10福州大学弹塑性力学试卷
10-弹塑性力学-习题讲解
σ 1′ = ( l1 m1
σ xτ xyτ xz l1 n1 ) σ xτ yτ zy m1 σ xτ yτ z n1
= l12σ x + m12σ y + n12σ z + 2l1τ xy + 2 m1n1τ yz + 2 n1l1τ zx
习 题 讲 解
例题1 例题
' 2
σ e2 =
9 2 τ8 2
1 3 2 1 2 2 2 2 I = [(σ1 σ2) +(σ2 σ3) +(σ3 σ1) ] = τ8 = σe 6 2 3
即
' σ e2 = 3I 2
习 题 讲 解
例题3 例题
计算题: 已知受力体内某点的主应力状态: 计算题: 已知受力体内某点的主应力状态:
代入转轴公式则有
习 题 讲 解
例题1 例题
讨论: 讨论: 若无特殊要求,解题到此为止; ①若无特殊要求,解题到此为止; 可利用三角函数进行简化: ②可利用三角函数进行简化:
sin2θ = 2sinθ cosθ
cos 2θ = cos 2 θ sin 2 θ = 2cos2 θ 1 =12sin2θ
其他各式依此类推. 其他各式依此类推. 注意:在两坐标系之间夹角为已知时应用.) (注意:在两坐标系之间夹角为已知时应用.)
习 题 讲 解
例题1 例题
(2)圆柱坐标变换 ) 由图可得: 由图可得: x′ = r , 于是有方向系弦: 于是有方向系弦:
y′ = θ ,
z′ = z
l3 = cos(z′, x) = cos(x′, z) = m3 = cos(z′, y) = cos(z, y′) = 0
弹塑性力学试题(06研)
弹塑性力学试题(土建院06研)考试时间:2小时考试形式:笔试,开卷一、是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小题3 分,共27分)1.外力(面力、体力)均以沿坐标轴正方向为正,面力的正负号与所处面的正负无关。
( )2.若物体内一点的位移u 、v 、w 均为零,则该点的正应变x ε=y ε=z ε=0。
( )3.满足平衡方程和全部应力边界条件的应力必为正确解(本问题的边界条件均为应力边界条件)。
( )4.弹性体中任一点的柱坐标应力分量之和z r σσσθ++与三个主应力分量之和321σσσ++一定相等。
( )5.塑性理论的主要特点是应力应变关系不同于弹性理论,对于给定的应变,不能确定应力。
( )6. 薄壳与薄板一样,是以物体内一点的位移、形变、应力为研究对象的。
( )7. 对于等截面实心杆扭转问题,普朗都(Prandtl )应力函数ϕ的边界值s ϕ=0。
( )8. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。
( )9.Ritz 法和Galerkin 法解薄板小挠度弯曲问题时,都设∑=mm m w C w ,但Ritz法中m w 必须满足全部边界条件,Galerkin 法中m w 只需满足几何边界条件。
( )二﹑填空题(每小题3分,共12分)1.z y x εεε++称为( ),z y x σσσ++称为( ),)21/(μ-E 称为( )。
2.球坐标系(ϕθ,,r )中(ϕϕθϕθcos ,sin sin ,sin cos r z r y r x ===)的拉密系数1H 、2H 、3H 分别为( )、( )、( )。
3.矩形薄板小挠度问题Navier 解法与Levy 解法的特点分别是( )、( )。
4.Mises 屈服准则可用方程表示为( )。
61分)(L>>h),厚度为1,右端顶部受与水平方向成α角的集试检验函数332Dy Cxy Bxy Ay +++=ϕ能否作为应力函数?若可以作为应力函数,求出应力分量xy y x τσσ , ,(不计体力) (15分)2. 内半径为a 、外半径为b 的圆环板,板面无分布荷载作用,板边作用有均布弯矩和横向力,作用方向及板的支承如图所示,试求圆环板的挠度和内力。
弹塑性力学工程硕士04试卷
福州大学土建学院2003级工程硕士研究生学位课程弹塑性力学试卷1.已知物体内一点物体中某点应力分量为0010000100100100200ijaaa a aσ⎛⎫⎪= ⎪⎪⎝⎭求该点应力张量的三个主不变量、主应力、最大剪应力、八面体正应力与剪应力。
(15%)2.在应变测量中,应变片可以布置成如图1所示的应变花。
把它布置在被测物体的表面上,可测得该平面上某一点沿30L、090L和0150L三个方向的应变,,a b cεεε。
若设0.003,0.003,0.006a b cεεε==-=试求该被测物体表面上该点的主应变大小及主应变方向(按平面应变状态考虑)。
(15%)3.有一圆形截面的均匀直杆,处于弯扭复合应力状态,设其简单拉伸时的屈服应力为300 MPa。
设弯矩10=M kN·m,扭矩30=tM kN·m,若要求安全系数为1.2,则其直径d为多少才不致屈服?分别应用Mises和Tresca两种屈服条件进行讨论。
(15%)4.一两端固定的超静定梁,跨长为l,受均布荷载q作用,试用Ritz法求梁的挠度近似解。
(15%)图 1 应变花布置共 2 页第 1 页福州大学土建学院2003级工程硕士研究生学位课程弹塑性力学试卷5.如图2所示的矩形截面简支梁,梁的长度为l,截面尺寸为b h⨯。
在距梁左端a 处受集中力P作用。
设材料是理想弹塑性的,求:(1)梁的弹塑性交界;(2)梁刚刚达到塑性极限状态时的荷载sP和塑性区范围。
(20%)6.如图3(a)所示的两根变厚度薄壁杆件,假设截面、材料完全相同的,各自在两端部受到相同的扭矩TM(eT TM M<)作用。
试分析两杆件在抗扭刚度和最大剪应力方面的特点;并计算如图3(b)所示的两种截面的薄壁杆件的抗扭刚度和最大剪应力。
(20%)共 2 页第 2 页图 2 受集中力作用的矩形截面简支梁(a)任意截面变厚度薄壁杆件(b)圆环截面薄壁杆件图3 开口与闭口薄壁杆件比较。
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学试题
弹塑性力学试题Revised on November 25, 2020考试科目:弹塑性力学试题班号 研 班 姓名 成绩 一、 概念题(1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。
(2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。
(3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。
二、已知轴对称的平面应变问题,应力和位移分量的一般解为:利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。
解:边界条件为:a r =时:p r -=σ;0=θτrb r =时:0=r u ;0=θu 。
将上述边界条件代入公式得: 解上述方程组得:则该问题的应力和位移分量的解分别为:三、已知弹性半平面的o量为: 这些力到所设原点的距离分别为yy解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: 故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为: 四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。
试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。
解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 202221⎰⎰⎥⎦⎤⎢⎣⎡==外力做功为:⎰=-=ll x kw qwdx T 02|21总势能为:l x l lkw qwdx dx dx w d EI T U =⎰⎰+-⎥⎦⎤⎢⎣⎡=-=∏|2121202022第二步:由最小势能原理可知:0=∏δ等价于平衡微分方程和静力边界条件。
l x l lw kw wdx q dx dx w d dx w d EI =⎰⎰+-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡=|022022δδδ (*) 其中=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰dx dx w d dx w d EI l22022δdx dx dw dx d dx w d EI l ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰δ022 将其代入(*)式并整理可得:y由于当0=x 时,0=dxdw,022=dx w d ;所以平衡微分方程为:0)(2222=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛x q dx w d EI dxd (0≤x ≤l )静力边界条件为:⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==002222l x lx dx w d dx w d EI dx d kw五、已知空间球对称问题的一般解为:B REA EB R EA E R BR A u T R R 332)1(21)1(221μμσμμσ++-=+--=+=其中R 是坐标变量,R u 是径向位移,空心球受均匀内外压b a q q ,洞,半径为a ,内壁受有均匀压力q 时的解答。
(整理)应用弹塑性力学考试试题
《应用弹塑性力学》考试试卷班级_____________ 姓名_____________ 学号______________一、简答题(每题5分,共20分)1试述弹塑性力学中四种常用的简化力学模型及其特点。
2分析特雷斯卡(Tresca )和米泽斯(Mises )屈服条件的异同点。
3 简单论述一下屈服曲面为什么一定是外凸的。
4试述逆解法和半逆解法的主要思想。
二、计算题(1~5题每题10分, 6~7题每题15分,共80分)1 如图1所示的等截面直杆,截面积为0A ,且b a >,在x a =处作用一个逐渐增加的力P 。
该杆材料为理想弹塑性,拉伸和压缩时性能相同,求左端反力N F 和力P 的关系。
F N图12 已知下列应力状态:5383038311ij MPa σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求八面体单元的正应力0σ与剪应力0τ。
3 已知物体某点的应力分量,试求主应力及最大剪应力的值。
(单位MPa )(1)x =10σ,y =10σ-,z =10σ,=0xy τ,=0yz τ,=10zx τ-;(2)x =10σ,y =20σ,z =30σ,=5xy τ-,=0yz τ,=0zx τ。
4 当123σσσ>>时,如令213132σσσσμσσ--=-,试证明0max ττ=且该值在0.816~0.943之间。
5已知平面应变状态1231231230x y xy z xz yz A A x A yB B x B yC C x C yεεγεγγ=++=++=++===(1)校核上述应变状态是否满足应变协调方程;(2)若满足应变协调方程,试求位移u 和v 的表达式;(3)已知边界条件 0x y ==,0u =,0v =;x l =,0y =,0v =确定上述位移表达式中的待定常数。
6 物体中某点的应力状态为100000200000300-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦MPa ,该物体在单向拉伸时屈服极限为190MPa s σ=,试分别用特雷斯卡(Tresca )和米泽斯(Mises )屈服条件来判断该点是处于弹性状态还是塑性状态。
(完整word版)弹塑性力学试卷
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学作业(含答案)
2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。
(2):如以ϕ为应力函数,求出应力分量的表达式。
(3):指出在图示矩形板边界上对应着什么样的边界力。
(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
最新应用弹塑性力学考试试题
应用弹塑性力学考试试题《应用弹塑性力学》考试试卷班级_____________ 姓名_____________ 学号______________一、简答题(每题5分,共20分)1试述弹塑性力学中四种常用的简化力学模型及其特点。
2分析特雷斯卡(Tresca )和米泽斯(Mises )屈服条件的异同点。
3 简单论述一下屈服曲面为什么一定是外凸的。
4试述逆解法和半逆解法的主要思想。
二、计算题(1~5题每题10分, 6~7题每题15分,共80分)1 如图1所示的等截面直杆,截面积为0A ,且b a >,在x a =处作用一个逐渐增加的力P 。
该杆材料为理想弹塑性,拉伸和压缩时性能相同,求左端反力N F 和力P 的关系。
F N图1 2 已知下列应力状态:5383038311ij MPa σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试求八面体单元的正应力0σ与剪应力0τ。
3 已知物体某点的应力分量,试求主应力及最大剪应力的值。
(单位MPa )(1)x =10σ,y =10σ-,z =10σ,=0xy τ,=0yz τ,=10zx τ-;(2)x =10σ,y =20σ,z =30σ,=5xy τ-,=0yz τ,=0zx τ。
4 当123σσσ>>时,如令213132σσσσμσσ--=-,试证明0max ττ=且该值在0.816~0.943之间。
5已知平面应变状态1231231230x y xy z xz yz A A x A yB B x B yC C x C yεεγεγγ=++=++=++===(1)校核上述应变状态是否满足应变协调方程;(2)若满足应变协调方程,试求位移u 和v 的表达式;(3)已知边界条件0x y ==,0u =,0v =;x l =,0y =,0v =确定上述位移表达式中的待定常数。
6 物体中某点的应力状态为100000200000300-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦MPa ,该物体在单向拉伸时屈服极限为190MPa s σ=,试分别用特雷斯卡(Tresca )和米泽斯(Mises )屈服条件来判断该点是处于弹性状态还是塑性状态。
弹塑性力学试题
弹塑性力学试题(土木院15研)考试时间:2小时 考试形式:笔试,开卷一﹑是非题(下列各题,你认为正确的在括号内打“√”,错误的打“×”。
每小题3 分,共21分)1. 孔边应力集中的程度与孔的形状有关,圆孔应力集中程度最高。
( )2. 已知物体内P 点坐标P (x, y, z ), P '点坐标P '(x+dx, y+dy, z+dz ), 若P 点在x, y, z 方向的位移分别为u, v, w ,则P '点在x 方向的位移为dz zwdy y v dx x u u ∂∂+∂∂+∂∂+( ) 3. 任何边界上都可应用圣维南(St. Venant )原理,条件是静力等效。
( ) 4. 塑性力学假设卸载时服从初始弹性规律。
( )5. 弹性力学空间问题应变状态第二不变量为222- yz xz xy z y z x y x γγγεεεεεε--++。
( ) 6. 弹性力学问题的两类基本解法为逆解法和半逆解法。
( ) 7. 全量理论中,加载时应力—应变存在一一对应的关系。
( )二﹑填空及简答题(填空每小题3分,共23分)1. 弹性力学平面问题,结构特点是( ),受力特点是( )。
2.求解塑性问题,可将应力——应变曲线理想化,分为5种简单模型,它们分别是( )。
2. 薄板小挠度弯曲中内力弯矩和剪力的量纲分别为( )、( )。
3. 比较Tresca 屈服准则和von Mises 屈服准则的相同点与不同点。
(5分) 4. 弹性力学的几何方程是根据什么假设条件推导出来的?(4分) 6.简述弹性力学量纲分析的基本思路。
(5分)三﹑计算题(共56分)1. 写出圆形薄板轴对称弯曲的弹性曲面方程。
若受均布荷载0q 作用,推导(必须有推导过程)出其挠度w 的表达式。
(8分)2. 已知应力函数)(A 23xy x +=ϕ,A 为常数。
试求图中所示形状平板的面力(以表面法向和切向应力表示)并在图中标出。
弹塑性力学大题
已知某材料在纯剪作用下应力—应变关系如图所示,弹性剪切模量为G ,Poisson 比为ν,剪切屈服极限为s τ,进入强化后满足const G d d ==,/γτ。
若采用Mises 等向硬化模型,试求 (1)材料的塑性模量(2)材料单轴拉伸下的应力应变关系。
解:(1)因为τττγ221232*123121J d J h d p⎥⎥⎦⎤⎢⎢⎣⎡= 所以 τγd hd p *3*1=,3*3G d d h p==γτ (2) 弹性阶段。
因为)1(2υ+=EG ,所以)1(2υ+=G E 由于是单轴拉伸,所以εσE = 塑性阶段。
ijp ij fd d σλε∂∂= 1111)1(σσσε∂∂∂∂=fd f h d kl kl p解:在板的固定端,挠度和转角为零。
显然:()0)(b y ==±=±=ωωa x 满足0)(2)(2)(222221=-⋅-=∂∂±=b y x a x C xa x ω故222222111)()(b y a x C w C w --==满足所有的边界条件。
02))((2)y(222221=⋅--=∂∂±=y b y a x C b y ω2、用Ritz 法求解简支梁在均布荷载作用下的挠度(位移变分原理)步骤:(1)设挠度的试验函数 w (x ) = c 1x (l -x )+c 2x 2(l 2-x 2)+…显然,该挠度函数满足位移边界w (0) =0,w (l ) = 0。
(2)求总势能()⎰⎰-''=+=∏l 002qwdx dx w EI 21lV U 仅取位移函数第一项代入,得()()⎰⎥⎦⎤⎢⎣⎡---=∏l 0121dxx l qx c c 2EI 21(3)求总势能的极值EI24ql c 0c 211==∂∏∂ 代入挠度函数即可1.假定矩形板支承与承受荷载如图所示, 试写出挠度表示的各边边界条件: 解:简支边OC 的边界条件是:()00==y ω()0022220)(M xy D M y y y -=∂∂+∂∂-===ωνω自由边AB 的边界条件是:()0)(2222=∂∂+∂∂===b x by y x y M ωνω,()()q y x yD V b y b y y -=⎪⎪⎭⎫ ⎝⎛∂∂∂-+∂∂-===23332ωνω两自由边的交点B :()0,===b y a x ω()B by a x xy R M ===,2是B 点支座的被动反力。
弹塑性力学试题答案完整版
欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即
0
Wij
=
1
2
v x
−
u y
1 2
w x
−
u z
1 2
u y
−
v x
0
1 2
w y
−
v z
1 2
u z
−
w x
1 2
v z
−
w y
0
6)应变张量:表示纯变形部分,即
22)小应变张量:(P33) 23)弹性模量:E 的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力,其量纲
为 ML-1T-2 ,其单位为 Pa。
E 是度量物体受力时形变大小的物理量。指在弹性限度内,应力与应变的比值。 弹性模量又分纵向弹性模量(杨氏模量)和剪切弹性模量。杨氏模量为正应力与线应变之比值;剪切弹 性模量为剪应力与剪应变之比值。对同一种材料,在弹性极限内,弹性模量是一常数。 24)相容方程(P38): 25)变分原理:
弹塑性力学 2008、2009 级试题
一、简述题 1)弹性与塑性
弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。
应力状态:某点处的 9 个应力分量组成的新的二阶张量 。
( ) ( ) 个独立的应力分量的函数,即为 f = 0 , f ij 即为屈服函数。
10)不可压缩:对金属材料而言,在塑性状态,物体体积变形为零。
11)稳定性假设(P56):即德鲁克公社,包括:1.在加载过程中,应力增量所做的功 dWD 恒为正;2.在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆形截面杆半径为 R,圆环形截面杆中心线半径为 2.5R,壁厚为 0.2R。试通过计算,
分析各杆件在抗扭刚度和剪应力方面的特点 。
3. 第三章关于 Mises 屈服条件,Tresca 屈服条件的题目。 4. 如右图所示悬臂梁,在中间点与自由端受集中外载作用,
粱的截面为矩形,材料是理想弹塑性的。试对 k=0.35
福州大学土木工程学院 2010 级硕士研究生学位课程弹塑性力学期末试卷 一、概念分析题
1. 弹塑性力学问题有哪几种提法和解法?简要说明各种不同提法的概念,列出各种提法相 应的基本方程及其基本解法,并加以比较评述。(15%)
2. 简要写出非圆轴截面杆扭转的假定并推导用位移解法和应力解法时的基本方程。
3. 简述什么情况下物体内部由于温度会产生温度应力。 二、计算分析题 1. 已知物体中一点的应力张量为
情形,求梁的塑性极限载荷 Ps 及其对应的弹塑性区的交
界线方程和塑性区范围(作图表示)。 5. 第七章关于椭圆形薄板问题。
é100 0 Leabharlann 50ùs ij=ê ê
0
200
0
ú ú
êë-50 0 300úû
(1) 试求该点的主应力及主方向。
(2) 若过该点的一个微分面的外法向方向余弦为 l = m = n = 1 ,则该微分面上的正
3
应力和剪应力为多大?
2. 如下图所示圆形、闭口圆环形和开口圆环形截面杆,三杆材料和截面积均完全相同,设