大学高等数学知识点

合集下载

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学知识点总结【4篇】知识产业需要了解市场和消费者的需求和趋势,拥抱变革和技术进步。

知识的应用和创新需要进行有效的市场调查和市场分析,了解商业机会和风险。

下面就让小编给大家带来高等数学知识点总结,希望大家喜欢!高等数学知识点总结1一、不定积分计算方法1. 凑微分法2. 裂项法3. 变量代换法1) 三角代换2) 根幂代换3) 倒代换4. 配方后积分5. 有理化6. 和差化积法7. 分部积分法(反、对、幂、指、三)8. 降幂法二、定积分的计算方法1. 利用函数奇偶性2. 利用函数周期性3.参考不定积分计算方法三、定积分与极限1. 积和式极限2. 利用积分中值定理或微分中值定理求极限3. 洛必达法则4. 等价无穷小四、定积分的估值及其不等式的应用1. 不计算积分,比较积分值的大小1) 比较定理:若在同一区间[a,b]上,总有f(x) =g(x),则 =()dx2) 利用被积函数所满足的不等式比较之 a)b) 当0 x 兀 p= 兀 12. 估计具体函数定积分的值积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) = =M(b-a)3. 具体函数的定积分不等式证法1) 积分估值定理2) 放缩法3) 柯西积分不等式≤ %4. 抽象函数的定积分不等式的证法1) 拉格朗日中值定理和导数的有界性2) 积分中值定理3) 常数变易法4) 利用泰勒公式展开法五、变限积分的导数方法高等数学知识点总结2A.Function函数(1)函数的定义和性质(定义域值域、单调性、奇偶性和周期性等)(2)幂函数(一次函数、二次函数,多项式函数和有理函数)(3)指数和对数(指数和对数的公式运算以及函数性质)(4)三角函数和反三角函数(运算公式和函数性质)(5)复合函数,反函数(6)参数函数,极坐标函数,分段函数(7)函数图像平移和变换B.Limit and Continuity极限和连续(1)极限的定义和左右极限(2)极限的运算法则和有理函数求极限(3)两个重要的极限(4)极限的应用-求渐近线(5)连续的定义(6)三类不连续点(移点、跳点和无穷点)(7)最值定理、介值定理和零值定理C.Derivative导数(1)导数的定义、几何意义和单侧导数(2)极限、连续和可导的关系(3)导数的求导法则(共21个)(4)复合函数求导(5)高阶导数(6)隐函数求导数和高阶导数(7)反函数求导数(8)参数函数求导数和极坐标求导数D.Application of Derivative导数的应用(1)微分中值定理(D-MVT)(2)几何应用-切线和法线和相对变化率(3)物理应用-求速度和加速度(一维和二维运动)(4)求极值、最值,函数的增减性和凹凸性(5)洛比达法则求极限(6)微分和线性估计,四种估计求近似值(7)欧拉法则求近似值E.Indefinite Integral不定积分(1)不定积分和导数的关系(2)不定积分的公式(18个)(3)U换元法求不定积分(4)分部积分法求不定积分(5)待定系数法求不定积分F.Definite Integral 定积分(1)Riemann Sum(左、右、中和梯形)和定积分的定义和几何意义(2)牛顿-莱布尼茨公式和定积分的.性质(3)Accumulation function求导数(4)反常函数求积分H.Application of Integral定积分的应用(1)积分中值定理(I-MVT)(2)定积分求面积、极坐标求面积(3)定积分求体积,横截面体积(4)求弧长(5)定积分的物理应用I.Differential Equation微分方程(1)可分离变量的微分方程和逻辑斯特微分方程(2)斜率场J.Infinite Series无穷级数(1)无穷级数的定义和数列的级数(2)三个审敛法-比值、积分、比较审敛法(3)四种级数-调和级数、几何级数、P级数和交错级数(4)函数的级数-幂级数(收敛半径)、泰勒级数和麦克劳林级数(5)级数的运算和拉格朗日余项、拉格朗日误差注意:(1)问答题主要考察知识点的综合运用,一般每道问答题都有3-4问,可能同时涵盖导数、积分或者微分方程的内容,解出的答案一般都是保留3位小数。

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。

变量x的变化范围叫做这个函数的定义域。

通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。

注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。

这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。

如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。

这里我们只讨论单值函数。

⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。

例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。

例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。

一般用横坐标表示自变量,纵坐标表示因变量。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

高等数学基本知识点大全

高等数学基本知识点大全

高等数学基本知识点大全一、导数和微分在高等数学中,导数和微分是重要的基本概念。

导数描述了函数在某一点的变化率,可以帮助我们求解函数的最值、刻画曲线形状等问题。

微分则是导数的一种运算形式,表示函数在给定点附近的局部线性逼近。

1. 导数的定义和性质:- 导数定义:函数f(x)在点x=a处的导数定义为f'(a) =lim┬(h→0)⁡〖(f(a+h)-f(a))/h〗。

- 导数的几何意义:导数表示曲线在某一点的切线斜率。

- 导数的性质:求导法则包括常数法则、幂函数法则、指数函数和对数函数法则等。

2. 微分的定义和性质:- 微分的定义:设y=f(x)为定义在区间I上的函数,若存在常数dy 使得Δy=f'(x)Δx+dy,其中Δx是x的增量,则称dy为函数f(x)在区间I 上的微分。

- 微分的性质:微分是线性近似,具有微分的小量运算法则。

3. 一阶导数和高阶导数:- 一阶导数:如果函数f(x)在点x处的导数存在,则称f(x)在该点可导,其导数为一阶导数,记作f'(x)或dy/dx。

- 高阶导数:若函数f(x)的导数f'(x)也存在导数,则称导数f'(x)为函数f(x)的二阶导数,记作f''(x)或d²y/dx²。

二、积分和定积分积分和定积分是数学中的重要工具,可以用来求解曲线下的面积、求解定量累计、求解方程等问题。

它们是导数的逆运算。

1. 定积分的定义和性质:- 定积分的定义:设函数f(x)在闭区间[a,b]上有定义,则称函数f(x)在区间[a,b]上的积分为定积分,记作∫_a^b▒f(x)dx。

- 定积分的性质:定积分具有线性性、加法性、估值性等。

2. 积分基本公式和换元积分法:- 积分基本公式:包括常数乘法法则、分步积分法则和换元积分法则等。

- 换元积分法:利用换元积分法可以将一些复杂的积分问题转化为简单的积分形式。

3. 不定积分和定积分的关系:- 不定积分:函数F(x)是f(x)的一个原函数,即F'(x)=f(x),则称F(x)为f(x)的不定积分,记作∫f(x)dx=F(x)+C,其中C为常数。

大学高等数学知识点及例题复习整理

大学高等数学知识点及例题复习整理

大学高等数学知识点及例题复习整理一、导数与微分在微积分中,导数和微分是重要的概念。

导数描述了函数在某一点的变化率,而微分则描述了函数的局部线性近似。

导数的定义如下:$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$其中,$f'(x)$表示函数$f(x)$在点$x$的导数。

导数的概念可以应用在许多实际问题中,如速度、加速度等。

二、极限与连续极限是数学中的基本概念,是描述函数在某一点或者无穷远处的趋势。

形式化的极限定义如下:对于函数$f(x)$,当$x$趋近于$a$时,若存在实数$L$,使得对于任意给定的正数$\epsilon$,存在着正数$\delta$,当$0<|x-a|<\delta$时,有$|f(x)-L|<\epsilon$成立,则称函数$f(x)$在$x=a$处极限存在,记作$\lim_{x \to a} f(x) = L$。

连续是指函数在某一点上无断裂的性质。

若函数$f(x)$在点$a$处连续,则有以下三个条件:1. $f(a)$存在。

2. $\lim_{x \to a} f(x)$存在。

3. $\lim_{x \to a} f(x) = f(a)$。

三、微分学应用微分学是数学中的一个重要分支,它有着广泛的应用。

其中之一是求解函数的极值。

对于函数$f(x)$,极值点可能出现在导数为零的点或者导数不存在的点。

通过求解导数为零的方程或者检验导数的存在性,我们可以找到函数的极值点。

四、不定积分与定积分不定积分是求解函数的原函数的过程。

若函数$F(x)$在区间$I$上可导,并且满足$F'(x) = f(x)$,则称$F(x)$是$f(x)$在区间$I$上的一个原函数。

不定积分用符号$\int f(x) dx$表示,其中$f(x)$为被积函数,$dx$表示积分变量。

定积分是计算函数曲线下面的面积的方法。

大学高等数学知识点框架

大学高等数学知识点框架

大学高等数学知识点框架
一、微积分
1.导数与微分
2.积分与不定积分
3.定积分与曲线下面积
4.微分方程
二、级数
1.数列与级数的概念
2.收敛与发散
3.数项级数
4.幂级数
三、微分方程
1.一阶微分方程
2.二阶线性齐次微分方程
3.二阶线性非齐次微分方程
4.变量分离法与齐次微分方程
四、空间解析几何
1.三维空间直角坐标系
2.平面与直线的方程
3.空间曲面与二次曲线
4.空间直线与平面的位置关系
五、多元函数微分学
1.多元函数的极限
2.偏导数与全微分
3.多元复合函数的求导法则
4.隐函数与参数方程的求导
六、重积分与曲线曲面积分
1.重积分的概念与性质
2.二重积分的计算
3.三重积分的计算
4.曲线曲面积分的计算
七、常微分方程
1.一阶常微分方程
2.二阶常微分方程
3.高阶常微分方程
4.常微分方程的解析解与数值解
八、线性代数
1.线性方程组与矩阵
2.矩阵的运算与性质
3.矩阵的秩与逆
4.特征值与特征向量
九、概率论与数理统计
1.基本概念与概率空间
2.随机变量及其分布律
3.多维随机变量与联合分布
4.参数估计与假设检验
以上是大学高等数学的主要知识点框架,涵盖了微积分、级数、微分方程、空间解析几何、多元函数微分学、重积分与曲线曲面积分、常微分方程、线性代数以及概率论与数理统计等内容。

通过深入学习这些知识点,可以建立起扎实的数学基础,为进一步学习相关学科打下坚实的基础。

高数笔记大一必备知识点

高数笔记大一必备知识点

高数笔记大一必备知识点1. 函数与极限- 函数定义和性质- 极限的定义和性质- 常见函数的极限求解方法2. 微分学- 导数的定义和性质- 常见函数的导数求解方法- 高阶导数与导数的应用- 极值与最值的求解方法3. 积分学- 不定积分的定义和性质- 常见函数的积分求解方法- 定积分的定义和性质- 微积分基本定理的应用4. 函数的应用- 曲线图像的分析- 函数模型的建立与应用5. 常微分方程- 常微分方程的基本概念与分类- 一阶常微分方程的解法- 高阶常微分方程的解法6. 级数- 级数的定义和性质- 常见级数的求和方法- 级数收敛与发散的判别方法7. 二重积分- 二重积分的定义和性质- 坐标变换与极坐标法的应用8. 三重积分- 三重积分的定义和性质- 坐标变换与球坐标法的应用9. 偏导数与多元函数微分学- 偏导数的定义和性质- 多元函数的全微分与求导10. 曲线积分与曲面积分- 曲线积分的定义和性质- 曲面积分的定义和性质- 根据题目使用参数化与换元法解决具体问题以上是大一学习高等数学所必备的知识点,对于每个知识点,你需要深入理解其定义、性质和基本求解方法。

在学习过程中,可以结合教材和习题集进行实际练习,掌握每个知识点的应用技巧。

尽管高等数学是一门理论与实践相结合的学科,但通过积极参与课堂讨论、与同学组队解题、与教师进行交流等实践方式,你将能更好地理解与应用这些知识点。

最后,要善于总结和整理自己的思路,形成自己的高数笔记。

这将有助于加深对知识点的理解,并为以后的学习打下坚实基础。

祝愿你在大学的高数学习中取得好成绩!。

大学全册高等数学知识点(全套)

大学全册高等数学知识点(全套)

大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =; *1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *00()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xa F x f x t dt =⎰(8)级数和函数(数一,三): 0(),n n n S x a x x ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒= 二. 极限性质:1. 类型: *lim n n a →∞; *lim ()x f x →∞(含x →±∞); *0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型: 000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性三. 常用结论: 四. 必备公式:1. 等价无穷小: 当()0u x →时,2. 泰勒公式:(1)2211()2!x e x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法:前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞,2. 无穷小与有界量乘积 (M α⋅) (注:1sin 1,x x≤→∞) 3. 1∞处理(其它如:000,∞) 4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()x e x →∞; 1(0)x e x →; (3)分段函数: x , []x , max ()f x5. 无穷小等价替换(因式中的无穷小)(注: 非零因子)6. 洛必达法则(1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x xx →-)(2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分; (4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a += *21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?): 00lim'()x ff x x→= 3. 积分和: 10112lim [()()()]()n nf f f f x dx n n n n →∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞) (2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()n n n a a ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)00()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜): (1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→) 3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性)八. [,]a b 上连续函数性质1. 连通性: ([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xa f x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数: '()f x =0()()lim x f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-= (注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导)2. 微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒= (1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 00()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题);(2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'xbbaaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数) 3. 隐式((,)0f x y =)导: 22,dy d ydx dx(1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩, 求:22,dy d ydx dx5. 高阶导()()n f x 公式: 注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二): ρ=曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润)五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1) '()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点)(2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥(3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值 六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒==2. 辅助函数构造实例: (1)()f ξ⇒()()xa F x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n f f x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n f a ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计: '()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用: 在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xxaax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰ (2)'()()f x dx f x c =+⎰; ()()df x f x c =+⎰ 二. 不定积分常规方法 1. 熟悉基本积分公式 2. 基本方法: 拆(线性性)3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x=+==2= 4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简x t = 5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xa x x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax n x e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b xdx a x b x++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法;(3)()()nv x dx u x ⎰三. 定积分: 1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续)(2)几何意义(面积,对称性,周期性,积分中值) (3)附:()()baf x dx M b a ≤-⎰,()()()bbaaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重 2: 变限积分()()xa x f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导(2)(())'xaf t dt ⎰()f x =; (()())'()xxaax t f t dt f t dt -=⎰⎰; ()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式: ()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含()ba f t dt ⎰的方程.4. 变量代换: ()(())'()b af x dx f u t u t dt βα=⎰⎰(1)00()()()aaf x dx f a x dx x a t =-=-⎰⎰,(2)0()()()[()()]aaaaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰ (如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰, (4)220(sin )(cos )f x dx f x dx ππ=⎰⎰; 20(sin )2(sin )f x dx f x dx ππ=⎰⎰, (5)0(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分 (1)准备时“凑常数” (2)已知'()f x 或()x af x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性:四. 反常积分: 1. 类型: (1)(),(),()aaf x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()b af x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外) 1. 面积,(1)[()()];baS f x g x dx =-⎰ (2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积:(1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()dby caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds = (1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈: s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()ba f ab f x dx b a=-⎰; (2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程 一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x e y M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+=4. 齐次方程: '()yy x =Φ(1)解法: '(),()ydu dxu u xu u xu u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ 6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b +=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()ax f x ke =的算子法) (3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'t x e x y D D y xy Dy =⇒=-=五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设 ()(),()0xa f x dx F x F a ==⎰3. 导数定义立方程: 含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt=== 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+(2)lim ,lim ,lim y x x y f ff f f x y∆∆∆==∆∆(3),limx y f x f ydf + (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算: 1. 显函数一,二阶偏导: (,)z f x y = 注: (1)y x 型; (2)0(,)x x y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定):(1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩ (存在定理)(2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求: 二阶导)(3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标;(3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=- :1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y(2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积D S 与重心(,)x y5. 无界域上的反常二重积分(数三)五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd S σ⇔⎰⎰; (2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛.2. 性质: (1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征: nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n ∑, (2)ln k n n α∑, (3)1ln k n n∑3. 审敛方法: (注:222ab a b ≤+,ln ln b a a b =) (1)比较法(原理):npk a n (估计), 如10()nf x dx ⎰; ()()P n Q n ∑ (2)比值与根值: *1limn n nu u +→∞*n 应用: 幂级数收敛半径计算)三. 交错级数(含一般项): 1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛? 注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提: n a ∑发散; (2)条件: ,0nn a a →; (3)结论: 1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→.5. 注意事项: 对比 n a ∑; (1)n n a -∑; n a ∑; 2n a ∑之间的敛散关系四. 幂级数: 1. 常见形式:(1)n n a x ∑, (2)0()n n a x x -∑, (3)20()n n a x x -∑ 2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)n n a x ∑与20()n n a x x -∑之间的转换 4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)x f x g x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑ (2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程(5)应用:()(1)n n n n a a x S x a S ⇒=⇒=∑∑∑. 6. 方程的幂级数解法 7. 经济应用(数三):(1)复利: (1)n A p +; (2)现值: (1)n A p -+ 五. 傅里叶级数(数一): (2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数)(2)1()[()()]2S x f x f x =-++3. 系数公式: 01()cos 1(),,1,2,3,1()sin n na f x nxdx a f x dx nb f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算1. 12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦) 01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线 1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕= (2)方程(点法式):000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++=(3)其它: *截距式1x y za b c ++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式; *参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩) 3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++=(2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题; (4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--) 2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩, 或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯) 3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面 1. 圆柱面: 222x y R += 2. 球面: 2222x y z R ++=变形: 2222x y R z +=-, z =, 3. 锥面: z =变形: 222x y z +=, z a = 4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线: 2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩ , 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件): (,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy ff f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G : (1)计算: (2)结论()b 取l G =为最大变化率方向;()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一) 一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法:(1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式 二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式: ()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明:(1)重心法: ()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围 (1)第一类积分(2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点):(1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片 2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰ (2)与第二类互换: A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +⎰ (其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式:(1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径 (3)L⎰(x y Q P =但D 内有奇点) *LL =⎰⎰(变形)3. 推广(路径无关性):P Qy y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰ (Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分:1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项): (,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ= 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰ (∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 00F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。

高等数学常用基础知识点

高等数学常用基础知识点

高等数学常用基础知识点一、极限与连续极限是高等数学中的重要概念之一。

当自变量趋于某个确定值时,函数的极限描述了函数在这个点附近的表现。

极限的计算方法包括利用极限的四则运算法则、夹逼定理和洛必达法则等。

连续是指函数在某个点上无间断的性质。

如果函数在某个点上连续,那么其极限存在且与函数在该点的取值相等。

连续函数的性质包括介值定理、零点定理和罗尔定理等。

二、导数与微分导数是函数在某一点的变化率,可以理解为函数曲线在该点处的切线斜率。

导数的计算方法包括利用导数的四则运算法则、链式法则和隐函数求导等。

微分是函数在某一点的局部线性逼近。

微分的计算方法包括利用微分的四则运算法则、高阶导数和泰勒公式等。

三、不定积分与定积分不定积分是导数的逆运算。

不定积分的计算方法包括利用基本积分公式、换元积分法和分部积分法等。

定积分是函数在某一区间上的累积效应。

定积分的计算方法包括利用定积分的性质、换元积分法和分部积分法等。

四、级数与幂级数级数是无穷个数的和。

级数的收敛与发散是级数理论中的重要问题。

级数的测试方法包括比值判别法、根值判别法和积分判别法等。

幂级数是形如∑(a_n*x^n)的级数。

幂级数的收敛半径是幂级数理论中的重要概念。

幂级数的运算方法包括利用幂级数的性质、求和运算和乘法运算等。

五、常微分方程与偏微分方程常微分方程是描述物理、经济和工程等领域中变化规律的数学工具。

常微分方程的求解方法包括利用分离变量法、一阶线性微分方程的求解和二阶线性齐次微分方程的求解等。

偏微分方程是描述多变量函数的方程。

偏微分方程的求解方法包括利用分离变量法、变量代换和特征线法等。

六、空间解析几何与向量代数空间解析几何是研究空间中点、直线和平面的性质和关系的数学分支。

空间解析几何的内容包括点的坐标表示、向量的运算和平面的方程等。

向量代数是研究向量及其运算的数学分支。

向量代数的内容包括向量的加法、数量积和向量积等。

七、多元函数与多元函数微分学多元函数是多个自变量的函数。

大学高等数学知识点

大学高等数学知识点

微分的应用:微分 在近似计算、误差 估计、求极值等方 面有广泛应用。
导数与微分的关系: 导数是函数在某一点 的切线的斜率,而微 分是在这一点附近对 函数进行线性近似。
04
积分学
定积分的概念与性质
概念:定积分是积分的一种,是函数在区间上积分和的极限 几何意义:定积分的值是曲线下方和x轴之间的面积
性质:定积分具有线性性质,即对于两个函数的和或差的积分,可以分别对每个函数进行积分后再求和或求差
类型:一阶、二阶和高阶差分 方程
解法:递推法、迭代法和数学 归纳法等
应用:在经济学、生物学、物 理学等领域有广泛应用
07
无穷级数
无穷级数的概念与性质
概念:无穷级数是无穷多个数相加的结果,可以用来表示函数、数列等数学对象。
性质:无穷级数具有收敛性、可加性、可乘性和可微性等性质,这些性质在数学分析中有着广泛 的应用。
计算方法:将三重积分拆分为三 个方向的二重积分,再逐个计算
几何意义:表示三维空间中某种 量的分布情况
应用领域:物理学、工程学、经 济学等
06
微分方程与差分方程
常微分方程的基本概念
定义:常微分方程是描述 一个或多个未知函数及其
导数之间关系的方程。
类型:根据未知函数的个 数,常微分方程可以分为 一阶、二阶和高阶方程。
函数的极限:函数在某点 的极限表示当自变量趋近 于该点时,函数值的趋近
值。
函数的连续性:函数在某 点的连续性表示函数在该
点附近的变化趋势。
极限的概念与性质
极限的定义:描述函数在某一点处的变化趋势 极限的性质:包括唯一性、有界性、局部保号性等 极限的运算:包括四则运算法则、等价无穷小替换等 极限的应用:在导数、积分等领域有广泛应用

大一数学各章知识点

大一数学各章知识点

大一数学各章知识点一、微积分1. 极限和连续极限定义、极限的性质、无穷小量与无穷大量、函数连续的定义与性质。

2. 导数与微分导数的定义、导数的几何意义和物理意义、导数运算法则、高阶导数、隐函数及参数方程的导数、微分与线性近似、导数的应用。

二、数学分析与线性代数1. 函数与极限有界性与有界变函数的极限、函数极限的性质、无界函数极限、级数的敛散性。

2. 高等代数向量空间的基本概念与性质、线性相关性与线性无关性、向量的线性组合、基和坐标、线性子空间与商空间。

三、离散数学与概率论1. 逻辑与集合命题逻辑的基本概念、命题逻辑的基本运算、真值表、集合的基本概念与运算。

2. 概率论古典概型的概率、条件概率、独立性、离散型随机变量与分布列、连续型随机变量与密度函数。

四、数学建模与运筹学1. 数学建模建模的基本思路与方法、模型的评价与选择、模型的求解与分析、模型的应用。

2. 运筹学线性规划、整数规划、非线性规划、动态规划、图论。

五、常微分方程与偏微分方程1. 常微分方程基本概念与初值问题、解的存在唯一性、一阶常微分方程的解法、高阶线性常微分方程的解法,齐次线性方程、非齐次线性方程。

2. 偏微分方程偏导数与偏微分方程、二阶线性偏微分方程、波动方程、热传导方程、拉普拉斯方程。

六、数理统计与应用统计1. 数理统计随机变量、概率分布、数理期望和方差、分布函数、正态分布、大数定理与中心极限定理。

2. 应用统计抽样调查与抽样分布、参数估计与假设检验、方差分析、相关分析、回归分析。

七、离散数学与组合数学1. 图论图的基本概念与性质、图的遍历与连通性、最小生成树、最短路径、网络流、图的着色问题。

2. 组合数学排列组合、二项式定理、容斥原理、多重集合与划分、递归与递推关系、离散数学在计算机科学中的应用。

以上是大一数学各章知识点的简要概括,涵盖了微积分、数学分析与线性代数、离散数学与概率论、数学建模与运筹学、常微分方程与偏微分方程、数理统计与应用统计、离散数学与组合数学等主要内容。

高数知识点总结

高数知识点总结

高数知识点总结高等数学是大学必修课程,也是各个理工科专业的基础课程。

在学习高等数学的过程中,我们需要掌握和理解一些重要的知识点。

下面将对一些常见的高数知识点进行总结。

一. 极限与连续1. 极限的定义和性质:极限是函数在某点逼近的结果,可以通过函数的左右极限来判断。

常用的极限性质有极限的唯一性、四则运算法则、夹逼准则等。

2. 连续与不连续:连续是指函数在某点和周围的点都存在极限并且这些极限相等。

常见的不连续点有可去间断点、跳跃间断点和无穷间断点。

二. 导数与微分1. 导数的定义和性质:导数是函数在某点处的变化率,可以描述函数曲线的陡峭程度。

导数的性质包括可导的充分必要条件、导数与函数连续的关系、导数的四则运算法则等。

2. 微分与高阶导数:微分是导数的一种表示形式,通过微分可以求得函数值的近似值。

高阶导数表示导数的导数,可以描述更加复杂的曲线变化。

三. 积分与定积分1. 不定积分和定积分的定义:不定积分是求导的逆运算,可以得到函数的原函数。

定积分是求函数在一定区间上的累积值,可以计算曲线下的面积或弧长。

2. 积分的性质和计算方法:积分的性质包括线性性质、区间可加性等。

计算积分可以通过换元法、分部积分法、定积分的几何应用等方法。

四. 一元函数的应用1. 函数的最值和极值点:函数的最值是函数在定义域上的最大值和最小值,极值点是函数的导数等于零或不存在的点。

通过求函数的导数可以找到函数的极值点。

2. 函数的图像与曲线的特性:函数的图像可以通过绘制函数的曲线来了解其性质。

常见的曲线特性有单调性、凹凸性、拐点等。

五. 多元函数的极限、偏导数与全微分1. 多元函数的极限:多元函数的极限是指在多元空间中某点的邻域内,函数值无限接近于某个值。

可以通过多元极限的定义和性质进行计算和推导。

2. 偏导数和全导数:偏导数是多元函数对于某个自变量的导数,全导数是多元函数所有自变量的偏导数的集合。

可以通过偏导数和全导数来分析多元函数的性质和曲线变化。

高等数学上重要知识点归纳

高等数学上重要知识点归纳

高等数学上重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义以数列为例,,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质1 )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小; 2保号性若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f ; 3无穷小乘以有界函数仍为无穷小; 二、求极限的主要方法与工具 1、两个重要极限公式 11sin lim=∆∆→∆ 2e =◊+◊∞→◊)11(lim 2、两个准则 1 夹逼准则 2单调有界准则 3、等价无穷小替换法 常用替换:当0→∆时(1)∆∆~sin 2∆∆~tan 3∆∆~arcsin 4∆∆~arctan (5)∆∆+~)1ln( 6∆-∆~1e (7)221~cos 1∆∆- 8nn ∆-∆+~11 4、分子或分母有理化法 5、分解因式法 6用定积分定义 三、无穷小阶的比较 高阶、同阶、等价 四、连续与间断点的分类 1、连续的定义)(x f 在a 点连续2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线 五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义 2、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(0 3、导数的几何意义 4、导数的物理意义5、可导与连续的关系: 连续,反之不然。

大一必考高数知识点

大一必考高数知识点

大一必考高数知识点在大一的学习生活中,高等数学是必修课程之一,对于学习理工科的同学来说,掌握好高数知识点非常重要。

下面将介绍一些大一必考的高数知识点,帮助同学们更好地应对高数考试。

一、函数与极限1. 函数的定义与性质:介绍函数的定义、定义域、值域等概念,以及奇函数和偶函数的性质。

2. 函数的极限:介绍函数极限的定义、左极限和右极限的概念,以及常见函数的极限计算方法。

3. 无穷大与无穷小:讲解无穷大和无穷小的定义,以及无穷小的判定方法。

二、导数与微分1. 导数的定义:介绍导数的定义,讨论导数存在的条件,并给出常见函数的导数计算方法。

2. 导数的应用:介绍导数在几何与物理问题中的应用,如切线与法线、相关变率、最值等。

3. 微分的概念:引入微分的概念,讨论微分与导数的关系,并解释微分的几何意义。

三、不定积分与定积分1. 不定积分的定义:介绍不定积分的定义,给出常见函数的不定积分计算方法,如幂函数、指数函数、三角函数等。

2. 定积分的概念:介绍定积分的定义,讨论定积分的性质,如线性性、区间可加性等。

3. 定积分的应用:介绍定积分在几何与物理问题中的应用,如曲线长度、平面面积、体积、质量等。

四、级数1. 数项级数:讲解数项级数的定义与判敛条件,介绍常见级数的性质,如正项级数、比较判别法、比值判别法等。

2. 幂级数:介绍幂级数的定义与收敛半径,讨论幂级数的收敛性以及幂函数展开。

五、微分方程1. 微分方程的基本概念:介绍常微分方程的分类,讲解微分方程的阶、线性与非线性等概念。

2. 一阶常微分方程:讨论一阶常微分方程的可分离变量、线性方程、齐次方程等特殊类型的解法。

总结:以上介绍了大一必考的高数知识点,包括函数与极限、导数与微分、不定积分与定积分、级数以及微分方程等内容。

希望同学们能够认真学习这些知识点,充分理解概念和原理,并进行大量的练习,以提高解题能力和应对考试的能力。

祝大家在高数考试中取得优异的成绩!。

高等数学知识点(全)

高等数学知识点(全)

2、 不定积分:在区间 I 上,函数 f (x) 的带有任意常数的原函数
称为 f (x) 在区间 I 上的不定积分。
3、 基本积分表(P188,13 个公式);
4、 性质(线性性)。
(二) 换元积分法 1、 第 一 类 换 元 法 ( 凑 微 分 ) :
f [(x)](x)dx f (u)du u(x)
(五) 不等式证明
1、 利用微分中值定理;
2、 利用函数单调性;
3、 利用极值(最值)。
(六) 方程根的讨论
第 10 页 共 44 页
阿樊教育 1、 连续函数的介值定理;
永不改变年轻时的梦想
2、 Rolle 定理;
3、 函数的单调性;
4、 极值、最值;
5、 凹凸性。
(七) 渐近线
1、 铅直渐近线: lim f (x) ,则 x a 为一条铅直渐近线; xa
(二) 微分
1) 定义:y f (x0 x) f (x0 ) Ax o(x) ,其中 A 与 x 无关。
2) 可 微 与 可 导 的 关 系 : 可 微 可 导 , 且
dy f (x0 )x f (x0 )dx
第三章 微分中值定理与导数的应用 (一) 中值定理
1、 Rolle 定理:若函数 f (x) 满足: 1 ) f (x) C[a,b] ; 2 ) f (x) D(a,b) ; 3 )
f ( x1 x2 ) 2
f (x1) f (x2 ) , 2
则 称 f (x) 在 区 间 I 上 的 图 形 是 凹 的 ; 若
x1, x2 I ,
f ( x1 x2 ) 2
f (x1) f (x2 ) ,则称 f (x) 在区间 2
I

笔记整理大一高数知识点

笔记整理大一高数知识点

笔记整理大一高数知识点在大一的高等数学课程中,学生们需要掌握和理解许多重要的数学知识点。

为了帮助同学们更好地学习和记忆这些知识点,本文将对大一高数的重要知识进行整理和总结。

1. 极限与连续1.1 极限的定义与性质- 数列极限的定义- 函数极限的定义- 极限的性质(四则运算、复合函数)1.2 无穷大与无穷小- 无穷大的定义- 无穷小的定义- 无穷小的比较- 高阶无穷小1.3 连续性与间断点- 函数的连续性定义- 连续函数的性质- 间断点的分类和判断- 可导与连续的关系2. 导数与微分2.1 导数的概念与计算- 导数的定义- 导数的四则运算法则- 高阶导数与Leibniz公式2.2 常见函数的导数- 幂函数、指数函数、对数函数的导数 - 三角函数的导数- 反三角函数的导数- 复合函数的导数2.3 微分学的应用- 极值与最值问题- 弧长与曲率- 泰勒展开式3. 不定积分与定积分3.1 不定积分与原函数- 不定积分的定义- 基本积分公式- 积分方法与换元法3.2 定积分的概念与性质- 定积分的定义- 定积分的性质(线性性、区间可加性等) - 牛顿-莱布尼茨公式3.3 定积分的计算- 分部积分法- 曲线的长度与面积- 广义积分的收敛性4. 无穷级数4.1 无穷级数的定义与收敛性 - 无穷级数的定义- 收敛级数与发散级数的判断 - 收敛级数的性质4.2 常见的数项级数- 等比级数- 幂级数- 正项级数的审敛法4.3 函数项级数- 函数项级数的收敛性- 一致收敛性与点态收敛性 - 幂级数的收敛半径5. 多元函数微分学5.1 偏导数的定义与计算- 偏导数的定义- 偏导数的计算方法- 高阶偏导数5.2 全微分与导数- 全微分的定义- 导数的定义- 隐函数与显函数的导数5.3 多元函数的极值与条件极值- 多元函数的极值判断- 条件极值问题的求解通过对以上知识点的整理与总结,相信同学们可以更好地理解和记忆大一高等数学中的重要知识,为后续学习打下坚实的基础。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结1. 极限与连续性- 极限的定义与性质- 无穷小与无穷大- 极限的运算法则- 连续函数的定义与性质- 闭区间上连续函数的定理(确界存在定理、中值定理、罗尔定理等)2. 导数与微分- 导数的定义与几何意义- 导数的计算方法(基本导数公式、链式法则、乘积法则、商法则、隐函数求导等)- 高阶导数- 微分的定义与应用- 泰勒级数与麦克劳林级数3. 积分学- 不定积分的概念与性质- 基本积分表与积分技巧(换元法、分部积分法等)- 定积分的定义与性质- 定积分的应用(面积、体积、弧长、工作量等)- 微积分基本定理- 积分技巧(特殊技巧、积分表的使用等)4. 多元函数微分学- 多元函数的偏导数与全微分- 多元函数的极值问题与拉格朗日乘数法- 梯度、方向导数与切平面- 多重积分的概念与计算(二重积分、三重积分)5. 向量代数与空间解析几何- 向量的运算与性质- 点、直线与平面的方程- 空间曲线与曲面的方程6. 级数- 级数的基本概念(数项级数、幂级数、函数项级数)- 收敛性判断(柯西准则、比较判别法、比值判别法、根值判别法等)- 幂级数的收敛半径与收敛区间- 傅里叶级数7. 常微分方程- 微分方程的基本概念- 可分离变量的微分方程- 一阶线性微分方程- 二阶常系数线性微分方程- 特殊类型的微分方程(贝塞尔方程、勒让德方程等)8. 复变函数- 复数的基本概念与运算- 解析函数的概念与性质- 复变函数的积分与柯西积分定理- 留数定理与应用9. 泛函分析初步- 赋范线性空间与内积空间- 线性算子与线性泛函- 正交性与谱理论初步10. 概率论与数理统计- 随机事件与概率的定义- 随机变量与分布函数- 多维随机变量及其分布- 大数定律与中心极限定理- 统计量的分布与假设检验以上是高等数学的主要知识点概要。

每个部分都需要深入学习并通过大量的练习来掌握。

这些知识点构成了高等数学的基础,对于理解和应用更高级的数学概念至关重要。

大学全册高等数学知识点(全套)

大学全册高等数学知识点(全套)

第 1 1 页页共 30 30 页页大学全册高等数学知识点(全套)极限与连续一. 数列函数: 1. 类型类型:  (1)数列: *()n a f n =; *1()n na f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x £ì=í>î; *00()(),x x f x F x x x a ¹ì=í=î;* (4)复合(含f )函数: (),()y f u u x j == (5)隐式(方程): (,)0F x y = (6)参式(数一,二): ()()x x t y y t =ìí=î (7)变限积分函数: ()(,)xaF x f x t dt=ò (8)级数和函数(数一,三): (),n n n S x a x x ¥==ÎW å 2. 特征特征(几何):  (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x Þ"--定号) (2)奇偶性与周期性(应用).  3. 反函数与直接函数反函数与直接函数: 11()()()y f x x f y y f x --=Û=Þ=二. 极限性质:  1. 类型类型: *lim n n a ®¥; *lim ()x f x ®¥(含x ®±¥); *0lim ()x x x xf x ®(含0x x ±®) 2. 无穷小与无穷大无穷小与无穷大(注: 无穷量): 3. 未定型未定型: 000,,1,,0,0,0¥¥¥-¥×¥¥¥ 4. 性质性质: *有界性有界性, *保号性保号性, *归并性归并性第 2 2 页页 共 30 30 页页三. 常用结论: 四. 必备公式:  1. 等价无穷小等价无穷小: 当()0u x ®时, 2. 泰勒公式泰勒公式: (1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+; (3)341sin ()3!x x x o x =-+; (4)24511cos 1()2!4!x x x o x =-++; (5)22(1)(1)1()2!x x x o x a a a a -+=+++. 五. 常规方法:  前提前提: (1)准确判断准确判断0,,1,0M a ¥¥¥(其它如:00,0,0,¥-¥×¥¥); (2)变量代换(如:1t x=) 1. 抓大弃小抓大弃小()¥¥,  2. 无穷小与有界量乘积无穷小与有界量乘积 (M a ×) (注:1sin 1,x x£®¥)  3. 1¥处理(其它如:000,¥) 4. 左右极限左右极限(包括x ®±¥):  (1)1(0)x x ®; (2)()xe x ®¥; 1(0)xe x ®; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比注意对比: 1ln lim 1x x x x ®-与0ln lim 1x x x x ®-) (2)幂指型处理: ()()ln ()()v x v x u x u x e =(如: 1111111(1)x x xx xe e e e -++-=-) 第 3 3 页页 共 30 30 页页 (3)含变限积分; (4)不能用与不便用  7. 泰勒公式泰勒公式(皮亚诺余项): 处理和式中的无穷小处理和式中的无穷小处理和式中的无穷小 8. 极限函数极限函数: ()lim (,)n f x F x n ®¥=(Þ分段函数) 六. 非常手段非常手段 1. 收敛准则收敛准则:  (1)()lim ()n x a f n f x ®+¥=Þ (2)双边夹: *n n n b a c ££, *,?n n b c a ® (3)单边挤: 1()n n a f a += *21?a a ³ *?n a M £ *'()0?f x > 2. 导数定义导数定义(洛必达?): 0lim'()x ff x x®= 3. 积分和积分和: 10112lim [()()()]()n nf f f f x dx n n nn ®¥+++=ò, 4. 中值定理中值定理: lim[()()]lim '()x x f x a f x a f x ®+¥®+¥+-= 5. 级数和级数和(数一三):  (1)1n n a ¥=å收敛lim 0nn a ®¥Þ=, (如2!lim nnn n n ®¥) (2)121lim()n n n n a a a a ¥®¥=+++=å,  (3){}n a 与11()n n n a a ¥-=-å同敛散同敛散七. 常见应用:  1. 无穷小比较无穷小比较(等价,阶): *(),(0)?nf x kx x ® (1)(1)()(0)'(0)(0)0,(0)n n f f ffa -=====Û()()!!n nna a f x x x x n n a =+ (2)0()x xn f t dt kt dtòò 2. 渐近线渐近线(含斜):  (1)()lim ,lim[()]x x f x a b f x ax x®¥®¥==-()f x ax b a Þ++第 4 4 页页 共 30 30 页页 (2)()f x ax b a =++,(10x®) 3. 连续性连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质上连续函数性质 1. 连通性连通性: ([,])[,]f a b m M = (注:01l "<<, “平均”值:0()(1)()()f a f b f x l l +-=)  2. 介值定理介值定理: (附: 达布定理) (1)零点存在定理: ()()0f a f b <0()0f x Þ=(根的个数);  (2)()0(())'0x a a f x f x dx =Þ=ò.  第二讲:导数及应用(一元)(含中值定理)一. 基本概念:  1. 差商与导数差商与导数: '()f x =0()()lim x f x x f x x®+-; 0'()f x =000()()lim x x f x f x x x ®-- (1)0()(0)'(0)lim x f x f f x ®-= (注:0()lim (x f x A f x ®=连续)(0)0,'(0)f f A Þ==) (2)左右导: ''00(),()f x f x -+;  (3)可导与连续; (在0x =处, x 连续不可导; x x 可导)  2. 微分与导数微分与导数: ()()'()()'()f f x x f x f x x o x df f x dx =+-=+Þ= (1)可微Û可导; (2)比较,f df D 与"0"的大小比较(图示); 二. 求导准备:  1. 基本初等函数求导公式基本初等函数求导公式; (注: (())'f x ) 2. 法则法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤): 第 5 5 页页 共 30 30 页页 1. 定义导定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()lim h f x h f x h h®+-- (注: 00()(),x x F x f x x x a ¹ì=í=î, 求:0'(),'()f x f x 及'()f x 的连续性)  2. 初等导初等导(公式加法则):  (1)[()]u f g x =, 求:0'()u x (图形题);  (2)()()xa F x f t dt =òò, 求:'()F x (注: ((,))',((,))',(())'xbba a a f x t dt f x t dt f t dt òòòòòò) (3)0102(),()x x f x y x x f x <ì=í³î,求''00(),()f x f x -+及0'()f x (待定系数)  3. 隐式隐式((,)0f x y =)导: 22,dy d ydx dx (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法.  4. 参式导参式导(数一,二): ()()x x t y y t =ìí=î, 求:22,dy d ydx dx 5. 高阶导高阶导()()n f x 公式:  注: ()(0)n f 与泰勒展式: 2012()nnf x a a x a x a x =+++++()(0)!n nf a n Þ=四. 各类应用:  1. 斜率与切线斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线) 2. 物理物理: (相对相对)变化率-速度; 3. 曲率曲率(数一二): 23"()(1'())f x f x r =+(曲率半径, 曲率中心, 曲率圆)  4. 边际与弹性边际与弹性(数三): (附: 需求, 收益, 成本, 利润)第 6 6 页页 共 30 30 页页五. 单调性与极值(必求导) 1. 判别判别(驻点0'()0f x =):  (1) '()0()f x f x ³Þ; '()0()f x f x £Þ;  (2)分段函数的单调性分段函数的单调性 (3)'()0f x >Þ零点唯一; "()0f x >Þ驻点唯一(必为极值,最值). 2. 极值点极值点:  (1)表格('()f x 变号); (由0002'()'()''()lim 0,lim 0,lim 00xx x x x x f x f x f x x x x x ®®®¹¹¹Þ=的特点)  (2)二阶导(0'()0f x =)  注(1)f 与',"f f 的匹配('f 图形中包含的信息);  (2)实例: 由'()()()()f x x f x g x l +=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明不等式证明(()0f x ³)  (1)区别: *单变量与双变量单变量与双变量? *[,]x a b Î与[,),(,)x a x Î+¥Î-¥+¥? (2)类型: *'0,()0f f a ³³; *'0,()0f f b £³ (3)注意: 单调性Å端点值Å极值Å凹凸性. (如: max ()()f x M f x M £Û=) 4. 函数的零点个数函数的零点个数: 单调Å介值介值 六. 凹凸与拐点(必求导!):  1. "y Þ表格; (0"()0f x =) 2. 应用应用: (1)泰勒估计泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论结论: ()()'()()0F b F a F f x x =Þ==第 7 7 页页 共 30 30 页页 2. 辅助函数构造实例辅助函数构造实例:  (1)()f x Þ()()x a a F x f t dt=ò (2)'()()()'()0()()()f g f g F x f x g x x x x x +=Þ= (3)()'()()()'()0()()f x fg f g F x g x x x x x -=Þ= (4)'()()()0f f x l x x +=Þ()()()x dxF x e f x l ò=;  3. ()()0()n ff x x =Û有1n +个零点(1)()n fx -Û有2个零点个零点 4. 特例特例: 证明()()n f a x =的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)  5. 注: 含12,x x 时,分家!(柯西定理)  6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b "Î,[,]a b x $Î,使:'()f c x = 八. 拉格朗日中值定理拉格朗日中值定理 1. 结论结论: ()()'()()f b f a f b a x -=-; (()(),'()0a b j j x j x <Þ$'>) 2. 估计估计: '()f f x x =九. 泰勒公式(连接,',"f f f 之间的桥梁)  1. 结论结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x x =+-+-+-;  2. 应用应用: 在已知()f a 或()f b 值时进行积分估计值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用] 第三讲: 一元积分学 一. 基本概念: 1. 原函数原函数()F x :  (1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+ò第 8 8 页页 共 30 30 页页 注(1)()()x aF x f t dt=ò(连续不一定可导);  (2)()()()()xx aax t f t dt f t dt f x -ÞÞòò (()f x 连续)  2. 不定积分性质不定积分性质:  (1)(())'()f x dx f x =ò; (())()d f x dx f x dx =ò (2)'()()f x dx f x c =+ò; ()()df x f x c=+ò二. 不定积分常规方法 1. 熟悉基本积分公式熟悉基本积分公式熟悉基本积分公式 2. 基本方法基本方法: 拆(线性性) 3. 凑微法凑微法(基础): 要求巧要求巧,简,活(221sin cos x x =+) 如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2dxd x x = 4. 变量代换变量代换:  (1)常用(三角代换,根式代换,倒代换): 1sin ,,,1xx t ax b t t e t x =+==+= (2)作用与引伸(化简): 21x x t ±-= 5. 分部积分分部积分(巧用):  (1)含需求导的被积函数(如ln ,arctan ,()xaxxf t dtò); (2)“反对幂三指”: ,ln ,n axnx e dxxxdxòò (3)特别: ()xf x dxò (*已知()f x 的原函数为()F x ; *已知已知'()()f x F x =)  6. 特例特例: (1)11sin cos sin cos a x b x dx a x b x ++ò; (2)(),()sin kx p x e dx p x axdxòò快速法; (3)()()n v x dx u x ò 三. 定积分: 1. 概念性质概念性质:  (1)积分和式(可积的必要条件:有界, 充分条件:连续) 第 9 9 页页 共 30 30 页页 (2)几何意义(面积,对称性,周期性,积分中值)  (3)附: ()()b a f x dx M b a £-ò, ()()()bba af xg x dx Mg x dx £òò)  (4)定积分与变限积分, 反常积分的区别联系与侧重反常积分的区别联系与侧重 2: 变限积分变限积分()()xa x f t dt F =ò的处理(重点)  (1)f 可积ÞF 连续, f 连续ÞF 可导可导 (2)(())'xa f t dt ò()f x =; (()())'()xx aax t f t dt f t dt-=òò; ()()()xa f x dt x a f x =-ò (3)由函数()()xaF x f t dt=ò参与的求导, 极限, 极值, 积分(方程)问题问题 3. N L -公式: ()()()ba f x dx Fb F a =-ò(()F x 在[,]a b 上必须连续!) 注: (1)分段积分分段积分, 对称性(奇偶), 周期性周期性 (2)有理式, 三角式, 根式根式 (3)含()ba f t dt ò的方程.  4. 变量代换变量代换: ()(())'()ba f x dxf u t u t dt ba=òò (1)00()()()aaf x dx f a x dx x a t =-=-òòòò, (2)0()()()[()()]a a aa af x dx f x dx x t f x f x dx--=-=-=+-òòò (如:4411sin dx xpp -+ò)  (3)2201sin nn n n I xdx I n p--==ò,  (4)2200(sin )(cos )f x dxf x dx pp=òò; 200(sin )2(sin )f x dxf x dx pp=òò,  (5)00(sin )(sin )2xf x dx f x dx p pp =òò,  5. 分部积分分部积分分部积分 (1)准备时“凑常数” (2)已知'()f x 或()xaf x =ò时, 求()baf x dx ò 6. 附: 三角函数系的正交性: 第 10 10 页页 共 30 30 页页四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +¥+¥-¥-¥òòò (()f x 连续)  (2)()ba f x dx ò: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断) 2. 敛散; 3. 计算: 积分法积分法ÅN L -公式Å极限(可换元与分部)  4. 特例: (1)11p dx x +¥ò; (2)101pdx xò 五. 应用: (柱体侧面积除外柱体侧面积除外)  1. 面积面积, (1)[()()];b a S f x g x dx=-ò (2)1()dcS f y dy -=ò; (3)21()2S r d b aq q =ò; (4)侧面积:22()1'()b aS f x f x dx p =+ò 2. 体积体积: (1)22[()()]b x a V f x g x dx p =-ò; (2)12[()]2()dby caV f y dyxf x dx p p-==òò (3)0x x V =与0y y V = 3. 弧长弧长: 22()()ds dx dy =+ (1)(),[,]y f x x a b =Î 21'()bas fx dx =+ò (2)12(),[,]()x x t t t t y y t =ìÎí=î 2122'()'()t t s x t y t dt =+ò (3)(),[,]r r q q a b =Î: 22()'()s r r d baq q q=+ò 4. 物理物理(数一,二)功,引力,水压力,质心, 5. 平均值平均值(中值定理): (1)1[,]()ba f ab f x dx b a =-ò; (2)0()[0)lim xx f t dt f x®+¥+¥=ò, (f 以T 为周期:0()Tf t dt f T=ò) 第 11 11 页页 共 30 30 页页 第四讲: 微分方程一. 基本概念基本概念 1. 常识常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程变换方程: (1)令()'""x x t y Dy =Þ=(如欧拉方程)  (2)令(,)(,)'u u x y y y x u y =Þ=Þ(如伯努利方程) 3. 建立方程建立方程(应用题)的能力的能力 二. 一阶方程:  1. 形式形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b = 2. 变量分离型变量分离型: '()()y f x g y = (1)解法: ()()()()dyf x dx G y F x Cg y =Þ=+òò (2)“偏”微分方程: (,)zf x y x ¶=¶;  3. 一阶线性一阶线性(重点): '()()y p x y q x += (1)解法(积分因子法): 0()01()[()()]()xx p x dxxx M x ey M x q x dx y M x ò=Þ=+ò (2)变化: '()()x p y x q y +=; (3)推广: 伯努利(数一) '()()y p x y q x y a+= 4. 齐次方程齐次方程: '()yy x=F (1)解法: '(),()y du dx u u xu ux u u x =Þ+=F =F -òò (2)特例: 111222a xb yc dy dx a x b y c ++=++第 12 12 页页 共 30 30 页页 5. 全微分方程全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y¶¶=¶¶ 6. 一阶差分方程一阶差分方程(数三): 1*0()()xx x x xn x xy ca y ay b p x y x Q x b+=ì-=Þí=î 三. 二阶降阶方程二阶降阶方程 1. "()y f x =: 12()y F x c x c =++ 2. "(,')y f x y =: 令'()"(,)dp y p x y f x p dx=Þ== 3. "(,')y f y y =: 令'()"(,)dp y p y y pf y p dy=Þ==四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构通解结构: (1)齐次解: 01122()()()y x c y x c y x =+ (2)非齐次特解: 1122()()()*()y x c y x c y x y x =++ 2. 常系数方程常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c l l ++= (2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法) (3)由已知解反求方程.  3. 欧拉方程欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =Þ=-=五. 应用(注意初始条件): 1. 几何应用几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距切线和法线的截距 2. 积分等式变方程积分等式变方程(含变限积分);  可设可设 ()(),()0xa f x dx F x F a ==ò第 13 13 页页 共 30 30 页页 3. 导数定义立方程导数定义立方程: 含双变量条件()f x y +=的方程的方程 4. 变化率变化率(速度)  5. 22dv d x F ma dt dt=== 6. 路径无关得方程路径无关得方程(数一): Q Px y ¶¶=¶¶ 7. 级数与方程级数与方程:  (1)幂级数求和; (2)方程的幂级数解法:21201,(0),'(0)y a a x a x a y a y =+++== 8. 弹性问题弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念二元微分学概念 1. 极限极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y D =++D =+D =+ (2)lim ,lim ,limy x x y f f f f f xyD D D ==D D (3)22,lim()()x y f df f x f y df x y D -++ (判别可微性判别可微性)  注: (0,0)点处的偏导数与全微分的极限定义: 2. 特例特例:  (1)22(0,0)(,)0,(0,0)xyx y f x y ì¹ï+=íï=î: (0,0)点处可导不连续; 第 14 14 页页 共 30 30 页页 (2)22(0,0)(,)0,(0,0)xy f x y x y ì¹ï=+íï=î: (0,0)点处连续可导不可微; 二. 偏导数与全微分的计算: 1. 显函数一显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)x x y z ; (3)含变限积分含变限积分 2. 复合函数的一复合函数的一,二阶偏导(重点): [(,),(,)]z f u x y v x y = 熟练掌握记号''"""12111222,,,,f f f f f 的准确使用的准确使用 3. 隐函数隐函数(由方程或方程组确定):  (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =ìí=î (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): 0x y z F dx F dy F dz ++= (要求要求: 二阶导)  (3)注: 00(,)x y 与0z 的及时代入的及时代入 (4)会变换方程. 三. 二元极值(定义?); 1. 二元极值二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)  2. 条件极值条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: (,)(,)0z f x y x y j =Å=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y l lj =+, 求驻点即可.  3. 有界闭域上最值有界闭域上最值(重点).  (1)(,){(,)(,)0}z f x y M D x y x y j =ÅÎ=£ (2)实例: 距离问题距离问题第 15 15 页页 共 30 30 页页四. 二重积分计算: 1. 概念与性质概念与性质(“积”前工作): (1)Dd s òò, (2)对称性(熟练掌握): *D 域轴对称; *f 奇偶对称; *字母轮换对称字母轮换对称; *重心重心坐标;  (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶奇偶 2. 计算计算(化二次积分):  (1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用极坐标使用(转换): 22()f x y + 附: 222:()()D x a y b R -+-£; 2222:1x yD a b+£; 双纽线222222()()x y a x y +=- :1D x y +£ 4. 特例特例:  (1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +òò, 且已知D 的面积D S 与重心(,)x y 5. 无界域上的反常二重积分无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L s WÞW W G S ò):  1. “尺寸”: (1)D Dd S s Ûòò; (2)曲面面积(除柱体侧面); 2. 质量质量, 重心(形心), 转动惯量; 3. 为三重积分为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三) 一. 级数概念级数概念第 16 16 页页 共 30 30 页页 1. 定义定义: (1){}n a , (2)12n n S a a a =+++; (3)l im lim n n S ®¥ (如1(1)!n nn ¥=+å)  注: (1)lim nn a ®¥; (2)nq å(或1n a å); (3)“伸缩”级数:1()n n a a +-å收敛{}n a Û收敛.  2. 性质性质: (1)收敛的必要条件: lim 0n n a ®¥=;  (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +®®Þ®Þ®; 二. 正项级数正项级数 1. 正项级数正项级数: (1)定义: 0n a ³; (2)特征: n S ; (3)收敛n S M Û£(有界)  2. 标准级数标准级数: (1)1p n å, (2)ln kn n a å, (3)1ln kn n å 3. 审敛方法审敛方法: (注:222ab a b £+,ln ln baa b=)  (1)比较法(原理):np ka n(估计), 如1()nf x dx ò; ()()P n Q n å (2)比值与根值: *1lim n n n u u+®¥ *lim nn n u ®¥ (应用: 幂级数收敛半径计算) 三. 交错级数(含一般项): 1(1)n n a +-å(0n a >)  1. “审”前考察: (1)0?n a > (2)0?n a ®; (3)绝对(条件)收敛? 注: 若1lim 1n n n a a r +®¥=>,则nu å发散发散 2. 标准级数标准级数: (1)11(1)n n +-å; (2)11(1)n pn +-å; (3)11(1)ln n pn +-å 3. 莱布尼兹审敛法莱布尼兹审敛法(收敛?) (1)前提: na å发散; (2)条件: ,0nn a a ®; (3)结论: 1(1)n n a +-å条件收敛. 第 17 17 页页 共 30 30 页页 4. 补充方法补充方法:  (1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +®®Þ®Þ®. 5. 注意事项注意事项: 对比对比对比 na å; (1)nna -å; na å; 2n a å之间的敛散关系之间的敛散关系四. 幂级数: 1. 常见形式常见形式:  (1)nn a x å, (2)0()n n a x x -å, (3)20()nn a x x -å 2. 阿贝尔定理阿贝尔定理: (1)结论: *x x =敛*0R x x Þ³-; *x x =散*0R x x Þ£- (2)注: 当*x x =条件收敛时*R x x Þ=- 3. 收敛半径收敛半径,区间,收敛域(求和前的准备)  注(1),nn n n a na x x n åå与n n a x å同收敛半径同收敛半径 (2)nn a x å与20()nn a x x -å之间的转换之间的转换 4. 幂级数展开法幂级数展开法:  (1)前提: 熟记公式(双向,标明敛域)  (2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx fÞ=+ò (4)考察原函数: 0()()xg xf x dxò()'()f x g x Þ= 5. 幂级数求和法幂级数求和法(注: *先求收敛域, *变量替换变量替换):  (1)(),S x =+åå (2)'()S x =,(注意首项变化)  (3)()()'S x =å,  (4)()"()"S x S x Þ的微分方程的微分方程第 18 18 页页 共 30 30 页页 (5)应用:()(1)n n n n a a x S x a SÞ=Þ=ååå.  6. 方程的幂级数解法方程的幂级数解法方程的幂级数解法 7. 经济应用经济应用(数三):  (1)复利: (1)nA p +; (2)现值: (1)nA p -+ 五. 傅里叶级数(数一): (2T p =) 1. 傅氏级数傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ¥==++å 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x Þ(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdxa f x dx nb f x nxdx ppp pp p p pp ---ì=ïï==íï=ïîòòò 4. 题型题型: (注: ()(),?f x S x x =Î) (1)2T p =且(),(,]f x x p p =Î-(分段表示)  (2)(,]x p p Î-或[0,2]x p Î (3)[0,]x p Î正弦或余弦正弦或余弦 *(4)[0,]x p Î(T p =) *5. 2T l = 6. 附产品附产品: ()f x Þ01()cos sin 2n n n a S x a nx b nx ¥==++å 第七讲: 向量,偏导应用与方向导(数一) 一. 向量基本运算向量基本运算第 19 19 页页 共 30 30 页页 1. 12k a kb +; (平行b a l Û=)  2. a ; (单位向量(方向余弦) 1(cos ,cos ,cos )aaaa b g =)  3. a b ×; (投影:()a a b b a ×=; 垂直垂直:0a b a b ^Û×=; 夹角夹角:(,)a b ab a b ×=)  4. a b ´; (法向:,n a b a b=´^; 面积面积:S a b =´) 二. 平面与直线平面与直线 1.平面平面P (1)特征(基本量): 0000(,,)(,,)M x y z n A B C Å= (2)方程(点法式): 000:()()()00A x x B y y C z z Ax By Cz D p -+-+-=Þ+++= (3)其它: *截距式截距式1x y za b c++=; *三点式三点式三点式 2.直线直线L (1)特征(基本量): 0000(,,)(,,)M x y z s m n p Å= (2)方程(点向式): 000:x x y y z z L m n p ---== (3)一般方程(交面式): 1111222200A x B y C z D A x B y C z D +++=ìí+++=î (4)其它: *二点式二点式; *参数式参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-ìï=+-Îíï=+-î) 3. 实用方法实用方法: (1)平面束方程: 11112222:()0A x B y C z D A x B y C z D p l +++++++=第 20 20 页页 共 30 30 页页 (2)距离公式: 如点如点0(,)M x y 到平面的距离000222Ax By Cz Dd A B C+++=++ (3)对称问题; (4)投影问题. 三. 曲面与空间曲线(准备) 1. 曲面曲面曲面 (1)形式S : (,,)0F x y z = 或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F a b g =Þ (或(,1)x y n z z =--) 2. 曲线曲线曲线 (1)形式():()()x x t y y t z z t =ìïG =íï=î, 或(,,)0(,,)0F x y z G x y z =ìí=î; (2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =´) 3. 应用应用应用 (1)交线, 投影柱面与投影曲线;  (2)旋转面计算: 参式曲线绕坐标轴旋转参式曲线绕坐标轴旋转; (3)锥面计算. 四. 常用二次曲面常用二次曲面 1. 圆柱面圆柱面: 222x y R += 2. 球面球面: 2222x y z R ++= 变形: 2222x y R z +=-, 222()z R x y =-+, 3. 锥面锥面: 22z x y =+ 变形: 222x y z +=, 22z a x y =-+ 4. 抛物面抛物面: 22z x y =+, 第 21 21 页页 共 30 30 页页 变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面双曲面: 2221x y z +=± 6. 马鞍面马鞍面: 22z x y =-, 或z xy = 五. 偏导几何应用偏导几何应用 1. 曲面曲面曲面 (1)法向: (,,)0(,,)x y z F x y z n F F F =Þ=, 注: (,)(,1)x y z f x y n f f =Þ=- (2)切平面与法线: 2. 曲线曲线曲线 (1)切向: (),(),()(',',')x x t y y t z z t s x y z ===Þ= (2)切线与法平面切线与法平面 3. 综合综合: :G 00F G =ìí=î , 12s n n=´ 六. 方向导与梯度(重点) 1. 方向导方向导(l 方向斜率):  (1)定义(条件): (,,)(cos ,cos ,cos )l m n p a b g =Þ (2)计算(充分条件:可微): cos cos cos x y z uu u u la b g ¶=++¶ 附: 0(,),{cos ,sin }z f x y l q q==cos sin x y z f f lq q ¶Þ=+¶ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lq q q q¶=++¶ 2. 梯度梯度(取得最大斜率值的方向) G : (1)计算: (2)结论结论()b 取l G =为最大变化率方向; 第 22 22 页页 共 30 30 页页 ()c 0()G M 为最大方向导数值.  第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Wòòò)  1. W 域的特征(不涉及复杂空间域):  (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心关于重心 (2)投影法: 22212{(,)}(,)(,)xyD x y x y R z x y z z x y =+£Å££ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+£Å££ (4)其它: 长方体长方体, 四面体四面体, 椭球椭球椭球 2. f 的特征:  (1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++ 3. 选择最适合方法选择最适合方法: (1)“积”前: *dvWòòò; *利用对称性(重点)  (2)截面法(旋转体): ()baD z I dzfdxdy=òòò(细腰或中空, ()f z , 22()f x y +)  (3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdyfdz=òòò (4)球坐标(球或锥体): 220sin ()RI ddf d paqj jr r=×××òòò, (5)重心法(f ax by cz d =+++): ()I ax by cz d V W =+++ 4. 应用问题应用问题:  (1)同第一类积分: 质量质量, 质心, 转动惯量, 引力引力 (2)Gauss 公式公式 二. 第一类线积分(Lfds ò)  1. “积”前准备: 第 23 23 页页 共 30 30 页页 (1)Lds L =ò; (2)对称性; (3)代入“L ”表达式表达式 2. 计算公式计算公式: 22()[,]((),())'()'()()b a L x x t t a b fds f x t y t x t y t dt y y t =ìÎÞ=+í=îòò 3. 补充说明补充说明:  (1)重心法: ()()Lax by c ds ax by c L ++=++ò; (2)与第二类互换: LLA ds A drt ×=×òò 4. 应用范围应用范围应用范围 (1)第一类积分第一类积分 (2)柱体侧面积柱体侧面积 (),Lz x y ds ò三. 第一类面积分(fdS åòò)  1. “积”前工作(重点):  (1)dS S=S òò; (代入代入:(,,)0F x y z S =)  (2)对称性(如: 字母轮换, 重心) (3)分片分片 2. 计算公式计算公式:  (1)22(,),(,)(,,(,))1xyxy x yD z z x y x y D I f x y z x y z z dxdy =ÎÞ=++òò (2)与第二类互换: A ndSA d S S S×=×òòòò四: 第二类曲线积分(1): (,)(,)LP x y dx Q x y dy +ò (其中其中L 有向)  1. 直接计算直接计算: ()()x x t y y t =ìí=î,2112:['()'()]t t t t t I Px t Qy t dt®Þ=+ò 常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: 第 24 24 页页 共 30 30 页页 (1)()LDQ P Pdx Qdy dxdy xy¶¶+=-¶¶òòò;  (2)()L A B ®ò: *P Q y y ¶¶=Þ¶¶换路径; *P Q y y ¶¶¹Þ¶¶围路径围路径 (3)Lò(x y Q P =但D 内有奇点) *LL =òò(变形)  3. 推广推广(路径无关性):P Qy y ¶¶=¶¶ (1)Pdx Qdy du +=(微分方程)()BA L AB u ®Û=ò(道路变形原理) (2)(,)(,)LP x y dx Q x y dy +ò与路径无关(f 待定): 微分方程微分方程. 4. 应用应用应用 功(环流量):IF dr G=×ò (G 有向t ,(,,)F P Q R =,(,,)d r ds dx dy dz t ==) 五. 第二类曲面积分:  1. 定义定义: Pdydz Qdzdx RdxdyS ++òò, 或(,,)R x y z dxdySòò (其中其中S 含侧)  2. 计算计算: (1)定向投影(单项): (,,)R x y z dxdySòò, 其中:(,)z z x y S =(特别:水平面);  注: 垂直侧面, 双层分隔双层分隔 (2)合一投影(多项,单层): (,,1)x y n z z =-- (3)化第一类(S 不投影): (cos ,cos ,cos )n a b g = 3. Gauss 公式及其应用: (1)散度计算: P Q R div A x y z¶¶¶=++¶¶¶ (2)Gauss 公式: S 封闭外侧, W 内无奇点内无奇点 (3)注: *补充“盖”平面:0SS +òòòò; *封闭曲面变形Sòò(含奇点)  4. 通量与积分通量与积分: 第 25 25 页页 共 30 30 页页A d S åF =×òò (S 有向n ,(),,A P QR =,(,,)d S ndS dydz dzdx dxdy ==) 六: 第二类曲线积分(2): (,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz G++ò 1. 参数式曲线参数式曲线G : 直接计算(代入) 注(1)当0rot A =时, 可任选路径; (2)功(环流量):IF drG=×ò 2. Stokes 公式: (要求: G 为交面式(有向), 所张曲面所张曲面å含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z¶¶¶=Ñ´=´¶¶¶ (2)交面式(一般含平面)封闭曲线: 00F G =ìÞí=î同侧法向{,,}x y z n F FF =或{,,}x y zG G G ;  (3)Stokes 公式(选择): ()A drA ndSG å×=Ñ´×òòò (a )化为Pdydz Qdzdx RdxdyS++òò; (b )化为(,,)R x y z dxdySòò; (c )化为fdS åòò高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xay=),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型:(1)数列: *()n a f n =;*1()n n a f a += (2)初等函数:(3)分段函数: *0102()(),()x x f x F x x x f x ≤⎧=⎨>⎩; *0()(),x x f x F x x x a ≠⎧=⎨=⎩;* (4)复合(含f )函数: (),()y f u u x ϕ== (5)隐式(方程): (,)0F x y =(6)参式(数一,二): ()()x x t y y t =⎧⎨=⎩(7)变限积分函数: ()(,)xaF x f x t dt =⎰(8)级数和函数(数一,三): 0(),nn n S x a xx ∞==∈Ω∑2. 特征(几何):(1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ⇒∀--定号) (2)奇偶性与周期性(应用).3. 反函数与直接函数: 11()()()y f x x f y y f x --=⇔=⇒=二. 极限性质:1. 类型: *lim n n a →∞;*lim ()x f x →∞(含x →±∞);*0lim ()x x f x →(含0x x ±→)2. 无穷小与无穷大(注: 无穷量):3. 未定型:000,,1,,0,0,0∞∞∞-∞⋅∞∞∞4. 性质: *有界性, *保号性, *归并性 三. 常用结论:11n n →, 1(0)1n a a >→, 1()max(,,)nnn na b c a b c ++→, ()00!na a n >→1(0)x x→→∞, 0lim 1xx x +→=, lim 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0lim ln 0n x x x +→=,0,xx e x →-∞⎧→⎨+∞→+∞⎩ 四. 必备公式:1. 等价无穷小: 当()0u x →时,sin ()()u x u x ;tan ()()u x u x ;211cos ()()2u x u x -; ()1()u x e u x -; ln(1())()u x u x +;(1())1()u x u x αα+-;arcsin ()()u x u x ; arctan ()()u x u x2. 泰勒公式:(1)2211()2!xe x x o x =+++; (2)221ln(1)()2x x x o x +=-+;(3)341sin ()3!x x x o x =-+;(4)24511cos 1()2!4!x x x o x =-++;(5)22(1)(1)1()2!x x x o x αααα-+=+++.五. 常规方法: 前提: (1)准确判断0,,1,0M α∞∞∞(其它如:00,0,0,∞-∞⋅∞∞); (2)变量代换(如:1t x=) 1. 抓大弃小()∞∞, 2. 无穷小与有界量乘积 (M α⋅) (注:1sin1,x x≤→∞) 3. 1∞处理(其它如:00,∞)4. 左右极限(包括x →±∞):(1)1(0)x x→; (2)()xe x →∞;1(0)x e x →; (3)分段函数: x , []x , max ()f x 5. 无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则 (1)先”处理”,后法则(00最后方法); (注意对比: 1ln lim 1x x x x →-与0ln lim 1x x x x→-)(2)幂指型处理: ()()ln ()()v x v x u x u x e=(如: 1111111(1)x x x x xee e e-++-=-)(3)含变限积分; (4)不能用与不便用7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: ()lim (,)n f x F x n →∞=(⇒分段函数)六. 非常手段 1. 收敛准则:(1)()lim ()n x a f n f x →+∞=⇒(2)双边夹: *?n n n b a c ≤≤, *,?n n b c a →(3)单边挤: 1()n n a f a +=*21?a a ≥ *?n a M ≤ *'()0?f x >2. 导数定义(洛必达?):00lim'()x ff x x→=3. 积分和:10112lim [()()()]()n nf f f f x dx n n n n→∞+++=⎰,4. 中值定理: lim[()()]lim '()x x f x a f x a f ξ→+∞→+∞+-=5. 级数和(数一三):(1)1n n a ∞=∑收敛lim 0n n a →∞⇒=, (如2!lim n n n n n →∞)(2)121lim()n n n n a a a a ∞→∞=+++=∑,(3){}n a 与11()nn n aa ∞-=-∑同敛散七. 常见应用:1. 无穷小比较(等价,阶): *(),(0)?n f x kx x →(1)(1)()(0)'(0)(0)0,(0)n n f f f f a -=====⇔()()!!nn na a f x x x x n n α=+ (2)()xxn f t dtkt dt ⎰⎰2. 渐近线(含斜):(1)()lim,lim[()]x x f x a b f x ax x→∞→∞==-()f x ax b α⇒++(2)()f x ax b α=++,(10x→)3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, '()f x 连续性) 八. [,]a b 上连续函数性质1. 连通性:([,])[,]f a b m M = (注:01λ∀<<, “平均”值:0()(1)()()f a f b f x λλ+-=)2. 介值定理: (附: 达布定理)(1)零点存在定理: ()()0f a f b <0()0f x ⇒=(根的个数); (2)()0(())'0xaf x f x dx =⇒=⎰.第二讲:导数及应用(一元)(含中值定理)一. 基本概念:1. 差商与导数:'()f x =0()()limx f x x f x x→+-; 0'()f x =000()()lim x x f x f x x x →--(1)0()(0)'(0)limx f x f f x →-=(注:0()lim (x f x A f x→=连续)(0)0,'(0)f f A ⇒==)(2)左右导: ''00(),()f x f x -+;(3)可导与连续; (在0x =处, x 连续不可导; x x 可导) 2. 微分与导数:()()'()()'()f f x x f x f x x o x df f x dx =+-=+⇒=(1)可微⇔可导; (2)比较,f df ∆与"0"的大小比较(图示); 二. 求导准备:1. 基本初等函数求导公式; (注: (())'f x )2. 法则: (1)四则运算; (2)复合法则; (3)反函数1'dx dy y = 三. 各类求导(方法步骤):1. 定义导: (1)'()f a 与'()x a f x =; (2)分段函数左右导; (3)0()()limh f x h f x h h→+--(注: 0()(),x x F x f x x x a ≠⎧=⎨=⎩, 求:0'(),'()f x f x 及'()f x 的连续性) 2. 初等导(公式加法则):(1)[()]u f g x =, 求:0'()u x (图形题); (2)()()xaF x f t dt =⎰, 求:'()F x (注: ((,))',((,))',(())'x b baaaf x t dt f x t dt f t dt ⎰⎰⎰)(3)0102(),()x x f x y x x f x <⎧=⎨≥⎩,求''00(),()f x f x -+及0'()f x (待定系数)3. 隐式((,)0f x y =)导:22,dy d y dx dx (1)存在定理;(2)微分法(一阶微分的形式不变性). (3)对数求导法.4. 参式导(数一,二): ()()x x t y y t =⎧⎨=⎩,求:22,dy d ydx dx 5. 高阶导()()n fx 公式:()()ax n n axe a e =; ()11!()()n n n b n a bx a bx +=--; ()(sin )sin()2n n ax a ax n π=+⨯; ()(cos )cos()2n n ax a ax n π=+⨯()()1(1)2(2)()'"n n n n n n uv u v C u v C u v --=+++注: ()(0)n f与泰勒展式: 2012()nn f x a a x a x a x =+++++()(0)!n n f a n ⇒=四. 各类应用:1. 斜率与切线(法线); (区别: ()y f x =上点0M 和过点0M 的切线)2. 物理: (相对)变化率-速度;3. 曲率(数一二):ρ=(曲率半径, 曲率中心, 曲率圆)4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润) 五. 单调性与极值(必求导) 1. 判别(驻点0'()0f x =): (1)'()0()f x f x ≥⇒; '()0()f x f x ≤⇒;(2)分段函数的单调性(3)'()0f x >⇒零点唯一; "()0f x >⇒驻点唯一(必为极值,最值). 2. 极值点:(1)表格('()f x 变号); (由0002'()'()''()lim0,lim 0,lim 00x x x x x x f x f x f x x x x x→→→≠≠≠⇒=的特点) (2)二阶导(0'()0f x =)注(1)f 与',"f f 的匹配('f 图形中包含的信息);(2)实例: 由'()()()()f x x f x g x λ+=确定点“0x x =”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明(()0f x ≥)(1)区别: *单变量与双变量? *[,]x a b ∈与[,),(,)x a x ∈+∞∈-∞+∞? (2)类型: *'0,()0f f a ≥≥; *'0,()0f f b ≤≥*"0,(),()0f f a f b ≤≥; *00"()0,'()0,()0f x f x f x ≥=≥ (3)注意: 单调性⊕端点值⊕极值⊕凹凸性. (如: max ()()f x M f x M ≤⇔=) 4. 函数的零点个数: 单调⊕介值六. 凹凸与拐点(必求导!): 1. "y ⇒表格; (0"()0f x =)2. 应用: (1)泰勒估计; (2)'f 单调; (3)凹凸. 七. 罗尔定理与辅助函数: (注: 最值点必为驻点) 1. 结论: ()()'()()0F b F a F f ξξ=⇒== 2. 辅助函数构造实例: (1)()f ξ⇒()()xaF x f t dt =⎰(2)'()()()'()0()()()f g f g F x f x g x ξξξξ+=⇒= (3)()'()()()'()0()()f x fg f g F x g x ξξξξ-=⇒= (4)'()()()0f f ξλξξ+=⇒()()()x dxF x e f x λ⎰=;3. ()()0()n ff x ξ=⇔有1n +个零点(1)()n f x -⇔有2个零点4. 特例: 证明()()n fa ξ=的常规方法:令()()()n F x f x P x =-有1n +个零点(()n P x 待定)5. 注: 含12,ξξ时,分家!(柯西定理)6. 附(达布定理): ()f x 在[,]a b 可导,['(),'()]c f a f b ∀∈,[,]a b ξ∃∈,使:'()f c ξ= 八. 拉格朗日中值定理1. 结论: ()()'()()f b f a f b a ξ-=-; (()(),'()0a b ϕϕξϕξ<⇒∃∍>)2. 估计:'()f f x ξ=九. 泰勒公式(连接,',"f f f 之间的桥梁) 1. 结论: 2300000011()()'()()"()()"'()()2!3!f x f x f x x x f x x x f x x ξ=+-+-+-; 2. 应用:在已知()f a 或()f b 值时进行积分估计十. 积分中值定理(附:广义): [注:有定积分(不含变限)条件时使用]第三讲: 一元积分学一. 基本概念: 1. 原函数()F x :(1)'()()F x f x =; (2)()()f x dx dF x =; (3)()()f x dx F x c =+⎰注(1)()()xaF x f t dt =⎰(连续不一定可导);(2)()()()()xx aax t f t dt f t dt f x -⇒⇒⎰⎰ (()f x 连续)2. 不定积分性质:(1)(())'()f x dx f x =⎰; (())()d f x dx f x dx =⎰(2)'()()f x dx f x c =+⎰;()()df x f x c =+⎰二. 不定积分常规方法1. 熟悉基本积分公式2. 基本方法: 拆(线性性)1212(()())()()k f x k g x dx k f x dx k g x dx +=+⎰⎰⎰3. 凑微法(基础): 要求巧,简,活(221sin cos x x =+)如: 211(),,ln ,2dx dx d ax b xdx dx d x a x =+==2=(1ln )(ln )x dx d x x =+=4. 变量代换:(1)常用(三角代换,根式代换,倒代换): 1sin ,,,x t t t t x====(2)作用与引伸(化简):x t =5. 分部积分(巧用):(1)含需求导的被积函数(如ln ,arctan ,()xax x f t dt ⎰);(2)“反对幂三指”: ,ln ,n ax nx e dx x xdx ⎰⎰(3)特别:()xf x dx ⎰ (*已知()f x 的原函数为()F x ; *已知'()()f x F x =)6. 特例: (1)11sin cos sin cos a x b x dx a x b x ++⎰; (2)(),()sin kx p x e dx p x axdx ⎰⎰快速法; (3)()()n v x dx u x ⎰ 三. 定积分:1. 概念性质:(1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值)*2(0)8a a π>=⎰; *()02baa bx dx +-=⎰ (3)附:()()baf x dx M b a ≤-⎰,()()()bb aaf xg x dx M g x dx ≤⎰⎰)(4)定积分与变限积分, 反常积分的区别联系与侧重2: 变限积分()()xax f t dt Φ=⎰的处理(重点)(1)f 可积⇒Φ连续, f 连续⇒Φ可导 (2)(())'xaf t dt ⎰()f x =; (()())'()x xaax t f t dt f t dt -=⎰⎰;()()()xaf x dt x a f x =-⎰(3)由函数()()xaF x f t dt =⎰参与的求导, 极限, 极值, 积分(方程)问题3. N L -公式:()()()baf x dx F b F a =-⎰(()F x 在[,]a b 上必须连续!)注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式,三角式,根式 (3)含()ba f t dt ⎰的方程.4. 变量代换:()(())'()baf x dx f u t u t dt βα=⎰⎰(1)()()()aa f x dx f a x dx x a t =-=-⎰⎰,(2)()()()[()()]aa aaaf x dx f x dx x t f x f x dx --=-=-=+-⎰⎰⎰(如:4411sin dx x ππ-+⎰)(3)2201sin n n n n I xdx I nπ--==⎰,(4)2200(sin )(cos )f x dx f x dx ππ=⎰⎰;20(sin )2(sin )f x dx f x dx ππ=⎰⎰,(5)(sin )(sin )2xf x dx f x dx πππ=⎰⎰,5. 分部积分(1)准备时“凑常数” (2)已知'()f x 或()xaf x =⎰时, 求()baf x dx ⎰6. 附: 三角函数系的正交性:22200sin cos sin cos 0nxdx nxdx nx mxdx πππ===⎰⎰⎰220sin sin cos cos ()0nx mxdx nx mxdx n m ππ=≠=⎰⎰22220sin cos nxdx nxdx πππ==⎰⎰四. 反常积分: 1. 类型: (1)(),(),()aa f x dx f x dx f x dx +∞+∞-∞-∞⎰⎰⎰(()f x 连续)(2)()baf x dx ⎰: (()f x 在,,()x a x b x c a c b ===<<处为无穷间断)2. 敛散;3. 计算: 积分法⊕N L -公式⊕极限(可换元与分部)4. 特例: (1)11p dx x +∞⎰; (2)101p dx x⎰ 五. 应用: (柱体侧面积除外)1. 面积, (1)[()()];baS f x g x dx =-⎰(2)1()dcS f y dy -=⎰;(3)21()2S r d βαθθ=⎰; (4)侧面积:2(b a S f x π=⎰ 2. 体积: (1)22[()()]bx aV f x g x dx π=-⎰; (2)12[()]2()d by caV f y dy xf x dx ππ-==⎰⎰(3)0x x V =与0y y V =3. 弧长: ds =(1)(),[,]y f x x a b =∈as =⎰(2)12(),[,]()x x t t t t y y t =⎧∈⎨=⎩21t t s =⎰(3)(),[,]r r θθαβ=∈:s βαθ=⎰4. 物理(数一,二)功,引力,水压力,质心,5. 平均值(中值定理): (1)1[,]()baf a b f x dx b a =-⎰;(2)0()[0)limx x f t dt f x→+∞+∞=⎰, (f 以T 为周期:0()Tf t dt fT=⎰)第四讲: 微分方程一. 基本概念1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件)2. 变换方程:(1)令()'""x x t y Dy =⇒=(如欧拉方程)(2)令(,)(,)'u u x y y y x u y =⇒=⇒(如伯努利方程) 3. 建立方程(应用题)的能力 二. 一阶方程:1. 形式: (1)'(,)y f x y =; (2)(,)(,)0M x y dx N x y dy +=; (3)()y a b =2. 变量分离型: '()()y f x g y = (1)解法:()()()()dyf x dx G y F x Cg y =⇒=+⎰⎰(2)“偏”微分方程:(,)zf x y x∂=∂; 3. 一阶线性(重点): '()()y p x y q x +=(1)解法(积分因子法): 00()01()[()()]()xx p x dxx x M x ey M x q x dx y M x ⎰=⇒=+⎰ (2)变化: '()()x p y x q y +=;(3)推广: 伯努利(数一) '()()y p x y q x y α+=4. 齐次方程: '()y y x=Φ (1)解法: '(),()ydu dxu u xu u x u u x =⇒+=Φ=Φ-⎰⎰(2)特例:111222a xb yc dy dx a x b y c ++=++ 5. 全微分方程(数一): (,)(,)0M x y dx N x y dy +=且N Mx y∂∂=∂∂ dU Mdx Ndy U C =+⇒=6. 一阶差分方程(数三): 1*()()x x x x x n xx y ca y ay b p x y x Q x b+=⎧-=⇒⎨=⎩ 三. 二阶降阶方程1. "()y f x =: 12()y F x c x c =++2. "(,')y f x y =: 令'()"(,)dpy p x y f x p dx=⇒== 3. "(,')y f y y =: 令'()"(,)dpy p y y pf y p dy=⇒== 四. 高阶线性方程: ()"()'()()a x y b x y c x y f x ++= 1. 通解结构:(1)齐次解: 01122()()()y x c y x c y x =+(2)非齐次特解:1122()()()*()y x c y x c y x y x =++ 2. 常系数方程: "'()ay by cy f x ++= (1)特征方程与特征根: 20a b c λλ++=(2)非齐次特解形式确定: 待定系数; (附: ()axf x ke =的算子法)(3)由已知解反求方程.3. 欧拉方程(数一): 2"'()ax y bxy cy f x ++=, 令2"(1),'tx e x y D D y xy Dy =⇒=-= 五. 应用(注意初始条件):1. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距2. 积分等式变方程(含变限积分); 可设()(),()0xaf x dx F x F a ==⎰3. 导数定义立方程:含双变量条件()f x y +=的方程4. 变化率(速度)5. 22dv d x F ma dt dt === 6. 路径无关得方程(数一): Q Px y∂∂=∂∂ 7. 级数与方程:(1)幂级数求和; (2)方程的幂级数解法:201201,(0),'(0)y a a x a x a y a y =+++==8. 弹性问题(数三)第五讲: 多元微分与二重积分一. 二元微分学概念1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1)000000(,),(,),(,)x y f f x x y y f f x x y f f x y y ∆=++∆=+∆=+ (2)lim ,lim,lim y x x y f ff f f x y∆∆∆==∆∆ (3)22,limx y f x f ydf + (判别可微性)注: (0,0)点处的偏导数与全微分的极限定义:0(,0)(0,0)(0,)(0,0)(0,0)lim,(0,0)lim x y x y f x f f y f f f x y→→--==2. 特例:(1)22(0,0)(,)0,(0,0)xyx y f x y ⎧≠⎪+=⎨⎪=⎩: (0,0)点处可导不连续;(2)(0,0)(,)0,(0,0)f x y ≠==⎩: (0,0)点处连续可导不可微;二. 偏导数与全微分的计算: 1. 显函数一,二阶偏导: (,)z f x y = 注: (1)yx 型; (2)00(,)xx y z ; (3)含变限积分2. 复合函数的一,二阶偏导(重点):[(,),(,)]z f u x y v x y =熟练掌握记号''"""12111222,,,,f f f f f 的准确使用3. 隐函数(由方程或方程组确定): (1)形式: *(,,)0F x y z =; *(,,)0(,,)0F x y zG x y z =⎧⎨=⎩(存在定理)(2)微分法(熟练掌握一阶微分的形式不变性):0x y z F dx F dy F dz ++= (要求: 二阶导) (3)注: 00(,)x y 与0z 的及时代入 (4)会变换方程. 三. 二元极值(定义?);1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别)2. 条件极值(拉格朗日乘数法) (注: 应用)(1)目标函数与约束条件: (,)(,)0z f x y x y ϕ=⊕=, (或: 多条件) (2)求解步骤: (,,)(,)(,)L x y f x y x y λλϕ=+, 求驻点即可. 3. 有界闭域上最值(重点).(1)(,){(,)(,)0}z f x y M D x y x y ϕ=⊕∈=≤ (2)实例: 距离问题四. 二重积分计算:1. 概念与性质(“积”前工作): (1)Dd σ⎰⎰,(2)对称性(熟练掌握):*D 域轴对称; *f 奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *12D D D =; *(,)f x y 分片定义; *(,)f x y 奇偶2. 计算(化二次积分):(1)直角坐标与极坐标选择(转换): 以“D ”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 22()f x y +附: 222:()()D x a y b R -+-≤; 2222:1x y D a b+≤;双纽线222222()()x y a x y +=-:1D x y +≤ 4. 特例:(1)单变量: ()f x 或()f y (2)利用重心求积分: 要求: 题型12()Dk x k y dxdy +⎰⎰, 且已知D 的面积DS与重心(,)x y5.无界域上的反常二重积分(数三) 五: 一类积分的应用(():;;;;f M d D L σΩ⇒ΩΩΓ∑⎰):1. “尺寸”: (1)D Dd Sσ⇔⎰⎰;(2)曲面面积(除柱体侧面);2. 质量, 重心(形心), 转动惯量;3. 为三重积分, 格林公式, 曲面投影作准备.第六讲: 无穷级数(数一,三)一. 级数概念1. 定义: (1){}n a , (2)12n n S a a a =+++; (3)lim n n S →∞(如1(1)!n nn ∞=+∑)注: (1)lim n n a →∞; (2)n q ∑(或1n a∑); (3)“伸缩”级数:1()n n a a +-∑收敛{}n a ⇔收敛. 2. 性质:(1)收敛的必要条件: lim 0n n a →∞=;(2)加括号后发散,则原级数必发散(交错级数的讨论); (3)221,0n n n n s s a s s s s +→→⇒→⇒→; 二. 正项级数1. 正项级数: (1)定义: 0n a ≥; (2)特征:nS ; (3)收敛n S M ⇔≤(有界)2. 标准级数: (1)1p n ∑, (2)ln k n n α∑, (3)1ln k n n∑3. 审敛方法: (注:222ab a b ≤+,ln ln ba ab =)(1)比较法(原理):npk a n (估计), 如10()nf x dx ⎰;()()P n Q n ∑ (2)比值与根值: *1limn n nu u +→∞*n 应用: 幂级数收敛半径计算)三. 交错级数(含一般项):1(1)n n a +-∑(0n a >)1. “审”前考察: (1)0?n a > (2)0?n a →; (3)绝对(条件)收敛?注: 若1lim1n n na a ρ+→∞=>,则n u ∑发散2. 标准级数: (1)11(1)n n +-∑; (2)11(1)n p n +-∑; (3)11(1)ln n p n+-∑ 3. 莱布尼兹审敛法(收敛?) (1)前提:na∑发散; (2)条件: ,0nn a a →; (3)结论:1(1)n n a +-∑条件收敛.4. 补充方法:(1)加括号后发散, 则原级数必发散; (2)221,0n n n n s s a s s s s +→→⇒→⇒→. 5. 注意事项: 对比 na∑;(1)nna-∑;na∑;2na∑之间的敛散关系四. 幂级数:1. 常见形式: (1)nna x∑, (2)()nna x x -∑, (3)20()nna x x -∑2. 阿贝尔定理:(1)结论: *x x =敛*0R x x ⇒≥-; *x x =散*0R x x ⇒≤- (2)注: 当*x x =条件收敛时*R x x ⇒=- 3. 收敛半径,区间,收敛域(求和前的准备) 注(1),n nn n a na x x n∑∑与n n a x ∑同收敛半径 (2)nna x∑与20()nna x x -∑之间的转换4. 幂级数展开法:(1)前提: 熟记公式(双向,标明敛域)23111,2!3!x e x x x R =++++Ω= 24111()1,22!4!x x e e x x R -+=+++Ω= 35111(),23!5!x x e e x x x R --=+++Ω= 3511sin ,3!5!x x x x R =-+-Ω=2411cos 1,2!4!x x x R =-++Ω=;211,(1,1)1x x x x =+++∈--; 211,(1,1)1x x x x=-+-∈-+ 2311ln(1),(1,1]23x x x x x +=-+-∈-2311ln(1),[1,1)23x x x x x -=----∈-3511arctan ,[1,1]35x x x x x =-+-∈-(2)分解: ()()()f x g x h x =+(注:中心移动) (特别: 021,x x ax bx c=++) (3)考察导函数: ()'()g x f x 0()()(0)xf xg x dx f ⇒=+⎰(4)考察原函数: 0()()xg x f x dx ⎰()'()f x g x ⇒=5. 幂级数求和法(注: *先求收敛域, *变量替换): (1)(),S x =+∑∑(2)'()S x =,(注意首项变化)(3)()()'S x =∑,(4)()"()"S x S x ⇒的微分方程 (5)应用:()(1)n nn n aa x S x a S ⇒=⇒=∑∑∑.6. 方程的幂级数解法7. 经济应用(数三):(1)复利: (1)nA p +; (2)现值: (1)nA p -+五. 傅里叶级数(数一):(2T π=)1. 傅氏级数(三角级数): 01()cos sin 2n n n a S x a nx b nx ∞==++∑ 2. Dirichlet 充分条件(收敛定理): (1)由()()f x S x ⇒(和函数) (2)1()[()()]2S x f x f x =-++ 3. 系数公式: 01()cos 1(),,1,2,3,1()sin n n a f x nxdx a f x dx n b f x nxdx πππππππππ---⎧=⎪⎪==⎨⎪=⎪⎩⎰⎰⎰4. 题型: (注: ()(),?f x S x x =∈) (1)2T π=且(),(,]f x x ππ=∈-(分段表示)(2)(,]x ππ∈-或[0,2]x π∈ (3)[0,]x π∈正弦或余弦 *(4)[0,]x π∈(T π=) *5. 2T l =6. 附产品: ()f x ⇒01()cos sin 2n n n a S x a nx b nx ∞==++∑ 00001()cos sin 2n n n a S x a nx b nx ∞=⇒=++∑001[()()]2f x f x =-++第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算1.12k a k b +; (平行b a λ⇔=)2. a ; (单位向量(方向余弦)01(cos ,cos ,cos )a a aαβγ=)3. a b ⋅; (投影:()a a b b a⋅=; 垂直:0a b a b ⊥⇔⋅=; 夹角:(,)a b a b a b⋅=)4. a b ⨯; (法向:,n a b a b =⨯⊥; 面积:S a b =⨯) 二. 平面与直线1.平面∏(1)特征(基本量): 0000(,,)(,,)M x y z n A B C ⊕=(2)方程(点法式):000:()()()00A x x B y y C z z Ax By Cz D π-+-+-=⇒+++= (3)其它: *截距式1x y za b c++=; *三点式2.直线L(1)特征(基本量): 0000(,,)(,,)M x y z s m n p ⊕= (2)方程(点向式): 000:x x y y z z L m n p---== (3)一般方程(交面式): 111122220A xB yC zD A x B y C z D +++=⎧⎨+++=⎩(4)其它: *二点式;*参数式;(附: 线段AB 的参数表示:121121121()(),[0,1]()x a a a t y b b b t t z c c c t=+-⎧⎪=+-∈⎨⎪=+-⎩)3. 实用方法:(1)平面束方程: 11112222:()0A x B y C z D A x B y C z D πλ+++++++= (2)距离公式: 如点000(,)M x y到平面的距离d =(3)对称问题;(4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面(1)形式∑: (,,)0F x y z =或(,)z f x y =; (注: 柱面(,)0f x y =) (2)法向(,,)(cos ,cos ,cos )x y z n F F F αβγ=⇒ (或(,1)x y n z z =--)2. 曲线(1)形式():()()x x t y y t z z t =⎧⎪Γ=⎨⎪=⎩,或(,,)0(,,)0F x y z G x y z =⎧⎨=⎩;(2)切向: {'(),'(),'()}s x t y t z t = (或12s n n =⨯)3. 应用(1)交线, 投影柱面与投影曲线;(2)旋转面计算: 参式曲线绕坐标轴旋转;(3)锥面计算.四. 常用二次曲面 1. 圆柱面:222x y R += 2. 球面: 2222x y z R ++= 变形: 2222x y R z +=-,z =,2222x y z az ++=, 2222000()()()x x y y z z R -+-+-=3. 锥面: z =变形: 222x y z +=, z a =4. 抛物面: 22z x y =+,变形: 22x y z +=, 22()z a x y =-+ 5. 双曲面: 2221x y z +=± 6. 马鞍面: 22z x y =-, 或z xy =五. 偏导几何应用 1. 曲面(1)法向: (,,)0(,,)x y z F x y z n F F F =⇒=, 注: (,)(,1)x y z f x y n f f =⇒=- (2)切平面与法线:2. 曲线(1)切向: (),(),()(',',')x x t y y t z z t s x y z ===⇒= (2)切线与法平面3. 综合: :Γ00F G =⎧⎨=⎩, 12s n n =⨯六. 方向导与梯度(重点) 1. 方向导(l 方向斜率):(1)定义(条件):(,,)(cos ,cos ,cos )l m n p αβγ=⇒ (2)计算(充分条件:可微):cos cos cos x y z uu u u lαβγ∂=++∂ 附: 0(,),{cos ,sin }z f x y l θθ==cos sin x y zf f lθθ∂⇒=+∂ (3)附: 2222cos 2sin cos sin xx xy yy f f f f lθθθθ∂=++∂2. 梯度(取得最大斜率值的方向) G :(1)计算:()(,)(,)x y a z f x y G gradz f f =⇒==; ()(,,)(,,)x y z b u f x y z G gradu u u u =⇒==(2)结论()a ul∂∂0G l =⋅; ()b 取l G =为最大变化率方向; ()c 0()G M 为最大方向导数值.第八讲: 三重积分与线面积分(数一)一. 三重积分(fdV Ω⎰⎰⎰)1. Ω域的特征(不涉及复杂空间域):(1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: 22212{(,)}(,)(,)xy D x y x y R z x y z z x y =+≤⊕≤≤ (3)截面法: 222(){(,)()}D z x y x y R z a z b =+≤⊕≤≤ (4)其它: 长方体, 四面体, 椭球 2. f 的特征:(1)单变量()f z , (2)22()f x y +, (3)222()f x y z ++, (4)f ax by cz d =+++3. 选择最适合方法: (1)“积”前: *dv Ω⎰⎰⎰; *利用对称性(重点)(2)截面法(旋转体): ()baD z I dz fdxdy =⎰⎰⎰(细腰或中空, ()f z , 22()f x y +)(3)投影法(直柱体): 21(,)(,)xyz x y z x y D I dxdy fdz =⎰⎰⎰(4)球坐标(球或锥体): 220sin ()RI d d f d παθϕϕρρ=⋅⋅⋅⎰⎰⎰,(5)重心法(f ax by cz d =+++): ()I ax by cz d V Ω=+++ 4. 应用问题:(1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)Gauss 公式二. 第一类线积分(Lfds ⎰)1. “积”前准备:(1)Lds L =⎰; (2)对称性; (3)代入“L ”表达式2. 计算公式:()[,]((),(()b aLx x t t a b fds f x t y t y y t =⎧∈⇒=⎨=⎩⎰⎰3. 补充说明: (1)重心法:()()Lax by c ds ax by c L ++=++⎰;(2)与第二类互换: LLA ds A dr τ⋅=⋅⎰⎰4. 应用范围(1)第一类积分 (2)柱体侧面积 (),Lz x y ds ⎰三. 第一类面积分(fdS ∑⎰⎰)1. “积”前工作(重点): (1)dS ∑=∑⎰⎰; (代入:(,,)0F x y z ∑=)(2)对称性(如: 字母轮换, 重心) (3)分片2. 计算公式:(1)(,),(,)(,,(,xyxy D z z x y x y D I f x y z x y =∈⇒=⎰⎰(2)与第二类互换:A ndS A d S ∑∑⋅=⋅⎰⎰⎰⎰四: 第二类曲线积分(1):(,)(,)LP x y dx Q x y dy +⎰(其中L 有向)1. 直接计算: ()()x x t y y t =⎧⎨=⎩,2112:['()'()]t t t t t I Px t Qy t dt →⇒=+⎰常见(1)水平线与垂直线; (2)221x y += 2. Green 公式: (1)()LDQ PPdx Qdy dxdy x y∂∂+=-∂∂⎰⎰⎰; (2)()L A B →⎰: *P Q y y ∂∂=⇒∂∂换路径; *P Q y y∂∂≠⇒∂∂围路径(3)L⎰(x y Q P =但D 内有奇点)*LL =⎰⎰(变形)3. 推广(路径无关性):P Q y y∂∂=∂∂ (1)Pdx Qdy du +=(微分方程)()BA L AB u →⇔=⎰(道路变形原理)(2)(,)(,)LP x y dx Q x y dy +⎰与路径无关(f 待定): 微分方程.4. 应用功(环流量):I F dr Γ=⋅⎰(Γ有向τ,(,,)F P Q R =,(,,)d r ds dx dy dz τ==)五. 第二类曲面积分: 1. 定义: Pdydz Qdzdx Rdxdy ∑++⎰⎰, 或(,,)R x y z dxdy ∑⎰⎰ (其中∑含侧)2. 计算:(1)定向投影(单项):(,,)R x y z dxdy ∑⎰⎰, 其中:(,)z z x y ∑=(特别:水平面);注: 垂直侧面, 双层分隔(2)合一投影(多项,单层):(,,1)x y n z z =--[()()]x y Pdydz Qdzdx Rdxdy P z Q z R dxdy ∑∑⇒++=-+-+⎰⎰⎰⎰(3)化第一类(∑不投影): (cos ,cos ,cos )n αβγ=(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑⇒++=++⎰⎰⎰⎰3. Gauss 公式及其应用: (1)散度计算: P Q R divA x y z∂∂∂=++∂∂∂ (2)Gauss 公式: ∑封闭外侧, Ω内无奇点Pdydz Qdzdx Rdxdy divAdv ∑Ω++=⎰⎰⎰⎰⎰(3)注: *补充“盖”平面:0∑∑+⎰⎰⎰⎰; *封闭曲面变形∑⎰⎰(含奇点)4. 通量与积分:A d S ∑Φ=⋅⎰⎰(∑有向n ,(),,A P Q R =,(,,)d S ndS dydz dzdx dxdy ==)六: 第二类曲线积分(2):(,,)(,,)(,,)P x y z dx Q x y z dy R x y z dz Γ++⎰1. 参数式曲线Γ: 直接计算(代入)注(1)当0rot A =时, 可任选路径; (2)功(环流量):I F dr Γ=⋅⎰2. Stokes 公式: (要求: Γ为交面式(有向), 所张曲面∑含侧) (1)旋度计算: (,,)(,,)R A P Q R x y z∂∂∂=∇⨯=⨯∂∂∂ (2)交面式(一般含平面)封闭曲线: 0F G =⎧⇒⎨=⎩同侧法向{,,}x y z n F F F =或{,,}x y z G G G ;(3)Stokes 公式(选择): ()A dr A ndS Γ∑⋅=∇⨯⋅⎰⎰⎰(a )化为Pdydz Qdzdx Rdxdy ∑++⎰⎰; (b )化为(,,)R x y z dxdy ∑⎰⎰; (c )化为fdS ∑⎰⎰。

相关文档
最新文档