圆_全章导学案
初一圆和圆柱、圆锥全章导学案
鸡西市第十九中学学案
班级 学科 数学 课题 认识圆 新课 六年级上 时间 2011 年 月 日 学习 1.认识圆,掌握圆的各部分名称. 目标 2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径 的关系. 重点 3.初步学会用圆规画圆,培养学生的作图能力. 难点 4.培养学生观察、分析、抽象、概括等思维能力. 学习内容 学法指导 一、画一画、想一想。 你 (1)先把圆对折、打开,换个方向,再对折,再打开…… 折过若干次后, 发现了什么? 这样反复折几次. 仔细观察一下,这些折痕总在圆的什么地方相交? 我们把圆中心的这一点叫 。圆心一般用字母 O 讨论: 在同一个圆 里, 直径的长度与 表示. 半径的长度又有 (2)用尺子量一量圆心到圆上任意一点的距离。 什么关系呢? 我们把连接圆心和圆上任意一点的线段叫做 径一般用字母 在同一个圆里有 都 有 一般用字母 . 条直径,所有直径的长度也都 表示. .直径 表示. 条半径,所有半径的长度 ,半 姓名 课型 人教版
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣 小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着 圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心 里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛 公平吗? (二)探究新知:认识圆的周长 1.回忆正方形周长: 2.认识圆的周长: 3.圆周长的测量方法: (三)讨论圆周长的测量方法 动手操作,探索圆的周长与直径的关系。 (一)分组合作测算 (二)发现规律,初步认识圆周率 1.看了几组同学的测算结果,你有什么发现? 2.虽然倍数不大一样,但周长大多是直径的几倍? 归纳:圆的周长总是直径的( )一些。 活动一:认识圆周率、介绍祖冲之 1. 我们把圆的周长与直径的比值叫做圆周率, 用希腊字母 π 表示. 2.谁能介绍祖冲之 现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗? 活动二:总结圆的周长公式 1.怎样求周的长?如果我用字母 c 代表圆的周长,d 表示圆的直 径,那圆的周长公式用字母怎样表示? C= 或者
24圆 全章导学案
24.1.1圆一、自学要求:阅读课本P79—P80圆的定义:1.在同一平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
2.到定点O的距离等于定长r的所有的点组成的图形。
(含义也是判断点在圆上......的方法)表示方法:“⊙O”读作“圆O”构成元素:1.圆心、半径(直径)2.弦:连接圆上任意两点的线段叫做弦。
直径是经过圆心的弦,是圆中最长的弦。
3.优弧:大于半圆的弧;半圆弧:直径分成的两条弧;劣弧:小于半圆的弧。
如图:优弧ABC 记作,半圆弧AB 记作,劣弧AC 记作。
4.同心圆:圆心相同,半径不同的两圆。
5.等圆:能够重合的两个圆。
6.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
二、典型拓展例题:1.下列说法正确的是①直径是弦②弦是直径③半径是弦④半圆是弧,但弧不一定是半圆⑤半径相等的两个半圆是等弧⑥长度相等的两条弧是等弧⑦等弧的长度相等2.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知DEAB2=,∠OCD=40°,求AOC∠的度数。
3.已知:如图,四边形ABCD是矩形,对角线AC、BD交于点O.求证:点A、B、C、D在以O为圆心的圆上. 4.如图,菱形ABCD中,点E、F、G、H分别为各边的中点.求证:点E、F、G、H四点在同一个圆上.三.当堂检测1.以点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的直径是()A.2.5cm或6.5cm B.2.5cm C.6.5cm D.5cm或13cm3.确定一个圆的条件为()A.圆心B.半径C.圆心和半径D.以上都不对.4.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E,已知DEAB2=,若COD∆为直角三角形,则E∠的度数为()A.︒5.22B.︒30C.︒45D.︒155.如图,在⊙O中,AC、BD为直径,求证:CDAB//6.如图,OA、OB为⊙O的半径,C、D为OA、OB上两点,且BDAC=求证:BCAD=.BDAO CP FE24.1.2垂直于弦的直径一、动手实践,发现新知⒈同学们能不能找到下面这个圆的圆心?动手试一试,有方 法的同学请举手。
2017新苏科版九年级数学导学案第2章 圆
2.1圆(第一课时)※学习目标:1、经历圆的有关定义的形成过程,理解圆的描述定义和集合定义;2、理解点与圆的三种位置关系,并能应用它解决相关的问题.※自主学习:阅读课本P38、39页明理战国时期数学家墨子撰写的《墨经》一书中,就有“圆,一中同长也”的记载.你理解这句话的意思吗?⑴套圈游戏:只有一个小立柱,若全班同学沿着红线站成一横排,请问游戏对所有同学公平吗?如何使得游戏对所有人公平?⑵日常生活中,我们见到的汽车、摩托车、自行车等交通工具的车轮是什么形状?你能说明为什么做成这种形状吗?如果改成其他形状(正方形、三角形),会发生怎样的情况?新知把线段OP绕着端点O在内旋转一周,端点P运动所形成的图形叫做圆.⑴点O叫做,线段OP叫做,记作,读作;⑵圆是到的距离等于的点的集合,定点就是,定长就是;⑶圆上的点到圆心的距离都等于;到圆心的距离等于的点都在圆上;⑷规定⊙O的半径为r,点P到圆心O的距离为d,填表:数形结合rd 点P在圆内练习如图,线段PQ=2cm.⑴画出下列图形:①到点P的距离等于1cm的点的集合;②到点Q的距离等于1.5cm的点的集合;⑵在所画的图中,到点P的距离等于1cm,且到点Q的距离等于1.5cm的点有个,在图中用不同字母将它们表示出来;⑶在所画的图中,到点P的距离小于或等于1cm,且到点Q的距离大于或等于1.5cm的点的集合是怎样的图形?在图中将它表示出来.课堂笔记栏1、⊙O的半径为5,点A到圆心O的距离OA=3,则点A与⊙O的位置关系为…()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定-,5-)2、在平面直角坐标系中,⊙O的直径为26,圆心O为坐标原点,则点P(12与⊙O的位置关系是…………………………………………………………………()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定3、在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以点O为圆心,OA长为半径的圆形水池,要求池内不留树木,则E、F、G、H四棵树中需要被移除的为…………………………………………()A.E、F、GB.F、G、HC.E、G、HD.E、F、H4、已知⊙O的半径为7cm.⑴若线段OA的长为14cm,则OA的中点P在⊙O;⑵若线段OA的长为18cm,则OA的中点P在⊙O;⑶若线段OA的长为12cm,则OA的中点P在⊙O.5、与点A的距离为3cm的点所组成的平面图形是.6、如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心,作半径为r的圆.若要求另外三个顶点A、B、C中至少有一个点在圆内,至少有一个点在圆外,则r的取值范围是.7、如图,△ABC、△ABD、△ABE都是以AB为斜边的直角三角形,则点A、B、C、D在同一个圆上吗?为什么?8、如图,将矩形纸片ABCD放在⊙O上,使其一边BC经过圆心O,量得AB=6cm,BE=3cm,AF=5cm,求⊙O的半径.课堂笔记栏1、下列说法:①直径是弦;②经过圆内一点可以作无数条直径;③弧是半圆;④长度相等的弧是等弧.其中,正确的个数是………()A .1个B .2个C .3个D .4个2、如图,点A 、B 、C 在⊙O 上,∠A =36°,∠C =28°,则∠B 的度数为……()A .100°B .72°C .64°D .36°3、如图,AB 是⊙O 的直径,点D 、C 在⊙O 上,AD ∥OC ,∠DAB =60°,则∠DAC 的度数为……………………………………………………………………()A .15°B .30°C .45°D .60°4、如图,在Rt △ABC 中,∠C =90°,AB =12.若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长为.5、如图,在⊙O 中,AB 是弦,C 是︵AB 上一点.若∠OAB =25°,∠OCA =40°,则∠BOC 的度数为.6、在同一平面上,⊙O 外一点P 到⊙O 上一点的距离最长为6cm ,最短为2cm ,则⊙O 的半径为cm .7、如图,OA 、OB 是⊙O 的半径,C 、D 分别是OA 、OB 的中点.AD 与BC 相等吗?为什么?8、如图,扇形OAB 的半径OA =3,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B的动点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连接DE ,点G 、H 在线段DE 上,且DG =GH =HE .⑴求证:四边形OGCH 是平行四边形;⑵当点C 在弧AB 上运动时,在CD 、CG 、DG 中,是否存在长度不变的线段?若存在,请求出该线段的长度,若不存在,请说明理由.2.2圆的对称性(第一课时)※学习目标:1、经历探索圆的中心对称性及有关性质的过程;2、会运用圆心角、弧、弦之间的关系解决有关问题.※自主学习:阅读课本P44、45页新知圆是中心对称图形,圆心是它的对称中心.⑴你还知道哪些中心对称图形?圆与它们比较有何特别之处?⑵填表:同圆等圆同心圆形数⑴若∠AOB=∠COD,则,;⑵若︵AB=︵CD,则,;⑶若AB=CD,则,,;在左边相同的条件下,结论还成立吗?小结在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有组量相等,那么它们所对应的其余各组量都分别.⑶圆心角的度数与它所对的弧的度数.问:上面性质你是如何理解的?应注意点什么?度数相等的弧是等弧吗?练习1、如图,在⊙O中,︵AB=︵AC,∠A=40°,求∠ABC的度数.2、如图,在△ABC中,∠C=90°,∠B=28°,以点C为圆心,CA为半径的圆交AB于点D、BC于点E.求︵AD、︵DE的度数.课堂笔记栏1、在⊙O 中,弦AB 等于圆的半径,则该弦所对的弧的度数为……………………()A .30°B .60°C .120°D .以上都不对2、如图,在⊙O 中,若C 是︵AB 的中点,∠A =50°,则∠BOC 的度数为………()A .40°B .45°C .50°D .60°3、如图,在⊙O 中,︵AB 的度数是︵CD 的度数的2倍,则弦AB 与2CD 的数量关系是()A .AB >2CDB .AB =2CDC .AB <2CDD .AB ≤2CD4、如图,BD 是⊙O 的直径,点A 、C 在⊙O 上.︵AB =︵BC ,∠AOB =60°,则∠D =.5、如图,在⊙O 中,AB 、CD 为弦,且AB =CD ,则AC BD (填数量关系符号).6、已知⊙O 的一条弦AB 把圆的周长分成14的两部分,则弦AB 所对的圆心角的度数为.7、如图,OA 、OB 、OC 是⊙O 的半径,︵AC =︵BC ,D 、E 分别是OA 、OB 的中点.CD 与CE 相等吗?为什么?8、如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,︵CE 为40°.求∠AOC 的度数.9、如图,正方形ABCD 的四个顶点都在⊙O 上,M 为︵AD 的中点,连接BM 、CM .求证:BM =CM .※学习目标:2、能利用垂径定理进行相关的计算和证明.※自主学习:阅读课本P46、47页新知圆是轴对称图形,都是它的对称轴.⑶垂直于弦的直径平分以及(简称“垂径定理”).图形下列图形中,哪些能使用垂径定理,为什么?符号语言以第一个图形为例:∵AB是直径,CD⊥AB,∴,,.模仿上面,写出其它使用垂径定理的图形的符号语言.垂径定理在实际使用中,需要把结论都写出来吗?你有什么使用规范吗?练习︵︵课堂笔记栏1、如图,⊙O 的直径AB ⊥CD 于点E ,,则下列结论不一定正确的是……………()A .CE =DEB .AE =OEC .︵BC =︵BDD .△OCE ≌△ODE2、如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =.3、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC .若∠CAB =22.5°,CD =8cm ,则⊙O 的半径为cm .4、如图,⊙O 的直径为10,弦AB 的长为8,点P 在AB 上运动,则OP 的取值范围是.5、如图,是一个脸盆架的截面图,垂直放置的脸盆与架子的交点为A 、B ,AB =40cm ,脸盆的最低点C 到AB 的距离为10cm ,则该脸盆的半径为cm .7、如图,AB 、AC 是⊙O 的两条弦,AB ⊥AC ,且AB =8,AC =6.求⊙O 的半径.8、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E .若CD =6,BE =1,求⊙O 的直径AB .9、如图,在Rt △ABC 中,∠C =90°,以点C 为圆心,AC 长为半径的⊙O 与AB 相交于点D .已知AC =6,BC =8,求AD 的长.2.3确定圆的条件※学习目标:1、能够利用尺规,过不在同一直线上的三点画出一个圆;2、了解三角形的外接圆、三角形的外心、圆的内接三角形的概念.※自主学习:阅读课本P50、51页新知考古学家在长沙马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助考古学家画出这个碎片所在的整圆,以便于进行深入的研究吗?⑴确定一个圆需要哪两个要素?它们分别决定什么?⑵有同学说“两点确定一直线,三点确定一个圆”你同意这位同学的观点吗?为什么?⑶在探索确定圆的条件时,用到线段垂直平分线的性质,它的内容是什么?用它的目的是什么?⑷用直尺和圆规画出经过三角形的三个顶点的圆.锐角三角形直角三角形钝角三角形问:三角形的外接圆与圆的外接三角形有何区别与联系?三角形的外心有何性质?练习判断题:⑴经过三点一定可以作圆…………………………………………………………………()⑵任意一个三角形一定有一个外接圆,并且只有一个外接圆…………………………()⑶任意一个圆一定有一个内接三角形,并且只有一个内接三角形……………………()⑷三角形的外心是三角形三边中线的交点………………………………………………()⑸三角形的外心到三角形各项点距离相等………………………………………………()拓展如图,在四边形ABCD 中,∠A =∠C =90°,⑴经过点A 、B 、D 三点作⊙O ;⑵⊙O 是否经过点C ?请说明理由.课堂笔记栏4、如图,在5×5的正方形网格中,一条圆弧经过A、B、C点,那么这条圆弧所在圆的圆心是…………………………………………………………………………………()班级:学号:姓名:金果学堂2.4圆周角(第一课时)※学习目标:1、了解圆周角的概念,经历圆周角与圆心角关系的探索过程;2、能用圆周角与圆心角的关系进行简单的说理.※自主学习:阅读课本P53、54、55页探索足球训练场上教练在球门前画了一个圆圈,进行射门训练,如图,甲、乙、丙两名运动员分别在A 、B 、C 三地,他们争论不休,都说自己所在位置对球门MN 的张角大.如果你是教练,请评一评他们三个人,谁的位置对球门MN 的张角大.⑴图中的∠MAN 、∠MBN 、∠MCN 有何异同?如果请你命名,你叫它什么?⑵图中︵MN 所对的圆心角、圆周角各有多少个?猜想它们有什么关系?⑶分别使用下表中三种不同图形,证明你的猜想.小结:①圆周角的度数等于;②同弧或等弧所对的圆周角.练习如图,点A 、B 、C 、D 在⊙O 上,∠ACB =∠BDC =60°,BC =3.求△ABC 的周长.课堂笔记栏※巩固练习:1、如图,在⊙O 中,︵AB =︵AC ,∠O =90°,则∠D 的度数是……………………()A .40°B .30°C .20°D .15°2、如图,在⊙O 中,弦AB 与CD 交于点M .若∠A =45°,∠AMD =75°,则∠B 的度数是………………………………………………………………………()A .15°B .25°C .30°D .75°3、如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论正确的是………………………()A .AC =ABB .∠C =21∠BOD C .∠C =∠B D .∠A =∠BOD4、如图,A 、B 、C 、D 四个点均在⊙O 上,∠O =70°,AO ∥DC ,则∠B 的度数是()A .40°B .45°C .50°D .55°5、如图,A 、B 、C 、P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠C =40°,则∠P 的度数为.6、如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点.若AB =6,BC =3,则∠D =.7、直径为10cm 的⊙O 中,弦AB =5cm ,则弦AB 所对的圆周角的度数是.8、如图,点A 、B 、C 在⊙O 上,点D 在圆外,CD 、BD 分别交⊙O 于点E 、F .比较∠BAC 与∠BDC 的大小,并说明理由.9、如图,四边形ABCD 的四个顶点均在⊙O 上,点E 在对角线AC 上,EC =BC =DC .⑴若∠CBD =39°,求∠BAD 的度数;⑵求证:∠1=∠2.作业订正栏金果学堂课堂笔记栏直径所对的圆周角是,90°的圆周角所对的弦是填空:A=10°,则∠ABC=.2、如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,则△ABC的形状是三角形.长100m,※巩固练习:1、如图,CD 是在⊙O 的直径,∠1=30°,则∠2的度数是………………………()A .30°B .45°C .60°D .70°2、如图,A 、D 是⊙O 上的两个点,BC 是直径.∠D =32°,则∠OAC 的度数为()A .64°B .58°C .72°D .55°3、如图,在⊙O 中,AB 是直径,BC 是弦,P 是︵BC 上任意一点.若AB =5,BC =3,则AP 的长不可能是…………………………………………()A .3B .4C .29D .54、如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE .若∠E =36°,则∠D 的度数是……………………………………………………()A .44°B .54°C .72°D .53°5、如图,A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =.6、如图,AB 是⊙O 的直径,点C 、D 、E 都在⊙O 上.若∠C =∠D =∠E ,则∠A +∠B =.7、如图,AB 是⊙O 的直径,D 是弦AC 的延长线上一点,且CD =AC ,DB 的延长线交⊙O 于点E .CD 与CE 相等吗?为什么?8、如图,△ABC 是⊙O 的内接三角形,∠BAD 是△ABC 的一个外角,∠BAC 、∠BAD的平分线分别交⊙O 于点E 、F .若连接EF ,则EF 与BC 有怎样的位置关系?为什么?作业订正栏班级:学号:姓名:金果学堂2.4圆周角(第三课时)※学习目标:1、了解圆内接四边形的概念,掌握圆内接四边形的概念及其性质定理;2、用联系的观点思考问题、转化问题.※自主学习:阅读课本P58、59页新知我们知道,经过三角形的三个顶点一定可以作一个圆,那么经过任意四边形的四个顶点是否一定可以作一个圆?你能举例说明吗?⑴类比以前的概念,过四边形的四个顶点画的这个圆叫什么?这个四边形又称为什么?它们有何区别与联系?⑵如下表图,四边形ABCD 是⊙O 的内接四边形,探索圆的内接四边形的内角关系:特殊:AC 是⊙O 的直径一般:圆心O 不在⊙O 的内接四边形ABCD 的对角线上证:证:连接AO 并延长交圆于点E ,连接BE 、DE ,证:练习填空:1、如图,四边形ABCD 为⊙O 的内接四边形,E 为AB 延长线上一点,且∠AOC =80°,则∠D =,∠CBE =.2、在圆内接四边形ABCD 中,∠A ∶∠B ∶∠C ∶∠D =2∶4∶7∶m ,则m =,∠D =.拓展如图,在⊙O 的内接四边形ABCD 中,DB =DC ,∠DAE 是四边形ABCD 的一个外角.∠DAE 与∠DAC 相等吗?为什么?课堂笔记栏作业订正栏3、如图,四边形ABCD内接于⊙O,∠C=∠D,则AB与CD的位置关系是.4、如图,圆的内接四边形ABCD的两组对边的延长线分别相交于点E、F,金果学堂Array课堂笔记栏※巩固练习:1、已知半径为5的圆,其圆心到直线的距离是3,此时直线与圆的位置关系为…()A .相离B .相切C .相交D .无法确定2、如图,在△ABC 中,AB =5,BC =3,AC =4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为………………………………………………………………………()A .2.3B .2.4C .2.5D .2.63、已知⊙O 的半径为2,点P 在直线l 上,且PO =2,则直线l 与⊙O 的位置关系是()A .相切B .相离C .相离或相切D .相切或相交4、在平面直角坐标系中,以点(3,-5)为圆心,r 为半径的圆上有且仅有两点到x 轴的距离为1,则圆的半径r 的取值范围是…………………………………………()A .4>r B .60<<r C .64<≤r D .64<<r 5、如图,给定一个半径长为2的圆,圆心O 到水平直线l 的距离为d ,即OM =d .我们把圆上到直线l 的距离等于1的点的个数记为m .如d =0,l 为经过圆心O 的一条直线,此时圆上有4个到直线l 的距离等于1的点,即m =4,由此可知:⑴当d =3时,m =;⑵若m =2时,d 的取值范围是.6、在Rt △ABC 中,∠C =90°,BC =4cm ,AC =3cm .以点C 为圆心,r 为半径作⊙C .⑴若边AB 与⊙C 没有公共点,则r 的取值范围是;⑵若边AB 与⊙C 有两个公共点,则r 的取值范围是;⑶若边AB 与⊙C 只有一个公共点,则r 的取值范围是.7、如图,O 为原点,点A 的坐标为(4,3),⊙A 的半径为2,过点A 作直线l 平行于x 轴,交y 轴于点B ,点P 在直线l 上运动.⑴当点P 在⊙A 上时,请直接写出它的坐标;⑵若点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由.作业订正栏金果学堂课堂笔记栏问:你的作图步骤是什么?如何说服别人相信你;作业订正栏2、如图,在⊙O的内接四边形ABCD中,AB是⊙O的直径,∠C=120°,过点D的切线PD与BA的延长线交于点P,则∠ADP的度数为……………………………()A.40°B.35°C.30°D.45°班级:学号:姓名:金果学堂2.5直线与圆的位置关系(第三课时)※学习目标:1、理解三角形内切圆的有关概念,会作三角形的内切圆;2、通过探究作三角形的内切圆的过程,归纳内心的性质,进一步提高作图的能力.※自主学习:阅读课本P68、69页探索木工师傅要从一块三角形木料中裁下一块最大圆形用料,甲、乙、丙三位学徒裁法分别如下:甲乙丙你有更大的裁法吗?①甲、乙、丙和你所裁的圆各有什么特点?②确定一个圆需要哪两个要素?在你的裁法中,你是如何确定这两个要素的?③在你的裁法中一定用到了角平分线的性质?它的内容是什么?用它的目的是什么?④三角形的内切圆与圆的外切三角形有何区别与联系?三角形的内心有何性质?练习1、如图,点O 是△ABC 内心.⑴若∠ABC =50°,∠ACB =60°,则∠BOC =;⑵若∠A =50°,则∠BOC =.2、如图,OA 、OB 是两条射线,点C 、D 分别在OA 、OB 上.求作⊙P ,使它与OA 、OB 、CD 都相切.3、如图,⊙I 切△ABC 的边分别为D 、E 、F ,∠B =80°,∠C =60°,M 是︵DEF 上的动点(与D 、E 不重合),∠DMF 的大小一定吗?若一定,求出∠DMF 的大小;若不一定,请说明理由.拓展如图,点I 是△ABC 的内心,AI 的延长线交外接圆于D .求证:DB =DI .课堂笔记栏作业订正栏班级:学号:姓名:金果学堂2.5直线与圆的位置关系(第四课时)※学习目标:1、了解切线长的概念;2、经历探索切线长性质的过程,并运用这个性质解决问题.※自主学习:阅读课本P70、71、72页探索经过平面上一个已知点,作已知圆的切线:点在圆内点在圆上点在圆外①上面三种情形最多可以各作多少条切线?并说说自己的作法.②当点在圆外时,测量这个点与切点之间的距离,你有何发现?你如何说服别人相信你的发现?③切线与切线长有什么区别与联系?练习1、如图,AB 、AC 、BD 是⊙O 的切线,切点分别为P 、C 、D .如果AB =5,AC =3.则BD 的长为.2、如图,P 是⊙O 外一点,PO 交⊙O 于点C ,PC =OC ,PA 、PB 是⊙O 的切线,切点分别为A 、B .如果⊙O 的半径为5,则切线长为,两条切线的夹角为.3、如图,PA 、PB 是⊙O 的切线,切点分别是A 、B ,直线EF也是⊙O 的切线,切点为C,交PA 、PB 于点E 、F .⑴若PA =12cm ,求△PEF 的周长;⑵∠P =40°,求∠EOF 的度数.拓展如图,△ABC 中,∠C =90°,且AC =6,BC =8,它的内切圆O 分别与边AB 、BC 、CA 相切于点D 、E 、F ,求⊙O 的半径r .课堂笔记栏※巩固练习:1、三角形的内心是三角形的……………………………………………………………()A .三条高的交点B .三条角平分线的交点C .三条中线的交点D .三条边的垂直平分线的交点2、《九章算术》是我国古代内容极为丰富的数学名著,书中有一个问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,短直角边长为8步,长直角边长为15步,问该直角三角形能容纳的最大圆形直径是多少?”………()A .3步B .5步C .6步D .8步3、如图,在矩形ABCD 中,AB =4,BC =3,连接AC ,⊙P 和⊙Q 分别是△ABC 和△ADC 的内切圆,则PQ 的长是……………………………………………………………()A .25B .5C .25D .224、如图,⊙O 是△ABC 的内切圆.若∠ABC =70°,∠ACB =40°,则∠BOC =.5、已知直角三角形的两条直角边的长分别为5、12,则它的外接圆的半径R 为,内切圆的半径r 为.6、已知三角形的面积为15,周长为30,则它的内切圆的半径为.7、如图,AB 是⊙O 的切线,切点为B ,AO 交⊙O 于点C ,经过C 的切线交AB 于点D .若AD =2BD ,CD =2,求⊙O 的半径.8、如图,点E 是△ABC 的内心,AE 是延长线和△ABC 的外接圆相交于点D ,连接BD 、BE 、CE ,若∠CBD =32°,求∠BEC 的度数.作业订正栏金果学堂课堂笔记栏①谈谈自己的作法,与同学进行交流.作业订正栏3、如果一个正多边形的一个外角是36°,那么这个正多边形的边数是.4、已知⊙O的内接正六边形的周长为12cm,则这个圆的半径是cm.金果学堂课堂笔记栏知识回顾:什么是轴对称图形?什么是中心对称图形?为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,※巩固练习:1、下列说法:①正多边形的各边相等;②各边相等的多边形是正多边形;③正多边形的各角相等;④各角相等的多边形是正多边形;⑤既是轴对称图形,又是中心对称的多边形是正多边形.其中,正确的说法有…………………………………………………………………()A .1个B .2个C .3个D .4个2、如图,是一种电子游戏,电子屏幕上有一个正六边形ABCDEF ,点P 沿直线AB 从右向左移动,当出现点P 与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB 上会发出警报的点P 的位置有…………………………………()A .3个B .4个C .5个D .6个3、每个外角都是18°的正多边形的对称轴一共有条.4、将一个正五边形绕它的中心旋转,至少要旋转才能与原来的图形重合.5、已知正三角形ABC 的边长为6,那么能够完全覆盖这个正三角形ABC 的最小圆的半径是.6、如图,正八边形ABCDEFGH 中,四边形BCFG 的面积为20cm 2,则该正八边形的面积为cm 2.7、如图,在平面直角坐标系中有一个正六边形ABCDEF ,其中C 、D 两点的坐标分别为(1,0)、(2,0).若在无滑动的情况下,将这个正六边形沿着x 轴向右滚动,则在滚动过程中,这个正六边形的顶点A 、B 、C 、D 、E 、F ,会过点(45,2)的是点.8、⑴如图①,△ABC 是⊙O 的内接正三角形,P 为︵BC 上一动点,连接PA 、PB 、PC .求证:PA =PB +PC .⑵如图②,四边形ABCD 是⊙O 的内接正方形,P 为︵BC 上一动点,连接PA 、PB 、PC .求证:PA =2PB +PC .⑶如图③,六边形ABCDEF 是⊙O 的内接正六边形,P 为︵BC 上一动点,连接PA 、PB 、PC .请探究PA 、PB 、PC 三者之间的数量关系,直接写出答案,不必证明.作业订正栏金果学堂课堂笔记栏°的圆心角所对的弧长为l=____________;※巩固练习:︵.π310.π910.π95.π185作业订正栏班级:学号:姓名:金果学堂2.8圆锥的侧面积※学习目标:1、了解圆锥的侧面积计算公式,并会应用公式解决问题;2、经历探索圆锥侧面积计算公式的过程,发展自己的实践探索能力.※自主学习:阅读课本P86、87页探索填写圆锥中的各元素与它的展开图各元素之间的对应关系,并回答问题:⑴圆锥有几个面?分别是什么?⑵什么是圆锥的母线和高?它们与底面圆半径有何数量关系?⑶如何利用图中的对应数量关系探求圆锥的侧面积计算公式?全面积呢?⑷在应用公式解决问题时,你有什么注意点、建议和技巧要分享给同学们吗?练习1、圆锥的底面半径为3,高为4,则母线长为,底面的周长为,侧面展开图的扇形的弧长为,侧面积为,全面积为.2、一个扇形,半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.3、如图,在Rt △ABC 中,∠C =90°,AB =13cm ,BC =5cm .⑴求以BC 所在直线为中心轴旋转一周得到的几何体的侧面积和全面积;⑵求以AB 所在直线为中心轴旋转一周得到的几何体的侧面积和全面积.拓展4、在半径为2的圆形纸片中,剪一个圆心角为90°的扇形(如图中的阴影部分).⑴求这个扇形的面积(结果保留 );⑵用所剪的扇形纸片围成一个圆锥的侧面,求这个圆锥的底面圆半径;⑶在被剪掉的3块余料中,能否从中选取一块剪出一个圆作为“⑵”中所围成的圆锥的底面?课堂笔记栏※巩固练习:1、如图,圆锥底面圆的半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的,则这个圆锥的侧面积是.216则这个圆锥的高为cm则此圆锥底面圆的半径为cm,则圆锥的高是cm,则这块扇形铁皮的半径是cm,则圆锥的侧面积为cm长为cm(结果保留22,以点22,若把作业订正栏班级:学号:姓名:金果学堂第2章圆(复习)※学习目标:1、回顾、思考本章所学的知识及所体现的数学思想方法;2、进一步丰富对“对称图形——圆”的认识,能有条理地、清晰地阐明自己的观点.※自主学习:阅读课本P89页1、在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,以点C 为圆心、2.5cm 为半径画圆,则⊙C 与直线AB 的位置关系是………………………………………………()A .相交B .相切C .相离D .无法确定2、如图,⊙O 的半径为13,弦AB 的长为24,ON ⊥AB ,垂足为N ,则ON 的长为()A .5B .7C .9D .113、如图,C 、D 是以线段AB 为直径的⊙O 上的两点.若CA =CD ,∠ACD =40°,则∠CAB 的度数为……………………………………………………………………()A .10°B .20°C .30°D .40°4、如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD ,若∠A =55°,则∠COD 的度数为…………………………………………………()A .70°B .60°C .55°D .35°5、如图,在4×4的网格图中,点A 、B 、C 、D 、O 均在格点上,点O 是………()A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心D .△ABC 的内心6、若正六边形的半径长为4,则它的边长为…………………………………………()A .4B .2C .32D .347、如图,在扇形OAB 中,∠O =90°,正方形CDEF 的顶点C 是︵AB 的中点,点D 在OB 上,点E 在OB 的延长线上.当正方形CDEF 的边长为22时,涂色部分的面积为………………………………………………………………………………………()A .42-πB .84-πC .82-πD .44-π8、用一个半径为10的半圆围成一个圆锥的侧面,则该圆锥的底面圆的半径为.9、如图,若以□ABCD 的一边AB 为直径的圆恰好与对边CD相切于点D ,则∠C =.10、如图,⊙O 的直径CD =20cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M .若OM =6cm ,则AB 的长为cm .11、如图,在⊙O 中,弦AC =32,B 是圆上一点,且∠B =45°,则⊙O 的半径R =.课堂笔记栏12、如图,在⊙O中,A、B是圆上的两点,∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=.13、如图,分别以边长为1的正方形的四边为直径作半圆,则图中阴影部分的面积为.14、如图,AM为⊙O的切线,A为切点,过⊙O上一点B作BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.⑴求∠AOB的度数;⑵若⊙O的半径为2cm,求CD的长.15、如图,点C、D在以AB为直径的⊙O上,且BC=6cm,AC=8cm,∠AOB=45°.⑴求BD的长;⑵求图中阴影部分的面积(结果保留 ).16、如图,四边形ABCD是矩形,E为边BC的中点,连接AE,以AD为直径的⊙O交AE于点F,连接CF.⑴求证:CF与⊙O相切;⑵若AD=2,F为AE的中点,求AB的长.作业订正栏。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案) 第四章 4.2.1
4.2.1 直线与圆的位置关系[学习目标] 1.理解直线和圆的三种位置关系.2.会用代数与几何两种方法判断直线和圆的位置关系.知识点一 直线与圆的位置关系及判断思考 用代数法与几何法判断直线与圆的位置关系时,二者在侧重点上有什么不同? 答 代数法与几何法都能判断直线与圆的位置关系,只是角度不同,代数法侧重于“数”的计算,几何法侧重于“形”的直观. 知识点二 圆的切线问题 1.求圆的切线的方法(1)求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心的连线的斜率k ,则由垂直关系,知切线斜率为-1k ,由点斜式方程可求得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程为y =y 0或x =x 0. (2)求过圆外一点(x 0,y 0)的圆的切线方程:几何法:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0.由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 代数法:设切线方程y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 2.切线段的长度公式(1)从圆外一点P (x 0,y 0)引圆(x -a )2+(y -b )2=r 2的切线,则P 到切点的切线段长为 d =(x 0-a )2+(y 0-b )2-r 2.(2)从圆外一点P (x 0,y 0)引圆x 2+y 2+Dx +Ey +F =0的切线,则P 到切点的切线段长为d =x 20+y 20+Dx 0+Ey 0+F .题型一 直线与圆的位置关系的判断例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点; (2)只有一个公共点; (3)没有公共点.解 方法一 将直线mx -y -m -1=0代入圆的方程化简整理得, (1+m 2)x 2-2(m 2+2m +2)x +m 2+4m +4=0. ∵Δ=4m (3m +4),∴当Δ>0,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当Δ=0,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当Δ<0,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.方法二 已知圆的方程可化为(x -2)2+(y -1)2=4, 即圆心为C (2,1),半径r =2.圆心C (2,1)到直线mx -y -m -1=0的距离 d =|2m -1-m -1|1+m 2=|m -2|1+m 2.当d <2,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当d =2,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当d >2,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.反思与感悟 直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离.试分别求实数a 的取值范围. 解 方法一 (代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0. Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000. ①当直线和圆相交时,Δ>0, 即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0, 即a =50或a =-50; ③当直线和圆相离时,Δ<0, 即a <-50或a >50. 方法二 (几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5, ①当直线和圆相交时,d <r , 即|a |5<10,-50<a <50; ②当直线和圆相切时,d =r , 即|a |5=10,a =50或a =-50; ③当直线和圆相离时,d >r , 即|a |5>10,a <-50或a >50. 题型二 圆的切线问题例2 过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线的方程. 解 因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).即kx -y -3-4k =0, 因为圆心C (3,1)到切线的距离等于半径1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1, 所以k 2+8k +16=k 2+1.解得k =-158.所以切线方程为y +3=-158(x -4),即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.反思与感悟 1.过一点P (x 0,y 0)求圆的切线方程问题,首先要判断该点与圆的位置关系,若点在圆外,切线有两条,一般设点斜式y -y 0=k (x -x 0)用待定系数法求解,但要注意斜率不存在的情况,若点在圆上,则切线有一条,用切线垂直于过切点的半径求切线的斜率,再由点斜式可直接得切线方程.2.一般地,有关圆的切线问题,若已知切点则用k 1·k 2=-1(k 1,k 2分别为切线和圆心与切点连线的斜率)列式,若未知切点则用d =r (d 为圆心到切线的距离,r 为半径)列式.跟踪训练2 圆C 与直线2x +y -5=0相切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2. 因为两切线2x +y -5=0与2x +y +15=0平行, 所以2r =|15-(-5)|22+12=4 5.所以r =2 5.所以|2a +b +15|22+1=r =25,即|2a +b +15|=10;①|2a +b -5|22+1=r =25,即|2a +b -5|=10.② 又因为过圆心和切点的直线与切线垂直, 所以b -1a -2=12.③联立①②③,解得⎩⎪⎨⎪⎧a =-2,b =-1.故所求圆C 的方程为(x +2)2+(y +1)2=20. 题型三 圆的弦长问题例3 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.解 方法一 直线x -3yy +23=0和圆x 2+y 2=4的公共点坐标就是方程组⎩⎨⎧x -3y +23=0,x 2+y 2=4的解. 解这个方程组,得⎩⎨⎧x 1=-3,y 1=1,⎩⎪⎨⎪⎧x 2=0,y 2=2. 所以公共点的坐标为(-3,1),(0,2),所以直线x -3y +23=0被圆x 2+y 2=4截得的弦长为(-3-0)2+(1-2)2=2. 方法二 如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点), 所以|OM |=|0-0+23|12+(-3)2= 3.所以|AB |=2|AM |=2OA 2-OM 2 =222-(3)2=2. 反思与感悟求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2. 即|AB |=2r 2-d 2.(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2| =1+1k2|y 1-y 2|, 其中k 为直线l 的斜率.跟踪训练3 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A.1 B.2 C.4 D.46 答案 C解析圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径r=5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=r2-d2=2,故直线被圆截得的弦长|AB|=4.数形结合思想例4直线y=x+b与曲线x=1-y2有且只有一个交点,则b的取值范围是()A.|b|= 2B.-1<b≤1或b=-2C.-1≤b<1D.非以上答案分析曲线x=1-y2变形为x2+y2=1(x≥0),表示y轴右侧(含与y轴的交点)的半圆,直线y=x+b表示一系列斜率为1的直线,利用数形结合思想在同一平面直角坐标系内作出两种图形求解.解析曲线x=1-y2含有限制条件,即x≥0,故曲线并非表示整个单位圆,仅仅是单位圆在y轴右侧(含与y轴的交点)的部分.在同一平面直角坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示.相切时,b=-2,其他位置符合条件时需-1<b≤1.故选B.答案B解后反思求解直线与曲线公共点的问题,首先要借助图形进行思考;其次要注意作图的完整准确,使得图形能够反映问题的全部;最后在求解中还要细心缜密,保证计算无误.1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心答案C解析方法一圆心(0,0)到直线kx-y+1=0的距离d=11+k2≤1<2=r,∴直线与圆相交,且圆心(0,0)不在该直线上.方法二 直线kx -y +1=0恒过定点(0,1),而该点在圆内,故直线与圆相交,且圆心不在该直线上.2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 答案 B解析 ∵点M (a ,b )在圆x 2+y 2=1外,∴a 2+b 2>1. ∴圆心(0,0)到直线ax +by =1的距离d =1a 2+b2<1=r ,则直线与圆的位置关系是相交. 3.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=0 答案 D解析 依题意可设所求切线方程为2x +y +c =0,则圆心(0,0)到直线2x +y +c =0的距离为|c |22+12=5,解得c =±5.故所求切线的直线方程为2x +y +5=0或2x +y -5=0. 4.设A 、B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A.1 B. 2 C. 3 D.2 答案 D解析 直线y =x 过圆x 2+y 2=1的圆心C (0,0), 则|AB |=2.5.过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为________. 答案 2x -y =0解析 设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-⎝⎛⎭⎫222=0,即圆心(1,2)位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去y ,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l =k 2+1·(x 1+x 2)2-4x 1x 2=k 2+1|x 1-x 2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆外时,切线有两条.一、选择题1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( ) A.相离 B.相切或相交 C.相交 D.相切 答案 C解析 l 过定点A (1,1),∵12+12-2×1=0,∴点A 在圆上,∵直线x =1过点A 且为圆的切线,又l 斜率存在, ∴l 与圆一定相交,故选C.2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0 D.x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 由条件,知x -y =0与x -y -4=0都与圆相切,且平行,所以圆C 的圆心C 在直线x -y -2=0上.由⎩⎪⎨⎪⎧x -y -2=0,x +y =0,得圆心C (1,-1).又因为两平行线间距离d =42=22,所以所求圆的半径长r =2,故圆C 的方程为(x -1)2+(y +1)2=2.4.过点P (-3,-1)的直线l 与圆x 2+y 2=1相切,则直线l 的倾斜角是( ) A.0° B.45° C.0°或45° D.0°或60° 答案 D解析 设过点P 的直线方程为y =k (x +3)-1,则由直线与圆相切知|3k -1|1+k 2=1,解得k =0或k =3,故直线l 的倾斜角为0°或60°.5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于( )A.10-27B.5-7C.10-3 3D.5-322答案 A解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小. 弦心距d =(2+1)2+(-3-0)2=32, 所以最小弦长为2r 2-d 2=225-18=27, 所以m -n =10-27.6.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个 答案 C解析 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.7.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ) A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[0,+∞) C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 答案 A解析 设圆心为C ,弦MN 的中点为A ,当|MN |=23时,|AC |=|MC |2-|MA |2=4-3=1.∴当|MN |≥23时,圆心C 到直线y =kx +3的距离d ≤1. ∴|3k -2+3|k 2+(-1)2≤1,∴(3k +1)2≤k 2+1. 由二次函数的图象可得 -34≤k ≤0. 二、填空题8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则a =________. 答案 0解析 圆心到直线的距离d =|a -2+3|a 2+1=22-(3)2=1,解得a =0. 9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.10.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.11.若直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围是_______. 答案 [1,2)解析 如图所示,y =1-x 2是一个以原点为圆心,长度1为半径的半圆,y =x +b 是一个斜率为1的直线,要使直线与半圆有两个交点,连接A (-1,0)和B (0,1),直线l 必在AB 以上的半圆内平移,直到直线与半圆相切,则可求出两个临界位置直线l 的b 值,当直线l 与AB 重合时,b =1;当直线l 与半圆相切时,b = 2.所以b 的取值范围是[1,2). 三、解答题12.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1, 即l 恒过定点A (3,1).第11页 共11页 因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0.13.已知直线l 过点P (1,1)并与直线l 1:x -y +3=0和l 2:2x +y -6=0分别交于点A ,B ,若线段AB 被点P 平分,求:(1)直线l 的方程;(2)以原点O 为圆心且被l 截得的弦长为855的圆的方程. 解 (1)依题意可设A (m ,n ),B (2-m,2-n ), 则⎩⎪⎨⎪⎧ m -n +3=0,2(2-m )+(2-n )-6=0,即⎩⎪⎨⎪⎧m -n =-3,2m +n =0, 解得A (-1,2).又l 过点P (1,1),易得直线AB 的方程为x +2y -3=0, 即直线l 的方程为x +2y -3=0.(2)设圆的半径长为r ,则r 2=d 2+⎝⎛⎭⎫4552,其中d 为弦心距,d =35,可得r 2=5,故所求圆的方程为x 2+y 2=5.。
人教版九年级数学第24章《圆》24.1. 1-4导学案
第1课时 24.1.1 圆一、新知导学1.圆的定义:把线段op 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心 的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3、从圆的定义中归纳:①圆上各点到定点(圆心O )的距离都等于____ __;②到定点的距离等于定长的点都在____ _.4、圆的表示方法:以O 点为圆心的圆记作______,读作______.5、要确定一个圆,需要两个基本条件,一个是______,另一个是_____,其中_____确定圆的位置,______确定圆的大小.6;如图1,弦有线段 ,直径是 ,最长的弦是 ,优弧有 ;劣弧有 。
二、合作探究1.判断下列说法是否正确,为什么?(1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧.( ) (4) 弧是半圆.( )(5) 等弧的长度相等.( ) (6) 长度相等的两条弧是等弧.( )2.⊙O 的半径为2㎝,弦AB 所对的劣弧为圆周长的61,则∠AOB = ,AB = 3.已知:如图2,OA OB 、为O 的半径,C D 、分别为OA OB 、的中点,求证:(1);A B ∠=∠ (2)AE BE =4.对角线互相垂直的四边形的各边的中点是否在同一个圆上?并说明理由.三、自我检测1.到定点O 的距离为2cm 的点的集合是以 为圆心, 为半径的圆.2.正方形的四个顶点在以 为圆心,以 为半径的圆上.3.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是4.下列说法正确的有( )①半径相等的两个圆是等圆; ②半径相等的两个半圆是等弧;③过圆心的线段是直径; ④ 分别在两个等圆上的两条弧是等弧. A. 1个 B. 2个 C. 3个 D. 4个5.如图3,点A O D 、、以及点B O C 、、分别在一条直线上,则圆中有 条弦. 6、下列说法正确的是 (填序号)①直径是弦 ②弦是直径 ③半径是弦 ④半圆是弧,但弧不一定是半圆 ⑤半径相等的两个半圆是等弧 ⑥长度相等的两条弧是等弧 ⑦等弧的长度相等 7.圆O 的半径为3 cm ,则圆O 中最长的弦长为8.如图4,在ABC ∆中,90,40,ACB A ∠=︒∠=︒以C 为圆心,CB 为半径的圆交AB 于点D ,求ACD ∠的度数.9、已知:如图5,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.(图1)ED CB A (图2) D BCA(图4) DC ABE(图3) (图5)第2课时 24.1.2 垂直于弦的直径一、新知导学1.阅读教材p80有关“赵州桥”问题,思考能用学习过的知识解决吗?2. 阅读教材p80“探究”内容,自己动手操作,发现了什么?由此你能得到什么结论? 归纳:圆是__ __对称图形, ____________ ________都是它的对称轴;3. 阅读教材p80“思考”内容,自己动手操作: 按下面的步骤做一做:(如图1)第一步,在一张纸上任意画一个⊙O ,沿圆周将圆剪下,作⊙O 的一条弦AB ; 第二步,作直径CD ,使CD AB ⊥,垂足为E ; 第三步,将⊙O 沿着直径折叠. 你发现了什么?归纳:(1)图1是 对称图形,对称轴是 .(2)相等的线段有 ,相等的弧有 .二、合作探究活动1:(1)如图2,怎样证明“自主学习3”得到的第(2)个结论. 叠合法证明:(2)垂径定理:垂直于弦的直径 弦,并且 的两条弧. 定理的几何语言:如图2CD 是直径(或CD 经过圆心),且CD AB ⊥____________,____________,_____________∴推论:___________________________________________________________________________. 活动2 :垂径定理的应用垂径定理的实际应用怎样求p80赵州桥主桥拱半径? 解:如图3小结:(1)辅助线的常用作法:连半径,过圆心向弦作垂线段。
圆全章导学案
鸡西市第十九中学学案6.已知:如图,在同心圆中,大圆的弦(1)求证:∠(2)试确定AC7.已知:如图,E,若AB=2DE,∠8.如右图,已知AB是⊙O若AC=10cm,求OD的长。
鸡西市第十九中学学案OC为6cm,弦的弦,∠AOB=908.如图,⊙O AB垂直于CD,到CD的距离是______.9.如图,P为⊙的弦AB上的点,10.如图,⊙O AB垂直于AC11.已知:如图,是⊙O的直径,求CD的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.自《九章算术》卷第九“句股”中的第九题,17.如图,有一圆弧形的拱桥,桥下水面宽度为竹排运送一货箱从桥下经过,已知货箱长该货箱能否顺利通过该桥鸡西市第十九中学学案长为⊙6.已知:如图,P是∠OB相交于G,H点,试确定线段7.已知:如图,AB为⊙O∠BAD=20°,求∠ACO的中点,则下列结论正确的是,试猜想11.如图,⊙O中,直径点D与B不重合),E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,明并求这个定值;若不是,请说明理由.鸡西市第十九中学学案的度数?鸡西市第十九中学学案6.如图,若六边形∠DAB=______,∠6题图上一点,则∠上一点,则∠班级 姓名一、基础知识填空1._________在圆上,并且角的两边都_________的角叫做圆周角.2.在同一圆中,一条弧所对的圆周角等于_________圆心角的_________.3.在同圆或等圆中,____________所对的圆周角____________. 4._________所对的圆周角是直角.90°的圆周角______是直径.5.如图,若五边形ABCDE 是⊙O 的内接正五边形,则∠BOC =______,∠ABE=______,∠ADC =______,∠ABC =______.5题图6.如图,若六边形ABCDEF 是⊙O 的内接正六边形,则∠AED =______,∠F AE =______,∠DAB =______,∠EF A=______.6题图7.如图,ΔABC 是⊙O 的内接正三角形,若P 是上一点,则∠BPC =______;若M 是上一点,则∠BMC =______.7题图二、选择题8.在⊙O 中,若圆心角∠AOB =100°,C 是上一点,则∠ACB 等于( ). A .80° B .100° C .130° D .140°9.在圆中,弦AB ,CD 相交于E .若∠ADC =46°,∠BCD =33°,则∠DEB 等于( ). A .13° B .79° C .38.5° D .101°10.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).10题图 A .64° B .48° C .32° D .76°11.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37° B .74° C .54° D .64°12.如图,四边形ABCD 内接于⊙O ,若∠BOD =138°,则它的一个外角∠DCE 等于( ).A .69°B .42°C .48°D .38°13.如图,△ABC 内接于⊙O ,∠A =50°,∠ABC =60°,BD 是⊙O 的直径,BD 交AC 于点E ,连结DC ,则∠AEB 等于( ).A .70°B .90°C .110°D .120°14.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.15.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,∠ACD=30°,AE=2cm.求DB长.16.已知:如图,△ABC内接于圆,AD⊥BC于D,弦BH⊥AC于E,交AD于F.求证:FE=EH.17.已知:如图,⊙O的直径AE=10cm,∠B=∠EAC.求AC的长.18.已知:如图,△ABC内接于⊙O,AM平分∠BAC交⊙O于点M,AD⊥BC于D.求证:∠MAO=∠MAD.19.已知:如图,AB是⊙O的直径,CD为弦,且AB⊥CD于E,F为DC延长线上一点,连结AF交⊙O于M.求证:∠AMD=∠FMC.20.如图,在圆内接△ABC中,AB=AC,D是BC边上一点.求证:AB2=AD·AE;21.如图,已知BC为半圆的直径,O为圆心,D是⌒AC的中点,四边形ABCD对角线AC.BD交于点E.(1)求证:△ABE∽△DBC;(2)AD2=DE·DB;⑶已知BC=25,CD=25,求弦AB的长.思考题:如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,过E点作EF⊥BC,垂鸡西市第十九中学学案鸡西市第十九中学学案9.已知:如图,△ABCDE与⊙O的位置关系,并证明你的结论.10.已知:如图,割线ABC是若∠EDA=∠AMD.求证:AD是⊙O的切线.12.已知:如图,△ABC半圆O,试确定BC与半圆13.已知:如图,△ABC于F.求证:EF与⊙O相切.14.已知:如图,以△ABC的一边切线恰与AC垂直,试确定边15.已知:如图,16.已知:如图,P A切⊙求⊙O的半径长.鸡西市第十九中学学案2014年()月(⇔8.已知:如图,P A9.已知:如图,△AB C10.已知:如图,P A,PB,DC分别切⊙(1)若∠P=40°,求∠COD;11.已知:如图,⊙O是Rt(1)若AC=12cm,BC=9cm,求⊙(2)若AC=b,BC=a,AB=c,求⊙12.已知:如图,△ABC的三边△ABC的面积S.13.已知:如图,⊙OAC的长.14.如图,AB是⊙O的直径,点求证:DC是圆O的切线。
第二十四章《圆》导学案(全章)
AQP24.1.1圆(第1课时)【自主学习】 (一) 新知导学1.圆的运动定义:把线段OP 的一个端点O ,使线段OP 绕着点O 在 旋转 ,另一端点P 运动所形成的图形叫做圆,其中点O 叫做 ,线段OP 叫做 .以O 为圆心的圆记作 .2.圆的集合定义:圆是到 的点的集合. 3.点与圆的位置关系:如果⊙O 的半径为r ,点P 到圆心的距离为d ,那么 点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ .【合作探究】1.如图,已知:点P 、Q ,且PQ=4cm.(1)画出下列图形: ①到点P 的距离等于2cm 的点的集合; ②到点Q 的距离等于3cm 的点的集合;(2)在所画图中,到点P 的距离等于2cm ;且到点Q 的距离等于3cm 的点有几个?请在图中将它们画出来.(3)在所画图中,到点P 的距离小于或等于2cm ;且到点Q 的距离大于或等于3cm 的点的集合是怎样的图形?把它画出来. 【自我检测】为圆心, 为半径的圆.为圆心,以 为半径的圆上. 3.矩形ABCD 边AB=6cm,AD=8cm ,(1)若以A 为圆心,6cm 长为半径作⊙A ,则点B 在⊙A______,点C 在⊙A_______,点D 在⊙A________,AC 与BD 的交点O 在⊙A_________;(2)若作⊙A ,使B 、C 、D 三点至少有一个点在⊙A 内,至少有一点在⊙A 外,则⊙A 的半径r 的取值范围是_______.4.一个点与定圆最近点的距离为4cm, 与最远点的距离是9cm ,则圆的半径是5.如图,已知在⊿ABC 中,∠ACB=900,AC=12,AB=13,CD ⊥AB,以C 为圆心,5为半径作⊙C ,试判断A,D,B 三点与⊙C 的位置关系左下图,一根长4米的绳子,一端拴在树上,另一端拴着 .7.已知:如右上图,△ABC ,试用直尺和圆规画出过A ,B ,C 三点的⊙O .8.△ABC 中,∠A=90°,AD⊥BC 于D ,AC=5cm ,AB=12cm ,以D 为圆心,AD 为半径作圆,则三个顶点与圆的位置关系是什么?画图说明理由.9.如右图,(1)若点O 为⊙O 的圆心,则线段__________是圆O 的半径; 线段________是圆O 的弦,其中最长的弦是______; ______是劣弧;______是半圆.(2)若∠A =40°,则∠ABO =______,∠C =______,∠ABC =______.10.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°,求∠C 及∠AOC 的度数.树S小狗4m24.1.1圆(第2课时)【自主学习】 (一)复习巩固: 1.圆的集合定义.2.点与圆的三种位置关系.⊙O 的半径为5cm ,点P 是⊙O 外一点,则OP 的长可能是( )(二)新知导学 1.与圆有关的概念①弦:连结圆上任意两点的 叫做弦. ②直径:经过 的弦叫做直径.③弧: ,弧分为:半圆( 所对的弧叫做半圆)、劣弧(小于 的弧)和优弧(大于 的弧).④同心圆: 相同, 不相等的两个圆叫做同心圆. ⑤等圆:能够互相 的两个圆叫做等圆.⑥等弧:在 或 中,能够互相 的弧叫做等弧. 2.同圆或等圆的性质:在同圆或等圆中,它们的 相等. 【合作探究】1.圆心都为O 的甲、乙两圆,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( ) A. 甲圆内 B.乙圆外 C. 甲圆外、乙圆内 D. 甲圆内、乙圆外2.下列判断:①直径是弦;②两个半圆是等弧;③优弧比劣弧长,其中正确的是( ) A. ① B.②③ C. ①②③ D.①③ 【自我检测】1.已知⊙O 中最长的弦为16cm ,则⊙O 的半径为________cm . 2.过圆内一点可以作出圆的最长弦_____条. 3.下列语句中,不正确的个数是( )①直径是弦; ②弧是半圆; ③长度相等的弧是等弧; •④经过圆内任一定点可以作无数条直径. A .1个 B .2个 C .3个 D .4个 4.下列语句中,不正确的是( )A .圆既是中心对称图形,又是旋转对称图形B .圆既是轴对称图形,又是中心对称图形C .当圆绕它的圆心旋转89°57′时,不会与原来的圆重合D .圆的对称轴有无数条,对称中心只有一个第6题ABA CD31圆周的弧叫做( ) A .劣弧 B .半圆 C .优弧 D .圆6.如图,⊙O 中,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,图中弦的条数有(• ) A .2条 B .3条 C .4条 D .5条7.以已知点O 为圆心,已知线段a 为半径作圆,可以作( ) A .1个 B .2个 C .3个 D .无数个8.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B ,且AB=OC ,求∠A 的度数.9.如图,在△ABC 中,∠ACB=90°,∠A=40°;以C 为圆心、CB 为半径的圆交AB•于点D ,求∠ACD 的度数.10.如图,CD 是⊙O 的弦,CE=DF ,半径OA 、OB 分别过E 、F 点. 求证:△OEF 是等腰三角形.BACEDOO BAC FE11.如图,在⊙O中,半径OC与直径AB垂直,OE=OF,则BE与CF的大小关系如何?并说明理由。
(2)第二章圆的认识 导学案
南岗区高效课堂教学案例设计80课课题: 2.1认识圆201 年月日一、学习目标1.认识圆,了解圆的各部分名称,掌握圆的特征.2.理解在同一个圆里半径和直径的关系.3.掌握用圆规画圆的方法.4.通过折纸活动,探索发现圆是轴对称图形并探究圆有多少条对称轴.5.通过观察、思考等活动,掌握研究平面几何的一般方法,养成学习数学的自觉性.二、教材导学1.我们以前学过哪些平面图形?2.这些图形都是由什么围成的?3.举出生活中有关圆的例子.4.不借助任何工具,怎样找到圆形纸片的圆心?5.由此能得到圆的什么特性?三、引领学习知识点1:圆的各部分名称.(1)将一个圆多次对折,折痕相交于圆中心的一点,这一点叫做__________,一般用字母_______表示.(2)连接___________和圆上任意一点的线段叫做半径,一般用字母______表示. (3)通过圆心并且两端都在________的线段叫做直径,一般用字母_______表示.知识点2:在同一个圆里,直径与半径的关系.(1)在同一个圆中,直径等于半径的________倍,用字母表示为_________.(2)反过来,在同一个圆里,半径是直径的__________,用字母表示为_________.知识点3:圆的画法.根据圆心到圆上任意一点的距离都___________这一特征,我们可以用圆规来画圆. (1)把圆规的两脚张开,定好两脚间的_________;(2)把有____________的一只脚固定在一点上;南岗区高效课堂教学案例设计80课(3)把装有铅笔尖的一只脚旋转__________,就画出一个圆.注意:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚.例1.用圆规画一个半径是2cm的圆,并用字母O、r、d标出它的圆心、半径和直径. 分析:(1)在同一个圆中,直径的长度是半径的2倍(2)别忘记写单位.注意:画圆时有两个不动:圆心不动;圆规两脚之间的距离不动.习题变式:描出下面各圆的半径和直径.补充:为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?总结:半径决定了圆的大小,圆心决定了圆的位置.知识点4:圆的对称轴(1)经过__________的直线是圆的对称轴(2)圆有___________条对称轴.知识点5:在小学学过的平面图形中,哪些是轴对称图形?举例说明:例2.请你画出至少三个轴对称图形,并指出对称轴.分析:可以从我们学过的图形中寻找,但要注意是轴对称图形.例3.画出每个图形的所有对称轴.分析:对称轴是一条直线,画的时候要注意线的属性.四、学习反馈1.判断题(1)两端都在圆上的线段,叫做直径.( )(2)圆心到圆上任意一点的距离都相等. ( )(3)半径2厘米的圆比直径3厘米的圆大. ( )南岗区高效课堂教学案例设计80课(4)所有圆的半径都相等. ( ) (5)在同一个圆里,半径是直径的21.( ) (6)在同一个圆里,所有直径的长度都相等. ( ) (7)两条半径可以组成一条直径. ( )(8)画圆时,圆规两脚间的距离是半径的长度. ( ) 2.选择题(1)圆是平面上的一种( )图形. A.曲线 B.直线(2)从圆心到( )任意一点的线段,叫半径.A.圆心B.圆外C.圆上(3)通过圆心并且两端都在圆上的( )叫直径. A.直线 B.线段 C.射线(4)把一个圆的半径扩大2倍,那么圆的直径就扩大( )倍. A.1 B.2 C.3 D.不变 (5)下列语句:①圆内最长的线段是直径;②从圆内到圆上的任意一点的线段叫半径; ③半径一定等于直径的21; ④两个圆的直径相等,它们的半径也一定相等. 其中正确的有( ).A.1个B.2个C.3个D.4个 3.填空题(1)在同一个圆里,有________条半径,它们的长度都________. (2)在同一个圆里,直径的长度等于半径的_______倍,半径的长度等于直径的________. 4.拓展提高(1)画一个半径4厘米的圆.用字母标出圆心、半径和直径.(2)画一个直径6.2厘米的圆.用字母标出圆心、半径和直径.南岗区高效课堂教学案例设计80课五、课后作业1.填空题(1)________决定圆的位置,________决定圆的大小.(2)圆的半径增加1cm,它的直径就增加________cm.2.选择题:下列判断:①在同一个圆中,圆的直径都是其半径的2倍;②同一个圆中,半径都相等;③在连接圆上任意两点的线段中,直径最长;④画一个直径是4cm的圆,圆规两脚应叉开4cm.其中正确的是().A.1个B.2个C.3个D.4个3.解答题(1)如图,在长方形中有三个大小相等的圆.已知这个长方形的长是18cm,圆的直径是多少?长方形的周长是多少?(2)一个点到圆周上的最大距离是7,最小距离是1,求此圆的半径.4.画图题:画出下列轴对称图形的所有对称轴.南岗区高效课堂教学案例设计80课课题:2.1认识圆习题课201 年月日一、学习目标(1)通过习题巩固,掌握圆的基本特征,理解直径与半径的相互关系.(2)复习用圆规画圆的方法,会判断轴对称图形.(3)会画几何图形的对称轴.(4)感受圆在生活中的广泛应用,体验生活与数学的密切联系.二、教材导学1.回忆上节所学内容,用圆规任意画一个圆.2.比较圆和正方形,长方形,三角形有哪些区别.3.在圆上找到圆心,半径,直径并用字母表示出来.4.在同一圆上有多少条直径?多少条半径?直径和半径有什么关系?5 .将圆至少对折几次可以找到圆心?6.圆有多少条对称轴?轴对称图形有哪些特点?三、引领学习知识点1:直径与半径的相互关系(1)在同一个圆里,直径是半径的_______.(2)在同一个圆里,半径是直径的________.南岗区高效课堂教学案例设计80课例1.填表:分析:要注意区分直径和半径,灵活运用除法和乘法计算. 知识点2:画圆的方法 基本方法用三种:(1)借助圆形物体画圆(2)用绕线钉子画圆(3)用_________画圆 比较准确的画圆方法是用_________.知识点3:在一个正方形内或在一个长方形内画一个最大的圆.(1)在一个正方形中画一个最大的圆,该圆的直径等于这个正方形的_________. (2)在一个长方形中画一个最大的圆,该圆的直径等于这个长方形的_________. 例2.在一个边长为6cm 的正方形中,画出一个最大的圆,这个圆的直径、半径各是多少? 分析:要想在正方形中画出一个最大的圆,则这个圆的直径是正方形一组对边中点的连 线.变式:在一个长为6cm ,宽为4.5cm 的长方形中画出一个最大的圆,这个圆的直径、半径各是多少?分析:要想在长方形中画出一个最大的圆,则这个圆的直径等于长方形的宽.四、学习反馈1.判断题(1)直径都是半径的2倍. ( ) (2)同一个圆中,半径都相等.( )(3)在连接圆上任意两点的线段中,直径最长.( )(4)画一个直径是4厘米的圆,圆规两脚应叉开4厘米. ( ) (5)圆的半径有无数条.( ) (6)圆有无数条对称轴.( ) (7)圆的半径都相等.( )(8)直径6厘米的圆与半径3厘米的圆一样大.( ) 2.选择题半径r (厘米) 3.6 471 直径d (厘米)83 1.2南岗区高效课堂教学案例设计80课(1)圆是平面上的().A. 直线图形B. 曲线图形C.无法确定(2)圆中两端都在圆上的线段().A.一定是圆的半径B. 一定是圆的直径C.无法确定(3)圆的直径有()条.A.1B.2C.无数3.填空题(1)圆中心的一点叫做________用字母________表示,它到圆上任意一点的距离都________.(2)在图形:①等边三角形②正方形③圆④长方形中,对称轴最多的是_____________. (3)在图形①长方形②平行四边形③圆④半圆中,不是轴对称图形的是 ________.4. 用圆规画一个半径是7.8cm的圆,并用字母O、r、d标出它的圆心、半径和直径.5.在一个边长为4cm的正方形中,画出一个最大的圆,这个圆的直径、半径各是多少?6.在一个长为8cm,宽为5cm的长方形中画出一个最大的圆,这个圆的直径、半径各是多少?南岗区高效课堂教学案例设计80课五、课后作业1.判断题(1)所有的半径都相等.()(2)直径的长度总是半径的2倍.()(3)圆心决定圆的位置,半径决定圆的大小.()(4)在一个圆里画的所有线段中,直径最长.()(5)两端在圆上的线段是直径.()(6)直径5厘米的圆比半径3厘米的圆大.()(7)要画直径2厘米的圆,圆规两脚之间的距离就是2厘米.()(8)圆有4条直径.()2.填空题(1)时钟的分针转动一周形成的图形是_________.(2)从_________到_________任意一点的线段叫半径.(3)通过_________并且_________都在_________的线段叫做直径.(4)在同一个圆里,所有的半径_________,所有的_________也都相等,直径等于半径的_________.(5)用圆规画一个直径20厘米的圆,圆规两脚步间的距离是_________厘米3.填表r 1.2厘米9厘米 1.5分米d 4分米0.48米4.画出下面各图形所有的对称轴:南岗区高效课堂教学案例设计80课课题:2.2圆的周长201 年月日一、学习目标1.在操作活动中,进一步认识圆的特征,认识圆的周长.2.经历实际测量的过程,体会圆的周长与直径的关系.体验圆周率的形成过程,探索圆的周长的计算公式.3.理解圆周率的意义,掌握圆的周长公式,能运用圆的周长公式解决一些简单的实际问题.二、教材导学有两个铁丝围成的图形,只能看到它的一部分 .1.猜猜这是什么图形?2.用你自己的语言描述一下,如果挡住的部分是什么样就是圆了?3.如果确实都是圆,你觉得哪一根用的铁丝长?4.观察围成圆的线是一条什么线,这条曲线的长就是圆的什么?5.出示一个圆形纪念币,6.用绕线法、滚动法量出圆的周长.7.探讨求圆的周长的一般方法.南岗区高效课堂教学案例设计80课三、引领学习知识点1:圆周率π(1)一个圆的__________与它的直径的比值是一个固定的数,我们把它叫做__________,用字母________表示。
人教版九年级数学上册 24-1-3 弧、弦、圆心角导学案
人教版九年级数学上册导学案第二十四章圆24.1.3 弧、弦、圆心角【学习目标】1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角。
2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系的证明和计算。
3.能利用圆心角、弦、弧之间的关系解决有关问题。
【课前预习】1.在半径为1的弦所对的弧的度数为()A.90°B.145度C.90°或270°D.270度或145度2.一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm3.下列命题①若a>b,则am²>bm²②相等的圆心角所对的弧相等③各边都相等的多边形是正多边形是±4.其中真命题的个数是()A.0B.1C.2D.34.若AB和CD的度数相等,则下列命题中正确的是()A.AB=CD B.AB和CD的长度相等C.AB所对的弦和CD所对的弦相等D.AB所对的圆心角与CD所对的圆心角相等5.下列说法中错误的有()①过弦的中点的直线平分弦所对的两条弧;②弦的垂线平分它所对的两条弧;③过弦的中点的直径平分弦所对的两条弧;④平分不是直径的弦的直径平分弦所对的两条弧.A.1个B.2个C.3个D.4个6.下列说法错误的是()A.垂直于弦的直径平分这条弦B.平分弦的直径垂直于这条弦C.弦的垂直平分线经过圆心D.同圆或等园中相等的弧所对的圆周角相等7.下列命题正确的是( )A .点(1,3)关于x 轴的对称点是(1,3)-B .函数23y x =-+中,y 随x 的增大而增大C .若一组数据3,x ,4,5,6的众数是3,则中位数是3D .同圆中的两条平行弦所夹的弧相等8.如图,扇形AOB 中,90AOB ∠=︒,半径6,OA C =是AB 的中点,//CD OA ,交AB 于点D ,则CD 的长为()A .2BC .2D .69.如图,△ABC 中,AB=5,AC=4,BC=2,以A 为圆心AB 为半径作圆A ,延长BC 交圆A 于点D ,则CD 长为()A .5B .4C .92 D .10.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【学习探究】自主学习阅读课本,完成下列问题1、填空:(1)圆心角的概念:顶点在_______的角叫做圆心角。
人教版九年级数学上册第二十四章《 圆》学习任务单(公开课导学案)及作业设计
人教版九年级数学上册第二十四章《圆》学习任务单及作业设计【学习目标】理解圆的描述性定义和圆的集合定义;了解弦,弧,半圆,优弧,劣弧,等圆,等弧等与圆有关的概念,理解概念之间的区别和联系.【课前学习任务】复习小学学过的有圆的相关知识.【课上学习任务】学习任务一:画圆学习任务二:问题 1 篮球是圆吗?___________________________________________________________________问题 2(1)圆上各点到定点(圆心 O)的距离有什么特点?___________________________________________________________________(2)到定点的距离等于定长的点又有什么特点?___________________________________________________________________问题 3 车轮为什么做成圆形的?___________________________________________________________________学习任务三:例矩形 ABCD 的对角线 AC,BD 相交于点 O.求证:A, B, C, D 四个点在以 O 为圆心的同一个圆上.小结.用定义证明几个点在同一个圆上的方法:_________________________________________________________________________________________学习任务四:与圆有关的概念:想一想图中最长的弦是什么?为什么?【作业设计】请同学们在作业本上完成下面两道课后作业:1.你见过树木的年轮吗?从树木的年轮,可以知道树木的年龄.把树干的横截面看成是圆形的,如果一棵 20 年树龄的树的树干直径是 23cm,这棵树的半径平均每年增加多少?答案:2.△ABC 中,∠C=90°.求证:A,B,C 三点在同一个圆上.提示:连接点 C 与边 AB 的中点 D,利用“直角三角形斜边上的中线等于斜边的一半”,证明CD=AD=BD.。
高二数学必修二 第四章《圆与方程》4.1圆的方程导学案
高二数学必修2 第四章 圆与方程第四章 圆与方程§4.1圆的方程§4.1.1圆的标准方程(1)【学习目标】1.能根据圆心、半径写出圆的标准方程.2.利用圆的标准方程,会判断点与圆的位置关系.【学习重点】求圆的标准方程.【学习难点】根据不同的已知条件,判断点与圆的位置关系.【学习过程】一、自主学习(阅读课本第118-119页,完成自主学习)1.已知两点(2,5),(6,9)A B -,求它们之间的距离?若已知(3,8),(,)C D x y -,求它们之间的距离.2.图中哪个点是定点?哪个点是动点?动点具有什么性质?3.具有什么性质的点的轨迹称为圆? 圆心和半径分别确定了圆的_______和_______.4.我们知道,在平面直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么,在平面内确定圆的条件是什么?5.在平面直角坐标系中,若一个圆的圆心(,)C a b ,半径为r (其中,,a b r 都是常数, 0r >),圆的标准方程为__________________________________.6.当圆心在原点时,圆的标准方程是_________________ .思考:圆的标准方程222()()x a y b r -+-=中,只要求出___、___、___,这时圆的方程就被确定,因此确定圆的标准方程,需三个独立条件,其中____是圆的定位条件,_____是圆的定形条件.二、合作探究例1:写出圆心为(2,3)A -半径长等于5的圆的方程,判断12(5,7),(1)M M --是否在这个圆上.推广:设点00(,)M x y ,圆的方程为222()()x a y b r -+-=.1,M 在圆上⇔2200()()x a y b -+- 2r ;2,M 在圆外⇔2200()()x a y b -+- 2r ;3,M 在圆内⇔2200()()x a y b -+- 2r ;例2:圆的一条直径的两个端点分别是(2,0),(2,2)A B -,求圆的标准方程,并判断点(0,0),C (2,2)D -与该圆的位置关系推广:已知圆的一条直径的端点分别是1222(,),(,),A x y B x y 求证此圆的方程是1212()()()()0.x x x x y y y y --+--=三、达标检测1.写出下列各圆的标准方程.(1) 圆心在原点,半径是3;(2) 圆心在(3,4)C(3) 经过点(5,1)P ,圆心在点(8,3)C -;2.写出下列各圆的圆心坐标和半径:(1) 22(1)6x y -+= (2) 22(1)(2)9x y ++-= (3) 22(2)(3)3x y -++=3.已知圆心在点(3,4),C --且经过原点,求该圆的标准方程,并判断点12(,0),(1,1),P P -- 3(3,4)P -和圆的位置关系.四、学习小结1.圆的标准方程 .2.求圆的标准方程的方法有:高二数学必修2 第四章 圆与方程§4.1.1圆的标准方程(2)【学习目标】会用待定系数法求圆的标准方程.【学习重点】掌握求圆的标准方程的思路方法.【学习难点】领会用数形结合求圆的标准方程的思想.【学习过程】一、自主学习(阅读课本第119-120页,完成自主学习)1.圆的定义是什么?2.圆的标准方程是怎样的?3.点M(x 0,y 0)与圆(x -a )2+(y -b )2=r 2的关系的判断方法:(1)当点M(x 0,y 0)在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标_____方程(x -a )2+(y -b )2=r 2.(2)当点M(x 0,y 0)不在圆(x -a )2+(y -b )2=r 2上时,点M 的坐标______方程(x -a )2+(y -b )2=r 2.(3)用点到圆心的距离和半径的大小来说明应为:1°点到圆心的距离大于半径⇔点在圆外⇔_________________.2°点到圆心的距离等于半径⇔点在圆上⇔_________________.3°点到圆心的距离小于半径⇔点在圆内⇔_________________.二、合作探究例1:ABC ∆的三个顶点的坐标分别是(5,1),(2,8),(7,3)A B C --,求它的外接圆的方程.例2:求经过点(1,1)A ,(2,2)B -,且圆心在直线:10l x y -+=上的圆的标准方程.三、达标检测1.写出下列各圆的标准方程:(1) 圆心在y 轴上,半径长为1,且过点(1,2)的圆的方程;(2)圆心在x 轴上,半径长为1,且过点(2,1)的圆的方程.2.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,求圆C 的标准方程.3.求经过两点(1,4),(3,2)A B -且圆心在y 轴上的圆的方程.四、学习小结1.确定圆的方程主要方法是_____________法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:1°根据题意,设所求的圆的标准方程________________;2°根据已知条件,建立关于__________________的方程组;3°解方程组,求出___________的值,并把它们代入所设的方程中去,就得到所求圆的方程.2.思想方法总结:高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(1)【学习目标】能用圆的一般方程确定圆的圆心、半径.【学习重点】把握圆的一般方程的代数特征,能根据已知条件待定方程中的系数,,D E F .【学习难点】根据已知条件选择待定圆的标准方程或一般方程.【学习过程】一、自主学习(阅读课本第121-122页,完成自主学习)1.写出圆心为(,)a b ,半径为r 的圆的标准方程_______________________________.2.将以(,)C a b 为圆心, r 为半径的圆的标准方程展开并整理得________________.3.如果2222,2,D a E b F a b r =-=-=+-,得到方程____________________,这说明圆的 方程还可以表示成另外一种非标准方程形式.4.思考:能不能说方程220x y Dx Ey F ++++=所表示的曲线一定是圆呢?二、合作探究1.222()()x a y b r -+-=中0r >时表示___ _;0r =时表示____________;2.把式子220x y Dx Ey F ++++=配方得_________________________________.(ⅰ)当2240D E F +->时,表示以_________为圆心,_____________ _为半径的圆; (ⅱ)当2240D E F +-=时,方程只有实数解x =______y =______,即只表示__________; (ⅲ)当2240D E F +-<时,方程______(有或没有)实数解,因而它_________________.方程220x y Dx Ey F ++++=表示的曲线_________(一定或不一定)是圆;但圆的方程都能写成_________________的形式,只有当_____________时,它表示的曲线才是圆. 我们把形如220x y Dx Ey F ++++=表示圆的方程称为圆的_________方程.3.圆的一般方程形式上的特点:(1)x 2和y 2的系数_______且________. (2)没有_________这样的二次项.例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1) 224441290x y x y +-++= (2) 2220x y by ++=例2:求过三点(0,0),(1,1),(4,2)O M N 的圆的一般方程,并求圆的半径长和圆心坐标.三、达标检测1.判断下列方程(1) 2260x y y +-=(2)222460x y x y +-+-=(3)224220200x y mx my m +-++-=能否表示圆,若能表示圆,求出圆心和半径.2.ABC ∆的三个顶点分别为(1,5),(2,2),(5,5)A B C ---,求其外接圆的一般方程.四、学习小结用待定系数法求圆的方程的步骤是:1.____________________________________________2._____________________________________________3._____________________________________________高二数学必修2 第四章 圆与方程§4.1.2圆的一般方程(2)【学习目标】掌握圆的一般方程及其特点,会由圆的方程求出圆心、半径会用待定系数法求圆的一般方程.【学习重点】圆的一般方程的特征和求圆的一般方程.【学习难点】用相关点法求轨迹方程.【学习过程】一、自主学习(阅读课本第122-123页,完成自主学习)1.将下列圆的方程化为标准方程,并写出圆心坐标和半径:(1)222220(0);(2)22420.x y my m x y ax ++=≠++-=2.圆C :222440x y x y +--+=的圆心到直线3440x y ++=的距离_____d =.二、合作探究例:已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.三、达标检测1.求以(1,1)A -为圆心,且经过点(0,1)B 的圆的一般方程.2.若(5,0),(1,0),(3,3)A B C --三点的外接圆为圆M ,求圆M 的方程,若点(,3)D m 在圆M 上,求m 的值.3.求圆心在直线230x y --=上,且过点(5,2),(3,2)A B -的圆的方程.4.已知点P 在圆的C :2286210x y x y +--+=上运动,求线段OP 的中点坐标M 的轨迹方程.四、学习小结相关点法求轨迹方程的步骤:1._______________________________________________________;2._______________________________________________________;3._______________________________________________________;4._______________________________________________________;。
北师大版必修2高中数学第2章《解析几何初步》2圆的一般方程导学案
高中数学 第2章《解析几何初步》2圆的一般方程导学案北师大版必修2使用说明1.根据学习目标,课前认真阅读课本第79页到第80页内容,完成预习引导的内容.2.在课堂上充分发挥高效学习小组作用,积极讨论,大胆展示,完成合作探究部分.学习目标1.在圆的标准方程的基础上,理解并记忆圆的一般方程,由圆的一般方程确定圆的圆心,半径;2.掌握二元方程0F Ey Dx y x 22=++++表示圆的条件;3.能通过配方等手段,把圆的一般方程化为标准方程,会用待定系数法求圆的一般方程方程. 学习重点 圆的一般方程的代数特征及方程0F Ey Dx y x 22=++++表示圆的条件. 学习难点 将圆的一般方程化为圆的标准方程,用待定系数法求圆的一般方程.一、自主学习【预习导引】由上节课内容可知:圆心为)b ,a (C ,半径是r 的圆的方程为:222r )b y (a x =-+-)(,展开得 .可见,任何一个圆的方程都可以写成以下形式 :0F Ey Dx y x 22=++++.那么,形如0F Ey Dx y x 22=++++……①的方程的曲线一定是圆吗? 将上式配方,得:4F 4E D )2E y (2D x 2222-+=+++)(. (1)当F 4E D 22-+ 0,方程①以 为圆心, 为半径的圆.(2)当F 4E D 22-+ 0,方程①只有一个实数解=x ________,=y _______,所以方程①表示一个点 .(3)当F 4E D 22-+ 0,方程①没有实数解,因而它 .因此,当F 4E D 22-+_____0时,方程①表示一个圆,称①式为圆的一般方程.【基础演练】1、判断下列方程能否表示圆,如果能表示圆,求出圆心及半径.(1)01y 5x 2y x 22=-+++;(2)07y 4x 3y x 22=+-++.2.求过三点)121(A ,,)107(B ,)29(C ,-的圆的方程,并求出圆的圆心和半径.3.已知圆C 在x 轴上的截距分别为1和3,在y 轴上的截距为1-,求该圆的方程.三、课堂检测1.判断下列方程是否表示圆的方程,如果是,求出圆心坐标及半径.(1)09y 12x 4y 4x 422=++-+; (2)05y 6y x 22=+++;(3)09y 6x 8y 2x 22=++-+; (4)0y 8x 4y x 22=--+2.若方程0m y x y x 22=++-+表示圆,求m 的取值范围.【疑问】。
高一数学必修2第4章圆与方程的导学案
高一数学必修2导学案 主备人: 备课时间: 备课组长:圆的标准方程一、学习目标学问与技能:1、驾驭圆的标准方程,能依据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培育学生能用解析法探讨几何问题的实力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,留意培育学生视察问题、发觉问题和解决问题的实力。
情感看法与价值观:通过运用圆的学问解决实际问题的学习,从而激发学生学习数学的热忱和爱好。
二、学习重点、难点: 学习重点: 圆的标准方程学习难点: 会依据不同的已知条件,利用待定系数法求圆的标准方程。
三、运用说明及学法指导:1、先阅读教材118—120页,然后细致审题,细致思索、独立规范作答。
2、不会的,模棱两可的问题标记好。
3、对小班学生要求完成全部问题,试验班完成90℅以上,平行班完成80℅以上 四、学问链接: 1.两点间的距离公式?2.具有什么性质的点的轨迹称为圆?圆的定义?平面内与肯定点的距离等于定长的点的轨迹称为圆,定点是圆心,定长是半径. 五、学习过程:(自主探究)A 问题1阅读教材118页内容,回答问题已知在平面直角坐标系中,圆心A 的坐标用(a ,b )来表示,半径用r 来表示,则我们如何写出圆的方程?问题2圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?例1:1写出下列各圆的方程:(1)圆心在原点,半径是3; (2) 圆心在C(3,4),半径是5 (3)经过点P(5,1),圆心在点C(8,-3); 2、写出下列各圆的圆心坐标和半径:(1) (x -1)2 + y 2 = 6 (2) (x +1)2+(y -2)2= 9(3) 222()()x a y a ++=例2:写出圆心为(2,3)A -半径长等于5的圆的方程,推断12(5,7),(1)M M --是否在这个圆上。
问题3点M 0(x 0,y 0)在圆(x-a)2+(y-b)2=r 2上、内、外的条件是什么?例3△ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程例4已知圆心为C 的圆经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.注:比较例3、例4可得出△ABC 外接圆的标准方程的两种求法:1.依据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程.2.依据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 六、达标检测1、已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试推断点M(6,9)、N(3,3)、 Q(5,3)是在圆上,在圆内,还是在圆外?2、求圆心C 在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、B(1,-1)的圆的方程。
六年级秋季班-第15讲:圆的周长和弧长(1)(教案教学设计导学案)
圆的周长和弧长是六年级数学上学期第4章第1节的内容,通过本讲的学习,同学们需要掌握圆的周长和弧长的公式,并熟练运用进行相关的计算.难点是圆的周长和弧长公式在组合图形中的运用,以及在实际问题中的应用.1、圆的周长通过操作和计算,我们发现圆的周长都是直径的固定的倍数,我们把这个倍数叫做圆周率,用字母表示,读作“pai”;圆周率是个无限不循环小数,.圆的周长直径= 圆周率.用字母C表示圆的周长,d表示直径,r表示半径,那么:或【例1】想要求圆的周长,就必须知道()A.圆心B.圆周率C.直径和半径D.直径或半径【难度】★【答案】【解析】【例2】是一个()A.有限小数B.无限循环小数C.无限不循环小数D.混合循环小数【难度】★【答案】【解析】【例3】判定题:(1)大圆的圆周率大于小圆的圆周率.()(2)一个圆的半径扩大2倍,它的周长也扩大2倍.()【难度】★【答案】【解析】【例4】求下列图中各圆的周长.(取3.14)【难度】★【答案】【解析】【例5】车轮的直径是0.8米,那么它的滚动一周长为多少米?(取3.14)【难度】★【答案】【解析】【例6】小智每天绕半径为20米的花坛跑15圈,则小智每天要跑多少米?(取3.14)【难度】★【答案】【解析】【例7】小方家挂钟的分钟长24厘米,1小时后,分针的尖端所走的路程是多少厘米?10小时后呢?(取3.14)【难度】★★【答案】【解析】【例【难度】★★【答案】【解析】【例9】如图,是一个由半圆和一条直径所组成的图形,求这个图形的周长.(单位:厘米,取3.14)【难度】★★【答案】【解析】【例10】如图,大半圆的直径为15厘米,小半圆的直径是大半圈的,则该图形的周长为______.(取3.14)【难度】★★【答案】【解析】【例11】如图是由直径分别为4厘米、6厘米和10厘米的三个半圆所组成的图形,则这个图形的周长为______.(取3.14)【难度】★★【答案】【解析】【例12】直径均为1米的四根管子被一根金属带紧紧地的捆在一起,如图所示,试求金属带的长度.(取3.14)【难度】★★【答案】【解析】【例13】一个正方形的铁片里,剪下一个最大的圆,已知圆的周长是25.12厘米,那么正方形的周长比圆的周长多多少厘米?(取3.14)【难度】★★【答案】【解析】【例14】如图,点O、点B在线段AC上,AB = 120 米,BC = 70 米,O是圆心.从A 到C有3条不同的半圆弧线路可走,请你判断走哪一条半圆弧线路的距离最短.【难度】★★★【答案】【解析】【例15】如图,一个半径1厘米的硬币沿着长方形纸板的边缘滚动,长方形纸板长30厘米,宽20厘米,当硬币滚回原来位置时,硬币的圆心经过的路程是______厘米.(取3.14)【难度】★★★【答案】【解析】1、弧和圆心角的概念如图,圆上A、B两点之间的部分就是弧,记作:,读作:弧AB;称为圆心角.2、弧长公式设圆的半径长为r,n°圆心角所对的弧长是l,那么:【例16】下列图形中的角是圆心角的有______个.【难度】★【答案】【解析】【例17】下列判断中正确的是()A.半径越大的弧越长B.所对圆心角越大的弧越长C.所对圆心角相同时,半径越大的弧越大D.半径相等时,无论圆心角怎么改变,弧长都不会改变【难度】★【答案】【解析】【例18】若一弧长是所在圆周长的,则它所对的圆心角是______度.【难度】★【答案】【解析】【例19】一段圆弧所在的圆的半径是40厘米,这条弧所对的圆心角为100°,求该圆弧的弧长.(结果保留)【难度】★【答案】【解析】【例20】一弧长为18.84厘米,所对的圆心角为270°,求该弧所在圆的半径.(取3.14)【难度】★【答案】【解析】【例21】如图,的三条边长都是18毫米,分别以A、B、C为圆心,18毫米为半径画弧,求这三条弧长的和.(取3.14)【难度】★★【答案】【解析】【例22】某建筑物上的大钟,分针长1.2米,时针长0.9米,是计算2小时分针和时针的针尖运动的距离.(取3.14)【难度】★★【答案】【解析】【例23】把直径为18厘米的圆等分成9个扇形,每个扇形的周长是______厘米.(取3.14)【难度】★★【答案】【解析】【例24】如图,圆心角为135°的扇形减去直径为12厘米的半圆,所得到的阴影部分的周长为______厘米.(取3.14)【难度】★★【答案】【解析】【例25】如图,以B、C为圆心的两个半圆的直径都是2厘米,那么阴影部分的周长是多少厘米?(取3.14)【难度】★★【答案】【解析】【例26】如图,四边形ABCD是长方形,长为10厘米,宽为6厘米,求阴影部分的周长.(取3.14)【难度】★★【答案】【解析】【例27】夏天到了,爸爸到商店买了3瓶啤酒,售货员将3瓶啤酒捆扎在一起,如图所示,那么捆4圈至少用绳子______厘米.(取3.14)【难度】★★【答案】【解析】【例28】求图中阴影部分的周长.(取3.14)【难度】★★★【答案】【解析】【例29】如图,有一只狗被拴在一建筑物的墙角上,这个建筑物是边长600厘米的正方形,栓狗的绳子长20米.现狗从A点出发,将绳子拉紧顺时针跑,可跑多少米?(取3.14)【难度】★★★【答案】【解析】【例30】等边三角形的边长是3厘米,现将沿一条直线翻滚30次,如图所示,求A点经过的路程的长.【难度】★★★【答案】【解析】【习题1】下列结论中,正确的是()A.任何一个圆的周长与半径之比不是一个固定的数B.任何两个圆的周长之比等于它们的半径之比C.任何两个圆的周长之比是一个固定的数D.称圆的周长与半径之比为圆周率【难度】★【答案】【解析】【习题2】圆的直径为30 ,则圆的周长为______.(结果保留)【难度】★【答案】【解析】【习题3】一个圆中,120°的圆心角所对的弧长是15.072米,则这个圆的半径是______米.(取3.14)【难度】★【答案】【解析】【习题4】一个半圆的周长是17.99厘米,则它的直径为______厘米.(取3.14)【难度】★★【答案】【解析】【习题5】两只蚂蚁分别沿着边长为10米的正方形和直径为10米的圆的路线爬行,如果同时以同样的速度从一点出发,那么谁先回到起点?【难度】★★【答案】【解析】【习题6】如图是由两个正方形和两个扇形的组合图形,则阴影部分的周长是______厘米.(取3.14)【难度】★★【答案】【解析】【习题7】一个自行车轮子的直径为0.8米,能滚动25圈/分,要通过一座长502.4米的大桥,需要多少分钟?【难度】★★(取3.14)【答案】【解析】【习题8】如图,圆A的半径为圆B半径的,圆A从图上所示位置出发,沿着圆B 滚动,那么至少要滚动多少圈才能回到原处?【难度】★★★【答案】【解析】【习题9】地球的赤道是个近似的圆形,赤道的半径约6378.2千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳子增加6.28米,使绳子与地面之间有均匀的缝隙,请问缝隙有多宽?一只高4厘米的蜗牛能否从该缝隙间爬过?(取3.14)【难度】★★★【答案】【解析】【习题10】有一只狗被系在一建筑物的墙角上,这个建筑物是边长6米的等边三角形,绳长是8米.当绳被狗拉紧时,狗运动后所围成的图形的总周长为多少米?【难度】★★★【答案】【解析】【作业1】两个圆的周长比为1 : 3,则周长比为______.【难度】★【答案】【解析】【作业2】把一张圆形纸对折,再对折,再对折,得到一个扇形,那么它的圆心角是______°.【难度】★【答案】【解析】(取3.14)【作业3】在一个周长为31.4厘米的圆中,108°所对的弧长为______厘米.【难度】★【答案】【解析】【作业4】如图,计算环行跑道的周长(单位:米;取3.14).【难度】★★【答案】【解析】【作业5】用一根31.4分米的铁丝围成一个正方形或者围成一个圆,则围成的正方的边长与围成的圆的直径哪个大?大多少?(取3.14)【难度】★★【答案】【解析】【作业6】如图,以等边三角形的三个顶点为圆心,边长的一半为半径在正三角形内作弧,若正三角形边长为4厘米,求三条弧长的和.【难度】★★【答案】【解析】【作业7】如图,正方形ABCD的边长是1厘米,现在依次以A、B、C、D为圆心,以AD、BE、CF、DG为半径画出扇形,得到如图所示是图形,则该图形的外周长为______厘米.(取3.14)【难度】★★【答案】【解析】【作业8】如图,小明同学分别以同一个含45°角的三角板的两个锐角顶点为圆心,以一条直角边的长为半径画弧,求这两段弧与的长的比.【难度】★★★【答案】【解析】【作业9】下图中,五个正方形的边长均为l,那么其中阴影部分的周长相等的图形是哪些?【难度】★★★【答案】【解析】【作业10】两枚如图放置的同样大小的硬币,其中一枚固定另一枚沿其周围滚动.滚动时,两枚硬币总是保持有一点相触,这在几何学上叫做相切.当滚动的一枚硬币沿固定的一枚硬币周围滚过一圈回到原来的位置时,滚动的那枚硬币自转了多少周?【难度】★★★【答案】【解析】。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案)
1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2,其中圆心是C(a,b),半径长是r.特别地,圆心在原点的圆的标准方程为x2+y2=r2.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).(2)由于圆的方程均含有三个参变量(a,b,r或D,E,F),而确定这三个参数必须有三个独立的条件,因此,三个独立的条件可以确定一个圆.(3)求圆的方程常用待定系数法,此时要善于根据已知条件的特征来选择圆的方程.如果已知圆心或半径长,或圆心到直线的距离,通常可用圆的标准方程;如果已知圆经过某些点,通常可用圆的一般方程.2.点与圆的位置关系(1)点在圆上①如果一个点的坐标满足圆的方程,那么该点在圆上.②如果点到圆心的距离等于半径,那么点在圆上.(2)点不在圆上①若点的坐标满足F(x,y)>0,则该点在圆外;若满足F(x,y)<0,则该点在圆内.②点到圆心的距离大于半径则点在圆外;点到圆心的距离小于半径则点在圆内.注意:若P点是圆C外一定点,则该点与圆上的点的最大距离:d max=|PC|+r;最小距离:d min=|PC|-r.3.直线与圆的位置关系直线与圆的位置关系有三种:相交、相离、相切,其判断方法有两种:代数法(通过解直线方程与圆的方程组成的方程组,根据解的个数来判断)、几何法(由圆心到直线的距离d与半径长r的大小关系来判断).(1)当直线与圆相离时,圆上的点到直线的最大距离为d+r,最小距离为d-r,其中d为圆心到直线的距离.(2)当直线与圆相交时,圆的半径长、弦心距、弦长的一半构成直角三角形.(3)当直线与圆相切时,经常涉及圆的切线.①若切线所过点(x0,y0)在圆x2+y2=r2上,则切线方程为x0x+y0y=r2;若点(x0,y0)在圆(x -a)2+(y-b)2=r2上,则切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.②若切线所过点(x0,y0)在圆外,则切线有两条.此时解题时若用到直线的斜率,则要注意斜率不存在的情况也可能符合题意.(4)过直线l:Ax+By+C=0(A,B不同时为0)与圆C:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)的交点的圆系方程是x2+y2+Dx+Ey+F+λ(Ax+By+C)=0,λ是待定的系数.4.圆与圆的位置关系两个不相等的圆的位置关系有五种:外离、外切、相交、内切、内含,其判断方法有两种:代数法(通过解两圆的方程组成的方程组,根据解的个数来判断)、几何法(由两圆的圆心距d 与半径长r,R的大小关系来判断).(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一 求圆的方程求圆的方程主要是联想圆系方程、圆的标准方程和一般方程,利用待定系数法解题.采用待定系数法求圆的方程的一般步骤为:(1)选择圆的方程的某一形式;(2)由题意得a ,b ,r (或D ,E ,F )的方程(组);(3)解出a ,b ,r (或D ,E ,F );(4)代入圆的方程.例1 有一圆与直线l :4x -3y +6=0相切于点A (3,6),且经过点B (5,2),求此圆的方程. 解 方法一 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心为C (a ,b ),由|CA |=|CB |,CA ⊥l , 得⎩⎪⎨⎪⎧(a -3)2+(b -6)2=(a -5)2+(b -2)2=r 2,b -6a -3×43=-1.解得a =5,b =92,r 2=254.∴圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 方法二 设圆的方程为x 2+y 2+Dx +Ey +F =0,圆心为C ,由CA ⊥l ,A (3,6)、B (5,2)在圆上,得⎩⎪⎨⎪⎧32+62+3D +6E +F =0,52+22+5D +2E +F =0,-E 2-6-D 2-3×43=-1,解得⎩⎪⎨⎪⎧D =-10,E =-9,F =39.∴所求圆的方程为:x 2+y 2-10x -9y +39=0.方法三 设圆心为C ,则CA ⊥l ,又设AC 与圆的另一交点为P ,则CA 方程为y -6=-34(x-3),即3x +4y -33=0. 又k AB =6-23-5=-2,∴k BP =12,∴直线BP 的方程为x -2y -1=0.解方程组⎩⎪⎨⎪⎧ 3x +4y -33=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =7,y =3.∴P (7,3).∴圆心为AP 中点⎝⎛⎭⎫5,92,半径为|AC |=52.∴所求圆的方程为(x -5)2+⎝⎛⎭⎫y -922=254. 跟踪训练1 若圆C 经过坐标原点和点(4,0),且与直线y =1相切,则圆C 的方程是______. 答案 ()x -22+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心,且圆经过点(0,0)和(4,0),所以设圆心为(2,m ).又因为圆与直线y =1相切,所以(4-2)2+(0-m )2=|1-m |,所以m 2+4=m 2-2m +1,解得m =-32,所以圆的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 题型二 直线与圆、圆与圆的位置关系(1)直线与圆的位置关系是高考考查的重点,切线问题更是重中之重,判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性质以简化解题过程.(2)解决圆与圆的位置关系的关键是抓住它的几何特征,利用两圆圆心距与两圆半径的和、差的绝对值的大小来确定两圆的位置关系,以及充分利用它的几何图形的形象直观性来分析问题.例2 如图所示,在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4.(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.解 (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在.设直线l 的方程为y =k (x -4),圆C 1的圆心到直线l 的距离为d ,因为直线l 被圆C 1截得的弦长为23,所以d =22-(3)2=1.由点到直线的距离公式得d =|-3k -1-4k |1+k 2,从而k (24k +7)=0.即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0.(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k (x -a ).因为圆C 1和圆C 2的半径相等,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k (-3-a )-b |1+k 2=⎪⎪⎪⎪5+1k (4-a )-b 1+1k2,整理得|1+3k +ak -b |=|5k +4-a -bk |,从而1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b = -5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5, 因为k 的取值范围有无穷多个,所以⎩⎪⎨⎪⎧ a +b -2=0,b -a +3=0或⎩⎪⎨⎪⎧a -b +8=0,a +b -5=0,解得⎩⎨⎧a =52,b =-12或⎩⎨⎧a =-32,b =132.这样点P 只可能是点P 1⎝⎛⎭⎫52,-12或点P 2⎝⎛⎭⎫-32,132. 经检验点P 1和P 2满足题目条件.跟踪训练2 已知圆M :(x -1)2+(y -1)2=4,直线l 过点P (2,3)且与圆M 交于A ,B 两点,且|AB |=23,求直线l 的方程.解 (1)当直线l 存在斜率时,设直线l 的方程为y -3=k (x -2),即kx -y +3-2k =0.作示意图如图,作MC ⊥AB 于C . 在Rt △MBC 中, |BC |=3,|MB |=2, 故|MC |=|MB |2-|BC |2=1,由点到直线的距离公式得|k -1+3-2k |k 2+1=1, 解得k =34.所以直线l 的方程为3x -4y +6=0.(2)当直线l 的斜率不存在时,其方程为x =2, 且|AB |=23,所以适合题意.综上所述,直线l 的方程为3x -4y +6=0或x =2. 题型三 与圆有关的最值问题在解决有关直线与圆的最值和范围问题时,最常用的方法是函数法,把要求的最值或范围表示为某个变量的关系式,用函数或方程的知识,尤其是配方的方法求出最值或范围;除此之外,数形结合的思想方法也是一种重要方法,直接根据图形和题设条件,应用图形的直观位置关系得出要求的范围.例3 在△ABO 中,|OB |=3,|OA |=4,|AB |=5,P 是△ABO 的内切圆上一点,求以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值与最小值. 解 如图所示,建立平面直角坐标系,使A ,B ,O 三点的坐标分别为A (4,0),B (0,3),O (0,0). 设内切圆的半径为r ,点P 的坐标为(x ,y ), 则2r +|AB |=|OA |+|OB |,∴r =1.故内切圆的方程为(x -1)2+(y -1)2=1, 整理得x 2+y 2-2x -2y =-1.①由已知得|P A |2+|PB |2+|PO |2=(x -4)2+y 2+x 2+(y -3)2+x 2+y 2 =3x 2+3y 2-8x -6y +25.② 由①可知x 2+y 2-2y =2x -1,③将③代入②得|P A |2+|PB |2+|PO |2=3(2x -1)-8x +25=-2x +22. ∵0≤x ≤2,∴|P A |2+|PB |2+|PO |2的最大值为22,最小值为18.又三个圆的面积之和为π⎝⎛⎭⎫|P A |22+π⎝⎛⎭⎫|PB |22+π⎝⎛⎭⎫|PO |22=π4(|P A |2+|PB |2+|PO |2), ∴以|P A |,|PB |,|PO |为直径的三个圆面积之和的最大值为112π,最小值为92π.跟踪训练3 已知实数x ,y 满足方程(x -3)2+(y -3)2=6,求x +y 的最大值和最小值. 解 设x +y =t ,由题意,知直线x +y =t 与圆(x -3)2+(y -3)2=6有公共点, 所以d ≤r ,即|3+3-t |2≤ 6.所以6-23≤t ≤6+2 3.所以x +y 的最小值为6-23,最大值为6+2 3.题型四 分类讨论思想分类讨论思想是中学数学的基本思想之一,是历年高考的重点,其实质就是将整体问题化为部分问题来解决,化成部分问题后,从而增加了题设的条件.在用二元二次方程表示圆时要分类讨论,在求直线的斜率问题时,用斜率表示直线方程时都要分类讨论.例4 已知直线l 经过点P (-4,-3),且被圆(x +1)2+(y +2)2=25截得的弦长为8,求直线l 的方程.解 圆(x +1)2+(y +2)2=25的圆心为(-1,-2),半径r =5.①当直线l 的斜率不存在时,则l 的方程为x =-4,由题意可知直线x =-4符合题意. ②当直线l 的斜率存在时,设其方程为y +3=k (x +4), 即kx -y +4k -3=0. 由题意可知⎝⎛⎭⎪⎫|-k +2+4k -3|1+k 22+⎝⎛⎭⎫822=52,解得k =-43,即所求直线方程为4x +3y +25=0.综上所述,满足题设的l 方程为x =-4或4x +3y +25=0.跟踪训练4 如图,已知以点A (-1,2)为圆心的圆与直线l 1:x +2y +7=0相切.过点B (-2,0)的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与l 1相交于点P . (1)求圆A 的方程;(2)当|MN |=219时,求直线l 的方程. 解 (1)设圆A 的半径为r .由于圆A 与直线l 1:x +2y +7=0相切, ∴r =|-1+4+7|5=2 5.∴圆A 的方程为(x +1)2+(y -2)2=20.(2)①当直线l 与x 轴垂直时,易知x =-2符合题意;②当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +2),即kx -y +2k =0.连接AQ ,则AQ ⊥MN . ∵|MN |=219, ∴|AQ |=20-19=1, 则由|AQ |=|k -2|k 2+1=1,得k =34.直线方程为3x -4y +6=0.综上,直线l 的方程为x =-2或3x -4y +6=0. 题型五 数形结合思想数形结合思想:在解析几何中,数形结合思想是必不可少的,而在本章中,数形结合思想最主要体现在几何条件的转化上,尤其是针对“方法梳理”中提到的第二类问题,往往题目会给出动点满足的几何条件,这就不能仅仅依靠代数来“翻译”了,必须结合图形,仔细观察分析,有时可能需要比较“绕”的转化才能将一个看似奇怪(或者不好利用)的几何条件列出一个相对简洁的式子,但这样可以在很大程度上减少计算量,大大降低出错的机率. 例5 已知三条直线l 1:x -2y =0,l 2:y +1=0,l 3:2x +y -1=0两两相交,先画出图形,再求过这三个交点的圆的方程. 解 画图如下:由直线方程易知l 2平行于x 轴,l 1与l 3互相垂直, ∴三个交点A ,B ,C 构成直角三角形, ∴经过A ,B ,C 三点的圆就是以AB 为直径的圆.由⎩⎪⎨⎪⎧ x -2y =0,y +1=0,解得⎩⎪⎨⎪⎧x =-2,y =-1.∴点A 的坐标为(-2,-1).由⎩⎪⎨⎪⎧ 2x +y -1=0,y +1=0,解得⎩⎪⎨⎪⎧x =1,y =-1.∴点B 的坐标为(1,-1).∴线段AB 的中点坐标为(-12,-1).又∵|AB |=|1-(-2)|=3.∴圆的方程是(x +12)2+(y +1)2=94.跟踪训练5 已知点A (-1,0),B (2,0),动点M (x ,y )满足|MA ||MB |=12,设动点M 的轨迹为C .(1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值;(3)设直线l :y =x +m 交轨迹C 于P ,Q 两点,是否存在以线段PQ 为直径的圆经过点A ?若存在,求出实数m 的值;若不存在,请说明理由. 解 (1)由题意,得|MA |=(x +1)2+y 2, |MB |=(x -2)2+y 2.∵|MA ||MB |=12,∴(x +1)2+y 2(x -2)2+y 2=12, 化简,得(x +2)2+y 2=4.∴轨迹C 是以(-2,0)为圆心,2为半径的圆. (2)设过点B 的直线为y =k (x -2). 由题意,得圆心到直线的距离d =|-4k |k 2+1≤2.解得-33≤k ≤33.即k min =-33. (3)假设存在,设P (x 1,y 1),Q (x 2,y 2).联立方程⎩⎪⎨⎪⎧y =x +m ,(x +2)2+y 2=4,得2x 2+2(m +2)x +m 2=0. ∴x 1+x 2=-m -2,x 1x 2=m 22. ①y 1+y 2=m -2,y 1y 2=m 2-4m2. ②设以PQ 为直径经过点A 的圆的圆心为O ,则O 的坐标为O (x 1+x 22,y 1+y 22),|OA |=|OP |, (x 1+x 22+1)2+(y 1+y 22)2 =(x 1+x 22-x 1)2+(y 2-y 12)2. 整理得(x 1+x 2+2)2+(y 1+y 2)2=(x 1+x 2)2+(y 1+y 2)2-4x 1x 2-4y 1y 2,③ 将①②代入③得m 2-3m -1=0, 解得m =3±132.故当m =3±132时,存在线段PQ 为直径的圆经过点A .初中我们从平面几何的角度研究过圆的问题,本章则主要是利用圆的方程从代数角度研究了圆的性质,如果我们能够将两者有机地结合起来解决圆的问题,将在处理圆的有关问题时收到意想不到的效果.圆是非常特殊的几何图形,它既是中心对称图形又是轴对称图形,它的许多几何性质在解决圆的问题时往往起到事半功倍的作用,所以在实际解题中常用几何法,充分结合圆的平面几何性质.那么,我们来看经常使用圆的哪些几何性质:(1)圆的切线的性质:圆心到切线的距离等于半径;切点与圆心的连线垂直于切线;切线在切点处的垂线一定经过圆心;圆心、圆外一点及该点所引切线的切点构成直角三角形的三个顶点等等.(2)直线与圆相交的弦的有关性质:相交弦的中点与圆心的连线垂直于弦所在直线;弦的垂直平分线(中垂线)一定经过圆心;弦心距、半径、弦长的一半构成直角三角形的三边,满足勾股定理.(3)与直径有关的几何性质:直径是圆的最长的弦;圆的对称轴一定经过圆心;直径所对的圆周角是直角.。
九上导学案 第二章 圆 2.1-2.4复习
∙E D CBAO 20 题图2.1-2.4圆的基本性质复习一.基础回顾1、如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .2、已知,如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=450。
给出以下五个结论:①∠EBC=22.50,;②BD=DC ;③AE=2EC ;④劣弧⋂AE 是劣弧⋂DE 的2倍;⑤AE =BC 。
其中正确结论的序号是 .3、如图, ⊙O 的半径OA=6,以A 为圆心OA 为半径的弧交⊙O 于B 、 C 点, 则BC= .4、已知⊙O 和三点P 、Q 、R ,⊙O 的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线总是与⊙O 相交,这个点是5、已知弦AB 的长等于⊙O 半径的根号2倍,弦AB 所对的圆周角是____ ___ 度二.例题精析例1、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径. 例2、如图,AB 为⊙O 直径,CD 为弦,且CD AB ⊥,垂足为H . (1)E 为ADB 的中点,连结CE.求证:CE 为OCD ∠的平分线; (2)如果⊙O 的半径为1,H 为OB 中点,①求O 到弦AC 的距离; ②填空:此时圆周上存在 个点到直线AC 的距离为12.ABDE O C H三.及时检测1、青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A 、B 、C 的距离相等.(1)若三所运动员公寓A 、B 、C 的位置如图所示,请你在图中作出这处公共服务设施(用点P 表示)的位置;(2)若∠APC =120º,AB=BC=6,求PA 长。
【人教A版】高中数学必修二:第4章《圆与方程》导学案设计(含答案) 第四章 综合检测
综合检测一、选择题1.点P (x 0,y 0)在圆x 2+y 2=r 2内,则直线x 0x +y 0y =r 2和已知圆的公共点的个数为( ) A.0 B.1 C.2 D.不能确定 答案 A 解析 ∵点P在圆内,∴x 20+y 20<r 2.又∵圆心O (0,0)到直线x 0x +y 0y =r 2的距离d =|r 2|x 20+y 2>r ,∴直线与圆无交点.2.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A.(0,4) B.(0,2) C.(-2,4) D.(4,-2) 答案 B解析 因为直线l 1与直线l 2关于点(2,1)对称,且直线l 1恒过定点(4,0),所以直线l 2必过点(4,0)关于点(2,1)对称的点(0,2).3.已知在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使其绕直线BC 旋转一周,则所形成的几何体的体积是( ) A.32π B.52π C.72π D.92π 答案 A解析 所得几何体是大圆锥挖去同底的一个小圆锥,所以所形成几何体的体积V =V 大圆锥-V 小圆锥=13πr 2(1+1.5-1)=13π(3)2×1.5=32π.4.若点P (x ,y )满足x 2+y 2-2x -2y -2≤0,则点P 到直线3x +4y -22=0的最大距离是( ) A.5 B.1 C.2-11 D.2+1 答案 A解析 由题意知,点P 在以(1,1)为圆心,2为半径的圆上或其内部,因为圆心到直线的距离d =|3+4-22|32+42=3,所以点P 到直线的最大距离为d +r =5.5.已知圆C :(x -a )2+(y -2)2=4(a >0)及直线l :x -y +3=0,当直线l 被圆C 截得的弦长为23时,则a 等于( )A. 2B.2- 2C.2-1D.2+1 答案 C解析 由题意,得⎝⎛⎭⎪⎫|a -2+3|22+(3)2=4(a >0),解得a =2-1.6.已知S ,A ,B ,C 是球O 表面上的点,若SA ⊥平面ABC ,AB ⊥BC ,SA =AB =1,BC =2,则球O的表面积为()A.4πB.3πC.2πD.π答案A解析由已知得球O的直径是以S,A,B,C为4个顶点的长方体的体对角线,即2R=12+(2)2+12=2,∴R=1,∴球O的表面积为4πR2=4π.①若a∥M,b∥M,则a∥b;②若b⊂M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.A.0个B.1个C.2个D.3个答案B解析①中可能有a∥b,a与b相交,a与b异面;②中可能有a∥M或a⊂M;③中a与b 可能平行、相交或异面;④正确,故选B.8.设长方体的长,宽,高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2答案B解析由题意可知,球的直径等于长方体的体对角线的长度,故2R=4a2+a2+a2,解得R=62a,所以球的表面积S=4πR2=6πa2.9.已知正三棱锥V-ABC的正视图、俯视图如图所示,其中VA=4,AC=23,则该三棱锥的表面积为()A.339B.339+ 3C.339+3 3D.39+33答案C解析由正视图与俯视图可得正三棱锥的直观图,如图所示,且VA=VB=VC=4,AB=BC =AC=2 3.取BC的中点D,连接VD,则VD⊥BC.有VD=VB2-BD2=42-(3)2=13,则S △VBC =12×VD ×BC =12×13×23=39,S △ABC =12×(23)2×32=3 3.所以三棱锥V -ABC 的表面积为3S △VBC +S △ABC =339+33=3(39+3).10.过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π3 答案 D解析 方法一 如图,过点P 作圆的切线P A ,PB ,切点为A ,B . 由题意知|OP |=2,|OA |=1, 则sin α=12,所以α=π6,∠BP A =π3.故直线l 的倾斜角的取值范围是⎣⎡⎦⎤0,π3.选D. 方法二 设过点P 的直线方程为y =k (x +3)-1,则由直线和圆有公共点知|3k -1|1+k 2≤1.解得0≤k ≤ 3.故直线l 的倾斜角的取值范围是[0,π3].二、填空题11.已知A (2,5,-6),点P 在y 轴上,P A =7,则点P 的坐标为________. 答案 (0,8,0)或(0,2,0)解析 设点P (0,y,0),则P A =22+(5-y )2+(-6)2=7,解得y =2或y =8.故点P 的坐标为(0,8,0)或(0,2,0).12.直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________. 答案 2解析 依题意,不妨设直线y =x +a 与单位圆相交于A ,B 两点, 则∠AOB =90°.如图,此时a =1,b =-1, 满足题意, 所以a 2+b 2=2.13.过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.答案 22解析 借助圆的几何性质,确定圆的最短弦的位置,利用半径、弦心距及半弦长的关系求弦长.设A (3,1),易知圆心C (2,2),半径r =2,当弦过点A (3,1)且与CA 垂直时为最短弦. |CA |=(2-3)2+(2-1)2= 2. ∴半弦长=r 2-|CA |2=4-2= 2. ∴最短弦长为2 2.14.已知△ABC 中,A ∈α,BC ∥α,BC =6,∠BAC =90°,AB ,AC 与平面α分别成30°,45°的角,则BC 到平面α的距离为________. 答案6解析 如图,分别过点B ,C 作BF ⊥α于点F ,CE ⊥α于点E .连接AF ,AE .设BC 到平面α的距离为h .∵∠BAF =30°,∠CAE =45°,∴BA =2h ,AC =2h .在Rt △ABC 中,BC 2=BA 2+AC 2,即(2h )2+(2h )2=36,解得h = 6.三、解答题15.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m 、n 的值,使 (1)l 1与l 2相交于点(m ,-1); (2)l 1∥l 2;(3)l 1⊥l 2,且l 1在y 轴上的截距为-1. 解 (1)因为l 1与l 2相交于点(m ,-1), 所以点(m ,-1)在l 1、l 2上,将点(m ,-1)代入l 2,得2m -m -1=0,解得m =1. 又因为m =1,把(1,-1)代入l 1,所以n =7. 故m =1,n =7.(2)要使l 1∥l 2,m 2=8m≠-n ,则有⎩⎪⎨⎪⎧m 2-16=0,m ×(-1)-2n ≠0,解得⎩⎪⎨⎪⎧m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4n ≠2.(3)要使l 1⊥l 2,则有m ·2+8·m =0,得m =0. 则l 1为y =-n8,由于l 1在y 轴上的截距为-1,所以-n8=-1,即n =8.故m =0,n =8.16.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC ,D ,E 分别为AA 1,B 1C 的中点. (1)证明:DE ∥平面ABC ;(2)设二面角A -BC -D 为60°,求BD 与平面BCC 1B 1所成的角的正弦值.(1)证明 设BC 的中点为F ,连接AF ,EF ,则EF ∥BB 1,且EF =12BB 1.又∵AD ∥BB 1,且AD =12BB 1,∴EF ∥AD ,且EF =AD ,∴四边形ADEF 是平行四边形,∴DE ∥AF .又∵DE ⊄平面ABC ,AF ⊂平面ABC ,∴DE ∥平面ABC .(2)解 连接DF ,BE .∵AB =AC ,F 为BC 的中点,∴AF ⊥BC .∵AA 1⊥平面ABC ,∴AA 1⊥BC . 又∵AA 1∩AF =A ,∴BC ⊥平面ADF ,∵BC ⊥DF ,∴∠AFD 为二面角A -BC -D 的平面角,即∠AFD =60°.∵平面ABC ⊥平面BCC 1B 1,平面ABC ∩平面BCC 1B 1=BC .AF ⊂平面ABC ,AF ⊥BC ,∴AF ⊥平面BCC 1B 1.∵DE ∥AF ,∴DE ⊥平面BCC 1B 1,∴∠DBE 为BD 与平面BCC 1B 1所成的角. 设AF =a ,则DE =a ,AD =3a ,AB =2a ,∴BD =5a ,∴sin ∠DBE =a 5a =55. 17.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在直线x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A ,PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 的面积的最小值.解 (1)设圆M 的标准方程为:(x -a )2+(y -b )2=r 2(r >0).根据题意得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的标准方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |,又因为|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,由点到直线的距离公式得|PM |min =|3×1+4×1+8|32+42=3,18.已知圆C 过坐标原点O ,且与x 轴,y 轴分别交于点A ,B ,圆心坐标为C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0).(1)求证:△AOB 的面积为定值;(2)直线2x +y -4=0与圆C 交于点M ,N ,若|OM |=|ON |,求圆C 的方程;(3)在(2)的条件下,设点P ,Q 分别是直线l :x +y +2=0和圆C 上的动点,求|PB |+|PQ |的最小值及此时点P 的坐标.(1)证明 由题意知,圆C 的标准方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0.当y =0时,x =0或x =2t ,则A (2t,0); 当x =0时,y =0或y =4t ,则B ⎝⎛⎭⎫0,4t . ∴S △AOB =12|OA |·|OB |=12|2t |·|4t|=4,为定值.(2)解 ∵|OM |=|ON |,∴原点O 在MN 的中垂线上.设MN 的中点为H ,则CH ⊥MN ,∴C ,H ,O 三点共线,且直线OC 的斜率与直线MN 的斜率的乘积为-1,即直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2,∴圆心为C (2,1)或C (-2,-1),∴圆C 的标准方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5.当圆的方程为(x +2)2+(y +1)2=5时,圆心到直线2x +y -4=0的距离d >r ,此时直线与圆相离,故舍去.故圆C 的方程为(x -2)2+(y -1)2=5.(3)解 易求得点B (0,2)关于直线x +y +2=0的对称点B ′(-4,-2), 则|PB |+|PQ |=|PB ′|+|PQ |≥|B ′Q |, 又∵B ′到圆上点Q 的最短距离为|B ′C |-r =(-6)2+(-3)2-5=35-5=25,∴|PB |+|PQ |的最小值为25,又直线B ′C 的方程为y =12x x ,联立⎩⎪⎨⎪⎧y =12x ,x +y +2=0,解得⎩⎨⎧x =-43,y =-23,故|PB |+|PQ |取得最小值时点P 的坐标为⎝⎛⎭⎫-43,-23,最小值为2 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图3 24.1 圆(第1课时)一、学习目标:1. 探索圆的两种定义。
2. 理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,并能够从图形中识别。
二、学习重点、难点:1.重点:圆的两种定义的探索,能够解释一些生活问题。
2.难点:圆的运动式定义方法。
三、学习过程:(一)温故知新1.举例说出生活中的圆。
2.你是怎样画圆的?你能讲出形成圆的方法有多少种吗?(二)自主学习自学课本P78---P 79思考下列问题:1.分别用不同的方法作圆,标明圆心、半径,体会圆的形成过程。
如图2,观察下列画圆的过程,你能由此说出圆的形成过程吗?2.圆的两个定义各是什么?圆: ; 圆心: ; 半径: ;圆的表示方法:以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”. 同时从圆的定义中归纳:(1)圆上各点到定点(圆心)的距离都等于定长(半径); (2)到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点的距离等于定长的点组成的图形叫作圆. 3.弄清圆的有关概念?怎样用数学符号表示?讨论圆中相关元素的定义.如图3,你能说出弦、直径、弧、半圆的定义吗? 弦: ; 直径: ;弧: ;弧的表示方法: ;图2半圆:;等圆:;等弧:;优弧:;劣弧:;(三)合作探究1.如何在操场上画一个半径是5cm的圆?请说明理由。
(四)巩固练习1.你见过树木的年轮吗?从树木的年轮,可以清楚的看出树木生长的年龄,把树木的年轮看成是圆形的,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径平均每年增加多少?24.1 圆(第2课时)一、学习目标:1. 探索圆的对称性,进而得到垂直于弦的直径所具有的性质。
2. 能够利用垂直于弦的直径的性质解决相关实际问题。
二、学习重点、难点:1. 重点:垂直于弦的直径所具有的性质以及证明。
2. 难点:利用垂直于弦的直径的性质解决实际问题。
三、学习过程:(一)温故知新1.举例说出生活中的圆。
2.你是怎样画圆的?你能讲出形成圆的方法有多少种吗?(二)自主学习阅读课本P80---P81思考下列问题:1.通过对折圆,圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.教材80页思考?从图中找到哪些相等的线段和弧?为什么?3.什么是垂径定理?请默写一遍。
4.由垂径定理又得到了什么推论?试着逻辑证明一下。
(三)合作探究例2:如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB=10,PB=4,OP=5,求⊙O 的半径的长。
(四)巩固练习(教材P 82练习)(五)达标训练1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( ).A .CE=DEB .BC = BD C .∠BAC=∠BAD D .AC>ADB ACEDOBAOMBA CEDOF(图1) (图2) (图3) (图4)2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.如图3,已知⊙O 的半径为5mm ,弦AB=8mm ,则圆心O 到AB 的距离是( ) A .1mm B .2mmm C .3mm D .4mm4.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______.5.如图4,OE ⊥AB 、OF ⊥CD ,如果OE=OF ,那么_______(只需写一个正确的结论) 6.如图,以O 为圆心的两个同心圆中,小圆的弦AB 的延长线交大圆于点C ,若AB=3,BC=1,则圆环的面积最接近的整数是( )A.9B. 10C.15D.13O ABPBOAC24.1圆(第3课时)一、学习目标:1. 了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用。
2. 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题。
二、学习重点、难点:1. 重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题。
2. 难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明。
三、学习过程:(一)温故知新已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO(二)自主学习自学课本P82---P83思考下列问题:1.举例说明什么是圆心角?2.教材P82探究中,通过旋转∠AOB,试写出你发现的哪些等量关系?为什么?3.在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?4.由探究得到的定理及结论是什么?在同圆或等圆中,相等的圆心角所对的弧,所对的弦。
在同圆或等圆中,如果两条弧相等,那么它们所对的相等,•所对的也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的相等,•所对的也相等.(三)合作探究例2.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么AB 与CD的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?(四)巩固练习:(五)达标检测1.如果两个圆心角相等,那么( )A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( )A .AB=2CDB .AB>CDC .AB<CD D .不能确定 3.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________. 4.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________. (六)拓展创新如图1和图2,MN 是⊙O 的直径,弦AB 、CD •相交于MN •上的一点P ,•∠APM=∠CPM . (1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由.(2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.BA CE DP ONM FB AC E DPNMF(图1) (图2)⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ ⌒ OBACEDFOACDoABCD24.1圆(第4课时)一、学习目标:1. 了解圆周角的概念。
2. 理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半。
3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径。
二、学习重点、难点:1. 重点:探索圆周角与圆心角的关系,发现圆周角的性质和直径所对圆周角的特征。
2. 难点:发现并论证圆周角定理。
三、学习过程:(一)温故知新:1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢? (二)自主学习:自学教材P 84---P 86,思考下列问题:1.什么叫圆周角?圆周角的两个特征: 。
2.在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。
通过圆周角的概念和度量的方法回答下面的问题.(1)一个弧上所对的圆周角的个数有多少个?(2)同弧所对的圆周角的度数是否发生变化?(3)同弧上的圆周角与圆心角有什么关系?3.默写圆周角定理及推论并证明。
4.能去掉“同圆或等圆”吗?若把“同弧或等弧”改成“同弦或等弦”性质成立吗?5.教材84页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(三)合作探究:例1、如又图⊙O 的直径AB 为10cm ,弦AC 为6cm ,∠ACB 的平分 线交⊙O 于D ,求BC ,AD ,BD 的长。
例2、如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?2143OBA C(四)巩固练习:1.如图,点A ,B ,C ,D 在同一圆上,四边形ABCD 的对角线把4个内角分成8个角,这些角中哪些角是相等的角?2.求证:如果直角三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形。
(提示:作出以这条边为直径的圆)(五)达标训练1.如图1,A 、B 、C 三点在⊙O 上,∠AOC=100°,则∠ABC 等于( ).A .140°B .110°C .120°D .130°(1) (2) (3)2.如图2,∠1、∠2、∠3、∠4的大小关系是( ) A .∠4<∠1<∠2<∠3 B .∠4<∠1=∠3<∠2C .∠4<∠1<∠3∠2D .∠4<∠1<∠3=∠23.如图3, AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC=CD=DA ,则∠BCD 等于( ) A .100° B .110° C .120° D .130° 4.半径为2a 的⊙O 中,弦AB 的长为23a ,则弦AB 所对的圆周角的度数是________. (六)拓展创新1.如图,已知AB=AC ,∠APC=60° (1)求证:△ABC 是等边三角形.(2)若BC=4cm ,求⊙O 的面积.O BA CP24.2点、直线、圆和圆的位置关系(第1课时)一、学习目标:1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用。
2.理解不在同一直线上的三个点确定一个圆并掌握它的运用。
3.了解三角形的外接圆和三角形外心的概念。
4.了解反证法的证明思想。
二、学习重点、难点:1. 重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用。
2. 难点:讲授反证法的证明思路。
三、学习过程:(一)温故知新:1.圆的两种定义是什么?2.圆形成后圆上这些点到圆心的距离如何?3.如果在圆外有一点呢?圆内呢?请你画图想一想.(二)自主学习:自学教材P90-----P92,思考下列问题:1.点与圆的三种位置关系:(圆的半径r,点P与圆心的距离为d)点P在圆外⇔;点P在圆上⇔;点P在圆内⇔;2.自己作圆:(思考)(1)作经过已知点A的圆,这样的圆能作出多少个?(2)经过A、B两点作圆,这样的圆能作出多少个?它们的圆心分布有什么特点?(3)经过A、B、C三点作圆,有哪些情况?三点应符合什么条件才能作圆?3.什么叫三角形的外接圆?三角形的外心及性质?4.教材是如何用反证法证明过同一直线上的三点不能作圆?反证法的证明思路是什么?(三)合作探究:例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.(圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心).(四)巩固练习:(五)达标训练1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;•③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(• ) A .1 B .2 C .3 D .4 2.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,•那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定ACBDBACDO(第2题图) (第3题图)3.如图,△ABC 内接于⊙O ,AB 是直径,BC=4,AC=3,CD 平分∠ACB ,则弦AD 长为( ) A .522 B .52C .2D .34.经过一点P 可以作_______个圆;经过两点P 、Q 可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.5.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是.6.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________. (六)拓展创新1.已知△ABC 的三边长分别为6cm 、8cm 、10cm ,则这个三角形的外接圆的面积为__________cm2.(结果用含π的代数式表示)2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A 、B 、C •为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.BACoCAB24.2点、直线、圆和圆的位置关系(第2课时)一、学习目标:1. 了解直线和圆的位置关系的有关概念。