北师大版八年级数学第六章《一次函数》评估卷

合集下载

北师大版初二数学一次函数练习题

北师大版初二数学一次函数练习题

xyO3 2y xa =+1y kx b =+第一学期期末复习试卷初 二 数 学 (一次函数)总分:120分 时间:120分钟 日期:2015-1-8审核人:胡 娜 班级 学号 姓名 得分一、选择题(3分×9=27分)1.一次函数y=kx+2经过点(1,1),那么这个一次函数( ). A 、y 随x 的增大而增大 B 、y 随x 的增大而减小 C 、图像经过原点 D 、图像不经过第二象限2.直线y =-x +2和直线y =x -2的交点P 的坐标是 ( )A 、 P(2,0)B 、 P(-2,0)C 、 P(0,2)D 、 P(0,-2)3.直线 y=43x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB 的面积4.直线y =-43x +4和x 轴、y 轴分别相交于点A 、B ,在平面直角坐标系内,A 、B 两点到直线a 的距离均为2,则满足条件的直线a 的条数为( ) A .1 B .2 C. 3 D .45.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知x 满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x ,m 都取y1,y2中的较小值,则m 的最大值是( ) A 、1 B 、2 C 、24 D 、-97.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A.0k >,0b > B.0k >,0b < C.0k <,0b > D.0k <8.一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0 B .1 C .2D .39.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,右图中12l l 、分别表示甲、乙两辆摩 托车与A 地的距离s(千米)与行驶时间t(小时)之 间的函数关系.则下列说法: ①A 、B 两地相距24千米;l 1l 2②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢8千米/小时;④两车出发后,经过311小时两车相遇.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(2分×11空=22分)10. 一次函数y=-2x+4的图象经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____.11.直线bkxy+=与15+-=xy平行,且经过(2,1),则k= ,b= .。

北师大版八年级数学上册《一次函数》单元测试卷及答案解析

北师大版八年级数学上册《一次函数》单元测试卷及答案解析

北师大版八年级数学上册《一次函数》单元测试卷一、选择题1、下列函数:①y=–2x,②y=–3x2+1,③y=x–2,其中一次函数的个数有()A.0个B.1个C.2个D.3个2、一次函数y=2x-5的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3、某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里4、随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为()A.33元B.36元C.40元D.42元5、若kb<0,且b﹣k>0,则函数y=kx+b的图象大致是()A.B.C.D.6、如图所示,y与x的关系式为()A.y=-x+120 B.y=120+xC.y=60-x D.y=60+x7、A,B两地相距20 km,甲、乙两人都从A地去B地,如图,l1和l2分别表示甲、乙两人所走路程s(km)与时间t(h)之间的关系,下列说法:①乙晚出发1 h;②乙出发3 h后追上甲;③甲的速度是4 km/h;④乙先到达B地.其中正确的个数是( )A.1 B.2 C.3 D.48、一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()A.m<2 B.0<m<2C.m<0 D.m>2二、填空题9、若点在一次函数的图像上,则代数式的值是__________.10、在平面直角坐标系,A(-2,0),B(0,3),点M在直线y=x 上,且SΔMAB=6,则点M 的坐标为_____.11、将直线y=2x+1向下平移3个单位长度后所得直线的解析式是____________.12、若点(n,n+3)在一次函数的图象上,则n=__.13、在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,可得小刚追上小明时离起点__________km;(第10题图)(第13题图)(第18题图)14、将一次函数的图象向上平移个单位后,当时,的取值范围是_________.15、已知为整数,且一次函数的图像不经过第二象限,则=__________.16、某市居民用水的价格是2.2元/立方米,设小煜家用水量为x(m3),所付的水费为y 元,则y关于x的函数表达式为______;当x=15时,函数值y是___,它的实际意义是______;若这个月小煜家付了35.2元水费,则这个月小煜家用了______m3的水.17、已知y=y1+y2,y1与x2成正比例,y2与x-2成正比例,当x=1时,y=0;当x=-3时,y=4,则当x=3时,y的值为_________.18、如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A,B两地向正北方向匀速直行,他们与A地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC和BD表示,当他们行走3小时后,他们之间的距离为_____千米.三、解答题19、已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.20、已知如图直线y=2x+1与直线y=kx+6交于点P(2,5).(1)求k的值.(2)求两直线与x轴围成的三角形面积.21、我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费的办法收费.即一个月用水10吨以内(包括10吨)的用户,每吨收水费a元;一个月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图(1)求a的值,某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;22、已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图所示.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收元,若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.参考答案1、C2、B3、A4、C5、B6、A7、C8、A9、310、(3,)或(- 9,)11、y=2x-212、13、43.214、15、-316、y=2.2x33 用15m3的水需付水费33元1617、10.18、1.519、(1)A(2,0),B(0,6);(2)6.20、(1);(2).21、(1)1.5;12元;(2)2.y=2x-5.22、(1)y=kx+b(2)120吨(3)100吨【解析】1、①y=–2x是正比例函数,也是一次函数,②y=–3x2+1不是一次函数,③y=x–2是一次函数.故选C.2、分析:由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.详解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.点睛:此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.3、分析:直接利用函数图象进而分析得出符合题意跌答案.详解:A、小强乘公共汽车用了60-30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30-20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.点睛:此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.4、分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:,解得:,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.5、分析:根据k,b的取值范围确定图象在坐标平面内的位置.详解:∵kb<0∴k、b异号∵b-k>0∴b>k∴b>0,k<0∴函数的图像为:.故选:B.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6、分析:根据三角形内角和为180°得出关系式.详解:根据三角形内角和定理可知:x+y+60=180,则y=-x+120,故选A.点睛:本题主要考查的就是三角形的内角和定理,属于基础题型.解答这个问题的关键就是明确三角形内角和定理.7、①l2与x轴的交点是(1,0),因此可得乙晚出发1小时。

八年级数学一次函数综合测试(一)(北师版)(含答案)

八年级数学一次函数综合测试(一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:平行于x轴的直线上的点____坐标相同;平行于y轴的直线上的点____坐标相同.问题2:关于x轴对称的两个点,横坐标______,纵坐标_______;关于y轴对称的两个点,横坐标______,纵坐标_______.问题3:平面直角坐标系中有一点P(a,b),若ab=0,那么点P的位置在________.一次函数综合测试(一)(北师版)一、单选题(共8道,每道12分)1.若正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=bx-k的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:一次函数的图象与性质2.已知点,且,则点P关于x轴对称的点Q在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:试题难度:三颗星知识点:坐标的对称3.已知点A的坐标为(-1,-3),AB所在直线与y轴垂直,BC所在直线与y轴平行,且点C到y轴的距离为4,则点B的坐标是( )A.(4,-3)B.(4,-3)或(-4,-3)C.(-3,4)D.(-3,4)或(-3,-4)答案:B解题思路:试题难度:三颗星知识点:平行于坐标轴的坐标特征4.如图,已知直线y=kx-3经过点M,则一次函数的图象与两坐标轴围成的三角形的面积为( )A.9B.C. D.答案:D解题思路:试题难度:三颗星知识点:坐标线段长互转5.已知关于x的一次函数y=(m-2)x+2m-4,若这个函数的图象与y轴负半轴相交,且与两个坐标围成的三角形面积为2.(1)m的值为( );A.1B.C. D.1或3答案:A解题思路:试题难度:三颗星知识点:坐标线段长互转6.(上接第5题)(2)直线y=2x和(1)中函数的图象与x轴围成的三角形面积为( )A. B.C. D.1答案:A解题思路:试题难度:三颗星知识点:坐标线段长互转7.正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标为(0,a),B点坐标为(b,0),则C点的坐标为( )A.(a-b,b)B.(a-b,-b)C.(a+b,b)D.(a+b,-b)答案:C解题思路:试题难度:三颗星知识点:坐标与线段长的相互转化8.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.有下列四种说法:①一次购买种子不超过10千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折;④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元.其中正确的说法有( )A.1个B.2个C.3个D.4个答案:D解题思路:试题难度:三颗星知识点:一次函数应用题。

北师大版八年级数学 一次函数测试题

北师大版八年级数学 一次函数测试题

北师大版八年级数学一次函数测试题一次函数是初中阶段数学学习的重要内容之一,它是一种非常基础的函数类型,对于学生来说十分重要。

下面是一份北师大版八年级数学一次函数测试题,希望对大家有所帮助。

一、选择题1. 下列函数中是一次函数的是()A. y = 2x^2 + 3x + 1B. y = 3x + 5C. y = 2/xD. y = √x2. 若函数y=2x-3,则当x=4时,y的值是()A. 5B. 6C. 7D. 83. 求函数y=5x-2的自变量x为1时,函数值y=()A. 3B. 4C. 5D. 64. 若直线y=3x+m与x轴交点为(4,0),则m的值是()A. 4B. -3C. -12D. -45. 已知函数y=kx+b的图象通过点P(-2,1),则k,b的值是()A. k=-2,b=-1B. k=1,b=-1C. k=-1,b=1D. k=2,b=1二、填空题1. 函数 y=3x-5 的图象是(直线/抛物线)。

2. 若函数 y=kx+b 的图象过点 A(3,5),则 k=(),b=()。

3. 直线 y=2x-4 与 x 轴交于点(),与 y 轴交于点()。

4. 若一次函数的斜率为 0,那么这条直线与 x 轴(平行/垂直)。

5. 当 x=2 时,函数 y=4x-3 的函数值为()。

三、应用题1. 甲乙两地相距120千米,甲地有一辆汽车以每小时40千米的速度向乙地开去,问经过多少小时两地相遇?解:设经过 t 小时后相遇,则甲地的距离为40t,乙地的距离为120-40t。

根据题意可列出一次函数方程:40t+40t=120,求得 t=1.5,所以经过1.5小时两地相遇。

2. 某商品原价为 x 元,现在在打八五折的优惠活动中,问现价为多少?解:打八五折即折扣为15%,所以现价为 x × (1-15%),即0.85x元。

3. 一条直线上共有15个点,设第1个点的横坐标为3,第15个点的横坐标为10,问相邻两点的横坐标之差是多少?解:相邻两点的横坐标之差为(10-3)/(15-1)=7/14=1/2。

北师大版八年级上册第六章一次函数全章复习测试及答案

北师大版八年级上册第六章一次函数全章复习测试及答案

【知识建构】【本章测评】一次函数(时间100分钟,满分100分)一、选择题(每小题3分,共计30分)1.下列函数中,是一次函数的是( ) A .y =3x B .y =x 2+3 C .y =3x -1 D .y =11x - 解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.函数是一次函数必须符合下列两个条件: (1)关于两个变量x ,y 的次数是1次; (2)必须是关于两个变量的整式. 答案:选C .2.下列函数中,不是正比例函数的是( 7.D ) A .(0)xy k k=> B .y=kx (k<0) C .y=kx (k>0)D .23(3)y x x x =-+解析:根据一次函数的定义解题,若两个变量x ,y 间的关系式可以表示成y =kx +b(k 、b 为常数,k ≠0的形式,则称y 是x 的一次函数,其中x 是自变量,y 是因变量.当b =0时,则y =kx(k ≠0)称y 是x 的正比例函数.本题中不是正比例函数的是23(3)y x x x =-+.故答案:选D . 3.一次函数y =23x +2中,当x =9时,y 值为( )A.-4 B.-2 C.6 D.8解析:把x=9带入y=23x+2,求得y=8,故选D.答案:选D.4.如果点P(-1,3)在过原点的一条直线上,那么这条直线是()A.y=-3x B.y=13x C.y=3x-1 D.y=1-3x解析:因为这条直线经过原点,所以可设其表达式为y=kx,把点P(-1,3)带入求出k=-3即可.答案:选A.5.当x逐渐增大,y反而减小的函数是()A.y=x B.y=0.001x C.y=13D.y=-5x解析:根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大.当k<0时,y随x的增大而减小.函数y=x中,k=1>0,y随x的增大而增大;函数y=0.001x中,k=0.001>0,y随x的增大而增大;函数y=31的图象是平行于x轴的一条直线;函数y= y=-5x中,k=-5<0,y随x的增大而减小.故选D.答案:选D.6.函数y=-mx(m>0)的图象是( )解析:因为函数y=-mx(m>0)为正比例函数,所以其图象经过原点.又因为m>0,则-m<0,所以y随x的增大而减小,其图象经过二、四象限.故选A.答案:选A.7.一次函数y=kx+b的图象经过第一、三、四象限,则( )A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0解析:根据直线y=kx+b(k≠0)在坐标平面内的位置与k、b的关系:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y 轴负半轴相交. 本题如图1所示:图1故选B . 答案:选B .8.已知变量y 与x 之间的函数关系的图象如图 2,它的解析式是()图2解析:从函数图象上可以看出,这条线段经过点(3,0)和(0,2),所以可以设其函数关系式为y=kx+2.再把点(3,0)带入求得k=32-,所以其函数关系式为y=32-x+2.且自变量的取值范围为0≤x ≤3.故选C .答案:选C .9.某市自来水公司年度利润表如图3,观察该图表可知,下列四个说法中错误的是( ) A .1996年的利润比1995年的利润增长-2145.33万元 B .1997年的利润比1996年的利润增长5679.03万元 C .1998年的利润比1997年的利润增长315.51万元 D .1999年的利润比1998年的利润增长-7706.77万元解析:从图象中获得的信息可得:1999年的利润比1998年的利润增长8652.01-(-945.30)=-9597.31.故选D .)30(232≤≤+-=x x y A 223+-=x y B)30(223≤≤+-=x x y C 232+-=x yD答案:选D .10.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( ) A .-3B .-23 C .9 D .-49解析:本题可先求函数y =2x +3与x 轴的交点,当y =0时,x =-23,即:交点(-23,0).再把交点(-23,0)代入函数y =3x -2b ,求得b =-49.故选D . 答案:选D .二、填空题(每空3分,共计21分)11.已知一次函数y =kx +5过点P (-1,2),则k =_________;函数y 随自变量x 的增大而_________.解析:把点P (-1,2)代入一次函数y =kx +5,求得k =3;因为k =3>0,所以函数y 随自变量x 的增大而增大答案:3 增大12.已知一次函数y =2x +4的图象经过点(m ,8),则m =_________.解析:要求m 的值,实质是求当y =8时,x =?把y =8代入一次函数y =2x +4,求得x =2,所以m =2.答案:213.已知y 与x+1成正比例,当x=5时,y=12,则y 关于x 的函数解析式是________. 解析:设所求的函数解析式为y=k(x+1)① 将x=5,y=12代入①,得 12=k(5+1),所以k=2. 答案:y=2x+214.某林场现有森林面积为1560平方千米,计划今后每年增加160平方千米的树林,那么森林面积y (平方千米)与年数x 的函数关系式为______,6年后林场的森林面积为______.解析:森林面积=每年增加的面积×年数+现有森林面积,所以y =160x +1560,6年后林场的森林面积为:160×6+1560=2520平方千米.答案:y =160x +1560 2520平方千米15.长沙向北京打长途电话,设通话时间x (分),需付电话费y (元),通话3分以内话费为3.6元.请你根据如图4所示的y 随x 的变化的图象,找出通话5分钟需付电话费____元.图4解析:要找出通话5分钟需付电话费,实质是求当x =5时,y =?从y 随x 的变化的图象中可以看出,当x =5时,y =6.答案:6三、解答题(本题共计49分)16.(6分)如图5下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?(1)y =1-x 2; (2)a +b =3; (3)s=2t图5解析:(1)中,的图象是一次函数的图象,而y =1-x 2不是一次函数;(2)函数a +b =3可变形为b =-a +3,当a =3时,b =0,当a =0时,b =3,即:其图象经过点(3,0)和(0,3),所以符合要求;(3)先把函数s=2t 变形为t =21s ,当s=1时,t =21,即:其图象经过点(1,21),所以它不符合要求;答案:(2)符合要求17.(7分)已知y 是x 的一次函数 (1)根据下表写出函数表达式;分别把x =4,9,31代入(1)中所求关系式,求出相应的y 值.根据题意,设y =kx +b把(1,1),(3,5)代入上式,得 1=k +b① 5=3k +b②由①得,b =1-k 由②得,b =5-3k 所以1-k =5-3k 所以k =2 把k =2代入①,得b =-1 所以y =2x -1 当x =4时,y =7 当x =9时,y =17 当x =31时,y =61答案:y=2x-1,当x=4时,y=7 当x=9时,y=17当x=31时,y=6118.(8分)作出函数y=1-x的图象,并回答下列问题.(1)随着x值的增加,y值的变化情况是_________;(2)图象与y轴的交点坐标是_________,与x轴的交点坐标是_________;(3)当x_________时,y≥0.解析:因为函数y=1-x是一次函数,其图象是一条直线,所以可用两点确定一条直线的方法画这个函数的图象.取(0,1)、(1,0)较简便,如图.(1)根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.函数y=1-x中,k=-1<0,y随x的增大而减小;(2)求图象与y轴的交点坐标,只须把x =0代入y=1-x中,求出y即可;与x轴的交点坐标,只须把y =0代入y=1-x中,求出x即可;(3)从图象中可以看出当x≤1时,y≥0.答案:函数图象如图6所示:图6(1)因为k<0所以随着x的增加,y的值逐渐减小;(2)图象与y轴的交点坐标是(0,1),与x轴的交点坐标是(1,0);(3)当x≤1时,y≥0.19.(8分)小明和小亮进行百米赛跑,小明比小亮跑得快.如果两人同时起步,小明肯定赢.现在小明让小亮先跑若干米.如图7中l1,l2分别表示两人的路程与小明追赶时间的关系.图7(1)哪条线表示小明的路程与时间的关系? (2)小明让小亮先跑了多少米? (3)谁将赢得这场比赛?解析:(1)因为小明后跑,小亮先跑,所以当x =0时,小明跑的路程为0,故l 2 表示小明的路程与时间的关系;(2)观察图象可知,小明让小亮先跑了10米;(3) 观察图象可知,当S=100米时,小明的时间小于小亮的时间,所以小明将赢得这场比赛.答案:(1) l 2 表示小明的路程与时间的关系; (2)观察图象可知,小明让小亮先跑了10米; (3)小明将赢得这场比赛.20.(10分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y (元)与租书时间x (天)之间的关系如图8所示.图8(1)分别写出用租书卡和会员卡租书的金额y (元)与租书时间x (天)之间的函数关系式. (2)两种租书方式每天租书的收费分别是多少元?(x ≤100)解析:(1)观察图象可知,用租书卡的金额与租书时间之间的函数图象经过点(0,0),和(100,50),为正比例函数,可设其函数关系式为y =kx ,把点(100,50)代入求得k =21,即:函数关系式为y =21x ;用会员卡租书的金额与租书时间之间的函数图象是一次函数,可设其函数关系式为y =kx +b ,其图象经过点(0,20)和(100,50),代入可得b =20,k =103,即:函数关系式为y =103x +20;(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元;用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3元.答案:(1)用租书卡时,y 与x 间的关系式为y =kx 当x =100,y =50时,k =21 所以y =21x 用会员卡时,y 与x 间的关系式为y =kx +b 因为(0,20),(100,50)在直线上, 所以b =20. 100k +b =50. 因为b =20,所以k =103,所以y =103x +20 (2)用租书卡的方式租书,每天租书的收费为50÷100=0.5(元) 用会员卡的方式租书,每天租书的收费为(50-20)÷100=0.3(元)21:(10分)有一批货,如果月初出售,可获利1000元,并可将本利和再去投资,到月末获利1.5%;如果月末售出这批货,可获利1200元,但要付50元保管费.(1)请表示出这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系; (2)请问这批货在月初还是月末售出好?【解析】本题为决策性问题,一般先列出算式或建立函数关系式(变量之间的关系式),通过算式大小的比较或确定函数最值来作出相应的决策.【答案】(1)月初出售到月末的可获利润:(认真审题,理解题意是关键) p=1000+(a+1000)×1.5%=0.015a+1015即这批货物的成本a (元)与月初出售到月末的获利额p (元)之间的关系为: p=0.015a+1015.(2)如果月末售出这批货可获利润: q=1200-50=1150(元),由p -q=0.015a+1015-1150=0.015×(a -9000),所以当a>9000时,月初出售好;当a=9000时,月初、月末出售一样;当a<9000时,月末出售好.。

北师大版八年级数学第六章《一次函数》评估卷

北师大版八年级数学第六章《一次函数》评估卷

八年级数学(上)素质评估卷第六单元评估卷评估内容:(第六章)一次函数一、仔细选一选(每小题3分,共30分)1、下面哪个点不在函数y = -2x+3的图象上()A.(-5,13) B.(0.5,2) C.(3,0) D.(1,1)2、如图,在直角坐标系中,直线l对应的函数表达式是()A. 1-=xy B.1+=xy C. 1--=xy D. 1+-=xy3、一次函数y = -2x -3不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、直线bkxy+=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )A. 32+=xy B.232+-=xy C. 23+=xy D. 1-=xy5、下列函数中,y的值随x的值增大而增大的是()A. y= -3xB. y=2x - 1C. y= -3x+10D. y= -2x+16、下列图象中,与关系式1+-=xy表示的是同一个一次函数的图象是()7、已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1与y2的大小关系是( )A. y1 >y2B. y1 =y2C. y1 <y2D. 不能比较8、直线y=k x+b经过一、二、四象限,则k、b应满足( )A. k>0, b<0B. k>0,b>0C. k<0, b<0D.k<0, b>09、下图中,表示一次函数的是())。

(A). ( B ) ( C ) ( D )二、细心填一填(每小题2分,共20分)11、正比例函数的图象一定经过的点的坐标为_______________.12、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是.13、已知一次函数y=kx+5的图象经过点(-1,2),则k= .14、某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .15、在函数32+-=xy中,当自变量x满足时,图象在第一象限.16、若点(m,m+3)在函数y=-21x+2的图象上,则m=____17、函数y=x-1一定不经过第象限。

北师大课标版 - 八年级上第六章 一次函数 练习试卷

北师大课标版 - 八年级上第六章 一次函数 练习试卷

第十七章 反比例函数单元测试题 一、选择题(每小题5分.共25分) 1.下列函数中.y 是x 的反比例函数的是( ) (A)12y x =- (B) 21y x = (C) 11y x =- (D) 11y x =- 2.已知y 与x 成正比例.z 与y 成反比例,那么z 与x 之间的关系是( ) (A)成正比例, (B)成反比例 (c)有可能成正比例,也有可能是反比例 (D)无法确定. 3.如图,函数(1)y k x =+与k y x =在同一坐标系中,图象只能是下图中的( ) 4.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )5.已知反比例函数(0)ky k x =<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )(A)正数 (B)负数 (C)非正数 (D)不能确定二、填空题(每小题5分,共25分)密封线初二( )班姓名 编号:6.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积S 与桶高h 有怎样的函数关系式 .7.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌子上,它对桌面的压强是600Pa ,翻过来放, 对桌面的压强是 .8.设有反比例函数1k y +=,1122(,)(,)x y x y 为其图象上两点,若12x x <0<,12y y >则k 的取值范围 .9.直线y kx b =+过一、三、四象限,则函数b y kx=的图象在 象限,并且在每一个象限内y 随x 的增大而 .10.如图所示是三个反比例函数1k y x =,2k y x =,3k y x=的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).三、解答下列问题.(第11、12两题各10分,13题14分,14题16分,共50分)11.已知变量y 与()1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数关系.12.如图.正比例函数(0)y kx k =>与反比例函数k y x=的图象相交于A 、C 两点,过A 作x 轴的垂线交x 轴于B ,连 BC ,求△ABC 的面积13.某空调厂的装配车间计划组装9000台空调: ⑴从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?⑵原计划用2个月时间(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?14.如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数(0,0)ky k x x =>>的图象上,点(,)P m n 是函数(0,0)ky k x x =>>的图象上任意一点,边点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(提示:考虑点P 在点B 的左侧或右侧两种情况) ⑴求B 点的坐标和k 的值; ⑵当92S =时,求P 点的坐标;⑶写出S 关于m 的函数关系式.。

八年级数学一次函数综合测试(一)(北师版)(含答案)

八年级数学一次函数综合测试(一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:一次函数的图象是什么?正比例函数的图象呢?问题2:k,b的意义:k反应图象的_____;b表示一次函数图象和____轴交点的______.问题3:对于一次函数y=kx+b来讲,当k>0时,图象必过第_______象限;当k<0,时,图象必过第_____象限;当b>0时,图象必过第______象限;当b<0时,图象必过第_____象限.一次函数综合测试(一)(北师版)一、单选题(共11道,每道9分)1.下列各曲线中表示y是x的函数的是()A. B.C. D.答案:D解题思路:根据函数的定义:一般地,如果在一个变化过程中有两个变量x和y,并且对于变量的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数.故选D.试题难度:三颗星知识点:函数的概念2.下列函数:①;②;③;④;⑤;⑥.其中是一次函数的有( )A.4个B.3个C.2个D.1个答案:A解题思路:本题主要考查一次函数的定义.一次函数的定义满足的条件是:k,b是常数,且,自变量的次数是1.根据一次函数的定义可知,①②④⑥是一次函数,即是一次函数的有4个.故选A试题难度:三颗星知识点:一次函数的定义3.设点A(a,b)是正比例函数图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=0答案:D解题思路:把点A(a,b)代入正比例函数,得,﹣3a=2b即,3a+2b=0故选D.试题难度:三颗星知识点:一次函数图象上点的坐标特征4.在平面直角坐标系中,若直线经过第一、三、四象限,则直线不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:∵直线经过第一、三、四象限∴k>0,b<0∴y=bx-k过第二、三、四象限,不经过第一象限故选A试题难度:三颗星知识点:一次函数的图象与性质5.已知直线y=kx+b,若k+b=-99,kb=100,则该直线经过( )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限答案:D解题思路:∵kb=100>0,∴k,b同号,∵k+b=-99<0,∴,∴直线y=kx+b经过第二、三、四象限.故选D.试题难度:三颗星知识点:一次函数的性质6.已知一次函数y=kx+b,若图象不经过第一象限,则( )A.k<0,b>0B.k<0,b≥0C.k<0,b<0D.k<0,b≤0答案:D解题思路:∵一次函数y=kx+b的图象不经过第一象限,∴该图象过第二、四象限或第二、三、四象限,∴k<0,b≤0.故选D.试题难度:三颗星知识点:一次函数的性质7.已知一次函数y=kx+b经过(2,-1),(-3,4)两点,则它的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C解题思路:∵(2,-1),(-3,4)在一次函数y=kx+b的图象上,∴,解得,∴一次函数的表达式为y=-x+1,画图可知,一次函数y=-x+1的图象不经过第三象限.故选C.试题难度:三颗星知识点:待定系数法求一次函数表达式8.一次函数的图象经过点A(5,3),且与直线y=2x-3无交点,则这个一次函数的表达式为( )A.y=2x-7B.y=2x+7C.y=-2x-7D.无法确定答案:A解题思路:设该一次函数的表达式为y=kx+b,∵一次函数y=kx+b的图象与直线y=2x-3无交点,∴k=2,∵一次函数y=kx+b的图象经过点A(5,3),∴2×5+b=3,解得b=-7,∴该一次函数的表达式为y=2x-7,故选A.试题难度:三颗星知识点:待定系数法求一次函数表达式9.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:A解题思路:∵k>0∴一次函数y=kx+5的图象经过第一、二、三象限∵k′<0∴一次函数y=k′x+7的图象经过第一、二、四象限可画出如下草图:两直线交点在第一象限故选A.试题难度:三颗星知识点:两条直线相交10.若点A(2,-3),B(4,3),C(5,a)在同一条直线上,则a的值为( )A.6或-6B.6C.-6D.6或3答案:B解题思路:设直线AB的函数表达式为y=kx+b,∵直线AB过点A(2,-3),B(4,3),∴,解得,∴直线AB的函数表达式为y=3x-9,又∵点C在直线AB上,∴当x=5时,y=a=3×5-9=6,即a=6.故选B.试题难度:三颗星知识点:坐标与表达式互转11.已知点M(4,3)和点N(1,-2),点P在y轴上,则当PM+PN最小时,点P的坐标是( )A.(0,0)B.(0,1)C.(0,-1)D.(-1,0)答案:C解题思路:如图,作点M关于y轴的对称点M′,连接M′N,则直线M′N与y轴的交点即为使PM+PN最小的点.设点M′,N所在直线的表达式是y=kx+b,∵M′(-4,3),N(1,-2)在直线y=kx+b上,∴,∴,∴,∴当x=0时,y=-1,∴图象与y轴交于点(0,-1).故选C.试题难度:三颗星知识点:轴对称-最短路线问题。

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章 数据的分析》单元检测卷-带答案

北师大版八年级数学上册《第六章数据的分析》单元检测卷-带答案核心考点整合考点1 平均数1.下表是小红参加一次“阳光体育”活动比赛的得分情况:项目跑步花样跳绳跳绳得分90 80 70评总分时,按跑步占50%,花样跳绳占30%,跳绳占20%考评,则小红的最终得分为分.2. 某新能源车销售网点2023 年7月至12月的销售数量如图所示,则这半年来平均每月的销售量为辆(结果保留整数).考点2 中位数3.2024 年4 月24 日是我国第九个“中国航天日”,某校开展了一次航天知识竞赛,共选拔5名选手参加总决赛,他们的决赛成绩(单位:分)分别是92,93,94,90,96.则这5名选手决赛成绩的中位数是.4.已知一组数据:7,6,8,x,3,它们的平均数是6,则这组数据的中位数是( )A.2B.6C.8D.7考点3 众数5.为了解某班学生参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位;分钟)分别为65,60,75,60,80.这组数据的众数为( )A.65B.60C.75D.80考点4 方差,由公式提供的信息判断:①样本容量为3;②样本中6.某组数据的方差计算公式为s2=2(2−x̅)2+3(3−x̅)2+2(5−x̅)2n位数为3;③样本众数为3;④样本平均数为10₃.其说法正确的( )3A.①②④B.②④C.②③D.③④考点5 极差7.在杭州亚运会的跳水比赛中,对某运动员的第一个动作,8位裁判的打分如下(单位:分):9,8.5,7.5,8.5,8.5, 7.5,7,8,这组数据的极差是.考点6 标准差8.对于一次函数y=3x+4,自变量分别取值x₁,x₂,…,xₙ,若这组数据的方差为5,则对应的函数值为y ₁,y₂,…, yn 这组数据的标准差为.考点7 平均数、众数、中位数的应用9.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,满意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,如图是根据这20 份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改.(2)工作人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求工作人员抽取的问卷所评分数为几分? 与(1)相比,中位数是否发生变化?考点8 方差的应用10.超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为x,s²,i该顾客选购的鸡蛋的质量平均数和方差分别为x₁,s²,则下列结论一定成立的是( )A.x̅<x̅1B.x̅>x̅1C.s2>s12D.s2<s1211.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中投进球的个数统计如下表:(1)求甲、乙两名队员投进球个数的平均数;(2)如果从甲、乙两名队员中选出一人去参加定点投篮比赛,应选哪名队员? 请说明理由.思想方法整合思想1 整体思想12.已知一组数据a₁,a₂,a₃,a₄,a₅的平均数为8,则另一组数据a₁+10,a₂−10,a₃+10,a₄−10,a₅+10的平均数为( )A.6B.8C.10D.12思想2 方程思想13.8名学生在一次数学测试中的成绩(单位:分)为80,82,79,69,74,78,x,81,这组成绩的平均数是77 分,则x的值为( )A.76B.75C.74D.73参考答案1 832 470 3.93分4. B 5. B 6. C 7.28. √5【点拨】因为这组数据x₁,x₂,…,x₀的方差为5所以函数值y₁,y₁,…,yₙ这组数据的方差是:3²×5 =45,所以这组数据的标准差为√45=3√5,【解】(1)由统计图可知,第10个数据是3分,第11个数据是4分,所以中位数为3.5分,由统计图可得平均数为1×1+3×2+6×3+5×4+5×5=3.5(分),所以客户所评分数的平均数和中位数都不低于3.5分20所以该部门不需要整改.>3.55,解得x>4.55(2) 设工作人员抽取的问卷所评分数为x 分,则有 3.5×20+x20+1因为满意度从低到高为1分,2分,3分,4分,5分,共5档.所以工作人员抽取的问卷所评分数为5分所以加入这个数据,客户所评分数按从小到大排列后,第11 个数据是4 分,即加入这个数据后,中位数是4 分所以与(1)相比,中位数发生了变化,由3.5分变成4 分。

第六章 一次函数(过关测试)课件(北师大版八年级上册)

第六章 一次函数(过关测试)课件(北师大版八年级上册)

图4-11
[解析] D 如图,甲、乙在x=2时相交,故售2件时两家售价一 样.①对. 买1件时乙的价格比甲的价格低.②对. 买3件时甲的销售价比乙低,③对. 买乙家的1件售价约为1元,④错. 故选D. 数学·
第四章 |过关测试
2.甲、乙两辆摩托车分别从 A、B 两地同时出发相向而行,图 4-12 中 l1、l2 分别表示甲、乙两辆摩托车与 A 地的距离 s(千米)与 行驶时间 t(小时)之间的函数关系,则有下列说法:①A、B 两地相 距 24 千米; ②甲车比乙车行完全程多用了 0.1 小时; ③甲车的速度 3 比乙车慢 8 千米/小时;④两车出发后,经过 小时两车相遇,其中 11 正确的有( D )
数学·
第四章 |过关测试 针对第7题训练
1.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则 一次函数y=x+k的图象大致是( A )
图4-8 [解析] A ∵正比例函数y=kx(k≠0)的函数值y随x的增大而增 大,∴k>0,∴一次函数y=x+k的图象经过一、二、三象限. 故选A.
数学·
解:(1)图略,(2)A(-1,0),B(0,-2); (3)|AB|= 5;(4)S△AOB=1.
数学·
第四章 |过关测试
方法技巧 求一次函数图象与x轴的交点坐标问题,实质是求当y=0时,x为 何值;求它与y轴的交点坐标,实质是求当x=0时,y为何值.
考点五 联系方程组解决问题 例5 甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶 过程中路程与时间的函数关系的图象如图4-6.根据图象解决下 列问题: (1) 谁先出发?先出发多少时间?谁先到达终点?先到多少 时间? (2) 分别求出甲、乙两人的行驶速度; (3) 在什么时间段内,两人均行驶在途中(不包括起点和终点 )?在这一时间段内,请你根据下列情形,分别列出关于行驶时 间x的方程或不等式(不化简,也不求解):① 甲在乙的前面; ② 甲与乙相遇;③ 甲在乙后面.

最新2019-2020年度北师大版数学八年级(上)第六章《一次函数》单元检测(3)-精品试题

最新2019-2020年度北师大版数学八年级(上)第六章《一次函数》单元检测(3)-精品试题

一次函数检测题班别:姓名:成绩:一、选择题:(每小题3分,共30分)1.下列函数中,自变量x的取值范围是x≥2的是()A.y=2x-B.y=12x-C.y=24x-D.y=2x+·2x-2.下面哪个点在函数y=12x+1的图象上()A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)3.下列函数中,y是x的正比例函数的是()A.y=2x-1 B.y=3x C.y=2x2D.y=-2x+14.一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四5.若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-126.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<37.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、填空题:(每小题3分,共30分)11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_____.12.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________.13.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________.14.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 16.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 19.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____. 20.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、解答题:一定要细心哟!(共40分) 21.(6分)根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).22.(6分)一次函数y=kx+b 的图象如图所示: (1)求出该一次函数的表达式(2)当x=10时,y 的值是多少?(3)当y=12时,•x 的值是多少?566-2xy1234-2-15-14321O23.(8分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关xy1234-2-1CA-14321O系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(10分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?25.(10分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?一次函数检测题答案一、选择题:(每小题3分,共30分)1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A二、填空题:(每小题3分,共30分)11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58x y =-⎧⎨=-⎩ 18.0;7 19.±6 20.y=x+2;4三、解答题:一定要细心哟!(共40分)21. ①y=169x;②y=15x+7522. ①y=x-2;②y=8;③x=14 23. ①5元;②0.5元;③45千克24.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.25. ①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元。

新北师大版八年级数学一次函数测试题

新北师大版八年级数学一次函数测试题

新北师大版八年级数学一次函数单元测试题(时间50分钟,共100分)班级__________ 姓名__________ 学号__________ 成绩__________一、选择题:(每小题3分,共30分)1.下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=22-x (5)y=x2-1中,一次函数的个数是()A.4个B.3个C.2个D.1个2.若y=(m-2)x+(m2-4)是正比例函数,则m的取值是()A.2 B.-2 C.±2 D.任意实数3.若直线y=kx+b中,k<0,b>0,则直线不经过()A、第一象限B、第二象限C、第三象限D、第四象限4.如图所示图象中,函数mmxy+=的图象可能是下列图象中()(A)(B)(C)(D)5.下列函数中,是正比例函数,且y随x增大而减小的是()A.14+-=xy B. 6)3(2+-=xy C. 6)2(3+-=xy D.2xy-=6.已知3-y与x成正比例,且x=2时,y=7,则y与x的函数关系式为()A.32+=xy B.32-=xy C.323+=-xy D.33-=xy7.下列各点,在一次函数y=2x+6的图象上的是()A.(-5,4) B.(-4,1) C.(4,20) D.(-3,0)8.点A),3(1y和点B),2(2y-都在直线32+-=xy上,则1y和2y的大小关系是()A.1y>2y B.1y<2y C.1y=2y D.不能确定9.已知某一次函数的图像与直线1+-=xy平行,且过点(8,2),那么此一次函数为()A.2--=xy B.10+-=xy C.6--=xy D.10--=xy10.等腰三角形的周长是40cm,腰长y (cm)是底边长x (cm)的函数解析式正确的是()A.y=-0.5x+20 ( 0<x<20) B.y=-0.5x+20 (10<x<20)C.y=-2x+40 (10<x<20) D.y=-2x+40 (0<x<20)请将选择题的正确答案填在下列表格中.二、填空题:(每小题4分,共28分)11.已知一次函数图象过(1,2)且y 随x 的增大则减小,请写出一个符合条件的函数解析式 .12.一次函数y = -2x +4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 . 13.直线63+=x y 与两坐标轴围成的三角形的面积是14.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =__________. 15.已知一次函数kx k y )1(-=+3,则k = .16.在平面直角坐标中,点A (x ,4),B (0,8)和C (-4,0)在同一直线上,则x = . 17. 已知直线33-=x y 向左平移4个单位后,则该直线解析式是 . 三、解答下列各题:(共42分)18.用图象法解方程组2433x y x y +=⎧⎨+=-⎩ (6分)19.已知一次函数2(2)312y k x k =--+. (1)k 为何值时,图象经过原点;(2分)(2)k 为何值时,图象与直线y = -2x +9的交点在y 轴上;(2分) (3)k 为何值时,图象平行于2y x =-的图象;(2分) (4)k 为何值时,y 随x 增大而减小. (2分)20. 如图,一次函数133+-=x y 的图象与x 轴、y 轴交于点A 、B ,以线段AB 为边作等边△ABC. (1)求C 点的坐标;(6分)(2)求△ABC 的面积. (4分)21.是某汽车行驶的路程S (km )与时间t (min)的函数关系图.观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是多少?(2分) (2)汽车在中途停了多长时间?(2分)(3)当16≤t ≤30时,求S 与t 的函数关系式.(4分)22.如图,已知直线2y x =-+与x 轴、y 轴分别交于点A 和点B ,另一直线y kx b =+(0)k ≠ 经过点C (1,0),且把△AOB 分成两部分.(1)若△AOB 被分成的两部分的面积相等,求k 和b 的值;(4分) (2)若△AOB 被分成的两部分的面积比为1∶5,求k 和b 的值. (6分)。

新北师大版八年级上册一次函数单元测试试题以及答案

新北师大版八年级上册一次函数单元测试试题以及答案

八年级上册一次函数练习试题1、一次函数的图象过点M(3,2),N(—1,—6)两点.(1)求函数的表达式;⑵画出该函数的图象•(3)与x、y交点坐标分别是多少?(4)与坐标轴围成三角形面积是多少?2、在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3)三点.(1)求a的值;(2)设这条直线与y轴相交于点D,求△OPD的面积.3、已知一次函数的图象过点A(2,—1)和点B,其中点B是另一条直线y=—x+3与y轴的交点,求这个一次函数的表达式4、已知直线I与直线y=2x+1的交点的横坐标为2,与直线y=—x+8的交点的纵坐标为—7,求直线的表达式。

5、某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:(1)该地出租车的起步价是元;(2)(2)当x>2时,求y与x之间的函数关系式;((3)若某乘客有一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?6、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?7、已知y与x+1成正比例关系,当x=2时,y=1,求当x=-3时y的值?8、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.9、某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?10、已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.11、已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=﹣x?(4)k为何值时,y随x的增大而减小?12、判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.13、一次函数y=kx+b的自变量x的取值范围是﹣3≤x≤6,相应函数值的取值范围是﹣5≤y≤﹣2,确定这个函数的解析式。

八年级数学(北师大版)一次函数培优测试题

八年级数学(北师大版)一次函数培优测试题

八年级数学(北师大版)第六章优化测试题一. 选择题1.以下关于x 的函数中,是一次函数的是( D )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.以下各点在直线13-=x y 上的是(c )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(3. 以下函数中,是正比例函数,且y 随x 增大而减小的是( d )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 4.已知长方形的周长为25,设它的长为x ,宽为y ,那么y 与x 的函数关系为(c )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 5.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,那么1y 和2y 的大小关系是( )A. 1y 2yB. 1y 2yC. 1y =2yD.不能确信6.直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.77.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.那么1b 和2b 的关系是( )A. 1b 2bB. 1b 2bC. 1b =2bD.不能确信8.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时刻t(小时)的函数关系用图像表示为( )9.平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=10.弹簧的长度与所挂物体的质量的关系为一次函数,如下图,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm二. 填空题11.关于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.12.假设y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,那么那个一次函数的关系式是_______.13. 一次函数b kx y +=的图象与两坐标轴的交点坐标别离为)0,3(和)2,0(-,那么=k ____,=b ____.14.假设函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,那么b =_____________.15.已知正比例函数x k y )21(-=的函数值y 随x 增大而增大,那么k ____________________.16.某公司此刻年产值为150万元,打算尔后每一年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.17.直线2-=kx y 通过点),4(1y ,且平行于直线12+=x y ,那么1y =___________,k =______.18.如图是一次函数b kx y +=的大致图像,由图可知:k _________,b _______(填“ ”、“ ”或“=”).三. 解答题19.已知直线4+=kx y 与两坐标围成的三角形面积为8,求k 的值.20.一次函数的图像过点)6,1(),2,3(--N M 两点.(1)求该函数的表达式;(2)画出该函数的图像.21. 石家庄至北京300千米,火车从距石家庄站15千米的正定站动身,以每小时90千米/小时的速度向北京方向行驶,求火车与石家庄站间路程s (千米)和时刻t (小时)的函数关系式,并指出自变量的取值范围.( 正定站位于北京与石家庄之间)22.南方的A 城有化肥200吨,B 城有化肥300吨,现要把化肥运往甲、乙两个农场,假设从A 城运往甲、乙两个农场的运费别离为20元/吨和25元/吨,从B 城运往甲、乙两个农场的运费别离为15元/吨和22元/吨,现已知甲农场需要220吨,乙农场需要280吨,若是你承包了这项运输任务,如何调运花钱最少?23.A 、B 两辆汽车从相距120千米的甲、乙两地同时同向而行,s (千米)表示汽车与甲地的距离,t (分)表示汽车行驶的时刻.如图,1l 、2l 别离表示两辆汽车的s 与t 的关系.(1)2l 表示那辆汽车离甲地的距离与行驶时刻的关系?(2)汽车B 的速度是多少?(3)2小时后,A 、B 两辆汽车相距多少千米?(4)行使多长时刻后,A 、B 两辆汽车相遇?一、解答题:一、在边长为2的正方形ABCD的一边BC上有一点P,从B点运动到C点,设PB=x ,梯形APCD的面积S.(1)写出S 与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六单元评估卷
评估内容:(第六章)一次函数姓名:分数:
一、细心填一填(每小题3分,共30分)
1、正比例函数的图象一定经过的点的坐标为_______________.
2、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是.
3、已知一次函数y=kx+5的图象经过点(-1,2),则k= .
4、某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数
关系式是 .
5、请你写出一个经过点(1,1)的函数解析式 .
6、若点(m,m+3)在函数y=-
2
1
x+2的图象上,则m=____
7、函数y=x-1一定不经过第象限。

8、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x表示y的函数表达式
为_________________________(0<x<3)
9、拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中的
剩余油量y(升)和工作时间x(时)之间的函数关系式是。

10、某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费
2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3≤t≤45),则IC卡上
所余的费用y(元)与t(分)之间的关系式是
二、仔细选一选(每小题3分,共18分)
11、下面哪个点不在函数y = -2x+3的图象上()
A.(-5,13) B.(0.5,2) C.(3,0) D.(1,1)
12、如图,在直角坐标系中,直线l对应的函数表达式是()
A. 1
-
=x
y B.1
+
=x
y C. 1
-
-
=x
y D. 1
+
-
=x
y
13、一次函数y = -2x -3不经过()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
14、直线b
kx
y+
=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( )
A. 3
2+
=x
y B.2
3
2
+
-
=x
y C. 2
3+
=x
y D. 1
-
=x
y
15、已知点(-4,y1),(2,y2)都在直线y=-
1
2
x+2上,则y1与y2的大小关系是( )
A. y1 >y2
B. y1 =y2
C. y1 <y2
D. 不能比较
)。

(A). ( B ) ( C ) ( D )
三、用心做一做
17、(6分)图9是某汽车行驶的路程S(km)与时间t(min)
的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟内的平均速度是
(2)汽车在中途停了多长时间?
(3)当16≤t≤30时,求S与t的函数关系式.
18、(8分)作出函数x
y3
3-
=的图象,并根据图象回答下列问题:
(1)y的值随x的增大而;
(2)图象与x轴的交点坐标是;
与y轴的交点坐标是;
(3)当x 时,y≥0 ;
(4)函数x
y3
3-
=的图象与坐标轴所围
成的三角形的面积是________________.
O X
Y
22、(7分)为了保护学生的视力,课桌椅的高度是按一定的关系配套设计的。

研究表明:假设课桌的高度为ycm ,椅子的高度(不含靠背)为xcm ,则y应是x的一次函数,右边的表中给出两套符合条件的桌椅的高度:
(1) 请确定y与x的函数关系式 ; (2)现有一把高42.0cm 的椅子和一张高
78.2cm 的课桌,它们是否配套?请通过
计算说明理由。

23、(7分)
一家供电公司为了鼓励居民用电,采用分段计费的方法来 计算电费。

月用电量x (度)与相应电费y
(元)之间的
函数图像如图所示。

(1)月用电量为100度时,应交电费 元;
(2)当x ≥100时,求y 与x 之间的函数关系式 ; (3)月用电量为260度时,应交电费多少元? 24、(7分)有一种节能型轿车的油箱最多可装天燃气50升,加满燃气后,油箱中的剩余燃气量y (升)与轿车行驶路程x (千米)之间的关系如图所示,根据图象回答下列问题: (1)一箱天燃气可供轿车行驶多少千米? (2)轿车每行驶200千米消耗燃料多少升? (3)写出y 与x 之间的关系式;(0≤x ≤1000)
20、(8分)如图,矩形OABC 中,O 为直角坐标系的原点,A 、C 两点的坐标分别为 (3,0)、(0,5)。

(1)直接写出B 点坐标;
(2)若过点C 的直线CD 交AB 边于点D ,且把矩形OABC 的周长分为1∶3两部分, 求直线CD 的解析式;
25、(9分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c
元收费,该市某户今年9、10设某户每月用水量x(立方米),应交水费y(元) (1) 求a,c 的值 (2) 当x ≤6,x ≥6时,分别写出y 于x 的函数关系式 (3) 若该户11月份用水量为8立方米,求该户11月份水费是多少元?。

相关文档
最新文档