高二数学上册第一次月考模块检测试题
高二数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校第二二零二零—二零二壹高二数学上学期第一次月考试题〔含解析〕一、选择题〔本大题一一共13小题,每一小题4分,一共52分.题1—10为单项选择题,题11-13为多项选择题,多项选择题错选得0分,漏选得2分.〕 1.椭圆229225x ky +=的一个焦点是()4,0,那么k =〔〕A.5B.25C.-5D.-25【答案】B 【解析】 【分析】将椭圆方程化为HY 方程,根据焦点坐标求得c ,由此列方程求得k 的值.【详解】椭圆的HY方程为22122525x y k+=,由于椭圆焦点为()4,0,故焦点在x 轴上,且4c =.所以2225254k=+,解得25k =. 应选:B【点睛】本小题主要考察根据椭圆的焦点坐标求参数的值,属于根底题. 2.双曲线22412mx y -=的一条渐近线的方程为20y -=,那么m =〔〕A.3C.4D.16【答案】A 【解析】 【分析】写出双曲线的HY 方程,根据渐近线方程即可得解. 【详解】双曲线22412mx y -=20y -=,即双曲线221213m x y -=的一条渐近线的方程为y x =, 所以124,3m m==. 应选:A【点睛】此题考察根据双曲线的渐近线方程求双曲线HY 方程,关键在于准确掌握双曲线的概念,找准其中的a ,b .3.“x R ∃∈,2440x x -+≤〞的否认是〔〕A.x R ∀∈,2440x x -+>B.x R ∀∈,2440x x -+≥C.x R ∃∈,2440x x -+>D.x R ∃∈,2440x x -+≥【答案】A 【解析】 【分析】 .【详解】A 选项正确. 应选:A 【点睛】. 4.〕 A.2230x x -->,B.π不是无限不循环小数C.直线与平面相交D.在线段AB 上任取一点【答案】B 【解析】【分析】 ACDB.【详解】ACD 均不能判断真假,B. 应选:B 【点睛】.5.平面内,一个动点P ,两个定点1F ,2F ,假设12PF PF -为大于零的常数,那么动点P 的轨迹为〔〕A.双曲线B.射线C.线段D.双曲线的一支或者射线 【答案】D 【解析】【分析】根据双曲线的定义,对动点P 的轨迹进展判断,由此确定正确选项. 【详解】两个定点的间隔为12F F ,当1212PF PF F F -<时,P 点的轨迹为双曲线的一支; 当1212PF PF F F -=时,P 点的轨迹为射线;不存在1212PF PF F F ->的情况.综上所述,P 的轨迹为双曲线的一支或者射线. 应选:D【点睛】本小题主要考察双曲线定义的辨析,属于根底题. 6.〕A.x R ∀∈,2210x x -+>B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <C.a ∀∈R ,in s (s in )a a π-=D.x R ∀∈,12x x+≥ 【答案】C 【解析】 【分析】 .【详解】A.x R ∀∈,2210x x -+>,当21,210x x x =-+=B.0,4x π⎡⎤∀∈⎢⎥⎣⎦,tan 1x <,当,tan 14x x π== C.a ∀∈R ,in s (s in )a a π-=,满足题意; D.x R ∀∈,12x x +≥,当10,2x x x<+≤-. 应选:C 【点睛】.7.假设方程22216x y a a +=-表示双曲线,那么实数a 的取值范围是〔〕A.6a <B.6a <且0a≠ C.2a > D.2a >或者3a <-【答案】B 【解析】 【分析】根据双曲线方程形式得2060a a ⎧≠⎨-<⎩,即可得解.【详解】方程22216x y a a +=-表示双曲线,那么2060a a ⎧≠⎨-<⎩,解得:6a <且0a ≠.应选:B【点睛】此题考察双曲线概念辨析,根据方程表示双曲线求解参数的取值范围,关键在于纯熟掌握双曲线方程的形式.8.1F ,2F 是椭圆(222:13x y C a a+=>的两个焦点,P 是C 上一点.假设1260F PF ∠=︒,那么12F PF △的面积为〔〕B. D.与a 有关【答案】A 【解析】 【分析】根据椭圆的几何性质结合余弦定理求得124F P PF ⋅=,利用三角形面积公式即可得解.【详解】根据椭圆几何性质可得:122F P PF a +=,12F PF △中,由余弦定理:222121212F F F P PF F P PF =+-⋅,即()221212123F F F P PF F P PF =+-⋅()22124343a a F P PF -=-⋅,解得:124F P PF ⋅=12F PF △的面积为121sin 602F P PF ⋅⋅︒=. 应选:A【点睛】此题考察椭圆的几何性质的应用,结合余弦定理和面积公式求三角形面积,关键在于纯熟掌握椭圆根本性质和三角形相关定理公式.9.1F ,2F 是椭圆()222210x y a b a b+=>>的左,右焦点,直线23b y =与该椭圆交于B ,C ,假设2BF C △是直角三角形,那么该椭圆的离心率为〔〕B.【答案】D 【解析】 【分析】联立直线和椭圆求出交点坐标22,,,3333b b B C ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,分别讨论直角情况即可得解.【详解】联立直线和椭圆方程:2222123x y a b b y ⎧=⎪⎪⎨+=⎪⎪⎩ 所以直线23b y =与椭圆()222210x y a b a b+=>>的交点坐标22,33b b B C ⎛⎫⎫⎪⎪ ⎪⎪⎝⎭⎝⎭, 因为椭圆焦点在x 轴,所以角B 不可能为直角,当角Cc =,即e =;当角2F 为直角时,220F B F C ⋅=,即22,,03333b b c c ⎛⎫⎛⎫--⋅-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22254099a b c -+=,2222544099a a c c --+=225c a =,5e =.应选:D【点睛】此题考察根据直线与椭圆位置关系,结合三角形形状求解离心率,关键在于准确求出直线与椭圆的交点坐标,根据垂直关系建立等量关系求椭圆离心率.10.双曲线221916x y -=的左,右焦点分别为1F ,2F ,P 为右支上一点,且1245cos F PF ∠=,那么12F PF △内切圆的面积为〔〕A.211πB.83π C.649π D.176121π【答案】C 【解析】 【分析】 根据1245cos F PF ∠=求出三角形的边长和面积,利用等面积法求出内切圆的半径,即可得到面积. 【详解】由题:1245cos F PF ∠=,那么123sin 5F PF ∠=,P 为右支上一点, 12F PF △中由余弦定理:()()22212111146265F F F P F P F P F P =++-⋅+⨯解得110F P =,12F PF △的面积121310164825F PF S =⨯⨯⨯=△,设其内切圆半径为r ,()101016482r ++=,解得:83r = 那么12F PF △内切圆的面积为286439ππ⎛⎫⨯=⎪⎝⎭【点睛】此题考察根据双曲线的几何性质求解焦点三角形的面积和内切圆的半径,根据等面积法求解半径得到圆的面积. 11.〕A.假设a ba c ⋅=⋅,那么bc =B.正数,a b ,假设2a b+≠a bC.0x N +∃∈,使200x x ≤D.正数,x y ,那么1xy =是lg lg 0x y +=的充要条件【答案】BCD 【解析】 【分析】 考虑0a=可断定A.【详解】A 选项:假设0a =,任意向量,b c ,0a b a c ⋅=⋅=,不能推出b c =B ,a b ,假设ab =,那么2a b+= C 选项:当01x =D 选项:正数,x y ,lg lg 0x y +=等价于lg 0xy =,等价于1xy =,那么1xy =是lg lg 0x y +=的充要条件应选:BCD 【点睛】.12.〔多项选择题〕双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,那么双曲线1C 的离心率可能为〔〕C.2D.3【答案】CD 【解析】 【分析】根据渐近线的平分关系求出斜率,根据斜率为b a =b a =.【详解】双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第三象限三等分,根据双曲线对称性可得:双曲线()22122:10,0x y C a b a b-=>>与双曲线()222222222:10,0y x C a b a b -=>>的渐近线将第一象限三等分,所以第一象限的两条渐近线的倾斜角为30°和60°,其斜率为b a =b a =,所以其离心率为2或者3. 应选:CD【点睛】此题考察根据双曲线的渐近线关系求离心率,关键在于对题目所给条件进展等价转化,利用双曲线根本量之间的关系求解.13.〔多项选择题〕以下说法正确的选项是〔〕 A.方程2xxy x +=表示两条直线B.椭圆221102x y m m +=--的焦距为4,那么4m =C.曲线22259x y xy +=关于坐标原点对称D.双曲线2222x y a b λ-=的渐近线方程为b y x a=±【答案】ACD 【解析】 【分析】B 选项漏掉考虑焦点在y 轴的情况,ACD 说法正确. 【详解】方程2xxy x +=即()10x x y +-=,表示0x =,10x y +-=两条直线,所以A 正确;椭圆221102x ym m+=--的焦距为4,那么()1024m m---=或者()2104m m---=,解得4m=或者8m=,所以B选项错误;曲线22259x yxy+=上任意点(),P x y,满足22259x yxy+=,(),P x y关于坐标原点对称点(),P x y'--也满足()()()()22259x yx y--+=--,即(),P x y'--在22259x yxy+=上,所以曲线22259x yxy+=关于坐标原点对称,所以C选项正确;双曲线2222x ya bλ-=即0λ≠,其渐近线方程为by xa=±正确,所以D选项正确.应选:ACD【点睛】此题考察曲线方程及简单性质辨析,涉及认识曲线方程,研究对称性,根据椭圆性质求参数的取值,求双曲线的渐近线.二、填空题〔本大题一一共4小题,每一小题4分,一共16分.〕14.方程22157x ya a+=--表示椭圆,那么实数a的取值范围是_______.【答案】()()5,66,7【解析】【分析】根据方程表示椭圆,列不等式组可得507057aaa a->⎧⎪->⎨⎪-≠-⎩,即可求解.【详解】由题方程22157x ya a+=--表示椭圆,那么507057aaa a->⎧⎪->⎨⎪-≠-⎩,解得()()5,66,7a ∈故答案为:()()5,66,7【点睛】此题考察根据曲线方程表示椭圆求参数的取值范围,关键在于纯熟掌握椭圆的HY方程特征,此题容易漏掉考虑a =6的情况不合题意.15.假设“0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <〞m 的取值范围是________. 【答案】0m >【解析】【分析】 根据0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,实数m 的取值范围,即()min tan x m <. 【详解】0,4x π⎡⎤∃∈⎢⎥⎣⎦,tan x m <,即()min tan x m <, tan y x =在0,4x π⎡⎤∈⎢⎥⎣⎦单调递增,()min tan 0x = 即0m >.故答案为:0m >【点睛】.16.2F 是椭圆2211612x y +=的右焦点,P 是椭圆上的动点,(A 为定点,那么1PA PF +的最小值为_______.【答案】6【解析】【分析】 将问题进展转化12288PA PF PA PF PA PF +=+-=+-,根据动点到两个定点间隔之差的最值求解. 【详解】()22,0F 是椭圆2211612x y +=的右焦点,()12,0F -是椭圆2211612x y +=的左焦点,128PF PF +=(A 在椭圆内部,1222888826PA PF PA PF PA PF AF +=+-=+-≥-=-=,当P 为2F A 的延长线与椭圆交点时获得最小值.故答案为:6【点睛】此题考察椭圆上的点到椭圆内一点和焦点的间隔之和最值问题,关键在于利用椭圆的几何性质进展等价转化,结合平面几何知识求解.17.点A ,B 分别是射线()1:0l y x x =≥,2(:0)l y x x =-≤上的动点,O 为坐标原点,且AOB 的面积为定值4.那么线段AB 中点M 的轨迹方程为_________. 【答案】22144-=y x ,0y > 【解析】【分析】设出中点坐标,根据面积关系建立等量关系化简即可得到轨迹方程.【详解】由题:()1:0l y x x =≥,2(:0)l y x x =-≤互相垂直,()()112212,,,,0,0A x x B x x x x -><,设线段AB 中点(),M x y , AOB 的面积为定值4,即)12142x -=,即124x x =- 121222x x x x x y +⎧=⎪⎪⎨-⎪=⎪⎩,两式平方得:222121222212122424x x x x x x x x x y ⎧++=⎪⎪⎨+-⎪=⎪⎩, 两式相减得:22124x y x x -==- 即22144-=y x ,0y >故答案为:22144-=y x ,0y > 【点睛】此题考察求轨迹方程,关键在于根据给定的条件建立等量关系,此类题目容易漏掉考虑取值范围的限制.三、解答题〔本大题一一共6小题,总分值是82分.解容许写出文字说明,证明过程或者演算步骤〕18.集合{}2(3)0A x x a x a =+-+=,{}0B x x =>.假设A B =∅.务实数a 的取值范围.【答案】(](),19,a ∈-∞+∞【解析】【分析】 将问题转化考虑A B =∅a 的取值范围,即可得到假设A B =∅a 的取值范围. 【详解】考虑A B =∅2(3)0x a x a +-+=没有正根, ①()2340a a ∆=--<得()1,9a ∈; ②()2340a a ∆=--=得1a =,或者9a =, 当9a =时{}{}26903A x x x =++==-符合题意,当1a =时{}{}22101A x x x =-+==,不合题意,所以9a =; ③()23403020a a a a ⎧∆=-->⎪-⎪<⎨⎪>⎪⎩无解; 综受骗A B =∅(]1,9a ∈,所以假设A B =∅(](),19,a ∈-∞+∞【点睛】.19.对称中心在坐标原点的椭圆关于坐标轴对称,该椭圆过1212,55⎛⎫ ⎪⎝⎭,且长轴长与短轴长之比为4:3.求该椭圆的HY 方程. 【答案】221169x y +=或者221169y x += 【解析】【分析】根据椭圆的长轴短轴长度之比设椭圆的HY 方程,根据椭圆经过的点求解参数即可得解.【详解】由题:对称中心在坐标原点的椭圆关于坐标轴对称,长轴长与短轴长之比为4:3,当焦点在x 轴上,设椭圆的HY 方程为221169x y m m+=,m >0,椭圆过1212,55⎛⎫ ⎪⎝⎭, 14414412516259m m+=⨯⨯,解得:m =1, 所以椭圆的HY 方程为221169x y += 同理可得当焦点在y 轴上,椭圆的HY 方程为221169y x +=, 所以椭圆的HY 方程为221169x y +=或者221169y x += 【点睛】此题考察求椭圆的HY 方程,关键在于根据长轴短轴长度关系设方程,根据椭圆上的点的坐标求解,易错点在于漏掉考虑焦点所在位置.20.“[]0,2x ∃∈,使方程251020x x m -+-=有解〞.〔1〕务实数m 的取值集合A ;〔2〕设不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件,务实数a 的取值范围.【答案】〔1〕{}32A m m =-≤≤;〔2〕()(),23,a ∈-∞-+∞【解析】【分析】〔1〕将问题转化为()225102513m x x x =-+=--在[]0,2x ∈有解,即可求解;〔2〕分类讨论求解A B ⊆即可得到参数的取值范围.【详解】〔1“[]0,2x ∃∈,使方程251020x x m -+-=有解〞是.即()225102513m x x x =-+=--在[]0,2x ∈有解,所以[]3,2m ∈- 即{}32A m m =-≤≤;〔2〕不等式()()1120x a x a -+-<+的解集为集合B ,假设x B ∈是x A ∈的必要不充分条件, 当23a =不合题意; 当23<a 时,112a a -<-,()1,12B a a =--,13122a a -<-⎧⎨->⎩,得2a <-; 当23a >时,112a a ->-,()12,1B a a =--,12123a a ->⎧⎨-<-⎩,得3a >; 所以()(),23,a ∈-∞-+∞【点睛】此题考察根据方程有解求参数的取值范围,根据充分条件和必要条件关系求解参数的取值范围,关键在于弄清充分条件和必要条件关系,利用分类讨论求解.21.设1F ,2F 分别是椭圆222:14x y E b+=的左,右焦点,假设P 是该椭圆上的一个动点,12PF PF ⋅的最大值为1.求椭圆E 的方程. 【答案】2214x y += 【解析】【分析】设出焦点坐标,表示出12PF PF ⋅利用函数关系求出最大值,即可得到21b =.【详解】由题:()1F ,)2F 分别是椭圆222:14x y E b +=的左,右焦点,设(),P x y 施椭圆上的动点,即[]222221,0,4,44x y x b b+=∈<, ()22222221124444x b x b x b b ⎛⎫⎛⎫=-+-=-+- ⎪ ⎪⎝⎭⎝⎭-,当2x =4时,获得最大值, 即21b =, 所以椭圆的方程为2214x y +=. 【点睛】此题考察求椭圆的HY 方程,关键在于根据椭圆上的点的坐HY 确计算,结合取值范围求解最值.22.平面直角坐标系中两个不同的定点()1,0F a -,()2,0,0F a a >,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠,求动点P 的轨迹方程,并说明此轨迹是何种曲线.【答案】见解析.【解析】【分析】 根据斜率关系化简得22221x y a ma-=,分类讨论得解. 【详解】设(),P x y ,过点1F 的直线1l 与过点2F 的直线2l 相交于点P ,假设直线1l 与直线2l 的斜率之积为(0)m m ≠, 即y y m x a x a ,222y mx ma =-,22221x y a ma-=, 当1m =-轨迹是圆,不含点()1,0F a -,()2,0,0F a a >;当0m >,轨迹是以()1,0F a -,()2,0F a 为顶点的双曲线,不含顶点()1,0F a -,()2,0F a ; 当10m -<<,轨迹是以()1,0F a -,()2,0F a 为长轴顶点的椭圆,不含()1,0F a -,()2,0F a ; 当1m <-,轨迹是以()1,0F a -,()2,0F a 为短轴顶点的椭圆,不含()1,0F a -,()2,0F a .【点睛】此题考察曲线轨迹的辨析,关键在于根据题意建立等量关系,根据曲线轨迹方程分类讨论得解.23.椭圆221:1169x y C +=和双曲线222:1169x y C -=,点A ,B 为椭圆的左,右顶点,点P 在双曲线2C 上,直线OP 与椭圆1C 交于点Q 〔不与点A ,B 重合〕,设直线AP ,BP ,AQ ,BQ 的斜率分别为1k ,2k ,3k ,4k .〔1〕求证:12916k k ⋅=; 〔2〕求证:1234k k k k +++的值是定值.【答案】〔1〕证明见解析;〔2〕证明见解析.【解析】【分析】〔1〕设(),P x y ,表示出斜率即可求得斜率之积;〔2〕设直线:OP y kx =,0k≠,依次求解P ,Q 坐标,表示出斜率之和化简即可得解. 【详解】〔1〕由题:()()()4,0,4,0,,A B P x y -满足221169x y -=,229116x y ⎛⎫=- ⎪⎝⎭ 21229441616y y y k k x x x ⋅=⋅==+--; 〔2〕根据曲线的对称性不妨设直线:OP y kx =,0k ≠, 联立221169y kx x y =⎧⎪⎨+=⎪⎩得2221169x k x +=,22144916x k =+,不妨取Q ⎛⎫,同理可得:P ⎛⎫ 所以1234k k k k +++的值是定值.【点睛】此题考察椭圆与双曲线对称性辨析,求解直线与曲线交点坐标,根据坐标表示斜率求解斜率之积和斜率之和证明结论.。
2024-2025学年江苏省南通市高二上册开学第一次月考数学检测试题(附解析)
2024-2025学年江苏省南通市高二上学期开学第一次月考数学检测试题一、选择题:本题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若直线的倾斜角为,则( ).2π:tan5l x =αα=A .0B .C .D .不存在2π5π22.已知直角梯形,且,,,,则过其中三点的圆的方程可ABCD ()1,1A ()3,1B ()3,3C ()2,3D 以为( )A .B .()2223x y -+=()2222x y -+=C .D .()()22222x y -+-=()()22322x y -+-=3. 已知直线:和直线:,则是“∥”的( l 03=++y mx n ()01232=+-+y m x m "1"-=m l n )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件4.已知圆的方程为,若点在圆外,则的取值C 222245330x y mx my m m +-++-+=(1,2)m -m 范围是( )A .B .C .D .(,1)(4,)-∞+∞ (1,)+∞(1,4)(4,)+∞5.设点,若直线与线段有交点,则的取值范围是( )()()2,3,3,2A B -20ax y ++=AB a A . B . C . D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭45,32⎡⎤-⎢⎥⎣⎦54,23⎡⎤-⎢⎥⎣⎦54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭6.已知直线:与直线:交于点,则的最大1l 40mx y ++=2l 640x my m ---=P (x 0,y 0)2200x y +值为( )A .4B .8C .32D .647.已知直线与圆交于不同的两点,O 是坐标原点,且有()00x y k k +-=>224x y +=,A Bk 的取值范围是( )OA OB +≥A .B .C .D .8.数学中有许多形状优美,寓意美好的曲线,曲线C :就是其中之一如图,221x y x y+=+()给出下列三个结论:①曲线C 所围成的“心形”区域的面积大于3②曲线C 恰好经过8个整点即横、纵坐标均为整数的点()③曲线C 其中,所有正确结论的序号是( )A .①②B .①③C .③D .①二、选择题:本题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合题目要求. 全部选对得 6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.对于直线.以下说法正确的有( )()12:230,:3130l ax y a l x a y a ++=+-+-=A .的充要条件是B .当时,1l ∥2l 3a =25a =12l l ⊥C .直线一定经过点D .点到直线的距离的最大值为51l ()3,0M ()1,3P 1l 10.设圆,直线,为上的动点,过点作圆的两条()()22:113C x y -+-=:10l x y ++=P l P C 切线、,切点分别为、,则下列说法中正确的有( )PA PB A BA .的取值范围为B .四边形PA ⎫+∞⎪⎪⎭PACB C .存在点使D .直线过定点P 120APB ︒∠=AB ()0,0 11.“曼哈顿距离”是十九世纪的赫尔曼-闵可夫斯基所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点的曼哈顿距()()1122,,,A x y B x y 离,则下列结论正确的是( )()1212,d A B x x y y =-+-A .若点,则()()2,4,2,1P Q -(),7d P Q =B .若点,则在轴上存在点,使得()()1,0,1,0M N -x P ()(),,1d P M d P N +=C .若点,点在直线上,则的最小值是3()2,1M P 260x y -+=(),d P M D .若点在上,点在直线上,则的值可能是4M 2y x =N 280x y -+=(),d M N 三、填空题:本题共 3 小题,每小题 5 分,共 15 分.12.圆与圆的位置关系为.()11:221=+-y x C ()()944:222=-+-y x C 13.经过两条直线与的交点,且在轴上的截距是轴上的3倍的直350x y +-=230x y -+=y x 线方程为.14.已知圆O :圆:,则下列结论正确的是 .221x y +=k C 22()()4x k y -+=①无论k 取何值,圆心始终在直线上;k C y =②若圆O 与圆有公共点,则实数k 的取值范围为;k C 13[,22③若圆O 与圆或;k C 1k =±34k =±④与两个圆都相切的直线叫做这两个圆的公切线,如果两个圆在公切线的同侧,则这条公切线叫做这两个圆的外公切线,当时,两圆的外公切线长为32k =±四、解答题:本题共5小题,共77分。
2024—2025学年山西省大同市浑源县第七中学校高二上学期第一次月考数学试卷
2024—2025学年山西省大同市浑源县第七中学校高二上学期第一次月考数学试卷一、单选题(★) 1. 已知向量,,且,则x的值为()A. 3B. 4C. 5D. 6(★★) 2. 已知直线的一方向向量为,则直线的倾斜角为()A.B.C.D.(★★) 3. 如图,若直线,,的斜率分别为,,,则()A.B.C.D.(★★) 4. 如图,在三棱锥中,点,分别是,的中点,点满足,若,则()A.B.C.D.(★★) 5. 若直线与平行,则a的值为()A. 0B. 2C. 3D. 2或3(★★★) 6. 已知,,直线:,:,且,则的最小值为()A. 2B. 4C. 8D. 9(★★★) 7. 已知点,,若直线过点与线段始终没有交点,则直线的斜率的取值范围是A.B.或C.D.(★★) 8. 若三条直线能构成三角形,则a应满足的条件是()A.或B.C.且D.且二、多选题(★★★) 9. 已知空间三点,,,若,且,则点的坐标为()A.B.C.D.(★) 10. 已知直线与为两条不重合的直线,则下列命题正确的是()A.若,则斜率B.若斜率,则C.若倾斜角,则D.若,则倾斜角(★★) 11. 下列说法正确的是()A.直线的倾斜角为B.直线与两坐标轴围成的三角形的面积是2C.过点的直线在两坐标轴上的截距之和为,则该直线方程为D.过两点的直线方程为(★★★) 12. 在长方体中,,,以D为原点,,,的方向分别为x轴,y轴,z轴正方向建立空间直角坐标系,则下列说法正确的是()A.的坐标为(2, 2, 3)B.=(-2, 0, 3)C.平面的一个法向量为(-3, 3, -2)D.二面角的余弦值为三、填空题(★) 13. 点到直线的距离为 ______ .(★★) 14. 已知,,,则 ________ .(★) 15. 已知直线与互相平行,则 __________ ,与之间的距离为 __________ .(★) 16. 已知点三点共线,则实数________ , ________ .四、解答题(★★★) 17. 如图,在空间四边形中,,点为的中点,设,,.(1)试用向量,,表示向量;(2)若,,,求的值.(★★) 18. 已知直线l经过点和点.(1)求直线l的两点式方程,并化为截距式方程;(2)求直线l与两坐标轴围成的图形面积.(★★★) 19. 如图,在四棱中,底面,底面为正方形,,分别是的中点.(1)求证:;(2)求与平面所成角的正弦值.(★) 20. 设直线的方程为.(1)已知直线在轴上的截距为,求的值;(2)已知直线的斜率为1,求的值.(★★) 21. 直线经过两直线:和:的交点.(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为5,求直线的方程.(★★★) 22. 已知直线l:kx-y+1+2 k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.。
重庆市第八中学2024-2025学年高二上学期第一次月考数学试题
重庆市第八中学2024-2025学年高二上学期第一次月考数学试题一、单选题1.复数z 满足()2i 34i z -=+(i 为虚数单位),则z 的值为( )A.1B C D .2.已知α,β是两个不同的平面,l ,m 是两条不同的直线,下列说法正确的是( ) A .若//αβ,l α⊂,m β⊂,则//l m B .若αβ⊥,l α⊂,则l β⊥ C .若l α⊥,αβ⊥,则//l βD .若l α∥,m α⊥,则l m ⊥3.“直线()680ax a y -++=与350x ay a -+-=平行”是“6a =”的( )条件 A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要4.已知两个单位向量1e u r ,2e uu r 的夹角为120o ,则()()12212e e e e +⋅-=u r u u r u u r u r ( )A .32B .3C .52D .55.圆222460x y mx my ++++=关于直线30mx y ++=对称,则实数m =( ) A .1B .-3C .1或-3D .-1或36.直线:0l x 与圆22:(2)(1)2C x y ++-=交于A ,B 两点,则直线AC 与直线BC 的倾斜角之和为( ) A .120o B .145oC .165oD .210o7.已知4tan23θ=,π0,4θ⎛⎫∈ ⎪⎝⎭,若ππcos cos 44m ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭θθ,则实数m 的值为( ) A .13-B .12-C .13D .128.已知圆22:(2)(1)5C x y -++=及直线()():2180l m x m y m ++---=,下列说法正确的是( )A .圆C 被x 轴截得的弦长为2B .直线l 过定点()3,2C .直线l 被圆C 截得的弦长存在最大值,此时直线l 的方程为10x y +-=D .直线l 被圆C 截得的弦长存在最小值,此时直线l 的方程为50x y --=二、多选题9.在边长为2的正方形ABCD 中,,E F 分别为BC ,CD 的中点,则( )A .2AB AD EF -=u u u r u u u r u u u rB .4AE AF ⋅=u u u r u u u rC .()32AE AF AB AD +=+u u u r u u u r u u u r u u u rD .AE u u u r 在AD u u u r上的投影向量为12AE u u u r10.如图,直三棱柱111ABC A B C -所有棱长均为4,D ,E ,F ,G 分别在棱1111,,A B AC AB ,AC 上,(不与端点重合)且11A D A E BF CG ===,H ,P 分别为BC ,1A H 中点,则( )A .11//BC 平面PFGB .过D ,F ,G 三点的平面截三棱柱所得截面一定为等腰梯形C .M 在111A B C △内部(含边界),1π6A AM ∠=,则M 到棱11B C D .若M ,N 分别是平面11A ABB 和11A ACC 内的动点,则MNP △周长的最小值为3 11.已知圆221:1C x y +=和圆222:()(2)4C x m y m -+-=,0m ≥.点Q 是圆2C 上的动点,过点Q 作圆1C 的两条切线,切点分别为G ,H ,则下列说法正确的是( )A .当m ⎡∈⎢⎣⎭时,圆1C 和圆2C 没有公切线 B .当圆1C 和圆2C 有三条公切线时,其公切线的倾斜角的和为定值C .圆1C 与x 轴交于M ,N ,若圆2C 上存在点P ,使得π2MPN >∠,则m ∈⎝⎭D .圆1C 和2C 外离时,若存在点Q ,使四边形1QGC H 面积为m ∈⎝三、填空题12.将函数πcos 46y x ⎛⎫=- ⎪⎝⎭的图象向右平移π 02φφ⎛⎫<< ⎪⎝⎭个单位长度后,所得函数为奇函数,则 φ=.13.已知点()3,0P 在直线l 上,且点P 恰好是直线l 夹在两条直线1:220--=l x y 与2:30l x y ++=之间线段的一个三等分点,则直线l 的方程为.(写出一条即可)14.台风“摩羯”于2024年9月1日晚在菲律宾以东洋面上生成.据监测,“摩羯”台风中心位于某海滨城市O (如图)的东偏南1cos 7θθ⎛⎫= ⎪⎝⎭方向350km 的海面P 处,并以20km /h 的速度向西偏北60o 方向移动,台风侵袭的范围为圆形区域,当前半径为130km ,并以10km/h 的速度不断增大,小时后,该海滨城市开始受到台风侵袭.四、解答题15.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知4a =,2π3C =,D 为AB 边上一点.(1)若D 为AB 的中点,且CD =c ;(2)若CD 平分ACB ∠,且ABC V 的面积为CD 的长.16.如图,在正三棱柱111ABC A B C -中,6CA =,E 为棱AC 的中点,P 为BC 边上靠近B 的三等分点,且11PB BC ⊥.(1)证明:1//CB 平面1EBA ;(2)求平面11ABB A 与平面1BEC 夹角的余弦值.17.圆心为C 的圆经过A 0,3 ,B 2,1 两点,且圆心C 在直线:320l x y -=上. (1)求圆C 的标准方程;(2)过点()1,2M 作圆C 的相互重直的两条弦DF ,EG ,求四边形DEFG 的面积的最大值与最小值.18.如图、三棱锥P ABC -中,PA ⊥平面ABC ,O 为AB 的中点,AC BC ⊥,1OC =,4PA =.(1)证明:面ACP ⊥面BCP ;(2)若点A 到面BCP 的距离为43,证明:OC AB ⊥;(3)求OP 与面PBC 所成角的正弦值的取值范围.19.在平面直角坐标系xOy 中,已知圆C :222120x y x +---=,1M ,2M 是圆C 上的动点,且12M M =12M M 的中点为M . (1)求点M 的轨迹方程;(2)设点A 是直线0l y -+=上的动点,AP ,AQ 是M 的轨迹的两条切线,P ,Q 为切点,求四边形APCQ 面积的最小值;(3)若垂直于y 轴的直线1l 过点C 且与M 的轨迹交于点D ,E ,点N 为直线3x =-上的动点,直线ND ,NE 与M 的轨迹的另一个交点分别为F ,(G FG 与DE 不重合),求证:直线FG 过定点.。
第一次月考(月)(空间立体几何、直线与圆)检测模拟试卷高二数学上学期选择性必修第一册)(解析版)
高二第一次月考(10月)模拟试卷(时间:120分钟,分值:150分,范围:选择性必修一第一、二章)一、单项选择题:本题共8小题,每小题5分,共40分.在每个小题绐岀的四个选项中,只有一项是符合题目要求的.1.与向量(1,1,2)n =-反向的单位向量的坐标为()A .663⎛⎫-- ⎪ ⎪⎝⎭B .⎝⎭C .(1,1,2)--D .11,,122⎛⎫- ⎪⎝⎭【答案】A【分析】利用与向量n 反向的单位向量为n n-求解即可.【详解】因为n =,所以与向量n 反向的单位向量为nn -=⎛-= ⎝663⎛-- ⎝⎭.故选:A2.已知直线1:230l ax y -+=与直线()2:310l x a y +-+=,若12l l ⊥,则=a ()A .6B .6-C .2D .2-【答案】A【分析】根据两直线垂直的充要条件得到方程,求解方程得答案.【详解】解:因为直线1:230l ax y -+=与直线()2:310l x a y +-+=,且12l l ⊥,所以()()1230a a ⨯+-⨯-=,解得6a =,故选:A.3.若点()1,1P 在圆220x y x y k ++-+=的外部,则实数k 的取值范围是()A .()2-+∞,B .12,2⎡⎤--⎢⎥⎣⎦C .12,2⎛⎫- ⎪⎝⎭D .()2,2-【答案】C【分析】根据点与圆的位置关系及方程表示圆列出方程组,从而可得出答案.【详解】解:因为点()1,1P 在圆220x y x y k ++-+=的外部,所以111101140k k ++-+>⎧⎨+->⎩,解得122k -<<.故选:C .4.如图,三棱锥O ABC -中,M ,N 分别是AB ,OC 的中点,设OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN =()A .()12a b c -++B .()12a b c +-C .()12a b c -+D .()12a b c --+【答案】D【详解】M ,N 分别是AB ,OC 的中点,()()111222O O M N O N OM OA B a b c C +-==--=-+++.故选:D.5.某直线l 过点(3,4)B -,且在x 轴上的截距是在y 轴上截距的2倍,则该直线的斜率是()A .43-B .12-C .43或12-D .43-或12-【答案】D【分析】讨论在x 轴和y 轴上的截距均为0或均不为0,设直线方程并由点在直线上求参数,即可得直线方程,进而写出其斜率.【详解】当直线在x 轴和y 轴上的截距均为0时,设直线的方程为y kx =,代入点(3,4)B -,则43k =-,解得43k =-,当直线在x 轴和y 轴上的截距均不为0时,设直线的方程为12x y m m +=,代入点(3,4)B -,则3412m m-+=,解得52m =,所以所求直线的方程为1552x y+=,即250x y +-=,综上,该直线的斜率是43-或12-.故选:D6.若直线:10l ax by ++=始终平分圆22:4210M x y x y ++++=最小值为()AB .5C.D .10【答案】A【解析】由直线过圆心得,a b 满足的关系式,说明点(,)a b 在一条直线上,由点到平面的距离公式可得最小值.【详解】由题意直线l 过已知圆的圆心,圆心为(2,1)--,∴210a b --+=,即210a b +-=,点(,)a b 在直线210x y +-=上,210x y +-=的点(,)a b 到点(2,2)的距离,=故选:A .【点睛】方法点睛:本题考查二元函数的最值问题.解题方法是利用其几何意义:两点间距离求解,解题关键是求出,a b 满足的条件,得点(,)a b 在一条直线210x y +-=上,从而只要求得定点到直线的距离即可得.7.正四面体A BCD -的棱长为4,空间中的动点P满足PB PC +=AP PD ⋅的取值范围为()A.44⎡-+⎣B.C.4⎡-⎣D .[]14,2-【答案】D【分析】分别取BC ,AD 的中点E ,F ,由题意可得点P 的轨迹是以E为半径的球面,又AP PD ⋅=24PF -,再求出PF 的最值即可求解【详解】分别取BC ,AD 的中点E ,F,则2PB PC PE +==所以PE故点P 的轨迹是以E 为半径的球面,()()()()AP PD PF FA PF FD PF FA PF FA ⋅=-+⋅+=-+⋅-2224FA PF PF =-=-,又ED =EF ===所以minPFEF =,maxPF EF ==所以AP PD ⋅的取值范围为[]14,2-.故选:D .8.若圆()()22:cos sin 1M x y θθ-+-=02θπ≤<()与圆22:240N x y x y +--=交于A 、B两点,则tan ∠ANB 的最大值为()A .12B .34C .45D .43【答案】D【分析】分析出AB 为圆M 与圆N 的公共弦,且圆M 的半径为1,2AB ≤,当M 的坐标为()1,0时,2AB =,2222103cos 2105NA NB AB AB ANB NA NB +--∠==≥⋅由余弦函数的单调性确定3cos 5ANB ∠=时,ANB ∠最大,此时tan ANB ∠最大,最大值为43.【详解】22240x y x y +--=可化为()()22125x y -+-=,故圆N 的圆心为()1,2由题意可知:AB 为圆M 与圆N 的公共弦,且圆M 的半径为1,所以2AB ≤且AB ≤,故2AB ≤,当M 的坐标为()1,0时,2AB =,在△NAB 中,2222103cos 2105NA NB AB AB ANB NA NB +--∠==≥⋅,又[]0,πANB ∠∈,cos y x =在π0,2x ⎡⎤∈⎢⎥⎣⎦上单调递减,故ANB ∠为锐角,且当3cos 5ANB ∠=时,ANB ∠最大,又tan y x =在ππ,22x ⎛⎫∈- ⎪⎝⎭所以当ANB ∠最大时,tan ANB ∠取得最大值,且最大值为43,故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中三点()2,1,1A -,()1,0,2B ,()0,3,1C -,则()A .AB =B .AB AC⊥C .cos 19ABC ∠=D .A ,B ,C 三点共线【答案】AB【详解】易得()1,1,3AB =--,()2,2,0AC =-,()1,3,3CB =-,AB ∴=,A 正确;因为0AB AC ⋅=,所以AB AC ⊥,B 正确,D 错误;而cosAB CB ABC AB CB⋅∠==⋅,C 错误.故选:AB.10.若直线123:34,:0,:234l x y l x y l x my +=-=-=不能构成三角形,则m 的取值为()A .23B .23-C .29D .29-【答案】ABD【分析】分1323,////l l l l ,3l 过1l 与2l 的交点三种情况讨论即可.【详解】因为直线123:34,:0,:234l x y l x y l x my +=-=-=不能构成三角形,所以存在1323,////l l l l ,3l 过1l 与2l 的交点三种情况,当13//l l 时,有314234m =≠-,解得29m =-;当23//l l 时,有110234m -=≠-,解得23m =;当3l 过1l 与2l 的交点,则联立340x y x y +=⎧⎨-=⎩,解得11x y =⎧⎨=⎩,代入3l ,得21314m ⨯-⨯=,解得23m =-;综上:29m =-或23m =或23m =-.故选:ABD.11.已知曲线E 的方程为22x y x y +=+,则()A .曲线E 关于直线y x =对称B .曲线E 围成的图形面积为2π+C .若点00(,)x y 在曲线E 上,则0x ≤D .若圆222(0)x y r r +=>能覆盖曲线E ,则r 的最小值为122+【答案】ABC【分析】根据给定条件逐一分析每一个选项,推理、计算判断作答.【详解】对于A ,曲线E 上任意点(,)x y 有:22x y x y +=+,该点关于直线y x =的对称点(,)y x 有22y x y x +=+,即曲线E 上任意点(,)x y 关于直线y x =的对称点仍在曲线E 上,A 正确;对于B ,因点(,)x y 在曲线E 上,点(,)x y -,(,)x y -也都在曲线E 上,则曲线E 关于x 轴,y 轴对称,当0,0x y ≥≥时,曲线E 的方程为22111()()222x y -+-=,表示以点11(,)22为圆心,2为半径的圆在直线1x y +=上方的半圆(含端点),因此,曲线E 是四个顶点为(1,0),(0,1),(1,0),(0,1)--的正方形各边为直径向正方形外所作半圆围成,如图,所以曲线E 围成的图形面积是211224()2222ππ⨯⨯+⨯⨯=+,B 正确;对于C ,点00(,)x y 在曲线E 上,则2200002200111(||)(||)222x y x y x y ⇔-+-+=+=,则有2011(||)22x -≤,即01||2x ≤,解得01122x +-≤≤,而11[,[22-⊆,C 正确;对于D ,曲线E ,圆222(0)x y r r +=>能覆盖曲线E ,则min r =,D 不正确.故选:ABC12.已知P 是圆O :224x y +=上的动点,点Q (1,0),以P 为圆心,PQ 为半径作圆P ,设圆P 与圆O 相交于A ,B 两点.则下列选项正确的是()A .当P 点坐标为(2,0)时,圆P 的面积最小B .直线AB 过定点C .点Q 到直线AB 的距离为定值D 42AB ≤≤【答案】ACD【分析】A 由题意圆P 的面积最小只需||PQ 最小,结合圆的性质判断;B 应用特殊点,讨论P 为圆O 在x 轴交点分别判断直线AB 的位置即可判断;C 由两圆相交弦所在直线的求法确定直线AB ,再由点线距离公式判断;D 由OP 垂直平分AB ,结合弦心距、半径、弦长关系得到||AB 关于圆P 半径的表达式,结合二次函数性质求范围.【详解】A :根据圆的性质知:P 点坐标为(2,0)时||PQ 最小,此时圆P 的面积最小,正确;B :若圆P 的半径为r 且13r ≤≤,如下图,当P 为圆O 在x 轴右侧交点,此时1r =,显然直线AB 垂直于x 轴,在Q 点右侧;如下图,当P 为圆O 在x 轴左侧交点,此时3r =,显然直线AB 也垂直于x 轴,在Q 点左侧;所以直线AB 不可能过定点,错误;C :由对称性,不妨设(P m ,则222(1)452r m m m =-+-=-,所以圆P 方程为22()(52x m y m -+=-,又直线AB 为两圆相交弦,则圆P 、圆O 相减并整理得:直线:2230AB mx m +--=,所以Q 到直线AB 的距离34d =为定值,正确;D :由题意,OP 与AB 交于C 且OP 垂直平分AB ,令PC m =,则2224(2)m r m --=-,可得24r m =,故||2AB =,所以15||[,4]2AB =,正确;故选:ACD【点睛】关键点点睛:选项C 利用两圆相交求相交弦所在直线方程,结合点线距离公式求距离,选项D 通过弦心距、弦长、半径的几何关系得到||AB 关于圆P 半径的表达式.三、填空题:本题共4小题,每小题5分,共计20分.13.把直线210x y -+-=(顺时针旋转45°后得到的直线的方程为______.【答案】310x y +-=【分析】利用差角正切公式求旋转后直线斜率,由点斜式写出直线方程.【详解】若α为已知直线倾斜角,将其顺时针旋转45°后的直线倾斜角为45α-︒,而1tan 2α=,故11tan tan 4512tan(45)11tan tan 453112ααα--︒-︒===-+︒+⨯,所以旋转后直线为1(1)3y x =--,则310x y +-=.故答案为:310x y +-=14.已知,A B 分别是221:(1)(3)1C x y -+-=,222:(5)(1)4C x y ++-=上的两个动点,点M 是直线0x y -=上的一个动点,则||||MA MB +的最小值为_____________.【答案】5【分析】运用数形结合思想,画图确定最值位置,再求解最小值即可.【详解】如图,圆3C 是圆1C 关于直线0x y -=的对称圆,所以圆3C 的方程为()()22311x y -+-=,圆心为()33,1C ,且由图知,1MA MB MA MB+=+213,,,,C B M A C ∴五点共线时,1MA MB +有最小值,此时,()231235minMA MBC C +=--==所以MA MB +的最小值为5.故答案为:5.15.设正方体1111ABCD A B C D -的棱长为2,α为过直线1BD 的平面,则α截该正方体的截面面积的取值范围是________.【答案】⎡⎣【分析】建立空间直角坐标系,设α与棱1CC 的交点为P ,利用空间向量计算P 到1BD 的最小距离和最大距离可得面积的最值.【详解】建立如图所示的空间直角坐标系,则()()12,2,2,0,0,0B D ,设α与棱1CC 的交点为P ,与棱1AA 的交点为G ,则四边形1BGD P 为平行四边形.在面α内过P 作1BD 的垂线,垂足为Q ,则截面的面积为1S BD PQ PQ ==.设(),,Q x x x ,()0,2,P y ,则()12,2,2D B =,(),2,PQ x x x y =--.因为1·0D B PQ =,故()()22220x x x y +-+-=即320x y --=,故32y x =-.因0322x ≤-≤,故2433x ≤≤.又PQ ===,其中2433x ≤≤,PQ ≤≤S ≤≤,填⎡⎣.【点睛】空间中点到直线的距离的计算,可把距离放在可解的几何图形中,利用解三角形等方法计算该距离,如果找不到合适的几何图形“安置”该距离,则可以建立空间直角坐标系,通过空间向量的方法计算该距离.16.已知直线l :40x y -+=与x 轴相交于点A ,过直线l 上的动点P 作圆224x y +=的两条切线,切点分别为C ,D 两点,记M 是CD 的中点,则AM 的最小值为__________.【答案】【分析】利用圆的性质,结合图像,把问题转化为跟圆有关的最值问题进行处理.【详解】由题意设点(),4P t t +,()11,C x y ,()22,D x y ,因为PD ,PC 是圆的切线,所以OD PD ⊥,OC PC ⊥,所以,C D 在以OP 为直径的圆上,其圆的方程为:()222244()()224t t t t x y +++-+-=,又,C D 在圆224x y +=上,将两个圆的方程作差得直线CD 的方程为:()440tx t y ++=-,即()()410t x y y ++=-,所以直线CD 恒过定点()1,1Q -,又因为OM CD ⊥,M ,Q ,C ,D 四点共线,所以OM MQ ⊥,即M 在以OQ 为直径的圆22111((222x y ++-=上,其圆心为11',22O ⎛⎫- ⎪⎝⎭,半径为r =:所以'2min AM AO r ==-=-所以AM 的最小值为故答案为:四、解答题:本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)已知圆C 经过()0,2A ,()0,8B 两点,且与x 轴的正半轴相切.(1)求圆C 的标准方程;(2)若直线l :30x y -+=与圆C 交于M ,N ,求MN .【答案】(1)22(4)(5)25x y -+-=;(2)【分析】(1)由题意,设圆心(,)C m n 且半径||r n =,由圆所过的点列方程求参数,结合与x 轴的正半轴相切确定圆的方程;(2)利用弦心距、半径与弦长的关系求MN .(1)若圆心(,)C m n ,则圆的半径||r n =,即222()()x m y n n -+-=,又圆C 经过()0,2A ,()0,8B ,则222222441664m n n n m n n n ⎧+-+=⎪⎨+-+=⎪⎩,可得45m n =±⎧⎨=⎩,所以22(4)(5)25x y -+-=或22(4)(5)25x y ++-=,又圆与x 轴的正半轴相切,故圆C 的标准方程为22(4)(5)25x y -+-=.(2)由(1)知:(4,5)C 到直线l==5r ,所以MN ==18.(12分)如图,在边长为2的正方体1111ABCD A B C D -中,,E F 分别为1,AB A C 的中点.(1)证明:1EF A CD ⊥平面;(2)求点1C 到平面1ACD 的距离.【答案】(1)见解析【分析】(1)建立坐标系求出点的坐标,利用向量的坐标运算求平面法向量即可求解,(2)利用向量法求解点面距离即可.(1)建立以D 为坐标原点,DA ,DC ,1DD 分别为x ,y ,z 轴的空间直角坐标系如图:则(0D ,0,0),(2A ,0,0),(0C ,2,0),(2B ,2,0),1(2A ,0,2),1(0D ,0,2)E ,F 分别为AB ,1AC 的中点,(2E ∴,1,0),(1F ,1,1),1(2DA =,0,2),(0DC =,2,0),设平面1ACD 的法向量为(),,m x y z =,则100m DA m DC ⎧⋅=⎨⋅=⎩,即22020x z y +=⎧⎨=⎩,令1x =,则()1,0,1m =-因为()=101,,EF -,=EF m -,所以//EF mEF ∴⊥平面1ACD .(2)()10,0,2CC =,()1,0,1m =-,设点1C 到平面1ACD 的距离为d,所以1CC m d m ⋅===19.(12分)已知ABC 中,点()1,5A -,边BC 所在直线1l 的方程为7180x y --=,边AB 上的中线所在直线2l 的方程为y x =.(1)求点B 和点C 的坐标;(2)以()3,2M 为圆心作一个圆,使得A ,B ,C 三点中的一个点在圆内,一个点在圆上,一个点在圆外,求这个圆的方程.【答案】(1)()2,4B -,()3,3C (2)()()223225x y -+-=【分析】(1)由题意,设所求点的坐标,结合中点坐标公式,代入对应直线方程,解得答案;(2)由题意,分别求点M 到,,A B C 的距离,比较大小,可得答案.(1)设()11,B x y ,()22,C x y ,AB 的中点1115,22x y D -+⎛⎫ ⎪⎝⎭,由题意可得直线CD 的直线方程:2:l y x =,则22227180y x x y =⎧⎨--=⎩,解得2233x y =⎧⎨=⎩,111115227180x y x y -+⎧=⎪⎨⎪--=⎩,解得1124x y =⎧⎨=-⎩,故()2,4B -,()3,3C .(2)5AM ==,BM =1CM ==,由15<<()()223225x y -+-=.20.(12分)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证://MN 平面PAD ;(2)求PD 与平面PMC 所成角的正弦值;(3)求平面PMC 与平面PAD 的夹角的余弦值.【答案】(1)证明见解析;(2);(3)3.【分析】(1)若E 为PD 中点,连接,NE AE ,易证AMNE 为平行四边形,则//MN AE ,根据线面平行的判定证结论;(2)构建空间直角坐标系,求PD 的方向向量与平面PMC 的法向量,应用向量夹角坐标表示求线面角的正弦值;(3)由(1,0,0)n =是面PAD 的一个法向量,结合(2)并应用向量夹角坐标表示求面面角的余弦值;(1)若E 为PD 中点,连接,NE AE ,又M 、N 为AB 、PC 的中点,底面ABCD 为矩形,所以//NE CD 且12NE CD =,而1122AM AB CD ==且//AM CD ,所以//NE AM 且NE AM =,故AMNE 为平行四边形,故//MN AE ,又MN ⊄面PAD ,AE ⊂面PAD ,则//MN 面PAD .(2)由题意,可构建如下图示的空间直角坐标系,2PA AD AB ===,所以(0,0,2)P ,(0,2,0)D ,(1,0,0)M ,(2,2,0)C ,则(0,2,2)PD =-uu u r ,(1,0,2)PM =-,(2,2,2)PC =-,若(,,)m x y z =是面PMC 的一个法向量,则202220m PM x z m PC x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,令2x =,故(2,1,1)m =-,所以PD 与平面PMC 所成角的正弦值为||3|cos ,|3||||PD m PD m PD m ⋅<>===.(3)由(2)知:(2,1,1)m =-是面PMC 的一个法向量,又(1,0,0)n =是面PAD 的一个法向量,所以cos ,||||m n m n m n ⋅<>==PMC 与平面PAD 的夹角的余弦值3.21.(12分)如图,已知圆22:430M x x y -++=,点(1,)P t -为直线:1l x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B(1)求直线AB 的方程,并写出直线AB 所经过的定点的坐标;(2)求线段AB 中点的轨迹方程;(3)若两条切线,PA PB 与y 轴分别交于,S T 两点,求ST 的最小值.【答案】(1)5,03⎛⎫ ⎪⎝⎭(2)22111(2)636x y x ⎛⎫-+=≠ ⎪⎝⎭(3)22【分析】(1)把直线AB 看成圆P 和圆M 公共弦所在的直线,求出直线方程即可得到定点;(2)利用几何的知识得到AB 中点的轨迹,根据轨迹求方程即可;(3)设切线方程,利用圆心到切线的距离为半径得到12k k +,12k k ,再把ST 表示出来求最小值即可.(1)因为PA ,PB 为圆M 的切线,所以90PBM PAM ∠=∠=︒,所以点,A B 在以PM 为直径的圆P 上,又点,A B 在圆M 上,所以线段AB 为圆P 和圆M 的公共弦,因为圆M :22430x x y -++=①,所以()2,0M ,PM =,PM 中点为1,22t ⎛⎫ ⎪⎝⎭,则圆P :22219224t t x y +⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,整理得2220x x y ty -+--=②,②-①得直线AB 的方程为350x ty --=,所以(35)0x ty --=,所以直线AB 过定点5,03⎛⎫ ⎪⎝⎭.(2)∵直线AB 过定点5,03⎛⎫ ⎪⎝⎭,AB 的中点为直线AB 与直线MP 的交点,设AB 的中点为F 点,直线AB 过的定点为H 点,易知HF 始终垂直于FM ,所以F HM 为直径的圆,5,03H ⎛⎫ ⎪⎝⎭,(2,0)M ,∴点F 的轨迹方程为22111(2)636x y x ⎛⎫-+=≠ ⎪⎝⎭;(3)设切线方程为(1)y t k x -=+,即0kx y k t -++=,故(2,0)M 到直线0kx y k t -++=的距离1d ==,即228610k kt t ++-=,设PA ,PB 的斜率分别为1k ,2k ,则1234t k k +=-,21218t k k -=,把0x =代入0kx y k t -++=,得y k t =+,则()121284ST k t k t k k =+-+=-=,故当0=t 时,ST 取得最小值为2.22.(12分)已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OOT ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;(3)是否存在定点(),M m n ,使过点M 有无数对相互垂直的直线12,l l 满足12l l ⊥,且它们分别被圆O 、圆1O 所截得的弦长相等?若存在,求出所有的点M ;若不存在,请说明理由.【答案】(1(2)46130a b +-=;(3)M 存在且其坐标为51,22⎛⎫ ⎪⎝⎭或者15,22⎛⎫- ⎪⎝⎭.【分析】(1)连接1O O ,利用1Rt OO T ∆可求1OOT ∠的正弦值.(2)利用直线与圆相切求出过P 且与两圆相切的切线长,整理后可得所求的,a b 关系式.(3)设1l 的斜率为k 且0k ≠,利用1l 、2l 分别被圆O 、圆1O 所截得的弦长相等且两圆半径相等得到()23n km m n k -=-+-对无穷多个k 恒成立,整理后可得关于,m n 的方程组,从而可求M 的坐标.【详解】(1)连接1O O ,因为1O T 与O 相切于T ,故1OT OT ⊥.又1OO 在1Rt OO T ∆中,1OT =,故1sin OO T ∠(2)因为过(),P a b 作两圆的切线且切线长相等,=46130a b +-=,故,a b 的关系为46130a b +-=.(3)设1l 的斜率为k 且0k ≠,则1:0l kx y n km -+-=,2:0l x ky kn m +--=,因为它们分别被圆O 、圆1O 所截得的弦长相等且两圆半径相等,所以O 到直线1l 的距离等于1O 到直线2l的距离,=()23n km m n k -=-+-对无穷多个k 恒成立,所以()()()()22222322320m n k mn m n k n m ⎡⎤---+--+--=⎡⎤⎣⎦⎣⎦对无穷多个k 恒成立.故()()()()22223023020m n mn m n n m ⎧--=⎪⎪+--=⎨⎪--=⎪⎩,解得5212m n ⎧=⎪⎪⎨⎪⎪⎩或者1252m n ⎧=-⎪⎪⎨⎪=⎪⎩.17.故M 存在且其坐标为51,22⎛⎫ ⎪⎝⎭或者15,22⎛⎫- ⎪⎝⎭.。
最新高二数学上学期第一次月考试题
最新高二数学上学期第一次月考试题(1)选择题1.设函数 f(x) = x^2 - 3x + 2,那么 f(1) 的值为: A. -2 B. 0 C. 1 D.2答案:C解析:将 x = 1 代入函数 f(x),得到 f(1) = 1^2 - 3 * 1 + 2 = 1 - 3 + 2 = 0 + 2 = 2。
2.已知函数 f(x) = 2x - 1,那么 f(-2) 的值为: A. -5 B. -3 C. 1 D. 5答案:B解析:将 x = -2 代入函数 f(x),得到 f(-2) = 2 * (-2) - 1 = -4 - 1 = -5。
3.设函数 f(x) = x^3 - 2x^2 + x - 3,那么 f(2) 的值为: A. -4 B. -3 C.0 D. 1答案:A解析:将 x = 2 代入函数 f(x),得到 f(2) = 2^3 - 2 * 2^2 + 2 - 3 = 8 - 8 + 2 - 3 = 0 - 1 = -1。
4.设函数 f(x) = x^2 + 2x + 1,那么 f(-1) 的值为: A. -3 B. -1 C. 0 D.1答案:C解析:将 x = -1 代入函数 f(x),得到 f(-1) = (-1)^2 + 2 * (-1) + 1 = 1 - 2 + 1 = 0。
5.设函数 f(x) = x^2 - 4x + 3,求 f(x) = 0 的解。
A. x = 1, x = 3 B.x = 1, x = -3 C. x = 2, x = 3 D. x = 1, x = -2答案:A解析:将 f(x) = 0,得到 x^2 - 4x + 3 = 0。
通过因式分解或求根公式,得到 (x - 1)(x - 3) = 0。
因此,x = 1 或 x = 3。
填空题1.设函数 f(x) = a^x,若 f(2) = 8,那么 a 的值为______。
答案:2解析:将 x = 2 代入函数 f(x),得到 f(2) = a^2 = 8。
高二上学期数学第一次月考试题
高二上学期数学第一次月考试题高二上学期数学第一次月考试题一、选择题(共30题,每题2分,共60分)1. 设函数f(x) = 2x^2 + 3x - 1,那么f(-1)的值为()A. -2B. 0C. 2D. 42. 若函数y = x^2 - 4ax + 4a^2 - 1的图象与x轴相切,则a的值为()A. 0B. 1C. 2D. 43. 已知函数y = ax^2 + bx + c的图象经过点(1, 1)和(2, 4),则a, b, c 的值分别为()A. 1, 1, -1B. 1, 2, -1C. 1, -1, 1D. 1, 1, 14. 已知函数y = ax^2 + bx + c的图象与x轴相切,且切点的横坐标为2,纵坐标为0,那么a, b, c的值分别为()A. 1, 2, -2B. 2, -4, 4C. -1, 4, -4D. -2, 4, -45. 在△ABC中,已知∠C = 90°,AC = 5,AB = 12,那么BC的值为()A. 5B. 13C. 17D. 256. 已知∠A = 60°,BC = 3,AC = 4,那么AB的值为()A. 3B. 4C. 5D. 67. 已知∠A = 30°,∠B = 60°,那么∠C的值为()A. 30°B. 60°C. 90°D. 120°8. 在△ABC中,∠A = 40°,∠B = 70°,那么∠C的值为()A. 50°B. 70°C. 80°D. 90°9. 在△ABC中,∠A = 45°,∠B = 60°,那么∠C的值为()A. 45°B. 60°C. 75°D. 90°10. 在△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么∠ADC的值为()A. 45°B. 60°C. 75°D. 90°11. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD与BC的比值为()A. 1:√3B. 1:2C. √3:2D. 2:√312. 线段AB的中点为M,线段AC的中点为N,若AM = 4,AN = 3,那么BC 的值为()A. 2B. 3C. 4D. 613. 在△ABC中,∠A = 30°,∠B = 60°,D为BC上的点,且AD ⊥ BC,那么BD:DC的值为()A. 1:2B. 1:√3C. 2:1D. √3:114. 已知△ABC中,∠A = 30°,∠B = 60°,AD ⊥ BC,那么AD:DB:DC的值为()A. 1:√3:2B. 1:2:√3C. 1:√3:1D. 1:1:115. 若点A(x, y)到点B(3, 2)的距离为√10,且点A在直线x - y = 1上,则点A的坐标为()A. (2, 1)B. (1, 2)C. (1, 3)D. (2, 2)二、填空题(共5小题,每题4分,共20分)16. 若a + b = 3,ab = 2,那么a^2 + b^2的值为________。
【高二】高二数学上册第一次月考调研检测试题(含参考答案)
【高二】高二数学上册第一次月考调研检测试题(含参考答案)华清中学2021-2021学年上学年高二年级第一月考数学试题名称测试编号类注意事项:1.满分:150分;2.本试卷分第ⅰ卷和第ⅱ卷两部分。
第ⅰ卷为,第ⅱ卷为非;3.考生收到试题后,应先按要求填写试卷头;4.所有答案必须在试卷的制定区域作答。
第一部分(选择题,共50分)一选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)1.算术顺序项的和等于()a、 b。
c.d.2,两个数的等比的中间项是()a.b.c.d.算术序列的第五项等于10,前三项之和等于3,然后是它的第一项与公差分别是()a、 -2,3b。
2,-3c。
-3,2d。
3,-24.等差数列24,22,20,…的前n项和sn的最大值是()a、 154b.156c.158d1605.古希腊毕达哥拉斯学派的数学家经常在沙滩上用画点或石子研究数学问题,下图是他们得到的三角形数,则第20个三角形数中有小正方形的个数是()a、 153b.198c.200d.2106.已知等比数列的公比,则等于()a、不列颠哥伦比亚省。
7在△abc中,若,则其面积等于()a、 b。
c.d.8英寸△ ABC,如果a=2,那么B等于a.b.或c.d.或9英寸△ ABC,如果,则△abc的形状是()a、直角三角形B.等边三角形C.等腰三角形D无法确定10数列{an}的通项式,则数列{an}中的最大项是()a、项目9b、8和9c、第10项d、第9项和第10项两个问题(这个问题有5个小问题,每个空白5分,总共25分)11数列…的一个通项公式是______________________。
公差不为0的等差序列的12项2、3和6依次形成等比序列,等比序列的公共比率= 13数列的前n项之和为14如果已知△ ABC分别是a,B和C,面积,角度C=_____15.在△abc中,∠c=60°,a、b、c分别为∠a、∠b、.c的对边,则=________.(三)在这个过程中,有6个主要问题的答案,有75个主要的计算步骤)16(12分)在等差数列中,求值。
高二上学期数学第一次月考试卷与答案解析
高二上学期数学第一次月考卷(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版2019选择性必修第一册第1.1~2.1章(直线与圆+椭圆)。
5.难度系数:0.68。
第一部分(选择题 共58分)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.点()1,1到直线3420x y +−=的距离是( ) A .1 B .2 CD .32.已知方程2212x y m m +=−表示椭圆,则实数m 的取值范围是( )A .(0,2)B .(0,1)C .(2,)+∞D .(0,1)(1,2)3.圆()2249x y −+=和圆()2234x y +−=的公切线有( ) A .1条 B .2条 C .3条 D .4条4.已知实数x ,y 满足方程y yx的最大值为( ) A .0B .1CD .25.某同学数星星的时候,突然想到了哈雷彗星:信息技术老师给他找了一幅哈雷彗星图片和轨道图片,地理老师告诉他哈雷彗星近日点距离太阳约0.6A.U.,将于2023年12月9日出现的远日点距离太阳约35A.U.(A.U.是天文单位,天文学中计量天体之间距离的一种单位,其数值取地球和太阳之间的平均距离,1A.U.149597870=千米).物理老师告诉他该彗星的周期约76年,质量约1510kg.化学老师说:彗核的成分以水冰为主,占70%,它只是个很松散的大雪堆而已,数学老师问:哈雷彗星的轨迹可以近似看成椭圆,那么该椭圆的离心率约是( )试卷第2页,共4页A .0.03B .0.97C .0.83D .0.776.已知直线l :10x my m −+−=,则下列说法不正确的是( ) A .直线l 恒过点()1,1B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 的斜率可以等于0D .若直线l 在两坐标轴上的截距相等,则1m =或1m =−7.若圆222610x y x y +−−+=上恰有三点到直线y kx =的距离为2,则k 的值为( )A .12B .34C .43D .28.已知椭圆2214x y +=的左、右焦点分别为1F ,2F ,点P 在椭圆上,当12F PF 的面积为1时,12PF PF ⋅ 等于( ) A .0B .1C .2D .12二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两条直线1l ,2l 的方程分别为34120x y ++=与8110ax y +−=,下列结论正确的是( ) A .若12//l l ,则6a = B .若12//l l ,则两条平行直线之间的距离为74C .若12l l ⊥,则323a =D .若6a ≠,则直线1l ,2l 一定相交10.过点()2,1P 作圆O :221x y +=的切线l ,则切线l 的方程为( )A .1y =B .2x =C .3450x y −−=D .4350x y −−=11.已知椭圆2221(03)9x y b b +=<<的左、右焦点分别为12,F F ,过点1F 的直线l 交椭圆于,A B 两点,若AB 的最小值为4,则( ) AB .22AF BF +的最大值为8C D .椭圆上不存在点P ,使得1290F PF ∠=第二部分(非选择题 共92分)三、填空题:本题共3小题,每小题5分,共15分。
陕西省咸阳市杨凌区2024-2025学年高二上学期第一次月考数学试题
陕西省咸阳市杨凌区2024-2025学年高二上学期第一次月考数学试题一、单选题1.在空间直角坐标系O xyz −中,点()1,2,3A 关于平面xOy 的对称点A '的坐标是( ) A .()1,2,3−B .()1,2,3−C .()1,2,3−D .()1,2,3−−2.已知()2,1,3a =−,()4,,2b y =−,且()a ab ⊥+,则y 的值为( ) A .6B .10C .12D .143.已知空间向量()2, 2 1,a =−,()1 ,1 2,b =−,则向量b 在向量a 上的投影向量是( )A .4243,3,3⎛⎫− ⎪⎝⎭B .(2,﹣1,2)C .2423,3,3⎛⎫− ⎪⎝⎭D .(1,﹣2,1)4.三棱锥O ABC −中,点P ∈面ABC ,且12OP OA kOB OC =+−,则实数k =( )A .12−B .12C .1D .325.已知平面内的两个向量(2,3,1)a =,(5,6,4)b =,则该平面的一个法向量为( ) A .(1,1,1)− B .(2,1,1)− C .(2,1,1)−D .(1,1,1)−−6.过点()2,1−且与直线2390x y −+=平行的直线的方程是( ) A .2370x y −−= B .2310x y +-=C .3240x y +−=D .2370x y −+=7.如图,三棱锥O ABC −中,OA a =,OB b =,OC c =,点M 为BC 中点,点N 满足2ON NA =,则MN =( )A .112233a b c −−B .112233a b c −+C .211322a b c −−D .121232a b c −−+r r r8.已知平行六面体1111ABCD A B C D −的各棱长均为1,1160A AB A AD ∠=∠=︒,90DAB ∠=︒,则1AC =( )ABC D 19.已知直线1l 的方程是y ax b =+,2l 的方程是()0,y bx a ab a b =−+≠≠,则下列各图中,可能正确的( )A .B .C .D .二、多选题10.已知()1,2A ,()3,4B −,()2,0C −,则( )A .直线0x y +=与线段AB 有公共点 B .直线AB 的倾斜角大于135︒C .ABC V 的边BC 上的高所在直线的方程为470x y −+=D .ABC V 的边BC 上的中垂线所在直线的方程为480x y ++=11.空间直角坐标系O xyz −中,已知()1,2,2A −,()0,1,1B ,下列结论正确的有( ).A .()1,1,3AB =−−B .若()2,1,1m =,则m AB ⊥C .点A 关于xOy 平面对称的点的坐标为()1,2,2−D .5AB =三、填空题12.设(1,3,2)a =−,(2,+1,1)b m n =−,且//a b ,则实数m n −= .13.已知点M,(N ,则直线MN 的倾斜角为 .14.已知a =(2,-1,3),b =(-1,4,-2), c =(7,7,λ),若a ,b ,c 共面,则实数λ= .四、解答题15.已知ABC V 的三个顶点是()1,2A ,()2,1B −−,()3,2C −.求: (1)边AC 上的中线BD 所在直线方程; (2)边AC 上的高BE 所在直线方程.16.如图,四棱锥P ABCD −的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点.(1)证明://PA 平面BDE ;(2)求二面角B DE C −−的平面角的余弦值.17.如图,在直三棱柱111ABC A B C −中,190,2ACB AC BC CC ∠==︒==.(1)求证:11AB BC ⊥; (2)求点1C 到直线1AB 的距离. 18.求符合下列条件的直线l 的方程: (1)过点A (﹣1,﹣3),且斜率为14−;(2)A (1,3),B (2,1))求直线AB 的方程; (3)经过点P (3,2)且在两坐标轴上的截距相等.19.已知△ABC 中,顶点A (3,7),边AB 上的中线CD 所在直线的方程是4370x y −−=,边AC 上的高BE 所在直线的方程是512130x y +−=. (1)求点A 关于直线CD 的对称点的坐标; (2)求顶点B 、C 的坐标;(3)过A 作直线L ,使B,C 两点到L 的距离相等,求直线L 的方程.。
2023-2024学年福建省泉州市石狮市高二上册第一次月考数学试题(含解析)
2023-2024学年福建省泉州市石狮市高二上册第一次月考数学试题一、单选题1.直线10x y -+=的倾斜角为()A .30°B .45°C .120°D .150°【正确答案】B【分析】由直线的一般式方程,明确其斜率,令斜率与倾斜角的关系,可得答案.【详解】由直线10x y -+=,则该直线的斜率1k =,设直线10x y -+=的倾斜角为θ,则tan 1θ=,解得45θ= .故选:B.2.若直线30x my ++=与直线460mx y ++=平行,则m =()A .12B .12-C .12或12-D .不存在【正确答案】B【分析】根据两直线平行,列出方程,去掉两直线重合的情况,即可得到结果.【详解】由直线30x my ++=与直线460mx y ++=平行,可得:241126m m ⎧=⎨≠⎩,解得12m =-.故选:B.3.已知()()1,2,,,1,2a y b x =-=,且()//22()a b a b +- ,则()A .113x y ==,B .142x y ==-C .124x y ==,D .x =1,y =-1【正确答案】B【分析】利用空间向量的坐标运算,结合空间向量共线的坐标表示计算作答.【详解】向量()()1,2,,,1,2a y b x =-=,则2(12,4,4)a b x y +=+- ,2(2,3,22)a b x y -=--- ,因()//22()a b a b +- ,于是得12442322x y x y +-==---,解得1,42x y ==-,所以1,42x y ==-.故选:B4.直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于点M 对称的直线方程为()A .2x +3y -12=0B .2x +3y +12=0C .3x -2y -6=0D .2x +3y +6=0【正确答案】B【分析】先求出定点M 的坐标,再设出与直线2x +3y -6=0关于点M 对称的直线方程,利用点到直线距离公式求出答案.【详解】由ax +y +3a -1=0得()()310x a y ++-=,由3010x y +=⎧⎨-=⎩,得31x y =-⎧⎨=⎩,∴M (-3,1).设直线2x +3y -6=0关于点M 对称的直线方程为()2306x y C C ++=≠-,=:C =12或C =-6(舍去),∴直线2x +3y -6=0关于点M 对称的直线方程为2x +3y +12=0.故选:B .5.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E ,F 分别是BC ,AD 的中点,则AE AF ⋅的值为()A .1B .12C .14D 【正确答案】C【分析】先得到该空间四边形及其对角线构成的几何体为正四面体,再根据空间向量的基本定理得到1122AE AB AC =+ ,利用空间向量的数量积运算法则计算出答案.【详解】此空间四边形及其对角线构成的几何体为正四面体,棱长为1,因为点E ,F 分别是BC ,AD 的中点,所以1122AE AB AC =+,所以11112222AE AF AB AC AF AB AF AC AF ⎛⎫⋅=+⋅=⋅+⋅ ⎪⎝⎭111111111cos 60cos 60222222224AB AF AC AF =⋅︒+⋅︒=⨯⨯+⨯⨯= .故选:C6.已知直线l 过点()2,3P ,且与x ,y 轴的正半轴分别交于A ,B 两点.若AOB 的面积为12(O 为坐标原点),则直线l 的截距式方程为()A .146x y+=B .1812x y +=C .1131323x y +=D .164x y +=【正确答案】A【分析】设出直线的截距式方程,根据题意求出待定系数,可得结论.【详解】解:设直线l 的方程为1(0,0)x ya b a b +=>>,则AOB 的面积为1122ab =①.因为直线l 过点(2,3)P ,所以231a b+=②.联立①②,解得4a =,6b =,故直线l 的方程为146x y+=,故选:A .7.经过点(0,1)P -作直线l ,若直线l 与连接(2,3)(-1,2),A B 的线段总有公共点,则直线l 的斜率的取值范围是()A .[)(]2--3⋃+∞∞,,B .[]-32,C .[)2+∞,D .(]--3∞,【正确答案】A【分析】作出线段及点,即可得出直线变化范围,即可确定斜率取值范围.【详解】如图所示,()()31212,32010PA PB k k ----====----,故直线l 的斜率的取值范围是[)(]2--3⋃+∞∞,,.故选:A8.已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是()A .(0,1)B .21122⎛⎫- ⎪ ⎪⎝⎭,C .21123⎛⎤⎥ ⎝⎦,D .1132⎡⎫⎪⎢⎣⎭,【正确答案】B【分析】先求得直线y =ax +b (a >0)与x 轴的交点为M (ba -,0),由b a -≤0可得点M 在射线OA 上.求出直线和BC 的交点N 的坐标,①若点M 和点A 重合,求得b 13=;②若点M 在点O 和点A 之间,求得13<b 12<;③若点M 在点A 的左侧,求得13>b >122-.再把以上得到的三个b 的范围取并集,可得结果.【详解】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为11b a -+1a ba ++.①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N1212,把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=->0,求得b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标ba--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为11b a --1a b a --,此时,由题意可得,三角形CPN 的面积等于12,即12•(1﹣b )•|xN ﹣xP |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2.两边开方可得(1﹣b )=1,∴1﹣bb >12-,故有12-b 13<.综上可得b 的取值范围应是112⎛⎫⎪ ⎪⎝⎭,,故选B .本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考查了运算能力以及综合分析能力,分类讨论思想,属于难题.二、多选题9.下列说法正确的是()A .点斜式()11y y k x x -=-可以表示任何直线B .已知直线l 过点()2,3P ,且在x ,y 轴上截距相等,则直线l 的方程为50x y +-=.C .直线240x y --=与直线210x y ++=相互垂直.D .直线42y x =-在y 轴上的截距为2-【正确答案】CD【分析】根据直线点斜式方程适用的条件即可判断A ;分直线过原点和不过原点两种情况讨论即可判断B ;根据两直线垂直的公式即可判断C ;根据直线的斜截式方程即可判断D.【详解】对于A ,点斜式()11y y k x x -=-表示斜率存在的直线,故A 错误;对于B ,若直线过原点,则32l k =,所以直线方程为32y x =,若直线不过原点,设直线方程为()11x ya a a+=≠,将点()2,3P 代入解得5a =,所以直线方程为50x y +-=,综上,直线l 的方程为50x y +-=或32y x =,故B 错误;对于C ,因为()12210⨯+-⨯=,所以直线240x y --=与直线210x y ++=相互垂直,故C 正确;对于D ,直线42y x =-在y 轴上的截距为2-,故D 正确.故选:CD.10.下面四个结论正确的是()A .空间向量()112a ,,=-关于x 轴对称的向量为()1,1,2-B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量,,a b c ,满足()()a b c a b c⋅⋅=⋅⋅ 【正确答案】ABC【分析】根据对称性即可判断A ;根据空间向量共面定理即可判断B ;根据基底的定义即可判断C ;根据数量积的定义即可判断D.【详解】对于A ,空间向量()112a ,,=-关于x 轴对称的向量为()1,1,2-,故A 正确;对于B ,若对空间中任意一点O ,有111632OP OA OB OC =++ ,因为1111632++=,所以P ,A ,B ,C 四点共面,故B 正确;对于C ,{},,a b c 是空间的一组基底,则,,a b c不共面,若m a c =+ ,所以,,a c m 共面,所以,,a b m不共面,故{},,a b m也是空间的一组基底,故C 正确;对于D ,()a b c ⋅⋅表示与c 共线的向量,()a b c ⋅⋅表示与a 共线的向量,而,a c的方向不确定,所以不能得出上述结论,故D 错误.故选:ABC.11.在通用技术课上,某小组将一个直三棱柱111ABC A B C -展开得到平面图如图所示,90ABC ∠=︒,1AA AB =,P 为1AB 的中点,Q 为1AC 的中点,则在原直三棱柱111ABC A B C -中,下列说法正确的是()A .P ,Q ,C ,B 四点共面B .11A C AB ⊥C .几何体A PQCB -和直三棱柱111ABC A B C -的体积之比为38D .当2BC 时,1AC 与平面1ABB 所成的角为45︒【正确答案】ABD【分析】根据线面位置关系可判断A ,B 选项,根据几何体的体积计算方法即可判断C 选项,利用定义法可判断线面角,即可判断D 选项【详解】如图,将展开的平面图还原成立体图形,对A 选项,连接1A B ,P 为1AB 的中点,P ∴也为1A B 的中点,又Q 为1AC 的中点,//PQ BC ∴,P ∴,Q ,C ,B 四点共面,故A 选项正确;对B 选项,90ABC ∠=︒ ,棱柱111ABC A B C -为直三棱柱,∴易得BC ⊥平面11ABB A ,又1AB ⊂平面11ABB A ,∴1AB BC ⊥,又1AA AB =,∴四边形11ABB A 为正方形,11AB A B ∴⊥,又1BC A B B ⋂=,1AB ∴⊥平面1A BC ,又1AC ⊂平面1A BC ,11A C AB ∴⊥,∴B 选项正确;对C 选项,P ,Q 分别为1A B ,1AC 的中点,134A BC PQCB S S ∴=四边形,111111113331144434A PQCB A A BC A ABC ABC A B C ABC A B C V V V V V -----∴===⨯=∴几何体A PQCB -和直三棱柱111ABC A B C -的体积之比为14,故C 选项错误;对D 选项,当2BC 时,又1AA AB =,且1AA AB ⊥,12A B ∴,1BC A B ∴=,1A B BC ⊥145BAC ∴∠=︒,又由B 选项的分析知BC ⊥平面11ABB A ,1BAC ∴∠即为1AC 与平面1ABB 所成的角,又145BAC ∠=︒,1A C ∴与平面1ABB 所成的角为45︒,故D 选项正确.故选:ABD .12.如图,已知正方体1111ABCD A B C D -的梭长为2,P 为正方形底面ABCD 内的一动点,则下列结论正确的有()A .三棱雉111B A D P -的体积为定值B .存在点P ,使得11D P AD ⊥C .若11D P B D ⊥,则P 点在正方形底面ABCD 内的运动轨迹是线段ACD .若点P 是AD 的中点,点Q 是1BB 的中点,过P Q ,作平面α⊥平面11ACC A ,则平面α截正方体1111ABCD A B C D -的截面周长为2【正确答案】ACD【分析】对于A ,利用111111B A D P P A B D V V --=可得,A 正确;对于B ,建立空间直角坐标系,根据11D P AD ⊥,计算得满足条件的点P 不在平面ABCD 内,故B 错误;对于C ,建立空间直角坐标系,根据11D P B D ⊥,可得方程2x y +=,判断C 正确;对于D ,关键找到直线BD ,使//BD 平面α,且PQ ⊂平面α,以BD 为参照线作出平面α与正方体各个侧面的交线,得到截面图形,计算得答案,D 正确.【详解】对于A ,P 为正方形底面ABCD 内一点时,由111111B A D P P A B D V V --=,三棱锥111P A B D -的高不变,底面积也不变,所以体积为定值,故A 正确;对于B ,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴,建立如图所示的空间直角坐标系,设(),,0P x y ,则()()()()()11110,0,2,2,0,0,2,2,2,,,2,2,0,2D A B D P x y AD =-=-,若11D P AD ⊥,则110D P AD ⋅=,所以240x --=即2x =-,此时P 点不在底面ABCD 内,与题意矛盾,故B 错误;对于C ,因为()12,2,2B D =--- ,若11D P B D ⊥,110D P BD =⋅,所以22+40x y --=即2x y +=,所以P 的轨迹就是线段AC ,故C 正确;对于D ,因为BD AC ⊥,1BD AA ⊥,又AC ⊂平面11AAC C ,1AA ⊂平面11AAC C ,1AC AA A =∩,所以BD ⊥平面11AAC C ,因为面α⊥平面11ACC A ,,BD PQ 异面,BD ⊄平面α,所以//BD 平面α,以BD 为参照线作出平面α与正方体各个侧面的交线,如图所示,易知每个侧面的交线均相等,长度为正方体的面对角线的一半,由于正方体的梭长为2,故面对角线长为所以截面周长为6,故D 正确.故选:ACD.三、填空题13.直线1:3230l x y +-=与26410l x y +-=:平行,则它们的距离是_____【正确答案】26【分析】根据两个平行线之间的距离计算公式,计算得答案.【详解】直线1:3230l x y +-=可化为直线1:6460l x y +-=,又26410l x y +-=:,且12//l l ,所以它们的距离d =故答案为14.过原点O 有一条直线l ,它夹在两条直线1:220--=l x y 与2:30l x y ++=之间的线段恰好被点O 平分,则直线l 的方程为______________.【正确答案】45y x =设两交点分别为(,22)A a a -,(,3)B b b --,利用中点为原点求解a ,b ,得到A 点坐标,即得解.【详解】设两交点分别为(,22)A a a -,(,3)B b b --,则50325053a a b a b b ⎧⎧=⎪⎪+=⎪⎪⇒⎨⎨--=⎪⎪=-⎪⎪⎩⎩故点54,33A ⎛⎫ ⎪⎝⎭,所以直线l 的方程为45y x =.故45y x =本题考查了直线与直线的位置关系,考查了学生综合分析,转化划归的能力,属于中档题.15.已知在ABC ∆中,顶点()4,2A ,点B 在直线l :20x y -+=上,点C 在x 轴上,则ABC ∆的周长的最小值______.【正确答案】【分析】设点A 关于直线l :20x y -+=的对称点111(,)A x y ,点A 关于x 轴的对称点为222(,)A x y ,连接12A A 交l 于B ,交x 轴于C ,则此时ABC ∆的周长取最小值,且最小值为12A A ,利用对称知识求出1A 和2A ,再利用两点间距离公式即可求解.【详解】如图:设点A 关于直线l :20x y -+=的对称点111(,)A x y ,点A 关于x 轴的对称点为222(,)A x y ,连接12A A 交l 于B ,交x 轴于C ,则此时ABC ∆的周长取最小值,且最小值为12A A ,1A 与A 关于直线l :20x y -+=对称,∴11112114422022y x x y -⎧⨯=-⎪-⎪⎨++⎪-+=⎪⎩,解得:1106x y =⎧⎨=⎩,∴1(0,6)A ,易求得:2(4,2)A -,∴ABC ∆的周长的最小值12A A ==故答案为.本题主要考查求一个点关于某直线的对称点的坐标的方法,体现了数形结合的数学思想,综合性较强.16.在棱长为2的正方体1111ABCD A B C D -中,点P 在正方体的12条棱上(包括顶点)运动,则AC BP ⋅ 的取值范围是______.【正确答案】[]4,4-【分析】建立空间直角坐标系,利用向量法求得AC BP ⋅ 的表达式,进而根据线性规划求得AC BP ⋅ 的取值范围.【详解】解:建立如图所示空间直角坐标系,()()()2,0,0,0,2,0,2,2,0A C B ,()2,2,0AC =- ,设(),,P x y z (且P 只在正方体的12条棱上运动),则()2,2,BP x y z =-- ,()42242AC BP x y y x ⋅=-+-=- ,因为0202x y ≤≤⎧⎨≤≤⎩,设z y x =-,根据线性规划,作出可行域如图,当2,0x y ==时,y x -取得最小值2-,即AC BP ⋅ 取最小值4-;当0,2x y ==时,y x -取得最大值2,即AC BP ⋅ 取最大值4.故[]4,4-四、解答题17.已知ABC 的三个顶点的坐标为()3,3A 、()2,2B -、()7,1C -,试求:(1)BC 边上的高所在的直线方程;(2)ABC 的面积.【正确答案】(1)360x y --=(2)24【分析】(1)先求出直线BC 的斜率,进而得BC 边上的高的斜率,由点斜式写出方程即可;(2)先求出BC 及直线BC 方程,再由点到直线距离公式求得A 到BC 的距离,即可求得面积.【详解】(1)因为2112(7)3BC k --==---,则BC 边上的高的斜率为3,又经过A 点,故方程为()333y x -=-,化简得360x y --=.(2)()2227(21)310BC =++--=BC 方程为12(2)3y x +=--,整理得340x y ++=,则A 到BC 2233341013+⨯++,则ABC 的面积为131024210⨯=.18.如图,三棱柱111ABC A B C -中,M ,N 分别是111,A B B C 上的点,且1112,2BM A M C N B N ==.设AB a =,AC b = ,1AA c = .(1)试用a ,b ,c 表示向量MN ;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=︒∠=∠=︒===,求MN 的长.【正确答案】(1)111333MN a c =++【分析】(1)利用空间向量的线性运算即可求解.(2)根据空间向量的数量积以及向量模的求法即可求解.【详解】(1)解:1111MN MA A C C N=++ 11233BA AC =++ 1112()333AB AA AC AB AC =-+++- 1111333AB AA AC =++ ,∴111333MN a c =++ ;(2)解:11,||||||1AB AC AA a b c ===∴=== ,1190,0,60BAC a b BAA CAA ∠=∴⋅=∠=∠=︒︒ ,12a cbc ∴⋅=⋅= ,()221||9MN a b c ∴=++ ()2221522299a b c a b a c b c =+++⋅+⋅+⋅= ,||MN ∴=即MN 19.在正四棱柱1111ABCD A B C D -中,122AA AB E ==,为1CC 的中点.(1)求证:1//AC 平面BDE .(2)若F 为1BB 中点,求直线1A F 与平面BDE 所成角的正弦值,【正确答案】(1)详见解析.63【分析】(1)连接AC 与BD 交于点O ,根据E ,O 为中点,得到1//AC OE ,再利用线面平行的判定定理证明;(2)建立空间直角坐标系,分别求得1A F 的坐标和平面BDE 的一个法向量(),,n x y z = ,再由11sin A F n A F nθ⋅=⋅ .【详解】(1)证明:如图所示:连接AC 与BD 交于点O ,因为E ,O 为中点,所以1//AC OE ,又1AC ⊄平面BDE ,OE ⊂平面BDE ,所以1//AC 平面BDE ;(2)建立如图所示空间直角坐标系,则()()()()()11,0,2,1,1,1,1,1,0,0,0,0,0,1,1A F B D E ,所以()()()10,1,1,1,1,0,1,0,1A F BD BE =-=--=- ,设平面BDE 的一个法向量为(),,n x y z = ,则00n BD n BE ⎧⋅=⎨⋅=⎩,即00x y x y --=⎧⎨-+=⎩,令1x =,得1,1y z =-=,则()1,1,1n =- ,设直线1A F 与平面BDE 所成的角为θ,则11sin A F n A F nθ⋅==⋅ .20.已知直线:(21)(3)70l m x m y m +-++-=.(1)m 为何值时,点(3,4)Q 到直线l 的距离最大?并求出最大值;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,求AOB (O 为坐标原点)面积的最小值及此时直线l 的方程.【正确答案】(1)2219m =-;(2)面积的最小值为12,直线l 的方程为3x +2y +12=0.【分析】(1)由题设求得直线l 过定点(2,3)P --,则Q 与定点P 的连线的距离就是所求最大值,根据垂直关系及75PQ k =求参数m ;(2)设直线l 为3(2)y k x +=+,0k <并求出A ,B 坐标,应用三角形面积公式、基本不等式求最小值,并写出直线方程.【详解】(1)已知直线:(21)(3)70l m x m y m +-++-=,整理得(21)370x y m x y -++--=,由21023703x y x x y y ⎧-+==-⎧⇒⎨⎨--==-⎩⎩,故直线l 过定点(2,3)P --,点(3,4)Q 到直线l 的距离最大,即Q 与定点P 的连线的距离就是所求最大值,=∵437325PQ k +==+,∴(21)(3)70m x m y m +-++-=的斜率为57-,得52173m m +-=+,解得2219m =-;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,则设直线l 为3(2)y k x +=+,0k <,则32,0A k ⎛⎫- ⎪⎝⎭,(0,23)B k -,1313192232(32)12(4)12222AOB S k k k k k k ⎡⎤⎛⎫⎛⎫=-⋅-=--=+-+-≥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(当且仅当32k =-时,取“=”),故AOB 面积的最小值为12,此时直线l 的方程为3x +2y +12=0.21.如图,在四棱锥S ABCD -中,四边形ABCD 是菱形,1AB =,3SC =,三棱锥S BCD -是正三棱锥,E ,F 分别为SA ,SC 的中点.(1)求证:直线BD ⊥平面SAC ;(2)求二面角E BF D --的余弦值;(3)判断直线SA 与平面BDF 的位置关系.如果平行,求出直线SA 与平面BDF 的距离;如果不平行,说明理由.【正确答案】(1)证明见解析7(3)平行,距离为14【分析】(1)要证线面平行,先证线线平行,只需证BD AC ⊥,BD SO ⊥,即可.(2)建立适当的直角坐标系,再利用平面的法向量,即可求解.(3)利用向量OA 在平面BDF 的法向量上的投影,即可求解.【详解】(1)证明:连接AC ,交BD 于点O ,连接SO ,因为四边形ABCD 是菱形,所以O 为AC ,BD 的中点,且BD AC ⊥,因为三棱锥S BCD -是正三棱锥,SB SD =,O 为BD 的中点,所以BD SO ⊥,又SO AC O = ,所以BD ⊥平面SAC .(2)作SH ⊥平面BCD 于H ,则H 为正三角形BCD 的中点,H 在线段OC 上,且2OC =,113326OH OC ==,233CH OC ==,1SH ==.如图,以O 为坐标原点,分别以OB ,OC ,HS 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则0,A ⎛⎫ ⎪ ⎪⎝⎭,1,0,02B ⎛⎫ ⎪⎝⎭,C.,02⎛⎫ ⎪ ⎪⎝⎭,D .1,0,02⎛⎫- ⎪⎝⎭,0,6S ⎛⎫ ⎪ ⎪⎝⎭,10,62E ⎛⎫- ⎝⎭,12F ⎛⎫ ⎪ ⎪⎝⎭,所以11,22BE ⎛⎫=- ⎪ ⎪⎝⎭,1122BF ⎛⎫=- ⎪ ⎪⎝⎭,()1,0,0BD =- ,设()1111,,n x y z = 是平面EBF 的法向量,则1111111111026211022n BE x y z n BF x y z ⎧⋅=-+=⎪⎪⎨⎪⋅=-+=⎪⎩,则()11,0,1n = ,设()2222,,n x y z = 是平面DBF 的法向量,则2222220110232n BD x n BF x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取()22n =- ,所以121212cos ,7n n n n n n ⋅==- ,又因为二面角E BF D --是锐二面角,所以二面角E BF D --的余弦值为7.(3)直线SA 与平面BDF 平行.理由如下:连接OF ,由(1)知O 为AC 的中点,又F 为SC 的中点,所以OF SA ∥,又因为SA ⊄平面BDF ,OF ⊂平面BDF ,所以直线SA ∥平面BDF .(或者用向量法证明直线SA 与平面BDF 平行:由(2)知()23,2n =- 是平面BDF 的一个法向量,又30,2A ⎛⎫ ⎪ ⎪⎝⎭,30,6S ⎛⎫ ⎪ ⎪⎝⎭,所以30,,13SA ⎛⎫=-- ⎪ ⎪⎝⎭ ,所以()()2230032103SA n ⎛⋅=⨯+-⨯-= ⎝⎭,所以2SA n ⊥ ,又因为SA ⊄平面BDF ,所以直线SA ∥平面BDF .设点A 与平面BDF 的距离为h ,则h 即为直线SA 与平面BDF 的距离,因为30,2OA ⎛⎫= ⎪ ⎪⎝⎭ ,()23,2n =- 是平面DBF 的一个法向量,所以()22300302237147OA n n ⎛⎫⨯+⨯-+⨯- ⎪⋅⎝⎭== ,所以点A 与平面BDF 3714所以直线SA 与平面BDF 的距离为3714.22.如图,C 是以AB 为直径的圆O 上异于A ,B 的点,平面PAC ⊥平面,ABC PAC 为正三角形,E ,F 分别是,PC PB 上的动点.(1)求证:BC AE ⊥;(2)若E ,F 分别是,PC PB 的中点且异面直线AF 与BC 32记平面AEF 与平面ABC 的交线为直线l ,点Q 为直线l 上动点,求直线PQ 与平面AEF 所成角的取值范围.【正确答案】(1)证明见解析(2)0,6π⎛⎤ ⎥⎝⎦【分析】(1)利用线面垂直的判定定理证明BC ⊥平面PAC ,即可证明BC AE ⊥.(2)由已知结合线面平行的判定定理知//BC 平面AEF ,结合线面平行的性质定理知//BC l ,建立空间直角坐标系,设(2,,0)Q t ,求出平面AEF 的一个法向量,利用空间向量求线面角即可得解.【详解】(1)证明:因为C 是以AB 为直径的圆O 上异于A ,B 的点,所以BC AC ⊥,又平面PAC ⊥平面ABC ,且平面PAC 平面,ABC AC BC =⊂平面ABC ,所以BC ⊥平面,PAC AE ⊂平面PAC .所以BC AE⊥(2)由E ,F 分别是,PC PB 的中点,连结,AE EF ,所以BC EF ∥,由(1)知BC AE ⊥,所以EF AE ⊥,所以在Rt AFE 中,AFE ∠就是异面直线AF 与BC 所成的角.因为异面直线AF 与BC 32所以3tan 2∠=AFE ,即32AE EF =又EF ⊂平面,⊄AEF BC 平面AEF ,所以//BC 平面AEF ,又BC ⊂平面ABC ,平面⋂EFA 平面=ABC l ,所以BC l∥所以在平面ABC 中,过点A 作BC 的平行线即为直线l .以C 为坐标原点,,CA CB 所在直线分别为x 轴,y 轴,过C 且垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,设2AC =.因为PAC △为正三角形所以3AE =2EF =由已知E ,F 分别是,PC PB 的中点,所以24BC EF ==则(2,0,0),(0,4,0),3)A B P ,所以1313,2222⎛⎛ ⎝⎭⎝⎭E F ,所以33,(0,2,0)22⎛⎫=-= ⎪⎝⎭E AF E ,因为BC l ∥,所以可设(2,,0)Q t ,平面AEF 的一个法向量为(,,)m x y z = ,则3302220x z AE m EF m y ⎧⋅=-=⎪⎨⎪⋅==⎩,取3z =3)m = ,又(1,,3)=- PQ t ,则21|cos ,|0,2||||4⋅⎛⎤〈〉== ⎥⋅⎝⎦+ PQ m PQ m PQ m t .设直线PQ 与平面AEF 所成角为θ,则21sin 0,24⎛⎤=∈ ⎥⎝⎦+t θ.所以直线PQ 与平面AEF 所成角的取值范围为0,6π⎛⎤ ⎥⎝⎦.。
高二数学上册第一次月考模块检测题
高二数学上册第一次月考模块检测题
A.0
B.1
C.2
D.3
答案:B
4.设向量,,则是的
A.充分但不必要条件
B.必要但不充分条件
C.充要条件
D.既不充分也不必要条件
答案:A
5.已知,表示两个不同的平面,m为平面内的一条直线,则是是
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案:B
6.在中,是的
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:C
7.设F1,F2是椭圆的两个焦点,P是椭圆上的点,且,则的面积为
A.4
B.
C.
D.6
答案:D
8.过点的直线与椭圆交于两点,线段的中点为,设直线的斜率为,直线的斜率为,则的值为
A. B. C. D.
答案:D
查字典数学网小编为大家整理了高二数学上册第一次月考模块检测题,希望对大家有所帮助。
高二数学第一次月考模块检测试题
高二数学第一次月考模块检测试题
6、设三棱锥的顶点在底面内射影 (在内部,即过作底面,交于 ),且到三个侧面的距离相等,则是的()
A.外心
B.垂心
C.内心
D.重心
7、直线在轴上的截距是-1,而且它的倾斜角是直线的倾斜角的2倍,则( )
A. A= ,B=1
B.A=- ,B=-1
C.A= ,B=-1
D.A=- ,B=1
8、在空间四边形各边上分别取四点,如果与能相交于点,那么( )
A.点必在直线上
B.点必在直线BD上
C.点必在平面内
D.点必在平面外
9、如图是正方体的平面展开图,在这个正方体中
⑴BM与ED平行⑵CN与BE是异面直线
⑶CN与BM成⑷DN与BN垂直
以上四个命题中,正确命题的序号是( )
A.⑴⑵⑶
B.⑵⑷
C.⑶⑷
D.⑵⑶⑷
10、如图,已知、,从点射出的光线经直线反向后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是( )
A. B. C. D.。
【高二】高二数学上册第一次月考调研检测试题(含答案)
【高二】高二数学上册第一次月考调研检测试题(含答案)南充高中2021级高二(上)第一次月考数学问题(文科)考试时间:120分钟试卷满分:150分一、(12个子题,每个子题5分,共60分)1.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是()。
a、限定词,限定词限定词限定词限定词限定词限定词限定2.课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数之比为。
若用分层抽样抽取个城市,则丙组中应抽取的城市数为()。
a、 1b.2c.3d.43.若点在圆内部,则直线与该圆的位置关系是()a、交叉点B相切C分离D不确定4.如下图,正六边形abcdef中,()a、不列颠哥伦比亚省。
(4题图)(5说明)(6题图)5.几何图形的三个视图如上图所示。
前视图是腰长为2的等腰三角形,顶视图是半径为1的半圆,因此几何体的体积为()a.b.c.d.6.执行上述程序(见图6)。
如果输出结果为4,则输入只能为()。
a.-2或者2b.2c.-2或者4d.2或者-47.被轴切割的圆(x-1)2+(Y-1)2=2的弦长等于()。
a.1b.c.2d.38.在等比序列中,如果有两个等式,那么()a.-2b.c.d.29.如果圆上只有四个点,且与直线的距离为1,则半径r的取值范围是()a、不列颠哥伦比亚省。
10.数据204与的最大公约数为()a、 4b.8c.16d.1711.由直线上的点向圆引切线,则切线长的最小值为()a、不列颠哥伦比亚省。
12.过点作圆的弦,其中弦长为整数的共有()a、第16 b.17 c.32 d.34条二、题(4个小题,每小题4分,共16分)13.如下图所示,在立方体中,e是DC的中点,F是BB1的中点,则直线d1e与af所成角的大小为.(图13)14.按照程序框图(如右图)执行,第3个输出的数是。
15.如果已知圆,则通过该点的圆的切线方程为16.下列叙述中,你认为正确的命题序号是.(1)在空间直角坐标系中,如果,实数的值为5;(2)用“秦九韶算法”计算多项式,当x=2时的值的过程中要经过4次运算和4次加法运算;(3)有两条直线与圆相切,在两个坐标轴上具有相等的截距;(4)将5进制数化为7进制数结果为.2022年级2年级第一次月考数学答卷(I)(正文)二.题(4个小题,每小题4分,共16分)13.; 14.; 15.; 16..三.解答题(共6个小题,第17---21每题12分,第22题14分,共74分) 17.(12点)通过知道圆心在一条直线上并通过原点和点,找到圆的方程式18.(12分)已知向量,并且,还有一些功能(1)求函数的最小正周期和最大值;(2)在图中找出边的长度△ 如果19.(12分)右边流程图,回答以下问题:(1)该流程图使用了算法逻辑结构型循环结构;如果运行程序,输出s的值为(2)请将该流程图用另一种循环重写结构并遵循流程图编写相应的程序语句.20.(12点)设定点,移动点在圆上移动,与相邻边相同作平行四边形,求点p的轨迹方程.21.(12点)已知圆:(1)平面上有两点,点p是圆c上的动点,求的最小值;(2)已知直线通过点的平分圆的周长是直线上的运动点,并且,求的最小值.22.(14点)已知的序列是第一项,即公共比率的等比序列,设,数列满足.(1)求序列前n项之和;(2)求数列的前n项和;(3)如果所有的正整数都是常数,那么找出实数的取值范围南充高中2021级高二(上)第一次月考数学问题参考答案(文科)三、(12个小题,每小题5分,共60分)问题编号:12345678910112答案abcddbcacdac二、填空(4个子问题,每个子问题4分,共16分)13、;14、5;15、和;16、(2)(4).三、回答问题(共6个小问题,17-21分12分,22分14分,共74分)17、(12分)已知圆的圆心在直线上,且经过原点及点,求圆的方程.解决方案:如果圆心为,半径为,则圆的方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019秋高二数学上册第一次月考模块检测
试题
大家把理论知识复习好的同时,也应该要多做题,从题中找到自己的不足,及时学懂,下面是查字典数学网小编为大家整理的秋高二数学上册第一次月考模块检测试题,希望对大家有帮助。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知等比数列{an},若al+a5=8,a3=4,则公比是( )
(A)1 (B) (C)1 (D)
2.△ABC的内角A,B,C的对边分别为a,b,c,若b2=ac,且c=2a,则cosB= ( )
(A) (B) (C) (D)
3.已知数列的前n项的和为Sn=2n-1,则此数列奇数项的前n项和是()
(A) (2n+1-1) (B) (2n+1-2)
(C) (22n-1) (D) (22n-2)
4.一个首项为正数的等差数列,前3项和等于前11项和,则当这个数列的前n项和最大时,n等于()
(A)5 (B)6 (C)7 (D)8
5.在△ABC中,a=6,b=4,C=30,则△ABC的面积是()
(A)12 (B)6 (C)12 (D)8
6.在△ABC中,AB=5,BC=6,AC=8,则△ABC的形状是()
(A)锐角三角形(B)直角三角形
(C)钝角三角形(D)非钝角三角形
7.在△ABC中,A=60,AC=16,面积为220 ,那么BC的长度为()
(A)25 (B)51 (C)49 (D)49
8.已知数列{an}满足a1=2,an+1+1=an(nN+),则此数列的通项an等于()
(A)n2+1 (B)n+1(C)1-n (D)3-n
9.数列{an}中,an= ,若{an}的前n项和为,则项数n为()
(A)2019 (B)2009 (C)2019 (D)2019
10.已知a,b,c,d成等比数列,且函数y=2x2-4x+5图像的顶点是(b,
c),则ad等于()
(A)3 (B)2 (C)1 (D)-2
11.已知两数的等差中项是6,等比中项是5,则以这两个数为根的一元二次方程是( )
(A)x2-6x+5=0 (B)x2-12x+5=0
(C)x2-12x+25=0(D)x2+12x+25=0
12.已知两座灯塔A、B与一岛C的距离都等于a km,灯塔A在岛C 的北偏东20,灯塔B在岛C的南偏东40,则灯塔A与灯塔B的距离为( )
要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的
注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
(A)a km (B) a km(C) a km (D)2a km
二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)
13.在△ABC中,角A,B,C的对边分别为a,b,c,若
(a+b+c)(sinA+sinB-sinC)=3asinB,则C= .
14.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.
语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟
文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
15.等差数列{an} 中,S10=120,则a2+a9 = .
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
16.在△ABC中,三内角A,B,C成等差数列,则B等于 .。