二元一次方程组的解法及应用
二元一次方程组求解
二元一次方程组求解解法一:代入法对于一个二元一次方程组,可以使用代入法来求解。
假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f首先,我们可以将方程一中的 x 表达出来,然后代入方程二中计算y 值。
具体步骤如下:1. 将方程一中的 x 表达出来:ax = c - by ①从而可以得到 x 的表达式:x = (c - by)/a ②2. 将 x 的表达式 (②) 代入方程二中:d((c - by)/a) + ey = f化简得到:dc/a - dby/a + ey = f移项得到:dby/a + ey = f - dc/a整理得到:(db + ae)y = af - dc从而得到 y 的表达式:y = (af - dc)/(db + ae) ③3. 将 y 的表达式 (③) 代入方程一中即可得到 x 的值:ax + b((af - dc)/(db + ae)) = c化简得到:ax + baf/(db + ae) - bdc/(db + ae) = c移项得到:ax - baf/(db + ae) = c + bdc/(db + ae)整理得到:ax = c + bdc/(db + ae) + baf/(db + ae)从而得到 x 的表达式:x = (c(db + ae) + bdc + baf)/(ad - be) ④解法二:消元法对于二元一次方程组,还可以使用消元法来求解。
假设我们有以下的方程组:方程一:ax + by = c方程二:dx + ey = f具体步骤如下:1. 通过乘法使得方程一和方程二的系数相等:方程一乘以 e,方程二乘以 b,得到:aex + bey = cedbx + bey = fb从而我们可以得到一个新的方程组:aex + bey = cedbx + bey = fb2. 将方程二减去方程一,消去 y 的项:(dbx + bey) - (aex + bey) = fb - ce化简得到:dbx - aex = fb - ce移项得到:(db - ae)x = fb - ce从而得到 x 的表达式:x = (fb - ce)/(db - ae) ⑤3. 将 x 的表达式 (⑤) 代入方程一,计算得到 y 的值:ax + by = c化简得到:a((fb - ce)/(db - ae)) + by = c移项得到:(afb - ace)/(db - ae) + by = c整理得到:by = c - (afb - ace)/(db - ae)从而得到 y 的表达式:y = (c(db - ae) - afb + ace)/(db - ae) ⑥至此,我们通过代入法和消元法分别得到了二元一次方程组的解。
二元一次方程组的解法与应用
显然,上表中每一对 x、y 的值都是方程①的解。 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二 元 一 次 方 程 的 解. 如果不考虑方程的实际意义,那么x、y 还可以取哪些值?这些值是有限的吗? 还可以取 x=-1,y=23;x=0.5,y=21.5,等等。 所以,二元一次方程的解有无数对。 上表中哪对 x、y 的值还满足方程②?
巩固新知
满足方程①的解有:
x y
= =
21 , 1
x x
= =
20 2
,
x x
= =
19, 3
x x
= =
18 4
,
x y
= 17 =5
满足方程②的解有:
x y
= =19 2,来自xy=18 =4
,
x y
= =
17 6
,
x y
= =
16 6
„
可以采用观察与 估算的方法.但 很麻烦,故引发 学生产生寻找新 方法的需求.
这样处理降
(1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代? (3)只求出一个未知数的值,方程组解完了吗? (4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值 较简便? (5)怎样知道你运算的结果是否正确呢?
低了难度, 利于分阶段 达成本课的 知识目 标.本例的
(与解一元一次方程一样,需检验.其方法是将求得的一对未知数 重点在于让
C
x = 0
y
=
1
D
x = -1
y
=
0
六、课堂小结
1、二元一次方程、二元一次方程组的概念;
2、二元一次方程、二元一次方程组的解.
作业:
二元一次方程组的解法及应用
二元一次方程组的解法及应用一、引言二元一次方程组是数学中常见的问题,其解法及应用在实际生活中有着重要的意义。
本文将介绍二元一次方程组的解法及其应用领域。
二、二元一次方程组的解法二元一次方程组是由两个未知数和两个方程所组成的方程组。
解决这种方程组的问题需要运用代数的方法进行计算。
1. 消元法消元法是解决二元一次方程组最常用的方法之一。
该方法的主要思想是通过消去一个未知数,将方程组转化为只有一个未知数的方程。
举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一的两边同时乘以2,方程二的两边同时乘以3,然后将两个方程相加得到一个新的方程:11x = 22。
从中我们可以解得x=2。
将x的值带入其中一个方程,比如方程一,可以解得y=1。
2. 代入法代入法也是解决二元一次方程组的常用方法之一。
该方法的主要思想是通过将一个方程中的一个未知数表示为另一个方程中未知数的函数,然后将其代入到另一个方程中进行求解。
举例来说,假设我们有以下的二元一次方程组:方程一:2x + 3y = 7方程二:3x - 2y = 4我们可以通过将方程一求解出y的表达式:y = (7 - 2x) / 3,然后将其代入到方程二中,得到一个新的方程:3x - 2(7 - 2x) / 3 = 4。
从中我们可以解得x=2。
将x的值代入其中一个方程,比如方程一,可以解得y=1。
三、二元一次方程组的应用二元一次方程组的解法在实际生活中有着广泛的应用,涉及到各个领域。
1. 经济学中的应用二元一次方程组可以用于经济学中的定量分析和决策制定。
例如,在市场经济中,供求关系是决定价格和数量的重要因素。
通过建立供求方程组,可以求解出市场均衡的价格和数量。
2. 工程学中的应用二元一次方程组可以用于工程学中的问题求解。
例如,在电路分析中,可以利用欧姆定律和基尔霍夫电流定律建立二元一次方程组,求解出电路中各个节点的电流。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组是指包含两个未知数和两个方程的方程组。
解二元一次方程组的常用方法有消元法、代入法和矩阵法等。
下面将分别介绍这三种方法的步骤和应用。
一、消元法消元法是解二元一次方程组常用的方法,它的基本思想是通过消去一个未知数,从而将方程组转化为只含一个未知数的一次方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 通过等式的加减消去一个未知数。
选择其中一个方程,将其系数乘以另一个方程中与其同未知数的系数的相反数,然后将两个方程相加或相减,消去该未知数。
2. 获得新的一次方程,其中只含有一个未知数。
3. 解新的一次方程,求得该未知数的值。
4. 将求得的未知数值代入原方程中,求得另一个未知数的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
二、代入法代入法是解二元一次方程组的另一种常用方法,它的基本思想是将一个方程的一个未知数表示为另一个未知数的函数,然后将其代入另一个方程,从而将方程组转化为只含一个未知数的方程,进而求解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)步骤如下:1. 选择一个方程,将其一个未知数表示为另一个未知数的函数,例如将(1)中的 x 表示为 y 的函数:x = f(y)。
2. 将函数表达式代入另一个方程(2),得到只含有一个未知数 y的一次方程。
3. 解这个一次方程,求得 y 的值。
4. 将求得的 y 值代入第一个方程(1),求得 x 的值。
5. 检查解的可行性,在原方程组中验证求得的解是否满足原方程组。
三、矩阵法矩阵法是用矩阵运算的方法解二元一次方程组,它的基本思想是将方程组转化为矩阵方程,通过对矩阵的运算得到解。
假设给定的二元方程组为:a₁x + b₁y = c₁(1)a₂x + b₂y = c₂(2)将方程组表示为矩阵形式:⎛ a₁ b₁⎞⎛ x ⎞⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ a₂ b₂⎠ * ⎝ y ⎠ = ⎝ c₂⎠利用矩阵的逆矩阵,可以得到未知数向量的值:⎛ x ⎞⎛ a₁ b₁⎞⁻¹⎛ c₁⎞⎜⎟⎜⎟⎜⎟⎝ y ⎠ = ⎝ a₂ b₂⎠⎝ c₂⎠通过计算矩阵的逆矩阵,可以求得未知数的值。
二元一次方程组解法及应用___知识要点+典型例题+配套练习
七下数学--第八章 二元一次方程组要点一:二元一次方程组的解法 【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解 【典型例题】 一、选择题1、(2009·福州中考)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是 ( C )A .0,2.x y =⎧⎨=⎩B .2,0.x y =⎧⎨=⎩C .1,1.x y =⎧⎨=⎩D .1,1.x y =-⎧⎨=-⎩2、(2009·百色中考)已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解, 则a b -的值为( B ).A .1B .-1C . 2D .33、(2009·内江中考)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( D )A .1B .3C .5D .24、(2009·日照中考)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+ky x k y x 9,5的解也是二元一次方程632=+y x 的解,则k 的值为 (B. )(A )43- (B )43 (C )34 (D )34-5、(2009·绵阳中考)小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发现“⊗”“ ⊕”处被墨水污损了,请你帮他找出⊗、⊕ 处的值分别是( B ) A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2 D .⊗ = 2,⊕ = 26、(2009·青海中考)已知代数式133m x y --与52n m n x y +是同类项,那么m n 、的值分别是(C )A .21m n =⎧⎨=-⎩B .21m n =-⎧⎨=-⎩C .21m n =⎧⎨=⎩D .21m n =-⎧⎨=⎩7、(2007·丽水中考)方程组5210x y x y +=⎧⎨+=⎩ ,由②-①,得正确的方程是( B )(A )310x = (B ) 5x = (C )35x =- (D )5x =- 8、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32(B )23(C )1 (D )-1二、填空题9、(2009·定西中考)方程组25211x y x y -=-⎧⎨+=⎩,的解是 .34x y =⎧⎨=⎩,10、(2008·临沂中考)已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为___1_____.11、(2009·呼和浩特中考)如果|21||25|0x y x y -++--=,则x y +的值为 6 三、解答题12、 (2009·湘西中考)解方程:2725x y x y -=⎧⎨+=⎩①②【解析】①+② 得 4x =12,即 x =3 代入① 有6-y =7,即 y =-1所以原方程的解是:⎩⎨⎧-==13y x13、(2007·青岛中考)解方程组:2536x y x y +=-=⎧⎨⎩,.【解析】25,3 6.x y x y +=-=⎧⎨⎩①×3,得 6x +3y =15. ③ ②+③,得 7x =21,x =3. 把x =3代入①,得2×3+y =5,y =-1.14、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?15、二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .16、方程组2528x y x y +=⎧⎨-=⎩的解是否满足2x -y=8?满足2x -y=8的一对x ,y 的值是否是方程组① ②2528x y x y +=⎧⎨-=⎩的解? 【配套练习】1.判断下列方程是不是二元一次方程4).1(22=+y x 222).2(x y x x =-+ 6).3(=-y xyy x =).4( 6).5(2=++z y x 811).6(=+yx2.在下列每个二元一次方程组的后面给出了x 与y 的一对值,判断这对值是不是前面方程组的解?(1)⎩⎨⎧=+=-)2(7032)1(53y x y x ⎩⎨⎧==12y x (2)⎩⎨⎧=+=-)2(1147)1(123y x y x ⎩⎨⎧==11y x3.判断(1)由两个二元一次方程组成方程组一定是二元一次方程组( )(2)方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( ) 4.在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 5.任何一个二元一次方程都有( ) (A )一个解;(B )两个解; (C )三个解;(D )无数多个解;6. 关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2;(B )-1;(C )1;(D )-2;7. 与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( ) (A )15x -3y =6 (B )4x -y =7(C )10x +2y =4(D )20x -4y =38. 下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x(B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x9. 已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14(B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =1410. 若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解(B )有唯一一个解 (C )有无数多个解(D )不能确定11. 若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( ) (A )14 (B )-4 (C )-12 (D )1212. .已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( )(A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-413. 如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________;14已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;15. 若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;16.若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________;17.从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;18.解方程组(1)⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm (2))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+(3)⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x (4)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(5)⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x (6)⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x19. m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。
二元一次方程组解法及运用
二元一次方程组解法及运用一、知识点回顾知识点一:二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。
注:1.①方程中有且只有一个未知数。
②方程中含有未知数的项的次数为1。
③方程为整式方程。
(三个条件完全满足的就是二元一次方程)2. ①含有未知数的项的系数不等于零,且两未知数的次数为1。
即若ax m+by n=c是二元一次方程,则a≠0,b≠0且m=1,n=1 例1:下列方程中是二元一次方程的是()A.3x-y2=0 B.2x+1y=1 C.3x-52y=6 D.4xy=3例2 :已知关于x,y的二元一次方程(2m-4)x -3 +(n+3)y|n|-2 =6,求m,n的值知识点二:二元一次方程组的定义:由两个二元一次方程所组成的方程组叫二元一次方程组(不必记)注:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1。
③方程组中每个方程均为整式方程。
例1.下列方程组中,是二元一次方程是 ( )A228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩知识点三:方程的解的定义:使方程左右两边的值相等的未知数的值。
方程组的解的定义:方程组中所有方程的公共解叫方程组的解。
例1已知12xy=⎧⎨=-⎩是关于x,y的二元一次方程组2635ax yx by-=⎧⎨-=-⎩的解,求2a+b的值.例2已知方程组44ax y-=⎧⎨⎩,(1)2x+by=14,(2)由于甲看错了方程①中的a得到方程组的解为m226x y =-⎧⎨=⎩,, 乙看错了方程②中的b 得到方程组的解为44.x y =-⎧⎨=-⎩,若按正确的a 、b 计算,求原方程组的解.知识点四:求二元一次方程的特殊解例2:求二元一次方程2x+5y=30的①正整数解.②非负整数解知识点五:二元一次方程的变形:用一个未知数表示另一个未知数例:已知二元一次方程5x-2y=10 ①将其变形为用含x 的代数式表示y 的形式。
二元一次方程的解法与应用
二元一次方程的解法与应用二元一次方程是由两个未知数的一次次幂所构成的方程。
一般形式为ax + by = c,其中a、b和c为已知数,x和y为未知数。
解决二元一次方程的问题在数学中具有广泛的应用,可以用于解决线性方程组、几何问题等。
一、图解法图解法是解决二元一次方程最直观的方法之一。
我们可以通过绘制方程所对应的直线,观察直线的交点来求解方程的解。
举例说明:解方程组2x + 3y = 8x - y = 2我们可以将第一个方程写成y = (8-2x)/3的形式,然后通过绘制直线的方法找到交点,即为方程的解。
二、代入法代入法是另一种解决二元一次方程的常用方法。
我们可以通过将一个方程中的一个未知数表示为另一个方程中的未知数的函数,然后将该函数代入到另一个方程中去求解未知数。
举例说明:解方程组2x + y = 94x - 3y = 18可以将第一个方程写成y = 9 - 2x的形式,然后将其代入到第二个方程中,得到4x - 3(9 - 2x) = 18,通过化简和求解x,再代入回第一个方程中求解y,即可得到方程的解。
三、消元法消元法是解决二元一次方程的另一种常用方法。
通过对方程组中的方程进行加减运算,使得其中一个未知数的系数相等,从而消去这个未知数,然后通过代入法求解剩下的未知数。
举例说明:解方程组2x + 3y = 114x - 5y = -1可以将第一个方程乘以2,第二个方程乘以3,得到4x + 6y = 22和12x - 15y = -3。
通过对两个方程进行减法操作,消去x的系数,得到-21y = -25,从而求解y。
再代入回一个方程中求解x,即可得到方程的解。
二元一次方程的应用二元一次方程的求解方法可以应用于解决各种实际问题,例如经济学中的平衡问题、几何学中的线性方程组以及工程学中的线性电路等。
举例说明:经济平衡问题假设某企业生产x件产品A和y件产品B,已知产品A的成本为10x元,产品B的成本为20y元,并且总的生产成本为100元。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组是指由两个未知数和两个方程组成的方程组。
解决这样的方程组可以使用多种方法,包括消元法、代入法和图解法等。
本文将介绍这些解法的步骤和应用示例。
1. 消元法消元法是一种常用的解二元一次方程组的方法。
它通过将其中一个方程的未知数系数倍乘以另一个方程的系数,使得两个方程中的一个未知数的系数相等或相差一个倍数,进而将自变量消去,从而求得另一个未知数的值。
具体步骤如下:步骤1:观察两个方程,确定哪个未知数系数的倍数可以使得两个未知数的系数相等或相差一个倍数。
步骤2:将两个方程相加或相减,消去其中一个未知数。
步骤3:解得一个未知数的值。
步骤4:将求得的未知数代入任意一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:2x + 3y = 7方程2:3x - 4y = 8解答过程:步骤1:由观察可知,方程1的横坐标系数的倍数可以使得两个方程中y的系数相等,因此我们将方程1的系数倍乘以方程2的系数,得到6x + 9y = 21和3x - 4y = 8。
步骤2:将两个方程相减,得到(6x + 9y) - (3x - 4y) = (21 - 8)。
化简得到3x + 13y = 13。
步骤3:解得x = 1。
步骤4:将x = 1代入方程1中,得到2(1) + 3y = 7。
化简得到3y = 5,解得y = 5/3。
因此,方程组的解为x = 1,y = 5/3。
2. 代入法代入法是另一种解二元一次方程组的常用方法。
它通过将其中一个方程的解代入到另一个方程中,从而求得另一个未知数的值。
具体步骤如下:步骤1:解其中一个方程,得到一个未知数的值。
步骤2:将求得的未知数的值代入到另一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:3x - 4y = 2方程2:2x + y = 7解答过程:步骤1:解方程1,得到x = (2 + 4y)/3。
步骤2:将x = (2 + 4y)/3代入方程2,得到2(2 + 4y)/3 + y = 7。
二元一次方程组及其解法(培优)
二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。
二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。
解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。
熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。
例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。
在解题时需要根据具体情况选择最合适的方法。
变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。
⑴2x+5y=16 - 是二元一次方程,符合三个条件。
⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。
02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。
根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。
03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。
例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。
根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。
二元一次方程组的解法与应用
二元一次方程组的解法与应用一、引言二元一次方程组是指包含两个未知数的两个一次方程,并且这两个方程是同时成立的。
解决二元一次方程组问题是数学中的重要内容,它不仅具有理论价值,而且在实际生活中也有着广泛的应用。
本文将介绍解二元一次方程组的几种常见方法,并探讨其在实际问题中的应用。
二、常见解法1. 代入法代入法是解决二元一次方程组最常用的方法之一。
首先从其中一个方程中解出一个未知数,然后将其代入另一个方程,从而得到只含有一个未知数的一次方程,解出该未知数后再带入原方程求解另一个未知数。
2. 消元法消元法是解决二元一次方程组的另一种常用方法。
通过对两个方程进行加减运算,使得其中一个未知数消失,从而得到只含有一个未知数的一次方程,解出该未知数后再带入原方程求解另一个未知数。
3. 公式法如果二元一次方程组的系数符合一定的条件,可以利用公式解法来求解。
例如,当系数满足方程组的行列式不等于零时,可以使用克拉默法则来求解未知数的值。
三、应用案例1. 货币兑换问题假设一种货币A与另一种货币B的兑换比例为1:2,某人用货币A购买了若干商品,花费了50个货币A,问他购买了多少个货币B的商品?设购买的货币B商品数量为x,根据题意可得以下方程组:1A + 2B = 50解此二元一次方程组可得x=25,即该人购买了25个货币B的商品。
2. 面积问题某个长方形的长度是宽度的两倍,而且周长是24,求该长方形的面积。
设长方形的宽度为x,长度为2x,根据题意可得以下方程组:2x + 2(x+2x) = 24解此二元一次方程组可得x=4,即长方形的宽度为4,长度为8,面积为32。
四、解法选择与注意事项在解决二元一次方程组问题时,选择合适的解法是非常重要的。
如果方程较为简单,可以考虑使用代入法或消元法;如果方程的系数符合特定条件,可以使用公式法。
此外,注意方程组是否有解,以及解是否唯一也是需要注意的。
五、总结二元一次方程组在数学中具有重要地位,不仅是数学学习的基础内容,而且在实际应用中也有广泛的运用。
二元一次方程组的解法及应用
二元一次方程组的解法及应用引言:数学作为一门重要的学科,广泛应用于各个领域。
在数学中,方程组是一种常见的问题形式。
而二元一次方程组作为最简单的方程组形式,其解法和应用也是我们学习数学的基础。
本文将介绍二元一次方程组的解法及其应用。
一、二元一次方程组的解法二元一次方程组是由两个未知数和两个方程组成的方程组。
通常表示为:ax + by = cdx + ey = f其中a、b、c、d、e、f为已知数,x和y为未知数。
1.1 消元法消元法是解二元一次方程组的一种常用方法。
通过将两个方程相加或相减,使得一个未知数的系数相互抵消,从而得到另一个未知数的值。
具体步骤如下:- 将两个方程的系数进行调整,使得一个未知数的系数相等或相反数;- 将两个方程相加或相减,消除一个未知数,得到一个新的方程;- 解得新方程中的未知数的值;- 将求得的未知数的值代入原方程中,求得另一个未知数的值。
1.2 代入法代入法是另一种解二元一次方程组的方法。
通过将一个方程的一个未知数表示为另一个未知数的函数,然后代入另一个方程,从而得到一个只含有一个未知数的方程。
具体步骤如下:- 选取一个方程,将其中一个未知数表示为另一个未知数的函数;- 将得到的函数代入另一个方程,得到一个只含有一个未知数的方程;- 解得新方程中的未知数的值;- 将求得的未知数的值代入原方程中,求得另一个未知数的值。
二、二元一次方程组的应用二元一次方程组在实际生活中有广泛的应用。
以下将介绍二元一次方程组在经济学、物理学和几何学中的应用。
2.1 经济学中的应用在经济学中,二元一次方程组常用于描述供给和需求的关系。
例如,假设某商品的供给方程为ax + by = c,需求方程为dx + ey = f,其中x表示价格,y表示数量。
通过解方程组,可以得到平衡价格和数量,从而确定市场的供需关系。
2.2 物理学中的应用在物理学中,二元一次方程组常用于描述物体的运动轨迹。
例如,假设某物体在平面上的运动轨迹可以用方程组ax + by = c,dx + ey = f来表示,其中x和y分别表示物体在水平和垂直方向上的位移。
二元一次方程组的解法及应用
二元一次方程组的解法及应用在数学中,二元一次方程组是由两个未知数和两个方程组成的方程组。
解二元一次方程组的过程非常重要,不仅可以帮助我们求解实际问题,还可以培养我们的逻辑思维和分析能力。
本文将介绍二元一次方程组的解法以及其在实际生活中的应用。
一、二元一次方程组的解法解二元一次方程组的常用方法有三种:代入法、消元法和等式法。
下面将分别介绍这三种方法的具体步骤。
1. 代入法代入法是解二元一次方程组最简单的方法之一。
其基本思想是将一个方程的解代入另一个方程中,从而得到另一个方程只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)选择一个方程,将其中的一个未知数用另一个未知数的表达式代替。
(2)将代入后的方程代入另一个方程中,得到只含有一个未知数的一次方程。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入代入步骤(1)中的方程,求解得到第二个未知数的值。
通过多次代入和求解,可以得到整个二元一次方程组的解。
2. 消元法消元法是解二元一次方程组的另一种常用方法。
其基本思想是通过将方程组中某个方程的两边乘以适当的系数,使得两个方程的某个未知数的系数相等或者互为相反数,然后将这两个方程相加或相减,从而消去某个未知数,求解另一个未知数的值。
具体步骤如下:(1)通过适当的乘法将两个方程的某个未知数的系数相等或互为相反数。
(2)将这两个方程相加或相减,消去某个未知数。
(3)求解得到一个未知数的值。
(4)将求得的未知数的值代入其中一个方程,求解得到第二个未知数的值。
通过多次消元和求解,可以得到整个二元一次方程组的解。
3. 等式法等式法是解二元一次方程组的另一种有效的方法。
其基本思想是通过将两个方程进行相减或相加,得到只含有一个未知数的一次方程,然后通过求解这个一次方程来确定未知数的值。
具体步骤如下:(1)通过适当的乘法或加减法将两个方程相减或相加,得到一个只含有一个未知数的一次方程。
二元一次方程组的解法与应用的实际问题
二元一次方程组的解法与应用的实际问题一、引言二元一次方程组是数学中常见且重要的一个概念,它涉及到解方程以及应用解方程的实际问题。
本文将探讨二元一次方程组的解法以及如何将其应用于实际问题中,从而提供读者在解决相关问题时的指导和启示。
二、二元一次方程组的解法二元一次方程组通常采用消元法、代入法和加减法等解法。
接下来将分别介绍这些解法的基本原理和步骤。
1. 消元法消元法是解二元一次方程组常用的方法之一。
它通过消去一个变量,将方程组转化为只含有一个变量的方程,从而求解另外一个变量的值。
具体步骤如下:(1) 确定一个方程,将其中一个变量表示为另一个变量的函数。
(2) 将该函数代入另外一个方程,将原方程组转化为只含有一个变量的方程。
(3) 求解得到该变量的值。
(4) 将求得的变量值代入初始方程中,求解另一个变量的值。
2. 代入法代入法也是解二元一次方程组常用的方法之一。
它通过利用一个方程将其中一个变量表示为另一个变量的函数,然后将该函数代入另外一个方程,从而求解变量的值。
具体步骤如下:(1) 确定一个方程,将其中一个变量表示为另一个变量的函数。
(2) 将该函数代入另外一个方程中,将二元一次方程组转化为只含有一个变量的方程。
(3) 求解得到该变量的值。
(4) 将求得的变量值代入初始方程中,求解另一个变量的值。
3. 加减法加减法也是解二元一次方程组常用的方法之一。
它通过将两个方程相加或相减来消去一个变量,从而求解另一个变量的值。
具体步骤如下:(1) 将两个方程相加或相减,从而消去一个变量,得到只含有一个变量的方程。
(2) 求解得到该变量的值。
(3) 将求得的变量值代入初始方程中,求解另一个变量的值。
三、二元一次方程组的应用实例二元一次方程组在实际生活中有着广泛的应用。
下面将介绍几个例子,以展示它们的应用价值。
1. 商品价格问题假设有两种商品A和B,知道A和B的总价格为100元,且已知A 的价格是B的两倍。
我们可以通过求解二元一次方程组来确定A和B的具体价格,从而帮助我们了解两种商品的定价和销售策略。
二元一次方程的解法
二元一次方程的解法一、引言二元一次方程是数学中的基本概念之一,它可以用来解决一些实际问题,如线性模型、经济学中的供求关系等。
本文将介绍二元一次方程的解法,并提供一些实际应用的示例。
二、方法一:代入法二元一次方程的代入法是一种常见而简单的解法。
首先,在其中一个方程中将其中一个变量表示为另一个变量的函数,然后将其代入另一个方程,从而得到单变量的一元方程。
例如,我们考虑以下二元一次方程组:方程一:x + y = 7方程二:2x - y = 1我们可以将方程一改写为x = 7 - y,并代入方程二:2(7 - y) - y = 1通过展开和整理,我们得到:14 - 2y - y = 114 - 3y = 1继续整理,得到:-3y = 1 - 14-3y = -13y = -13 / -3y = 13/3将y的值代入方程一中,我们得到:x + 13/3 = 7x = 7 - 13/3x = 12/3 - 13/3x = -1/3所以,该二元一次方程组的解为x = -1/3,y = 13/3。
三、方法二:消元法消元法是解二元一次方程组的另一种常用方法。
通过合理的加减运算,将方程组中的一个变量消去,从而得到只含有一个变量的一元二次方程。
继续以前面的例子为基础,我们通过消元法解决该方程组。
我们可以将方程二的系数乘以2,得到:方程一:x + y = 7方程二:4x - 2y = 2然后我们将方程一乘以2,并与方程二相减,从而消去y变量:2(x + y) - (4x - 2y) = 2(7) - 22x + 2y - 4x + 2y = 14 - 2-2x + 4y = 12整理后得到:4y - 2x = 12接下来,我们将这个结果与方程一相加,以消去x变量:(4y - 2x) + (x + y) = 12 + 74y - 2x + x + y = 19整理后得到:5y - x = 19现在,我们得到了一个只含有一个变量的方程。
二元一次方程组的8大解题方法,应用题的克星
二元一次方程组的8大解题方法,专治各类应用题!二元一次方程大战应用题一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。
(第一中考网)3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二、八大典型例题详解01.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。
典型例题思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。
变式拓展思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。
02.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。
典型例题思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。
变式拓展思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。
二元一次方程组的概念及解法
二元一次方程组的概念及解法二元一次方程组是含有两个未知数,且未知数的指数都是1的方程。
当把两个二元一次方程合在一起时,就组成了一个二元一次方程组。
方程组的解是使得两个方程的未知数相等的值。
公共解是指两个方程的解都相同的值。
例如,在方程组中,是一个二元一次方程组的例子。
另外,已知二元一次方程2x-y=1,当x=2时,y=3;当y=1时,x=3.消元解法是解二元一次方程组的一种方法。
代入消元法是将一个方程中的一个未知数表示为另一个未知数的函数,然后代入另一个方程中进行消元。
加减消元法是将两个方程相加或相减,消去一个未知数,然后解出另一个未知数。
例如,方程2x-y-5=0可以表示为x=(y+5)/2,y=2x-5.另外,方程组可以用消元解法来解,例如,方程组(2x+3y=40.x-y=-5)可以用加减消元法解出x=11,y=6.举例来说,如果有一个两位数,其个位和十位数字之和为11,将其个位数字和十位数字对调后得到的数比原数大63,那么可以用代数式表示原数为(10y+x),对调后的数为(10x+y),则可以列出方程组(10y+x+63=10x+y。
x+y=11)。
解方程组可以得到x=8,y=3,因此原数为83.鸡兔同笼”问题是另一个例子,可以用二元一次方程组表示。
题目中给出了总共30个头和94只脚,因此可以列出方程组(2x+4y=30.2x+2y=94),其中x表示鸡的数量,y表示兔的数量。
解方程组可以得到x=12,y=9,因此鸡的数量为12,兔的数量为9.综上所述,二元一次方程组是含有两个未知数和未知数的指数都是1的方程组。
解二元一次方程组可以使用消元解法,包括代入消元法和加减消元法。
实际问题可以用二元一次方程组来表示,然后解方程组得出答案。
1.在方程y=-3x-2中,若x=2,则y=-8.若y=2,则x=-4.2.若方程2x-y=3写成用含x的式子表示y的形式:y=2x-3;写成用含y的式子表示x的形式:x=(y+3)/2.3.已知43=2x-3y+1,4x-15y-17=0,6x-25y-23=0,则x=3,y=-2.4.二元一次方程3x-my=4和mx+ny=3有一个公共解,则m=-4,n=3.5.已知|a-b+2|+(b-3)^2=1,那么ab=-1.6.对于方程组(1){xy= -10.x+y=-2},是二次方程组;(2){x-y=1.x/y=3/4},是一次方程组;(3){x+y=5.xy=3},是二次方程组;(4){x+y=3.x=2y},是一次方程组。
二元一次方程组解法详解
一、二元一次方程组解法总结1、二元一次方程组解法的基本思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为一元一次方程,就可以先解出一个未知数,然后再设法求另一个未知数,这种将未知数的个数由多化少,逐一简化的思想方法,叫做消元思想.即二元一次方程组形如:ax=b(a,b为已知数)的方程。
2、代入消元法由方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程的解,这种方法叫做代入消元法,简称代入法.3、用代入消元法解二元一次方程组的步骤(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的代数式表示出来。
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。
4、加减消元法两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.5、加减消元法解二元一次方程组的一般步骤(1)把一个方程或者两个方程的两边乘以适当的数,使方程组的两个方程中一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)把求得的未知数的值代入到原方程组中的系数比较简单的一个方程中,求出另一个未知数的值;(5)把求出的未知数的值写成的形式.6、二元一次方程组解的情况若二元一次方程组(a1,a2,b1,b2,c1,c2均为不等于0的已知数),则(1)当时,这个方程组只有唯一解;(2)当时,这个方程组无解;(3)当时,这个方程组有无穷多个解。
二、重难点知识归纳二元一次方程组的解的理解,二元一次方程组的解法,运用有关概念解决相关数学问题.三、典型例题讲解例1、(1)下列方程中是二元一次方程的有()①②③④mn+m=7⑤x+y=6A.1个B.2个C.3个D.4个(2)在方程(k2-4)x2+(2-k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 的值为()A.2B.-2C.±2D.以上都不对分析:一个方程是否是二元一次方程,必须看它是否满足或使它满足三个条件:①含有两个未知数;②未知数项的次数为1;③整式方程.解答:(1)∵方程①③不是整式方程,∴它们不是二元一次方程.∵mn的次数为2,∴方程④不是二元一次方程.∵方程②⑤满足二元一次方程的三个条件,∴方程②⑤是二元一次方程.故此题应选择B.(2)∵方程(k2-4)x2+(2-k)x+(k+1)y+3k=0是二元一次方程,∴它应满足条件:k2-4=0且2-k≠0且k+1≠0,解得k=±2且k≠2且k≠-1.∴k=-2.例2、在方程3x-ay=0中,如果是它的一个解,那么a的值为_____..由于方程的解必使方程左右两边的值相等,所以只需将代入方程中,解关于a的一次方程即可.解答:∵是方程3x-ay=0的一个解,∴3×3-a·2=0,例3、甲、乙两人同时解方程组乙因抄错c,解得求a、b、c的值.将正确的解代入方程组中可直接求出c的值,但不能求a、b的值.错误解有什么作用呢?方程组的解应满足每一个方程,因此正确解满足ax+by=2,错误的解同样能满足方程ax+by=2,那么就可以建立a、b的方程组,于是a、b、c的值均可求出.解答:都是方程①的解.又∵是方程②的解,∴c+3=-2,∴c=-5.故a、b、c的值分别为例4、解下列方程组。
浅谈二元一次方程组的解法与应用
浅谈二元一次方程组的解法与应用二元一次方程组指的是由两个二次或以下的变量和常数组成的两个等式。
解决这种类型的方程组是一个基本的数学技能,也是实际生活中很实用的一种技能。
下面本文将介绍二元一次方程组的解法和应用。
一、二元一次方程组的解法1. 消元法消元法是比较常用的一种解法。
它的核心思想是将一方程中的某个变量表示为另一个变量的几何坐标,然后将其带入到另一个方程中求出仅包含一个变量的方程。
消元法通常包含以下步骤:(1)选择合适的变量(2)将其中一个方程改写为含有一个变量的式子(3)使用带入法将一个方程中的变量代入另一个方程中(4)求解变量2. 相减法相减法是另一种解决二元一次方程组的方法。
这种方法涉及到将两个方程相减,以消除其中一个变量,从而求出剩下变量的值。
下面是一些使用相减法解决二元一次方程组的步骤:(1)将两个方程中的一个变量的系数相等(2)两个方程相减(3)求解剩余变量3. 代入法代入法是另一个常见的解决二元一次方程组的方法。
它涉及到将一个变量的值代入到另一个方程中,从而解决方程组。
这里是一些使用代入法解决二元一次方程组的步骤:(1)选择合适的方程和一个变量(2)通过代入法将变量代入到另一个方程中(3)解算剩余的变量二、二元一次方程组的应用1. 代数学问题二元一次方程组可以用来解决代数学问题。
这些问题通常涉及到两个未知数,例如:公司生产两种产品,每个月销售总额为10000元。
第一种产品每个月销售300元的数量,第二种产品每月销售400元的数量。
每个月的总利润是1200元。
每个月生产的第二种产品的数量是多少?利用二元一次方程组,可以将这个问题表达为:300x + 400y = 10000y = 1200 - x将y的值代入到第一个方程中得到:300x + 400(1200 - x) = 10000x = 10因此,每个月生产的第二种产品的数量是1200 - 10,即1190个。
2. 几何学问题二元一次方程组也可以用来解决几何学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组
一、用合适的方法解下列方程组
二、填空题
1、足球比赛计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场比赛,负5场,共得19分,那么这个队胜的场数是
2、现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车
载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,
则球迷们一次性到达赛场的租车方案有 种
3、在3×3方格上做填字游戏,要求每行每列及对角线上三个方格中的数字和都等于S ,
又填在图中三格中的数字如图,若要能填成,则S=
4、一艘轮船在一段水域中顺水航行速度为18千米/小时,逆水航行的速度为15千米/小时,则这段水域中水流的速度为_____________________千米/小时.
5、某人装修房屋,预算25000元.装修时因材料费下降了20%,工资涨了10%,实际装修用去了21500元.按原来的预算,材料费为 元,工资为 元。
6、某市现有人口42万人.预计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求这个城市现有城镇人口 人和农村人口 人。
三、解答题
1、已知方程组的解x与y的和为12,求k的值.
2、已知方程组与有相同的解,求a与b的值.
3、某城区中学5月份开展了农村偏远学校“手拉手”活动.九(3)班苗苗同学积极响应学校的号召,用自己的零花钱买了圆珠笔和钢笔共8支,准备送给偏远山区的同学,共用去了20元钱,其中圆珠笔每支1元,钢笔每支5元.你知道苗苗同学买了圆珠笔和钢笔各多少支吗?
4、某排球队参加排球联赛,按照规定胜1场得2分,负1场得1分,该队赛了12场,共得20分.该队胜了多少场?负了多少场?
5、甲种铅笔每枝0.2元,乙种铅笔每枝0.5元.某人买了x枝甲种铅笔和y枝乙种铅笔,共花了4.5元.已知甲种铅笔数是乙种铅笔数的2倍,列出关于x、y的二元一次方程组.甲种铅笔、乙种铅笔各买了多少枝?
6、香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,问香蕉和苹果各买多少千克?(列出方程组即可)
7、已知一条船在静水中的速度是水流速度的2倍多4km/h,而顺流速度比逆流速度多20km/h,求水流速度.
8、永盛电子有限公司向工商银行申请了甲、乙两种货款,共计68万元,每年需付出利息8.42万元,甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
9、某铁路桥长1000米,一列火车从桥上通过,从上桥到离开桥共有1分钟,整列火车全在桥上的时间为40秒,求火车的长度和速度.
10、七年级(2)班同学与幼儿园小朋友联欢,带去一筐苹果,分苹果时发现,如果每人分6个,那么还缺6个,如要每人分5个,那么多余5个,请你算一算有多少个小朋友?有多少个苹果?
11、一个三位数三个数字之和是24,十位数字比百位数字少2.如果这个三位数减去两个数字都与百位数字相同的一个两位数所得的数也是三位数,而这个三位数三个数字的顺序和原来三位数的数字的顺序恰好颠倒,求原来的三位数.
12、一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米.此后两人分别以a米/秒和b米/秒匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?
13、公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱.现在用一百文钱买一百只鸡.问:这一百只鸡中,公鸡、母鸡、小鸡各有多少只?(注:古时钱一枚称为一文钱)
14、如图,在长方形ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示,求图中阴影部分面积。
15、七(4)、七(5)两班学生到集市上购买苹果,苹果的价格如右表:
七(5)班分两次共购买苹果70千克(第二次多于第一次),共付出189元,而七(4)班则一次购苹果70千克。
(1)七(4)班比甲七(5)班少付多少元?
(2)七(5)班第一次、第二次分别购买苹果多少千克?
16、我市某蔬菜基地生产一种绿色蔬菜,若在市场眼直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售每吨利润涨至7500元。
本地一家农工商公司收购这种蔬菜140吨。
该公司加工的能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可以加工6吨,但两种加工方式不能同时进行。
受季节等条件的限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行的方案:(1)将蔬菜全部进行粗加工;(2)尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接销售;(3)将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?。