点的坐标表示
10
下列
8
6
问题: 4
2
0
100
200
300
400
500 x/千米
探究新知
(4)油箱中的剩余油量小于1升时将自动报警.行驶多 根据 少千米后,摩托车将自动报警?
图像 解:当y=1时,x=450,因此行驶了450千米后,摩托车将自动
回答
报警. y/ 升 10
下列
8
问题:
6
4
2
0
100
200
300
400
变量x等于 2 时的函数值是8.
课堂检测
基础巩固题
3. 直线 y ax b 在坐标系中的位置如图,则
方程 ax b 0 的解是x=_-_2_.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

想一想
由于持续高温和连日无 雨,某水库的蓄水量随着 时间的增加而减少.干旱 持续时间t(天)与蓄水量V (万米3)的关系如下图所示, 回答下列问题:
(1)水库干旱前的蓄水 量是多少?
· ·
(2)干旱持续10天,蓄水 量为多少?连续干旱 23天呢? (3)蓄水量小于400万米3时,将 发生严重干旱警报.干旱多少 天后将发出严重干旱警报?
全国每年都有大量 土地被沙漠吞没,改造 沙漠,保护土地资源已 经成为一项十分紧迫的2,沙漠面积200万千 米2,土地沙漠化的变化情 况如图所示. 根据图象回答下列问题: (1)如果不采取任何措施, 那么到第5年底,该地区沙 漠面积将增加多少万千米2? (10万千米2)
第四章
一次函数
4. 一次函数的应用(第2课时)
回顾与复习
在一次函数y=kx+b中
当k>0 时,y 随x的增大而增大, 当b>0 时,直线交y轴于正半轴, 必过一、二、三象限; 当b<0 时,直线交y轴于负半轴, 必过一、三、四象限;
回顾与复习
在一次函数y=kx+b中 当k<0 时,y随x的增大而减小, 当b>0 时,直线交y轴于正半轴, 必过一、二、四象限; 当b<0 时,直线交y轴于负半轴, 必过二、三、四象限.
·
20 t ( 天 )
课堂小结
今天,你有什么收获?
课外探究
在生活中,你还遇到过哪些可以 用一次函数关系来表示的实际问题? 选择你感兴趣的问题,编制一道数学 题与同学交流。
课外作业 :
习题4.6
·
(4)按照这个规律,预计 持续干旱多少天水库将干 涸?
当得知周边地区的干旱情况后,育才学 校的小明意识到节约用水的重要性,当天在 班上倡议节约用水,得到全班乃至全校师生 的积极响应。
做一做
从宣传活动开始,假设每天参加该活动的 家庭数增加数量相同,最后全校师生都参加了 活动,并且参加该活动的家庭数 S( 户)与 宣传时间 t(天)的函数关系如图所示。
0
根据图象回答下列问题:
S(户)
1000
·
20 t(天)
200
0
(4)活动第几天时,参加该活动的 家庭数达到800户? (第15天)
(5)写出参加活动的家庭数S与活动 时间t之间的函数关系式。 ( S 40t 200 )
深入探究
1.如图,
·
-2 (1)当y=0时,x=________ ;
(3)如果从现在开始采取植树造林 措施,每年改造4万千米2沙漠, 那么到第几年底,该地区的沙 漠面积能减少到176万千米2. (第12年底)
探究升级
从宣传活动开始,假设每天参加 1000 该活动的家庭数增加数量相同, 最后都参加了活动,并且参加该 200 活动的家庭数 S(户)与宣传时 0 间t(天)的函数关系如图所示。
某地区现有土地面积100 万千米2,沙漠面积200万千 米2,土地沙漠化的变化情 况如图所示. 根据图象回答下列问题:
(2)如果该地区沙漠的面积继续按此 趋势扩大,那么从现在开始,第 几年底后,该地区将丧失土地资源? (50年底后)
某地区现有土地面积100万千米2, 沙漠面积200万千米2,土地沙漠 化的变化情况如图所示. 根据图象回答下列问题:
y 0.5 x 1 . (2)直线对应的函数表达式是______________
议一议
一元一次方程0.5x+1=0与一次 函数y=0.5x+1有什么联系?
-3 -2
y
3 2 1 -1 0 -1 1 2 3x
1.从“数”的方面看,当一次函数 y=0.5x+1的函数值y=0时,相应的 自变量的值即为方程0.5x+1=0解。 2.从“形”的方面看,函数y=0.5x+1 与x轴交点的横坐标,即为方程 0.5x+1=0的解。
S(户) 1000
200 0
· ·
·
·
20 t(天)
根据图象回答下列问题:
S(户) 1000
·
20 t(天)
200
(1)活动开始当天,全校有 多少户家庭参加了活动? (200户) (2)全校师生共有多少户?该活动 持续了几天? (1000户,20天) (3)你知道平均每天增加了多少户? (40户)
S(户)
·
20 t ( 天 )
根据图象回答下列问题: (6)若每户每天节约用水0.1吨, 那么活动第20天可节约多少吨水? (第20天可节约100吨水)
探究升级
S(户)
从宣传活动开始,假设每天参加 1000 该活动的家庭数增加数量相同, 最后都参加了活动,并且参加该 200 活动的家庭数 S(户)与宣传时 0 间t(天)的函数关系如图所示。 根据图象回答下列问题: (7)写出活动开展的第t天节 约的水量y与天数t的函数关系。 ( Y 4t 20 )
相关文档
最新文档