1.全等三角形的性质及SSS(补充)
全等三角形的性质及判定(经典讲义)
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
全等三角形与三角形全等的判定(SSS)知识点
====Word 行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集 12.1 全等三角形一、全等形:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.说明:如果两个或两个以上的图形全等,那么这些图形放在一起就能完全重合。
这里的重合包括两层含义:一是形状相同,二是大小相等,二者缺一不可。
二、全等三角形:能够完全重合的两个三角形叫做全等三角形。
把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.全等用符号用“≌”表 示.如△ABC 与△DEF 全等,则可表示为△ABC ≌△DEFA B C D E F B(E)注意:1、对应边与对边,对应角与对角的区别。
对应边、对应角是对两个三角形而言的,对边、对角是对同一个三角形的边和角的关系而言的。
2、在写两个三角形全等时,通常把对应顶点的字母写在对应位置时,这样容易写出对应边、对应角。
3、由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角)三、全等三角形的性质:全等三角形的对应边相等,对应角相等。
说明:1、因为全等三角形能够完全重合,所以对应边上的中线、高线和对应角的角平分线也相等,全等三角形的周长相等,面积相等。
很多情况下,全等三角形的性质可以用来证明线段或角相等。
2、全等三角形有传递性,若△ABC 与△DEF 全等,△DEF 与△MNP 全等,则△ABC 与△MNP 也全等。
三角形全等的判定(SSS )一、判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”).二、判断两个三角形全等的推理过程,叫做证明三角形全等.三、例题:如图所示,△ABC 是一个钢架,AB=AC ,AD 是连接点A 与BC 中点D 的支架,求证△ABD ≌△ACD .证明:∵D 是BC 的中点,∴BD=CD在△ABD 和△ACD 中,,.AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).。
全等三角形的判定(sss)
A
A’
B
C B’
C’
图一
图二
AB=A’B’
∠A=∠A’ ΔABC ≌ ∆A’ B’ C’ (SAS) AC=A’C’
A
A’
B
C
B’
C’
∠A=∠A’
AB=A’B’
ΔABC ≌ ∆A’ B’ C’
∠B=∠B’
(ASA)
A
A’
B
C
B’
C’
∠A=∠A’
∠B=∠B’ ΔABC ≌ ∆A’ B’ C’(AAS)
AD=AD(公共边)
∴ △ABD≌ACD(SAS)
总结 上题中应用了哪些性质及定理
性质一:等腰三角形的两底角相等 性质二:等腰三角形的中线、角平分线、高线互相重合。 定理三:在两个三角形中,如果有三条边相等,那么这两个三角形全等。 定理四:在两个三角形中,如果有两个角相等及一条边相等,那么这两个三角形 全等。 定理五:在两个三角形中,如果有两个角相等及所夹的边相等,那么这两个三角 形全等。 定理六:在两个三角形中,如果有两条边相等及所夹的角相等,那么这两个三角 形全等。
作业:课后习题
AC=A’C’
定理的引入 A
C
E
F
B
D
思考
已知:AC=DE AB=DF BC=FE 求证:△ABC≌ △DFE
定理的引入 A
C
D
已知:AC=DC AB=DB 求证:△ABC≌ △DBC
B
证明:连接AD, ∵AC=DC
∴∠CAD= ∠CDA
同理, ∠BAD= ∠BDA
∴ ∠BAC= ∠BDC
∵ AC=DC
答:图中有△ABE≌ACE,△BDE≌CDE △ABD≌ACD。
三角形的全等性质
三角形的全等性质三角形是几何学中的基本形状之一,它有许多重要的性质和定理。
其中,全等性质是三角形的重要性质之一,指的是具有相等边长和相等内角的两个三角形是全等的。
本文将介绍三角形全等性质的定义、判定方法,以及全等性质的应用。
一、全等性质的定义对于两个三角形ABC和DEF,如果它们的对应边长相等,即AB=DE,BC=EF,AC=DF,并且对应角度也相等,即∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以说三角形ABC与三角形DEF是全等的。
全等性质可以用符号≌表示,即ABC≌DEF。
二、全等性质的判定为了判断两个三角形是否全等,我们可以利用下列常用的判定方法:1. SSS判定法(边-边-边)如果两个三角形的三条边分别相等,那么它们是全等的。
2. SAS判定法(边-角-边)如果两个三角形的一条边和与其相邻的两个角分别相等,那么它们是全等的。
3. ASA判定法(角-边-角)如果两个三角形的两个角和它们的夹边分别相等,那么它们是全等的。
4. RHS判定法(斜边-直角边-斜边)如果两个直角三角形的斜边和一个直角边分别相等,那么它们是全等的。
通过以上四种判定方法,我们可以准确地判断两个三角形是否全等。
三、全等性质的应用全等性质在解决几何问题中有广泛的应用,以下是一些常见的应用场景:1. 三角形的构造利用全等性质,我们可以根据已知条件构造全等的三角形。
例如,已知两条边和夹角大小,我们可以通过SAS判定法构造出全等的三角形。
2. 证明几何定理在证明几何定理时,我们常常利用全等性质来推导结论。
通过证明两个全等三角形的对应边和对应角相等,可以得到一些重要的几何定理。
3. 求解三角形的未知量当我们已知一些三角形的边长和角度大小时,利用全等性质可以求解出三角形其他未知量,如另外两个角度的大小、三角形的面积等。
4. 判定图形的全等除了三角形,全等性质在判定其他图形的全等时也是十分有用的。
我们可以利用全等性质来判断两个四边形、两个多边形甚至其他更复杂的图形是否全等。
全等三角形复习资料(搜集整理版)
特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。
第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。
轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
全等三角形—知识讲解及典型例题解析
中考总复习:全等三角形—知识讲解及典型例题解析【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∵AE AFEAO FAO AO AO=⎧⎪=⎨⎪=⎩∠∠∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,(对顶角相等)则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【总结升华】本题考查了全等三角形的判定和性质,涉及到三角形内角和定理,熟练掌握全等三角形的判定方法是解题的关键.类型三、综合运用5 .如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB 中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个B【答案】D.6.如图,已知△ABC.(1)请你在BC边上分别取两点D、E(BC的中点除外),连结AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE≠DE,有△ABD和△ACE,△ABE和△ACD面积相等.(2)取DE的中点O,连结AO并延长到F点,使得FO=AO,连结EF,CF.在△AD0和△FEO中,又∠AOD=∠FOE,DO=EO,可证△ADO≌△FEO.所以AD=FE.因为BD=CE,DO=EO,所以BO=CO.同理可证△ABD≌△FCO,所以AB=FC.延长AE交CF于G点,在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。
七年级春季提高班第17讲 全等三角形(SSS与SAS)
全等三角形(SSS 与SAS)月 日 姓 名【知识要点】1.全等三角形的定义:能够完全重合的两个三角形,叫做全等三角形. 2.全等三角形性质、符号:(1)性质:全等三角形的对应边相等,对应角相等.(此性质今后常用来作为证明线段相等或角相等的依据).(2)符号:“≅”读作“全等于”,如ABC ∆和C B A '''∆全等,记作C B A ABC '''∆≅∆. 3.边边边公理(SSS):三边对应相等的两个三角形全等,简称“边边边”或“SSS ”. 4.边角边公理(SAS ):有两边和它们的夹角对应相等的两个三角形全等.【典型例题】例1.如图所示,一张长方形纸片ABCD ,将C 角折起至E 处,作EFB ∠的平分线FH ,求HF G ∠的大小.例2.如图,A 、E 、F 、C 在一条直线上,AD=BC ,ED=BF ,AF=EC ,求证:ED ∥BF .ABDCG E FH1 2 3D例3.已知,如图,AB=AC ,BD=DC ,F 是AD 的延长线上一点,求证:CDF BDF ∆≅∆.例4.如图,已知,AE=ED ,BE=EC ,求证:DCB ABC ∆≅∆.例5.如图,AD ∥BC ,且AD=BC ,AE ⊥AD ,AB ⊥AF ,且AF=AB ,AE=AD 。
求证:AC=EF 。
【经典练习】1.已知B C B A ABC ∠'''∆≅∆,与C C ∠'∠,与B '∠分别是对应角,则下列结论错误的是( ) A 、B A AB ''= B 、C B BC ''= C 、A A '∠=∠ D 、B A AC ''= 2.下列说法中错误的是( ) A 、全等三角形的对应边相等.B 、全等三角形的对应角相等.C 、若两个三角形全等,且有公共顶点,则公共顶点就是它们的对应顶点.D 、若两个三角形全等,则对应边所对的角是对应角.3.如图ABC E DE AB DEB ABC ∠=∠=∆≅∆,,,则C ∠的对应角为 ,BD 的对应边为 . 4.如图若E C ADE B ADE ABC ∠=∠∠=∠∆≅∆,,,BAC ∠则对应角是 ,AC 对应边是 . 5.如图,DEF ABC ∆≅∆,且10,1231,52='︒=∠︒=∠ED B A cm ,则=∠F ,AB= .CADECB DCBFAA B C D EFE ADB题3题4题56.如图,在△ABC 中,∠C=90°,D 、E 分别为AC 、AB 上的点,且AD=BD ,AE=BC ,DE=DC ,求证:DE ⊥AB 。
全等三角形的性质及判定
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
全等三角形的判定与性质
全等三角形的判定与性质全等三角形的判定与性质是什么呢?忘记了的童鞋们不妨来看看吧方法1 SSS(边边边),即三边对应相等的两个三角形全等.举例:如图,AC=BD ,AD=BC,求证∠A=∠B.证明:在△ACD 与△BDC 中{AC=BD ,AD=BC ,CD=CD.∴△ACD ≌△BDC.(SSS )∴∠A=∠B.(全等三角形的对应角相等2、SAS (边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等.举例:如图,AB 平分∠CAD ,AC=AD ,求证∠C=∠D.证明:∵AB 平分∠CAD.∴∠CAB=∠BAD.在△ACB 与△ADB 中{AC=AD ,∠CAB=∠BAD ,AB=AB.∴△ACB ≌△ADB.(SAS )∴∠C=∠D.(全等三角形的对应角相等)3、ASA (角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等.举例:如下图,AB=AC ,∠B=∠C ,求证△ABE ≌△ACD.证明:在△ABE 与△ACD 中{∠A=∠A ,AB=AC ,∠B=∠C.∴△ABE ≌△ACD.(ASA )4、AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等.举例:如图,AB=DE,∠A=∠E ,求证∠B=∠D.证明:在△ABC 与△EDC 中{∠A=∠E ,∠ACB=∠DCE ,AB=DE.∴△ABC ≌△EDC.(AAS )∴∠B=∠D.(全等三角形的对应角相等)5、HL (斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等.举例:如下图,Rt △ADC 与Rt △BCD ,AC=BD ,求证AD=BC.证明:在Rt △ADC 与Rt △BCD 中{AC=BD ,CD=CD.∴Rt △ADC 与Rt △BCD.(HL )∴AD=BC.(全等三角形的对应边相等)。
全等三角形的性质
全等三角形的性质全等三角形是指具有完全相等的形状和大小的三角形。
在几何学中,全等三角形具有一些独特的性质和特征。
本文将探讨全等三角形的性质,包括定义、判定条件以及相关的定理和应用。
一、定义全等三角形定义为具有完全相等的形状和大小的三角形。
换句话说,如果两个三角形的三条边分别相等,则这两个三角形就是全等三角形。
全等三角形可以通过一系列变换操作来叠加在一起,如平移、旋转和翻转。
二、判定条件为了判断两个三角形是否全等,需要满足以下条件之一:1. SSS判定法:两个三角形的三条边相互对应相等。
2. SAS判定法:两个三角形的两条边和夹角相对应相等。
3. ASA判定法:两个三角形的一边和两个夹角相互对应相等。
4. RHS判定法:两个直角三角形的斜边和一个直角边相互对应相等。
三、全等三角形的性质全等三角形具有以下性质:1. 三个内角完全相等:两个全等三角形的对应内角相等,即三个内角相互对应相等。
2. 三个内角和相等:两个全等三角形的内角和分别相等。
3. 对应的边相等:两个全等三角形的对应边分别相等。
4. 周长相等:两个全等三角形的周长相等。
5. 面积相等:两个全等三角形的面积相等。
四、全等三角形的相关定理全等三角形的性质使得它们具有一些重要的应用和相关定理,如下所示:1. 位于全等三角形相等边上的等角一定相等。
2. 位于全等三角形等角上的边上的角平分线相等。
3. 全等三角形的重心、外心和内心重合。
4. 如果两个三角形的某一边与两个相对角分别相等,则这两个三角形全等。
5. 全等三角形之间的比较定理,包括大小关系和边长比例关系。
五、应用全等三角形在几何学和实际生活中具有广泛的应用,例如:1. 测量和导航:通过观测两个全等三角形的边长和角度,可以计算出距离和方向。
2. 建筑和工程:使用全等三角形的定理来设计、计算和建造各种结构和设备。
3. 图像处理:利用全等三角形的性质来进行图像变换和形状匹配。
4. 运动轨迹:通过观察全等三角形的形状和大小变化,可以描述物体的运动轨迹。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
全等三角形的性质
全等三角形的性质
全等三角形是指有三个完全相等的边和三个完全相等的角的三角形。
它们之间有许多特性和性质。
以下是关于全等三角形的一些重要性质的详细介绍:
1. 边-角-边全等性质(SSS全等性质):如果两个三角形的三边分别相等,则这两个三角形全等。
2. 角-边-角全等性质(ASA全等性质):如果两个三角形的一个角和两个边分别相等,则这两个三角形全等。
3. 边-边-边全等性质(SSS全等性质):如果两个三角形的一个边和两个对应边分别相等,则这两个三角形全等。
4. 直角三角形的全等性质:如果两个直角三角形的斜边和一个锐角分别相等,则这两个直角三角形全等。
5. 全等三角形的对应部分相等:如果两个三角形全等,则它们的对应边和对应角都相等。
6. 全等三角形的边长比较:如果两个三角形全等,则它们的对应边的比例相等。
7. 三角形全等的判定:如果两个三角形的两边的对应角相等,则这两个三角形全等。
8. 三角形的全等性质的传递性:如果三个三角形中第一个三角形全等于第二个三角形,同时第二个三角形全等于第三个三角形,则第一个三角形全等于第三个三角形。
9. 全等三角形的唯一性:如果两个三角形全等,则它们的三个对应角都相等。
10. 全等三角形的共边性:如果两个三角形全等且有一
条共边,则这两个三角形的另一条边也一定重叠。
总结:全等三角形具有许多重要的性质,包括SSS、ASA、SAS、直角三角形的全等性质等。
它们可以用于判断三角形全等的条件,并且可以应用于解决各种几何问题。
熟练掌握这些性质可以帮助我们更好地理解和应用三角形的相关概念。
全等三角形知识点总结
全等三角形知识点总结全等三角形是指具有相同形状和大小的三角形。
当两个三角形的对应边长、对应角度均相等时,它们就是全等三角形。
全等三角形的性质和应用十分重要,在几何学和实际问题的解决中都有广泛的应用。
本文将对全等三角形的知识点进行总结,旨在帮助读者系统地了解和掌握全等三角形的相关概念、性质和应用。
一、全等三角形的定义及判定全等三角形的定义:当两个三角形的对应边长、对应角度均相等时,它们就是全等三角形。
全等三角形的判定:1. SSS判定法:如果两个三角形的三边分别相等,则这两个三角形全等。
2. SAS判定法:如果两个三角形的两边和夹角分别相等,则这两个三角形全等。
3. ASA判定法:如果两个三角形的两角和夹边分别相等,则这两个三角形全等。
4. AAS判定法:如果两个三角形的两角和对边分别相等,则这两个三角形全等。
二、全等三角形的性质1. 对应边相等性质:全等三角形的对应边相等,即对应边的长度相等。
2. 对应角相等性质:全等三角形的对应角相等,即对应角的度数相等。
3. 对称性质:全等三角形是对称的,即一个全等三角形的三个顶点可以与另一个全等三角形的三个顶点按照一定的顺序对应。
4. 任意两边夹角相等性质:全等三角形的任意两边夹角相等。
5. 垂直角性质:两个全等三角形的对应边相等,对应边落在同一直线上,对应边相互垂直。
三、全等三角形的应用1. 相似三角形的判定:如果两个三角形的对应角度相等,但对应边长不全等,则这两个三角形是相似的,我们可以通过全等三角形的判定法来判断两个三角形是否相似。
2. 数学问题中的运用:全等三角形的性质可以应用于解决各种数学问题,例如计算直角三角形的边长、解决三角恒等式等。
3. 工程测量与建模:全等三角形的性质在测量和建模中有广泛的应用,可以通过已知的全等三角形关系来计算未知的长度或角度。
4. 图形的构造:全等三角形的判定法可以用于图形的构造,例如根据给定的边长和角度构造相应的全等三角形。
sss证明三角形全等题目和解答过程
1. 三角形全等的定义2. 全等三角形的性质3. 证明方法一:SSS(边-边-边)4. 证明方法二:SAS(边-角-边)5. 证明方法三:ASA(角-边-角)6. 证明方法四:AAS(角-角-边)7. 实例分析:利用SSS证明三角形全等的例题8. 实例分析:利用SAS证明三角形全等的例题9. 实例分析:利用ASA证明三角形全等的例题10. 实例分析:利用AAS证明三角形全等的例题11. 总结1. 三角形全等的定义三角形全等是指两个三角形的对应边相等,对应角相等的情况。
当两个三角形满足这些条件时,可以称它们是全等的。
全等的表示方法通常是用符号△ABC≌△DEF来表示。
2. 全等三角形的性质全等三角形的性质主要包括以下几点:- 对应边相等:若△ABC≌△DEF,则AB=DE, AC=DF, BC=EF。
- 对应角相等:若△ABC≌△DEF,则∠A=∠D, ∠B=∠E, ∠C=∠F。
- 三角形的其他边和角也对应相等,并且全等的三角形每个角的对边也相等。
3. 证明方法一:SSS(边-边-边)SSS是Side-Side-Side的缩写,意思是通过证明三角形的三条边相等来证明两个三角形全等。
具体的证明方法如下:- 给出两个三角形△ABC和△DEF,需要证明△ABC≌△DEF。
- 分别计算出△ABC和△DEF的三条边的长度,分别记为AB, BC, CA 和DE, EF, FD。
- 若AB=DE, BC=EF, CA=FD,就可以得出△ABC≌△DEF。
4. 证明方法二:SAS(边-角-边)SAS是Side-Angle-Side的缩写,意思是通过证明三角形的两条边和夹角相等来证明两个三角形全等。
具体的证明方法如下:- 给出两个三角形△ABC和△DEF,需要证明△ABC≌△DEF。
- 分别计算出△ABC和△DEF的两条边和夹角的情况。
- 若在两个三角形中,有两边和夹角分别相等,即AB=DE, BC=EF, ∠B=∠E,就可以得出△ABC≌△DEF。
全等三角形的性质有哪些
全等三角形的性质有哪些全等三角形性质1、全等三角形的对应角相等。
2、全等三角形的对应边相等。
3.能够完全重合的顶点称为对应顶点。
4.全等三角形对应边的高度相等。
5.全等三角形对应角的平分线相等。
6.全等三角形对应边的中线相等。
7、全等三角形面积和周长相等。
8.全等三角形对应角的三角函数相等。
全等三角形判定方法SSS(Side-Side-Side)(边边边):三边对应相等的三角形是全等三角形。
SAS(Side-Angle-Side)(边角边):两边及其夹角对应相等的三角形是全等三角形。
ASA(Angle-Side-Angle)(角边角):两角及其夹边对应相等的三角形全等。
AAS(Angle-Angle-Side)(角角边):两角及其一角的对边对应相等的三角形全等。
RHS(Right angle-Hypotenuse-Side)(直角、斜边、边)(又称HL定理(斜边、直角边)):在一对直角三角形中,斜边及另一条直角边相等。
不能验证全等三角形的判定AAA(角、角、角),指两个三角形的任何三个角都对应地相同。
但这不能判定全等三角形,但AAA能判定相似三角形。
在几何学上,当两条线叠在一起时,便会形一个点和一个角。
而且,若该线无限地廷长,或无限地放大,该角度都不会改变。
同理,在左图中,该两个三角形是相似三角形,这两个三角形的关系是放大缩小,因此角度不会改变。
这样,便能得知若边无限地根据比例加长,角度都保持不变。
因此,AAA并不能判定全等三角形。
但在球面几何上,AAA可以判定全等三角形(运用三角形与其极对称三角形的边角关系证明),而AAS不能判定全等三角形(球面三角形内角和大于180°)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.全等三角形的性质及SSS 判定
一.选择题
①全等三角形的性质
1.下列说法中正确的是( D )
(1)两个形状相同的图形称为全等图形; (2)两个圆是全等图形;(3)两个正方形是全等图形; (4)全等图形形状大小都相同; (5)面积相等的两个三角形是全等图形。
A .①②③ B .①②⑤ C .①④⑤ D .只有④正确 2.下列命题中正确的是( C )
A .全等三角形的高相等
B .全等三角形的中线相等
C .全等三角形周长相等
D .全等三角形的角平分线相等 3.下列说法错误的是 ( B )
A.两个全等三角形的面积相等
B.不全等的两个三角形面积不相等
C.面积不相等的两个三角形不全等
D.两个轴对称的三角形一定全等
4. 如图,若OAD OBC △≌△,且6520O C ==
,∠∠ , 则OAD =∠( D ).
(A )65° (B )75° (C )85° (D )95°
5.如图,△ACF≌△DBE,AD=9cm ,BC=5cm ,则AB 的长是( C ) A .5 B .4 C .2 D .1
6. 如图,△ABC 与△DEF 是全等三角形,则图中相等的线段有( B
) A .3 组 B . 4组
C .5 组
D .6组
7.如图,△ABC ≌△BAD ,点A 和点B 、点C 和点D 是对应点,
如果AB =8cm ,BC =4cm ,AC =6cm ,那么BD +AD 的长是( C ) A .14cm B .12cm C .10cm D .10cm 或12cm
8.如图,已知△ABC≌△AEF,AB=BC ,∠B=∠E ,则下结论中正确
结论的个数为( C )
①AC =AF ;②∠FAB=∠EAB ;③EF=BC ;④∠EAB=∠FAC . A .1 B .2 C .3 D .4
A
B
C
D
E
O
A
B
E
C
F
D
12
A
B
C
D
E
A E
D C
B
9. 如图,在△ABC 中,D 、E 分别是AB 、BC 上的点,
若△ACE ≌△ADE ≌△BDE ,则∠ABC =( A ) A .30° B .35° C .45° D .60°
10.如图,Rt△ABC 中,∠ACB =90°,∠A =50°,将其折叠,使 点A 落在边CB 上A ′处,折痕为CD ,则
( B )
A .40°
B .10°
C .20°
D .30°
11.如图,将矩形ABCD 折叠,AE 是折痕,点D 恰好落在BC 边上
的点F 处,量得∠BAF =50°,那么∠DEA 等于( D ) A .40° B .50° C .60° D .70°
12.如图,将一张长方形纸片ABCD 按图中那样折叠,若AE=3, AB=4,BE=5,则重叠部分的面积是( B ) A. 8 B .10 C .12 D. 13
②全等三角形的判定(SSS )
13.长为3cm ,4cm ,6cm 的木条各两根,小明与小刚分别取了3cm 和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为 ( B ) A .一个人取6cm 的木条,一个人取8cm 的木条; B .两人都取6cm 的木条; C .两人都取8cm 的木条; D .B 、C 两种取法都可以
二.填空题 ①全等三角形的性质
14.如图,△ABC ≌△ADE ,则AB= AD ,∠E=∠ C ,若∠BAE=120°, ∠BAD=40°,则∠BAC= 80° .
15. 如图,将△ABC 绕B 点按逆时针方向旋转20°得△DBE,则 ∠1+∠2=__40°_
16.如图,△ABC ≌△DCB ,A 、B 的对应顶点分别为点D 、C ,如果AB =7cm ,BC =12cm ,
AC =9cm ,DO =2cm ,那么OC 的长是 7 cm .
B
C
D
E
A
F
E
D
C
B
A
A
C '
A '
C
B
A
B
C
D
E
17.如图,三角形纸片ABC ,10cm AB =,7cm BC =,6cm AC =, 沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处, 折痕为BD ,则AED △的周长为 9 cm .
18.如图,ABC ∆沿DE 折叠后,点A 落在BC 边上的A '处,
若点D 为AB 边的中点, 50=∠B ,则A BD '∠的度数为 80° .
19. 如图,在同一平面内将△ABC 绕B 点旋转到△A /
BC /
的位置时, AA /
∥BC,∠ABC=70°,则∠CBC /
为___40____度。
②全等三角形的判定(SSS )
20.如图,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =__100°__.
21.如图,AB=FE ,BC=ED ,若利用“SSS”证明△ABC ≌△FED ,
还需添加的一个条件是 AC=DF .
22.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是 SSS (用字母写出)
三.证明题
①全等三角形的判定(SSS )
23.小明做了一个如图所示的风筝,其中EH =FH ,ED =FD ,小明说不用测量就知道DH 平分∠EDF ,即∠EDH=∠FDH.小明说得对吗?试说明理由.
24.已知如下图,四边形ABCD 中,AB =BC ,
AD
=CD ,求证:∠A =∠
C 。
D
A
C B
F
E
25.如图,AD 、BC 交于点O ,AB = CD ,AD = BC ,∠A 与∠C
相等吗?
若相等,请给出证明,若不相等,则说明理由.
26. 雨伞的中截面如图所示,伞骨AB=AC ,支撑杆OE=OF ,AE=
31AB ,AF=3
1
AC ,当O 沿AD 滑动时,雨伞开闭,问雨伞开闭过程中,∠BAD 与∠CAD 能相等吗?说明理由.
27.如图,在ΔABC 和ΔDCB 中,AC 与BD 相交于点,AB = DC ,AC = BD. (1)求证: ΔABC ≌ΔDCB ;
(2) Δ0BC 的形状是 。
(直接写出结论,不需证明) 。
28. 如图, AB = DC ,AC = BD , AC 、BD 交于点E ,过E 点作EF//BC 交CD 于F .求证:21∠=∠。
A B
D
C
O
2
1
F D
E C B A。