Limitations of Equation-based Congestion Control

合集下载

计算流体力学中英文词汇对照

计算流体力学中英文词汇对照

流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics液体静力学hydrostatics 支配方程governing equation伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number随体导数material derivative 不可压缩流体incompressible fluid质量守恒conservation of mass 动量守恒conservation of momentum能量守恒conservation of energy 动量方程momentum equation能量方程energy equation 控制体积control volume液体静压hydrostatic pressure 涡量拟能enstrophy压差differential pressure 流[动] flow流线stream line 流面stream surface流管stream tube 迹线path, path line流场flow field 流态flow regime流动参量flow parameter 流量flow rate, flow discharge涡旋vortex 涡量vorticity涡丝vortex filament 涡线vortex line涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair涡管vortex tube 涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell 卷筒涡胞roll cell涡eddy 涡粘性eddy viscosity环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point 总压[力] total pressure总压头total head 静压头static head总焓total enthalpy 能量输运energy transport速度剖面velocity profile 库埃特流Couette flow单相流single phase flow 单组份流single-component flow均匀流uniform flow 非均匀流nonuniform flow二维流two-dimensional flow 三维流three-dimensional flow准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow 分层流stratified flow无旋流irrotational flow 有旋流rotational flow轴对称流axisymmetric flow 不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter 阻力drag, resistance减阻drag reduction 表面力surface force表面张力surface tension 毛细[管]作用capillarity来流incoming flow 自由流free stream自由流线free stream line 外流external flow进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation 分布distribution传播propagation 色散dispersion弥散dispersion 附加质量added mass ,associated mass收缩contraction 镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity 动力相似[性] dynamic similarity平面流plane flow 势potential势流potential flow 速度势velocity potential复势complex potential 复速度complex velocity流函数stream function 源source汇sink 速度[水]头velocity head拐角流corner flow 空泡流cavity flow超空泡supercavity 超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow 超声速流[动] supersonic flow锥形流conical flow 楔流wedge flow叶栅流cascade flow 非平衡流[动] non-equilibrium flow细长体slender body 细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil 翼弦chord薄翼理论thin-airfoil theory 构型configuration后缘trailing edge 迎角angle of attack失速stall 脱体激波detached shock wave波阻wave drag 诱导阻力induced drag诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex 气动中心aerodynamic center气动力aerodynamic force 气动噪声aerodynamic noise气动加热aerodynamic heating 离解dissociation地面效应ground effect 气体动力学gas dynamics稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow 可压缩流[动] compressible flow可压缩流体compressible fluid 绝热流adiabatic flow非绝热流diabatic flow 未扰动流undisturbed flow等熵流isentropic flow 匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state 完全气体perfect gas拉瓦尔喷管Laval nozzle 马赫角Mach angle马赫锥Mach cone 马赫线Mach line马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave激波shock wave 正激波normal shock wave斜激波oblique shock wave 头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer 压缩波compression wave反射reflection 折射refraction散射scattering 衍射diffraction绕射diffraction出口压力exit pressure 超压[强] over pressure反压back pressure 爆炸explosion爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave 瑞利数Rayleigh number自由面free surface 波速wave speed, wave velocity波高wave height 波列wave train波群wave group 波能wave energy表面波surface wave 表面张力波capillary wave规则波regular wave 不规则波irregular wave浅水波shallow water wave深水波deep water wave 重力波gravity wave椭圆余弦波cnoidal wave 潮波tidal wave涌波surge wave 破碎波breaking wave船波ship wave 非线性波nonlinear wave孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number 空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave涟漪ripple 消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number 弗劳德数Froude number水力半径hydraulic radius 水力坡度hvdraulic slope高度水头elevating head 水头损失head loss水位water level 水跃hydraulic jump含水层aquifer 排水drainage排放量discharge 壅水曲线back water curve压[强水]头pressure head 过水断面flow cross-section明槽流open channel flow 孔流orifice flow无压流free surface flow 有压流pressure flow缓流subcritical flow 急流supercritical flow渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow 异重流density current, gravity flow堰流weir flow 掺气流aerated flow含沙流sediment-laden stream 降水曲线dropdown curve沉积物sediment, deposit 沉[降堆]积sedimentation, deposition沉降速度settling velocity 流动稳定性flow stability不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow 剪切流shear flow粘性流[动] viscous flow 层流laminar flow分离流separated flow 二次流secondary flow近场流near field flow 远场流far field flow滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet管流pipe flow, tube flow 内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity动力粘性dynamic viscosity 泊poise厘泊centipoise 厘沱centistoke剪切层shear layer 次层sublayer流动分离flow separation 层流分离laminar separation湍流分离turbulent separation 分离点separation point附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex驻涡standing vortex 涡旋破碎vortex breakdown涡旋脱落vortex shedding 压[力]降pressure drop压差阻力pressure drag 压力能pressure energy型阻profile drag 滑移速度slip velocity无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor 耗散dissipation滞后lag 相似性解similar solution局域相似local similarity 气体润滑gas lubrication液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation 边界层boundary layer附面层boundary layer 层流边界层laminar boundary layer湍流边界层turbulent boundary layer 温度边界层thermal boundary layer边界层转捩boundary layer transition 边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness焓厚度enthalpy thickness 注入injection吸出suction 泰勒涡Taylor vortex速度亏损律velocity defect law 形状因子shape factor测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization孔板流量计orifice meter 频率响应frequency response油膜显示oil film visualization 阴影法shadow method纹影法schlieren method 烟丝法smoke wire method丝线法tuft method 氢泡法nydrogen bubble method相似理论similarity theory 相似律similarity law部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank 旋臂水池rotating arm basin扩散段diffuser 测压孔pressure tap皮托管pitot tube 普雷斯顿管preston tube斯坦顿管Stanton tube 文丘里管Venturi tubeU形管U-tube 压强计manometer微压计micromanometer 多管压强计multiple manometer静压管static [pressure]tube 流速计anemometer风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer 流量计flow meter粘度计visco[si] meter 涡量计vorticity meter传感器transducer, sensor 压强传感器pressure transducer热敏电阻thermistor 示踪物tracer时间线time line 脉线streak line尺度效应scale effect 壁效应wall effect堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency底压base pressure 菲克定律Fick law巴塞特力Basset force 埃克特数Eckert number格拉斯霍夫数Grashof number 努塞特数Nusselt number普朗特数prandtl number 雷诺比拟Reynolds analogy施密特数schmidt number 斯坦顿数Stanton number对流convection 自由对流natural convection, free convec-tion强迫对流forced convection 热对流heat convection质量传递mass transfer 传质系数mass transfer coefficient热量传递heat transfer 传热系数heat transfer coefficient对流传热convective heat transfer 辐射传热radiative heat transfer动量交换momentum transfer 能量传递energy transfer传导conduction 热传导conductive heat transfer热交换heat exchange 临界热通量critical heat flux浓度concentration 扩散diffusion扩散性diffusivity 扩散率diffusivity扩散速度diffusion velocity 分子扩散molecular diffusion沸腾boiling 蒸发evaporation气化gasification 凝结condensation成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation数值粘性numerical viscosity 非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method 人工压缩artificial compression 人工粘性artificial viscosity边界元法boundary element method 配置方法collocation method能量法energy method 有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method 伽辽金法Galerkin method积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines矩量法moment method 多重网格法multi- grid method板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method投影法projection method 准谱法pseudo-spectral method随机选取法random choice method 激波捕捉法shock-capturing method激波拟合法shock-fitting method 谱方法spectral method稀疏矩阵分解法split coefficient matrix method 不定常法time-dependent method时间分步法time splitting method 变分法variational method涡方法vortex method 隐格式implicit scheme显格式explicit scheme 交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme 守恒差分格式conservation difference scheme 克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme 戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme 拉克斯-温德罗夫格式Lax-Wendroff scheme 蛙跳格式leap-frog scheme 单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme 半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain 物理区域physical domain影响域domain of influence 依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split物理解physical solution 弱解weak solution黎曼解算子Riemann solver 守恒型conservation form弱守恒型weak conservation form 强守恒型strong conservation form散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation自动网格生成automatic grid generation 数值网格生成numerical grid generation交错网格staggered mesh 网格雷诺数cell Reynolds number数植扩散numerical diffusion 数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix阻尼误差damping error 离散涡discrete vortex熵通量entropy flux 熵函数entropy function分步法fractional step method。

Infinite element-based absorbing boundary technique for elastic wave modeling

Infinite element-based absorbing boundary technique for elastic wave modeling

ST 2.3 Infinite element-based absorbing boundary technique for elastic wave modelingLi-Yun Fu* and Ru-Shan Wu, Institute of Tectonics, University of California at Santa CruzSummaryAn absorbing boundary scheme using an infinite element algorithm has been given for elastic wave modeling by solving the boundary (or volume) integral equations related to the free space Green’s functions. The integral equations have the ability to include infinite domains. We place an infinite element at the end point of the boundary extending to infinity instead of the artificial boundary at the edge of domain of computation. Then infinite shape functions are constructed for the infinite element. The unknown (displacement or stress) in the infinite element is assumed to vary in the infinite direction from the values at the end point according to decay functions. The absorbing bound-ary scheme do not require the computation of incident an-gles, the separation of vector fields into compressional and shear components, and the assumption of elastic medium being homogeneous in the region adjacent to the boundary. Real examples illustrate the effectiveness of the infinite element-based absorbing boundary.IntroductionWith the aid of the free space Green’s functions, the partial differential equation for elastic waves can be transformed into the boundary integral (BI) equation for homogeneous medium or the volume integral (VI) equation for inhomo-geneous medium. The former can be solved effectively by the boundary element (BE) method (Fu and Mu, 1994), and the latter solved via the velocity-weighted wavefield (Fu et al., 1997). However, in these calculations of wave propa-gation, artificial reflections arise at the edges of domain of computation. To avoid these spurious reflections, a simple method is to enlarge the domain of computation so that reflected signals can not reach the interesting region within the given time period. Obviously, the approach wastes computational resources, particularly for three-dimensional (3-D) computations.Alternatively, the absorbing boundary conditions for finite-difference calculations may be employed to reduce the amplitude of the reflected waves, but sometimes can not produce perfect results when applied to solutions of the BI or VI equation for modeling of elastic waves. The most widely used schemes for elastic waves appear to be those based on paraxial approximations to the elastic wave equa-tion. The paraxial boundary conditions (Clayton and Engquist, 1977; Engquist and Majda, 1979) is easily im-plemented, but perfectly absorb the elastic waves only forwaves nearly normally incident upon the boundary. Veryhigh reflectivities appear for waves traveling obliquely tothe boundary. The boundary conditions based on theschemes of Lindman (1975) and Randall (1988) can absorbobliquely incident waves to a great extent, but is not con-venient to be used in solutions of the BI or VI equation,particularly for the VI equation where the unknown is onlythe displacement, without the normal gradient or stress*involved. Some limitations and assumptions are necessaryfor the above absorbing boundary conditions. For instance,elastic waves are processed by the separation of the inci-dent vector displacement fields into compressional andshear components. The elastic medium is assumed to behomogeneous in the region adjacent to the artificial bound-ary. The performance of the boundary conditions dependson the Poisson’s ratio of the elastic medium.In this paper, an efficient absorbing boundary schemebased on an infinite element technique is described forcalculations of the solutions to the BI or VI equation forelastic wave propagation. The approach overcomes some ofthe difficulties of the above absorbing boundary condi-tions, and takes less memory space and computing time.Lindman’s absorbing boundary for the BI equationConsider the below elastic equation for steady state wavein a homogeneous domainat a location r on the boundaryare the stress components.andis placed at the edges of domain of computation to forma closed surface, and the boundary integrals on areassumed to vanish, that is,1489. = and approaches infinity,we have the solutionsshape functions are given byscalar ab-l(8)sorbing boundary condition denoted byde-Apparently, from the shape functions we have at and atas follows:is perpendicular to r . Letfor each position vectorusing boundary elements, which increasesmemory space and computing time.A quadrilateral infinite element for calculations of the 3-D BI equation or 2-D VI equation is shown in Figure 2 where A andB are the two neighboring nodes at the edge of the curved surface boundary extending to infinity.Infinite element techniqueThe integral equations based on the free space Green’s functions have an ability to consider infinite domain, i.e.,the domain which is not bounded by a closed surface. In-stead the boundary extends to infinity. Infinite exterior region is considered by using infinite elements where the boundary extends to infinity. Therefore, we need not place the artificial boundaryis a positionvector at the end point of the boundary extending to infin-ity.FIG. 2. The quadrilateral infinite element.The position vector at a point in the element can be written FIG. 1. The infinite element for the 2-D BE method,The coordinates at a point in the element can be written as as(11)Infinite element for absorbing boundaryObviously, the shape functions satisfy = 1, andat。

微积分calculus英文单词

微积分calculus英文单词

微积分英语单词Absolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法Arc length :弧长Area :面积Asymptote :渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴at a point :在一点处之连续性as the slope of a tangent :导数看成切线之斜率by differentials :用微分逼近between curves :曲线间之面积Binomial series :二项级数Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性Continuous function :连续函数Convergence :收敛Coordinate :s :坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder :圆柱Cylindrical Coordinates :圆柱坐标Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分Decreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程Differentiation :求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法domain of :导数之定义域differential :微分学Ellipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理from the left :左连续from the right :右连续Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyperboloid :双曲面horizontal :水平渐近线Implicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分integral :积分学implicit :隐求导法Laplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数linear :线性逼近法Maximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数of a function :函数之连续性on an interval :在区间之连续性Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程 Origin :原点Orthogonal :正交的Parabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程 Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数 Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积polar :极坐标partial :偏导数partial :偏微分方程partial :偏微分法Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律rectangular :直角坐标Radius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution, solid of :旋转体Revolution, surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根Saddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称slant :斜渐近线spherical :球面坐标Tangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分term by term :逐项求导法under a curve :曲线下方之面积vertical :垂直渐近线Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x 轴x-coordinate :x 坐标x-intercept :x 截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点。

电子商务论文参考文献精选3篇

电子商务论文参考文献精选3篇

电子商务论文参考文献精选3篇篇一:电子商务毕业论文参考文献电子商务毕业论文参考文献电子商务毕业论文参考文献(一)世纪的典型特征之一是信息经济时代的到来,信息化的浪潮正在深刻影响着全社会的各个方面。

电子商务作为当代信息技术最典型的一个应用,正在彻底地改变着世界和国家的未来,同时,也给了发展中国家一个在经济领域中和发达国家平等竞争的机会。

因此,从政府到企业到个人,全社会的每一个成员都应当为推动电子商务发展、建立健全电子商务支付体系而努力,追随时代发展的脚步,为繁荣国民经济,融入世界经济浪潮献力。

《电子商务教程》胡玫艳主编广州华南理工大学出版社2003年 8月《电子商务概论》李琪主编高等教育出版社2004年9月《中国电子商务发展研究报告》吕廷杰,徐华飞主编北京邮电大学出版社 2003年《电子商务:商业、技术和社会》 (美)劳顿(Laudon,K.C.),(美)特瑞佛(Traver.C.G.)箸,劳帼龄等译高等教育出版社 2004年6月《电子商务导论》司志刚,濮小金主编中国水利水电出版社 2005年《信息法教程》朱庆华,杨坚争主编高等教育出版社 2001年11月电子商务毕业论文参考文献(二)基于电子商务的组织结构内容论文摘要:组织结构设计理论一直是管理学研究的核心内容,优化组织结构尤其是电子商务时代的组织结构,对组织成长和持续提高组织绩效至关重要。

本文在分析现代组织设计的内容、影响组织设计因素的基础上,提出了电子商务时代组织结构设计的发展趋势。

互联网的发展改变了经济发展规律和市场结构,网络的价值与网络节点数的平方成正比,其发展规律是收益递增法则。

电子商务作为网络时代技术发展的必然结果,使企业置身于全球市场,面临着国际竞争。

顾客通过Internet可以搜索到更全面、更完善的产品价格信息,市场权力开始向顾客转移。

在电子商务时代,企业面对的是更加多变的环境、更加激烈的竞争和更加挑剔的顾客,这一切对传统的科层式组织结构形成了冲击和挑战。

微积分介值定理的英文

微积分介值定理的英文

微积分介值定理的英文The Intermediate Value Theorem in CalculusCalculus, a branch of mathematics that has revolutionized the way we understand the world around us, is a vast and intricate subject that encompasses numerous theorems and principles. One such fundamental theorem is the Intermediate Value Theorem, which plays a crucial role in understanding the behavior of continuous functions.The Intermediate Value Theorem, also known as the Bolzano Theorem, states that if a continuous function takes on two different values, then it must also take on all values in between those two values. In other words, if a function is continuous on a closed interval and takes on two different values at the endpoints of that interval, then it must also take on every value in between those two endpoint values.To understand this theorem more clearly, let's consider a simple example. Imagine a function f(x) that represents the height of a mountain as a function of the distance x from the base. If the function f(x) is continuous and the mountain has a peak, then theIntermediate Value Theorem tells us that the function must take on every height value between the base and the peak.Mathematically, the Intermediate Value Theorem can be stated as follows: Let f(x) be a continuous function on a closed interval [a, b]. If f(a) and f(b) have opposite signs, then there exists a point c in the interval (a, b) such that f(c) = 0.The proof of the Intermediate Value Theorem is based on the properties of continuous functions and the completeness of the real number system. The key idea is that if a function changes sign on a closed interval, then it must pass through the value zero somewhere in that interval.One important application of the Intermediate Value Theorem is in the context of finding roots of equations. If a continuous function f(x) changes sign on a closed interval [a, b], then the Intermediate Value Theorem guarantees that there is at least one root (a value of x where f(x) = 0) within that interval. This is a powerful tool in numerical analysis and the study of nonlinear equations.Another application of the Intermediate Value Theorem is in the study of optimization problems. When maximizing or minimizing a continuous function on a closed interval, the Intermediate Value Theorem can be used to establish the existence of a maximum orminimum value within that interval.The Intermediate Value Theorem is also closely related to the concept of connectedness in topology. If a function is continuous on a closed interval, then the image of that interval under the function is a connected set. This means that the function "connects" the values at the endpoints of the interval, without any "gaps" in between.In addition to its theoretical importance, the Intermediate Value Theorem has practical applications in various fields, such as economics, biology, and physics. For example, in economics, the theorem can be used to show the existence of equilibrium prices in a market, where supply and demand curves intersect.In conclusion, the Intermediate Value Theorem is a fundamental result in calculus that has far-reaching implications in both theory and practice. Its ability to guarantee the existence of values between two extremes has made it an indispensable tool in the study of continuous functions and the analysis of complex systems. Understanding and applying this theorem is a crucial step in mastering the powerful concepts of calculus.。

克隆巴赫系数的英文

克隆巴赫系数的英文

克隆巴赫系数的英文English:The Bernstein–Sato polynomial of a germ of a complex analytic function at a point is an object of central importance in singularity theory and complex analysis. It encodes crucial information about the singular behavior of the function near the given point. The Bernstein–Sato polynomial is intimately related to the Bernstein–Sato ideal, which is a fundamental concept in the study of D-modules and p-adic differential equations. The study of Bernstein–Sato polynomials and ideals has deep connections to various areas of mathematics, including algebraic geometry, representation theory, and harmonic analysis. These polynomials have been extensively studied in the context of local zeta functions, where they play a crucial role in understanding the structure of singularities and in the computation of zeta functions associated with singularities. In recent years, there has been significant progress in understanding the properties and applications of Bernstein–Sato polynomials, leading to new insights into the nature of singularities and their interactions with other mathematical objects.中文翻译:克隆巴赫多项式是复解析函数在某一点处的一个基本概念,它在奇点理论和复分析中具有重要的地位。

最新弹性力学专业英语英汉互译词汇

最新弹性力学专业英语英汉互译词汇

弹性力学专业英语英汉互译词汇弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state ofstrain应变协调方程equation of straincompatibility拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk楔wedge开尔文问题Kelvin problem布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利Kolosoff- 什维利法Muskhelishvili method基尔霍夫假设Kirchhoff hypothesis板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforcedPlate中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell [圆]柱壳Cylindrical shell锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion 翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method莱维法Levy method松弛Relaxation量纲分析Dimensional analysis自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing破坏机构Collapse mechanism回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave简单加载Simple loading比例加载Proportional loading卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension 加速度波acceleration wave本构方程constitutive equation 完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization应变率strain rate应变率敏感性strain rate sensitivity 应变空间strain space有限应变finite strain塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening强化模量strain-hardening modulus幂强化power hardening塑性极限弯矩plastic limit bendingMoment塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plasticMaterial极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy屈服Yield屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response 塑性波plastic wave运动容许场kinematically admissibleField 静力容许场statically admissibleField流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge 塑性增量理论incremental theory ofPlasticity米泽斯屈服准则Mises yield criterion 普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应Haigh-Westergaard 力空间stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocityEquation结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method 力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan eliminationMethod屈曲模态buckling mode复合材料力学mechanics of composites复合材料composite material纤维复合材料fibrous composite单向复合材料unidirectional composite泡沫复合材料foamed composite颗粒复合材料particulate composite 层板Laminate夹层板sandwich panel正交层板cross-ply laminate斜交层板angle-ply laminate层片Ply多胞固体cellular solid膨胀Expansion压实Debulk劣化Degradation脱层Delamination脱粘Debond纤维应力fiber stress层应力ply stress层应变ply strain层间应力interlaminar stress比强度specific strength强度折减系数strength reduction factor 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy正交各向异Orthotropy剪滞分析shear lag analysis短纤维chopped fiber长纤维continuous fiber纤维方向fiber direction纤维断裂fiber break纤维拔脱fiber pull-out纤维增强fiber reinforcement致密化Densification最小重量设计optimum weight design网格分析法netting analysis混合律rule of mixture失效准则failure criterion蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model断裂力学fracture mechanics概率断裂力学probabilistic fractureMechanics格里菲思理论Griffith theory线弹性断裂力学linear elastic fracturemechanics, LEFM弹塑性断裂力学elastic-plastic fracturemecha-nics, EPFM 断裂Fracture脆性断裂brittle fracture解理断裂cleavage fracture蠕变断裂creep fracture延性断裂ductile fracture晶间断裂inter-granular fracture 准解理断裂quasi-cleavage fracture 穿晶断裂trans-granular fracture裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹elliptical crack深埋裂纹embedded crack[钱]币状裂纹penny-shape crack预制裂纹Precrack短裂纹short crack表面裂纹surface crack裂纹钝化crack blunting裂纹分叉crack branching裂纹闭合crack closure裂纹前缘crack front裂纹嘴crack mouth裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement,COD裂纹阻力crack resistance裂纹面crack surface裂纹尖端crack tip裂尖张角crack tip opening angle,CTOA裂尖张开位移crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularityField裂纹扩展速率crack growth rate稳定裂纹扩展stable crack growth定常裂纹扩展steady crack growth亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest止裂韧度arrest toughness断裂类型fracture mode滑开型sliding mode张开型opening mode撕开型tearing mode复合型mixed mode撕裂Tearing撕裂模量tearing modulus断裂准则fracture criterionJ积分J-integral J阻力曲线J-resistance curve断裂韧度fracture toughness应力强度因子stress intensity factor HRR场Hutchinson-Rice-RosengrenField 守恒积分conservation integral 有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate内聚区cohesive zone塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transitiontempe- rature 剪切带shear band剪切唇shear lip无损检测non-destructive inspection 双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding小范围攻屈服small scale yielding韦布尔分布Weibull distribution帕里斯公式paris formula空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRA 损伤力学damage mechanics损伤Damage连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage脆性损伤brittle damage延性损伤ductile damage宏观损伤macroscopic damage细观损伤microscopic damage微观损伤microscopic damage损伤准则damage criterion损伤演化方程damage evolution equation 损伤软化damage softening损伤强化damage strengthening损伤张量damage tensor损伤阈值damage threshold损伤变量damage variable损伤矢量damage vector损伤区damage zone疲劳Fatigue低周疲劳low cycle fatigue应力疲劳stress fatigue随机疲劳random fatigue蠕变疲劳creep fatigue腐蚀疲劳corrosion fatigue疲劳损伤fatigue damage疲劳失效fatigue failure疲劳断裂fatigue fracture 疲劳裂纹fatigue crack疲劳寿命fatigue life疲劳破坏fatigue rupture疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue应力循环stress cycle应力比stress ratio安全寿命safe life过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage裂纹扩展crack growth, crackPropagation裂纹萌生crack initiation 循环比cycle ratio实验应力分析experimental stressAnalysis工作[应变]片active[strain] gage基底材料backing material应力计stress gage零[点]飘移zero shift, zero drift 应变测量strain measurement应变计strain gage应变指示器strain indicator应变花strain rosette应变灵敏度strain sensitivity机械式应变仪mechanical strain gage 直角应变花rectangular rosette引伸仪Extensometer应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage平衡电桥balanced bridge粘贴式应变计bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge电阻应变计resistance strain gage 温度自补偿应变计self-temperaturecompensating gage半导体应变计semiconductor strainGage 集流器slip ring应变放大镜strain amplifier疲劳寿命计fatigue life gage电感应变计inductance [strain] gage 光[测]力学Photomechanics光弹性Photoelasticity光塑性Photoplasticity杨氏条纹Young fringe双折射效应birefrigent effect等位移线contour of equalDisplacement 暗条纹dark fringe条纹倍增fringe multiplication 干涉条纹interference fringe等差线Isochromatic等倾线Isoclinic等和线isopachic应力光学定律stress- optic law主应力迹线Isostatic亮条纹light fringe光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coatingMethod光弹性夹片法photoelastic sandwichMethod动态光弹性dynamic photo-elasticity 空间滤波spatial filtering空间频率spatial frequency起偏镜Polarizer反射式光弹性仪reflection polariscope残余双折射效应residual birefringentEffect应变条纹值strain fringe value应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect应力条纹值stress fringe value应力光图stress-optic pattern暂时双折射效应temporary birefringentEffect脉冲全息法pulsed holography透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographicinterfero - metry 网格法grid method全息光弹性法holo-photoelasticity 全息图Hologram全息照相Holograph全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry, shearography 散斑图Specklegram白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern离面云纹法off-plane moire method参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method脆性涂层法brittle-coating method条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple 修正变分原理modified variationalPrinciple 约束变分原理constrained variationalPrinciple混合法mixed method杂交法hybrid method边界解法boundary solution method有限条法finite strip method半解析法semi-analytical method协调元conforming element非协调元non-conforming element混合元mixed element杂交元hybrid element边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement广义载荷generalized load广义应变generalized strain广义应力generalized stress界面变量interface variable节点node, nodal point [单]元Element角节点corner node边节点mid-side node内节点internal node无节点变量nodeless variable 杆元bar element桁架杆元truss element梁元beam element二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element板元plate element壳元shell element厚板元thick plate element三角形元triangular element四边形元quadrilateral element 四面体元tetrahedral element曲线元curved element二次元quadratic element线性元linear element三次元cubic element四次元quartic element等参[数]元isoparametric element超参数元super-parametric element 亚参数元sub-parametric element节点数可变元variable-number-node element 拉格朗日元Lagrange element拉格朗日族Lagrange family巧凑边点元serendipity element巧凑边点族serendipity family无限元infinite element单元分析element analysis单元特性element characteristics 刚度矩阵stiffness matrix几何矩阵geometric matrix等效节点力equivalent nodal force节点位移nodal displacement节点载荷nodal load位移矢量displacement vector载荷矢量load vector质量矩阵mass matrix集总质量矩阵lumped mass matrix相容质量矩阵consistent mass matrix阻尼矩阵damping matrix瑞利阻尼Rayleigh damping刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements局部坐标系local coordinate system局部坐标local coordinate面积坐标area coordinates体积坐标volume coordinates曲线坐标curvilinear coordinates静凝聚static condensation合同变换contragradient transformation 形状函数shape function试探函数trial function检验函数test function权函数weight function样条函数spline function代用函数substitute function降阶积分reduced integration零能模式zero-energy modeP收敛p-convergenceH收敛h-convergence掺混插值blended interpolation等参数映射isoparametric mapping双线性插值bilinear interpolation小块检验patch test非协调模式incompatible mode节点号node number单元号element number带宽band width带状矩阵banded matrix变带状矩阵profile matrix带宽最小化minimization of band width 波前法frontal method子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method纽马克法Newmark威尔逊法Wilson拟牛顿法quasi-Newton method牛顿-拉弗森法Newton-Raphson method 增量法incremental method初应变initial strain初应力initial stress切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration子结构Substructure子结构法substructure technique超单元super-element网格生成mesh generation结构分析程序structural analysis program 前处理pre-processing后处理post-processing网格细化mesh refinement应力光顺stress smoothing组合结构composite structure。

非一致格子上离散分数阶差分与分数阶和分

非一致格子上离散分数阶差分与分数阶和分

收稿日期:2020-11-25基金项目:福建省自然科学基金(2016J01032)作者简介:程金发(1966-),男,江西省乐平市人,博士,教授,博士生导师.*通信作者.E-mail :***************.cn非一致格子上离散分数阶差分与分数阶和分程金发*(厦门大学数学科学学院福建厦门,361005)摘要:众所周知,一致格子上分数阶和分与分数阶差分的思想概念也是最近几年才兴起的,并且在该邻域得到了很大的发展.但是在非一致格子x ()z =c 1z 2+c 2z +c 3或者x ()z =c 1q z +c 2q -z +c 3上,分数阶和分与分数阶差分的定义是什么,这是一个十分复杂和有趣的问题.本文首次提出非一致格子上分数阶和分与Riemann-Liouville 分数阶差分、Caputo 分数阶差分的定义以及非一致格子上广义Abel 积分方程的求解等基础性结果.关键词:超几何差分方程;非一致格子;分数阶和分;分数阶差分;特殊函数中图分类号:33C45;33D45;26A33;34K37文献标志码:A文章编号:2095-7122(2021)01-0001-013On the fractional sum and fractional difference on nonuniform latticesCHENG Jinfa *(School of Mathematical Sciences,Xiamen University,Xiamen,Fujian 361005,China )Abstract:As is well known,the idea of a fractional sum and difference on uniform lattice is more current,and gets a lot of development in this field.But the definitions of fractional sum and fractional difference of f ()z on nonuniform lattices x ()z =c 1z 2+c 2z +c 3or x ()z =c 1q z +c 2q -z +c 3seem much more complicated andinteresting.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on nonuniform lattices.The solution of the generalized Abel equation is obtained etc.Key words:special function;orthogonal polynomials;adjoint difference equation;difference equation of hy-pergeometric type;nonuniform lattice第34卷第1期2021年3月闽南师范大学学报(自然科学版)Journal of Minnan Normal University (Natural Science )Vol.34No.1Mar.20211背景回顾及问题提出正如我们在本文序言指出的,分数阶微积分的概念几乎与经典微积分同时起步,可以回溯到Euler 和Leibniz 时期.经过几代数学家的努力,特别是近几十年来,分数阶微积分已经取得了惊人的发展和广阔的应用,有关分数阶微积分的著作层出不穷,例如文献[1-4],但是在一致格子x ()z =z 和x ()z =q z 或者q -z ,z ∈C 上关于离散分数阶微积分的思想,仍然是最近才兴起的.虽然关于一致格子x ()z =z 和x ()z =q z 的离散分数微积分出现和建立相对较晚,但是该领域目前已经做出了大量的工作,且取得了很大的发展[5-8].在最近十年的学术著作中,程金发[9],Goodrich 和Peterson [10]相继出版了两本有关离散分数阶方程理论、离散分数微积分的著作,其中全面系统地介绍了离散分数微积分的基本定义和基本定理,以及最新的参考资料.有关q -分数阶微积分方面的著作可参见Annaby 和Mansour [11].非一致格子的定义回溯到超几何型微分方程[12-13]:σ()z y ′′()z +τ()z y ′()z +λy ()z =0,(1)的逼近,这里σ()z 和τ()z 分别是至多二阶和一阶多项式,λ是常数.Nikiforov 等[14-15]将式(1)推广到如下最一般的复超几何差分方程σˉ[]x ()s ΔΔx ()s -12éëêùûú∇y ()s ∇x ()s +12τˉ[]x ()s éëêùûúΔy ()s Δx ()s +∇y ()s ∇x ()s +λy ()s =0,(2)这里σˉ()x 和τˉ()x 分别是关于x ()s 的至多二阶和一阶多项式,λ是常数,Δy ()s =y ()s +1-y ()s ,∇y ()s =y ()s -y ()s -1,并且x ()s 必须是以下非一致格子.定义1[16-17]两类格子函数x ()s 称之为非一致格子,如果它们满足x ()s =-c 1s 2+-c 2s +-c 3,(3)x ()s =c 1q s +c 2q -s +c 3,(4)这里c i ,-c i 是任意常数,且c 1c 2≠0,-c 1-c 2≠0.当c 1=1,c 2=c 3=0,或c 2=1,c 1=c 3=0或者-c 2=1,-c 1=-c 3=0时,这两种格子函数x ()s :x ()s =s ,(5)x ()s =q s 或x ()s =q -s(6)称之为一致格子.给定函数F ()s ,定义关于x γ()s 的差分或差商算子为∇γF ()s =∇F ()s ∇x γ()s ,且∇k γF ()z =∇∇x γ()z ()∇∇x γ+1()z ⋯()∇()F ()z ∇x γ+k -1()z .()k =1,2,⋯关于差商算子,命题1是常用的.命题1给定两个复函数f ()s ,g ()s ,成立恒等式Δυ()f ()s g ()s =f ()s +1Δυg ()s +g ()s Δυf ()s =g ()s +1Δυf ()s +f ()s Δυg ()s ,Δυ()f ()s g ()s =g ()s +1Δυf ()s -f ()s +1Δυg ()s g ()s g ()s +1=g ()s Δυf ()s -f ()s Δυg ()s g ()s g ()s +1,Δυ()f ()s g ()s =f ()s -1Δυg ()s +g ()s Δυf ()s =g ()s -1Δυf ()s +f ()s Δυg ()s ,(7)Δυ()f ()s g ()s =g ()s -1Δυf ()s -f ()s -1Δυg ()s g ()s g ()s -1=闽南师范大学学报(自然科学版)2021年2g ()s Δυf ()s -f ()s Δυg ()s g ()s g ()s -1.我们必须指出,在非一致格子式(3)或者式(4),即使当n ∈N ,如何建立非一致格子的n -差商公式,也是一件很不平凡的工作,因为它是十分复杂的,也是难度很大的.事实上,在文献[14-15]中,Nikiforov 等利用插值方法得到了如下n -阶差商∇()n 1[]f ()s 公式:定义2[12-13]对于非一致格子式(3)或式(4),让n ∈N +,那么∇()n 1[]f ()s =∑k =0n ()-1n -k[]Γ()n +1q[]Γ()k +1q[]Γ()n -k +1q×∏l =0n∇x []s +k -()n -12∇x []s +()k -l +12f ()s -n +k =∑k =0n()-1n -k[]Γ()n +1q[]Γ()k +1q[]Γ()n -k +1q×∏l =0n ∇x n +1()s -k ∇x []s +()n -k -l +12f ()s -k ,(8)这里[]Γ()s q 是修正的q -Gamma 函数,它的定义是[]Γ()s q=q -()s -1()s -24Γq ()s ,并且函数Γq ()s 被称为q -Gamma 函数;它是经典Euler Gamma 函数Γ()s 的推广.其定义是Γq ()s =ìíîïïïï∏k =0∞(1-q k +1)()1-q s -1∏k =0∞(1-q s +k),当||q <1;q -()s -1()s -22Γ1q ()s ,当||q >1.(9)经过进一步化简后,Nikiforov 等在文献[14]中将n 阶差分∇()n 1[]f ()s 的公式重写成下列形式:定义3[14]对于非一致格子式(3)或式(4),让n ∈N +,那么∇()n 1[]f ()s =∑k =0n ()[]-n qk[]k q ![]Γ()2s -k +c q[]Γ()2s -k +n +1+c qf ()s -k ∇x n +1()s -k ,这里[]μq=γ()μ=ìíîïïïïq u2-q -u 2q 12-q -12如果x ()s =c 1q s +c 2q -s +c 3;μ,如果x ()s =-c 1s 2+-c 2s +c 3,(10)且c =ìíîïïïïïïïïlog c 2c 1log q ,当x ()s =c 1q s +c 2q -s +c 3,-c 2-c 1,当x ()s =-c 1s 2+-c 2s +c 3.程金发:非一致格子上离散分数阶差分与分数阶和分第1期3现在存在两个十分重要且具有挑战性的问题需要进一步深入探讨:1)对于非一致格子上超几何差分方程式(2),在特定条件下存在关于x ()s 多项式形式的解,如果用Rodrigues 公式表示的话,它含有整数阶高阶差商.一个新的问题是:若该特定条件不满足,那么非一致格子上超几何差分方程式(2)的解就不存在关于x ()s 的多项式形式,这样高阶整数阶差商就不再起作用了.此时非一致格子超几何方程的解的表达形式是什么呢?这就需要我们引入一种非一致格子上分数阶差商的新概念和新理论.因此,关于非一致格子上α-阶分数阶差分及α-阶分数阶和分的定义是一个十分有趣和重要的问题.显而易见,它们肯定是比整数高阶差商更为难以处理的困难问题,自专著[14-15]出版以来,Nikiforov 等并没有给出有关α-阶分数阶差分及α-阶分数阶和分的定义,我们能够合理给出非一致格子上分数阶差分与分数阶和分的定义吗?2)另外,我们认为作为非一致格子上最一般性的离散分数微积分,它们也会有独立的意义,并可以导致许多有意义的结果和新理论.本文的目的是探讨非一致格子上离散分数阶和差分.受文章篇幅所限,本文我们仅合理给出非一致格上分数阶和分与分数阶差分的基本定义,其它更多结果例如:非一致格子离散分数阶微积分的一些基本定理,如:Euler Beta 公式,Cauchy Beta 积分公式,Taylor 公式、Leibniz 公式在非一致格子上的模拟形式,非一致格子上广义Abel 方程的解,以及非一致格子上中心分数差分方程的求解,离散分数阶差和分与非一致格子超几何方程之间联系等内容,请参见笔者新专著[16].2非一致格子上的整数和分与整数差分设x ()s 是非一致格子,这里s ∈ℂ.对任意实数γ,x γ()s =x ()s +γ2也是一个非一致格子.让∇γF ()s =f ()s .那么F ()s -F ()s -1=f ()s []x γ()s -x γ()s -1.选取z ,a ∈ℂ,和z -a ∈N .从s =a +1到z ,则有F ()z -F ()a =∑s =a +1zf ()s ∇x r()s .因此,我们定义∫a +1z f ()s d ∇x γ()s =∑s =a +1zf ()s ∇xγ()s .容易直接验证下列式子成立.命题2给定两个复变函数F ()z ,f ()z ,这里复变量z ,a ∈C 以及z -a ∈N ,那么成立1)∇γéëêùûú∫a +1zf ()s d ∇x γ()s =f ()z ;2)∫a +1z∇γF ()s d ∇x γ()s =F ()z -F ()a .现在让我们定义非一致格子上的广义n -阶幂函数[]x ()s -x ()z ()n 为[]x ()s -x ()z ()n =∏k =0n -1[]x ()s -x ()z -k ,()n ∈N +,当n 不是正整数时,需要将广义幂函数加以进一步推广,它的性质和作用是非常重要的,非一致格子上广义幂函数[]x γ()s -x γ()z ()α的定义如下:闽南师范大学学报(自然科学版)2021年4定义4[17-18]设α∈C ,广义幂函数[]x γ()s -x γ()z ()α定义为[]x γ()s -x γ()z ()α=ìíîïïïïïïïïïïïïïïïïïïïïΓ()s -z +a Γ()s -z ,如果x ()s =s ,Γ()s -z +a Γ()s +z +γ+1Γ()s -z Γ()s +z +γ-α+1,如果x ()s =s 2,()q -1αq α()γ-α+12Γq ()s -z +αΓq ()s -z ,如果x ()s =q s ,12α()q -12αq -α()s +γ2Γq ()s -z +αΓq ()s +z +γ+1Γq ()s -z Γq ()s +z +γ-α+1,如果x ()s =q s +q -s 2.(11)对于形如式(4)的二次格子,记c =-c 2-c 1,定义[]x γ()s -x γ()z ()α=-c 1αΓ()s -z +a Γ()s +z +γ+c +1Γ()s -z Γ()s +z +γ-α+c +1;(12)对于形如式(3)的二次格子,记c =logc 2c 1log q,定义[]xγ()s -x γ()z ()α=éëùûc 1()1-q 2αq -α()s +γ2Γq()s -z +a Γq()s +z +γ+c +1Γq()s -z Γq()s +z +γ-α+c +1,(13)这里Γ()s 是Euler Gamma 函数,且Γq ()s 是Euler q -Gamma 函数,其定义如式(9).命题3[17-18]对于x ()s =c 1q s +c 2q -s +c 3或者x ()s =-c 1s 2+-c 2s +-c 3,广义幂[]x γ()s -x γ()z ()α满足下列性质:[]x γ()s -x γ()z []x γ()s -x γ()z -1()μ=[]x γ()s -x γ()z ()μ[]xγ()s -x γ()z -μ=(14)[]xγ()s -x γ()z ()μ+1;(15)[]xγ-1()s +1-x γ-1()z ()μ[]xγ-μ()s -x γ-μ()z =[]x γ-μ()s +μ-x γ-μ()z []x γ-1()s -x γ-1()z ()μ=[]x γ()s -x γ()z ()μ+1;(16)ΔzΔx γ-μ+1()z []xγ()s -x γ()z ()μ=-∇s∇x γ+1()s []x γ+1()s -x γ+1()z ()μ=(17)-[]μq []x γ()s -x γ()z ()μ-1;(18)∇z∇x γ-μ+1()z {}1[]xγ()s -x γ()z ()μ=-ΔsΔx γ-1()s ìíîïïüýþïï1[]x γ-1()s -x γ-1()z ()μ=(19)[]μq[]xγ()s -x γ()z ()μ+1(20)这里[]μq 定义如式(10).程金发:非一致格子上离散分数阶差分与分数阶和分第1期5现在让我们详细给出非一致格子x γ()s 上整数阶和分的定义,这对于我们进一步给出非一致格子x γ()s 上分数阶和分的定义是十分有帮助的.设γ∈R ,对于非一致格子x γ()s ,数集{}a +1,a +2,⋯,z 中f ()z 的1-阶和分定义为y 1()z =∇-1γf ()z =∫a +1z f ()s d ∇x γ()s ,(21)这里y 1()z =∇-1γf ()z 定义在数集{}a +1,mod ()1中.那么由命题2,我们有∇1γ∇-1γf ()z =∇y 1()z ∇x γ()z =f ()z ,(22)并且对于非一致格子x γ()s ,数集{}a +1,a +2,⋯,z 中f ()z 的2-阶和分定义为y 2()z =∇-2γf ()z =∇-1γ+1[]∇-1γf ()z =∫a +1z y 1()s d ∇x γ+1()s =∫a +1z d ∇x γ+1()s ∫a +1s f ()t d ∇x γ()t =∫a +1z f ()t d ∇x γ()t ∫tz d ∇x γ+1()s =∫a +1z []x γ+1()z -x γ+1()t -1f ()s d ∇x γ()s .(23)这里y 2()z =∇-2γf ()z 定义在数集{}a +1,mod ()1中.同时,可得∇1γ+1∇1γ-1y 1()z =∇y 2()z ∇x γ+1()z =y 1()z ,∇2γ∇-2γf ()z =∇∇x γ()z ()∇y 2()z ∇x γ+1()z =∇y 1()z ∇x γ()z =f ()z .(24)更一般地,由数学归纳法,对于非一致格子x γ()s ,数集{}a +1,a +2,⋯,z 中函数f ()z ,我们可以给出函数f ()z 的n -阶和分定义为y k ()z =∇-kγf ()z =∇-1γ+k -1[]∇-()k -1γf ()z =∫a +1z y k -1()s d ∇x γ+k -1()s =1[]Γ()k q∫a +1z []xγ+k -1()z -x γ+k -1()t -1()k -1f ()t d ∇x γ()t ,()k =1,2,⋯(25)这里[]Γ()k q=ìíîïïq -()k -1()k -2Γq ()k ,如果x ()s =c 1q s +c 2q -s +c 3;Γ()α,如果x ()s =-c 1s 2+-c 2s +c 3,这满足下式[]Γ()k +1q=[]k q []Γ()k q ,[]Γ()2q =[]1q []Γ()1q =1.那么成立∇kγ∇-k γf ()z =∇∇x γ()z ()∇∇x γ+1()z ⋯()∇y k ()z ∇x γ+k -1()z =f ()z .()k =1,2,⋯(26)需要指出的是,当k ∈C 时,式(25)右边仍然是有意义的,因此自然地,我们就可以对非一致格子x γ()s 闽南师范大学学报(自然科学版)2021年6给出函数f ()z 的分数阶和分定义如下:定义5(非一致格子分数阶和分)对任意Re α∈R +,对于非一致格子式(3)和式(4),数集{}a +1,a +2,⋯,z 中的函数f ()z ,我们定义它的α-阶分数阶和分为∇-αγf ()z =1[]Γ()αq∫a +1z []xγ+α-1()z -x γ+α-1()t -1()α-1f ()s d ∇x γ()s ,(27)这里[]Γ()αq=ìíîïïq -()s -1()s -2Γq ()α,如果x ()s =c 1q s +c 2q -s +c 3;Γ()α,如果x ()s =-c 1s 2+-c 2s +c 3,这满足下式[]Γ()α+1q=[]αq []Γ()αq .3非一致格子上的Abel 方程及分数阶差分非一致格子x γ()s 上f ()z 的分数阶差分定义相对似乎更困难和复杂一些.我们的思想是起源于非一致格子上广义Abel 方程的求解.具体来说,一个重要的问题是:让m -1<Re α≤m ,定义在数集{}a +1,a +2,⋯,z 的f ()z 是一给定函数,定义在数集{}a +1,a +2,⋯,z 的g ()z 是一未知函数,它们满足以下广义Abel 方程∇-αγg ()z =∫a +1z []x γ+α-1()z -x γ+α-1()t -1()α-1[]Γ()αqg ()t d ∇x γ()t =f ()t ,(28)怎样求解该广义Abel 方程式(28)?为了求解方程式(28),我们需要利用重要的Euler Beta 公式在非一致格子下的基本模拟.定理1[16](非一致格子上Euler Beta 公式)对于任何α,β∈C ,那么对非一致格子x ()s ,我们有∫a +1z []x β()z -x β()t -1()β-1[]Γ()βq[]x ()t -x ()αα[]Γ()α+1qd ∇x 1()t =[]x β()z -x β()α()α+β[]Γ()α+β+1q.(29)定理2(Abel 方程的解)设定义在数集{}a +1,mod ()1中的函数f ()z 和函数g ()z 满足∇-αγg ()z =f ()z ,0<m -1<Re α≤m ,那么g ()z =∇m γ∇-m +αγ+αf ()z (30)成立.证明我们仅需证明∇-m γg ()z =∇-m +αγ+αf ()z ,即∇-()m -αγ+αf ()z =∇-()m -αγ+α∇-αγg ()z =∇-m γg ()z .事实上,由定义5可得程金发:非一致格子上离散分数阶差分与分数阶和分第1期7∇-()m -αγ+af ()z =∫a +1z []xγ+m -1()z -x γ+m -1()t -1()m -α-1[]Γ()m -αqf ()t d ∇x γ+α()t =∫a +1z []x γ+m -1()z -x γ+m -1()t -1()m -α-1[]Γ()m -αqd ∇x γ+α()t ⋅∫a +1z []xγ+α-1()t -x γ+α-1()s -1()α-1[]Γ()αqg ()s d ∇x γ()s =∫a +1zg ()s ∇x γ()s ∫sz []xγ+m -1()z -x γ+m -1()t -1()m -α-1[]Γ()m -αq⋅[]xγ+α-1()t -x γ+α-1()s -1()α-1[]Γ()αqd ∇x γ+α()t .在定理1中,将α+1替换成s ;α替换成α-1;β替换成m -α,且将x ()t 替换成x γ+α-1()t ,那么x β()t 替换成x γ+m -1()t ,则我们能够得出下面的等式∫sz []xγ+m -1()z -x γ+m -1()t -1()m -α-1[]Γ()m -αq[]xγ+α-1()t -x γ+α-1()s -1()α-1[]Γ()αqd ∇x γ+α()t =[]xγ+m -1()z -x γ+m -1()s -1()-m -1[]Γ()m q,因此,我们有∇-()m -αγ+af ()z =∫a +1z []x γ+m -1()z -x γ+m -1()s -1()-m -1[]Γ()m qg ()s d ∇x γ()s =∇-mγg ()z ,这样就有∇m γ∇-()m -αγ+a f ()z =∇m γ∇-m γg ()z =g ()z .由定理2得到启示,很自然地我们给出关于f ()z 的Riemann-Liouville 型α-阶()0<m -1<Re α≤m 分数阶差分的定义如下:定义6(Riemann-Liouville 分数阶差分)让m 是超过Re α的最小正整数,对于非一致格子x γ()s ,数集{}α,mod ()1中f ()z 的Riemann-Liouville 型α-阶分数阶差分定义为∇αγf ()z =∇m γ()∇α-mγ+αf ()z .(31)形式上来说,在定义5中,如果α替换成-α,那么式(27)的右边将变为∫a +1z []xγ-α-1()z -x γ-α-1()t -1()-α-1[]Γ()-αqf ()t d ∇x γ()t =∇∇x γ-α()t ()∇∇x γ-α+1()t ⋯()∇∇x γ-α+n -1()t ⋅∫a +1z[]xγ+n -α-1()z -x γ+n -α-1()t -1()n -α-1[]Γ()n -αqf ()t d ∇x γ()t =∇n γ-α∇-n +αγf ()z =∇αγ-αf ()z .(33)闽南师范大学学报(自然科学版)2021年8从式(33),我们也可以得到f ()z 的Riemann-Liouville 型α-阶分数阶差分如下:定义7(Riemann-Liouville 型分数阶差分2)对任意Re α>0,对于非一致格子x γ()s ,数集{}a +1,a +2,⋯,z 中f ()z 的Riemann-Liouville 型α-阶分数阶差分定义为∇αγ-αf ()z =∫a +1z x γ-α-1()z -x γ-α-1()t -1()-α-1[]Γ()-αqf ()t d ∇x γ()t ,(34)将∇γ-α()t 替换成∇γ()t ,那么∇αγf ()z =∫a +1z []x γ-1()z -x γ-1()t -1()-α-1[]Γ()-αqf ()t d ∇x γ+α()t ,(35)这里假定[]Γ()-αq ≠0.4非一致格子上Caputo 型分数阶差分在本节,我们将给出非一致格子上Caputo 型分数阶差分的合理定义.定理3(分部求和公式)给定两个复变函数f (s ),g (s ),那么∫a +1z g (s )∇γf (s )d ∇x γ(s )=f (z )g (z )-f (a )g (a )-∫a +1z f (s -1)∇γg (s )d ∇x γ(s ),这里z ,a ∈C ,且假定z -a ∈N .证明应用命题1,可得g (s )∇γf (s )=∇γ[f (z )g (z )]-f (s -1)∇γg (s ),这样就有g (s )∇r f (s )=∇r [f (z )g (z )]-f (s -1)∇r g (s ).关于变量s ,从a +1到z 求和,那么可得∫a +1z g (s )∇γf (s )d ∇x γ(s )=∫a +1z ∇γ[f (z )g (z )]∇x γ(s )-∫a +1z f (s -1)∇γg (s )d ∇x γ(s )=f (z )g (z )-f (a )g (a )-∫a +1z f (s -1)∇γg (s )d ∇x γ(s ).与非一致格子上Riemann-Liouville 型分数阶差分定义的思想来源一样,对于非一致格子上Caputo 型分数阶差分定义思想,也是受启发于非一致格子上广义Abel 方程式(28)的解.在本文第3节,借助于非一致格子上的Euler Beta 公式,我们已经求出广义Abel 方程∇-αγg (z )=f (z ),0<m -1<α≤m ,是g (z )=∇αγf (z )=∇m γ∇-m +αγ+αf (z ).(36)现在我们将用分部求和公式,给出式(36)的另一种新的表达式.事实上,我们有∇a γf (z )=∇m γ∇-m +aγ+a f (z )=∇mγ∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α-1)[Γ(m -α)]qf (s )d ∇x γ+α(s ).(37)应用恒等式∇(s )[x γ+m -1(z )-x γ+m -1(s )](m -α)∇x γ+α(s )=∇(s )[x γ+m -1(z )-x γ+m -1(s -1)](m -α)∇x γ+α(s -1)=-[m -α]q [x γ+m -1(z )-x γ+m -1(s -1)](m -α-1),那么以下表达式程金发:非一致格子上离散分数阶差分与分数阶和分第1期9∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α-1)[Γ(m -α)]qf (s )d ∇x γ+α(s ),可被改写成∫a +1zf (s )∇(s ){-[x γ+m -1(z )-x γ+m -1(s )](m -α)[Γ(m -α+1)]q}d ∇s =∫a +1z f (s )∇γ+α-1{-[x γ+m -1(z )-x γ+m -1(s )](m -α)[Γ(m -α+1)]q}d ∇x γ+α-1(s ).应用分部求和公式,可得∫a +1zf (s )∇γ+α-1{-[x γ+m -1(z )-x γ+m -1(s )](m -α)[Γ(m -α+1)]q}d ∇x γ+α-1(s )=f (a )[x γ+m -1(z )-x γ+m -1(a )](m -α)[Γ(m -α+1)]q+∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α)[Γ(m -α+1)]q∇γ+α-1[f (s )]d ∇x γ+α-1(s ).因此,这可导出∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α-1)[Γ(m -α)]q}f (s )d ∇x γ+α(s )=f (a )[x γ+m -1(z )-x γ+m -1(a )](m -α)[Γ(m -α+1)]q+∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α)[Γ(m -α+1)]q∇γ+α-1[f (s )]d ∇x γ+α-1(s ).(38)进一步,考虑∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α)[Γ(m -α+1)]q∇γ+α-1[f (s )]d ∇x γ+α-1(s ),(39)利用恒等式∇(s )[x γ+m -1(z )-x γ+m -1(s )](m -α+1)∇x γ+α-1(s )=∇(s )[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)∇x γ+α-1(s -1)=-[m -α+1]q [x γ+m -1(z )-x γ+m -1(s -1)](m -α),表达式(39)能被改写成∫a +1z∇γ+α-1[f (s )]∇(s ){-[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q}d ∇s =∫a +1z∇γ+α-1[f (s )]∇γ+α-2{-[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q}d ∇x γ+α-2(s ).由分部求和公式,我们有∫a +1z ∇γ+α-1[f (s )]∇γ+α-2{-[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q}d ∇x γ+α-2(s )=∇γ+α-1f (a )[x γ+m -1(z )-x γ+m -1(a )](m -α+1)[Γ(m -α+2)]q +∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q[∇γ+α-2∇γ+α-1]f (s )d ∇x γ+α-2(s )=闽南师范大学学报(自然科学版)2021年10∇γ+α-1f (a )[x γ+m -1(z )-x γ+m -1(a )](m -α+1)[Γ(m -α+2)]q+∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q∇2γ+α-2f (s )d ∇x γ+α-2(s ).因此,我们得到∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α)[Γ(m -α+1)]q∇γ+α-1[f (s )]d ∇x γ+α-1(s )=∇γ+α-1f (a )[x γ+m -1(z )-x γ+m -1(a )](m -α+1)[Γ(m -α+2)]q+∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α+1)[Γ(m -α+2)]q∇2γ+α-2f (s )d ∇x γ+α-2(s ).(40)同理,用数学归纳法,我们可得∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α+k -1)[Γ(m -α+k )]q∇kγ+α-k [f (s )]d ∇x γ+α-k (s )=∇kγ+α-kf (a )[x γ+m -1(z )-x γ+m -1(a )](m -α+k )[Γ(m -α+k +1)]q+∫a +1z[x γ+m -1(z )-x γ+m -1(s -1)](m -α+k )[Γ(m -α+k +1)]q∇k +1γ+α-(k +1)f (s )d ∇x γ+α-(k +1)(s ).(k =0,1,⋯,m -1)(41)将式(38),(40)和(41)代入式(37),则有∇αγf ()z =∇m γìíîïïf ()a []x γ+m -1()z -x γ+m -1()a ()m -α[]Γ()m -α+1q +∇γ+α-1f ()a []xγ+m -1()z -x γ+m -1()a ()m -α+1[]Γ()m -α+2q+∇kγ+α-kf ()a []x γ+m -1()z -x γ+m -1()a ()m -α+k []Γ()m -α+k +1q+⋯+∇m -1γ+α-()m -1f ()a []x γ+m -1()z -x γ+m -1()a ()2m -α-1[]Γ()2m -αq+üýþïï∫a +1z []xγ+m -1()z -x γ+m -1()s -1()2m -α-1[]Γ()2m -αq∇m γ+α-mf ()s d ∇x γ+α-m ()s =∇m γ{}∑k =0m -1∇kγ+α-kf ()a []x γ+m -1()z -x γ+m -1()a ()m -α+k []Γ()m -α+k +1q+∇α-2m γ+α-m ∇mγ+α-m f ()z =∑k =0m -1∇kγ+α-kf ()a []x γ-1()z -x γ-1()a ()-α+k []Γ()-α+k +1q+∇α-m γ+α-m ∇mγ+α-m f ()z .总之,我们有下面的程金发:非一致格子上离散分数阶差分与分数阶和分第1期11定理4(广义Abel 方程解2)假设定义在数集{}a +1,a +2,⋯,z 上的函数f ()z 和g ()z 满足∇-αγg ()z =f ()z ,0<m -1<Re α≤m ,那么g ()z =∑k =0m -1∇k γ+α-kf ()a []xγ-1()z -x γ-1()a ()-α+k []Γ()-α+k +1q+∇α-m γ+α-m ∇mγ+α-m f ()z .受到定理4的启示,我们很自然地给出函数f ()z 的α-阶()0<m -1<Re α≤m Caputo 分数阶差分如下:定义8(Caputo 分数阶差分)让m 是Re α超过的最小整数,非一致格子上定义在数集{}a +1,a +2,⋯,z 函数f ()z 的α-阶Caputo 分数阶差分定义为C∇αγf ()z =∇α-m γ+α-m ∇mγ+α-m f ()z .最后,本文再强调指出:对于非一致格子上超几何差分方程式(2),在特定条件下存在关于x ()s 多项式形式的解,如果用Rodrigues 公式表示的话,它含有整数阶高阶差分.一个重要的问题是:若该特定条件不满足,那么非一致格子超几何差分方程的解就不存在关于x ()s 的多项式形式,这样高阶整数阶差分将不再起作用了,这就迫切需要我们引入一种非一致格子上分数阶差分的新概念和新理论.因此,关于非一致格子上阶分数阶差分及阶分数阶和分的定义是一个十分有趣和重要的问题.有关非一致格子超几何差分方程与离散分数阶差和分的联系,更深入的内容参见笔者著作[16]及文献[19-21].(42)(43)参考文献:[1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Holland:North-Hol-land Mathatics Studies,Elsevier,2006.[2]Miller S,Ross B.An introduction to the fractional calculus and fractional differential equations[M].NewYork:JohnWiley andSons,1993.[3]Podlubny I.Fractional Differential Equations[M].San Diego,CA:Academic Press,1999.[4]Samko S G,Kilbas A A,Marichev O I.Fractional integrals and derivatives:theory and applications[M].London:Gordon andBreach,1993.[5]Anastassiou G A.Nabla discrete fractional calculus and nalba inequalities[J].Mathematical and Computer Modelling,2010,51:562-571.[6]Atici F M,Eloe P W.Discrete fractional calculus with the nable operator[J].Electronic Journal of Qualitative Theory of Differ-ential Equations,Spec.Ed.I,2009(3):1-12.[7]Atici F M,Eloe P W.Initialvalue problems in discrete fractional calulus[J].Pro.Amer.Math.Soc,2009,137:981-989.[8]Ferreira A C,Torres F M.Fractional h-differences arising from the calculus of variations[J].Appl Anal Discrete Math,2011(5):110-121.[9]程金发.分数阶差分方程理论[M].厦门:厦门大学出版社,2011.[10]Goodrich C,Peterson A C.Discrete fractional discrete fractional discrete fractional calculus[M].Switzerland:Springer Inter-national Publishing,2015.[11]Annaby M H,Mansour Z S.q-Fractional Calculus and Equations[M].NewYork:Springer-Verlag,2012.[12]Andrews G E,Askey R,Roy R.Special functions.Encyclopedia of Mathematics and its Applications[M].Cambridge:Cam-bridge University Press,1999.[13]Wang Z X,Guo D R.Special Functions[M].Singapore:World Scientific Publishing,1989.闽南师范大学学报(自然科学版)2021年12[14]Nikiforov A F,Suslov S K,Uvarov V B.Classical orthogonal polynomials of a discrete variable[M].Berlin:Springer-Verlag,1991.[15]Nikiforov A F,Uvarov V B.Special functions of mathematical physics:a unified introduction with applications[M].Basel:Birkhauser Verlag,1988.[16]程金发.非一致格子超几何方程与分数阶差和分[M].北京:科学出版社,2021.[17]Atakishiyev N M,Suslov S K.Difference hypergeometric functions,in:progress in approximation theory[M].New York:Springer-Verlag,1992:1-35.[18]Suslov S K.On the theory of difference analogues of special functions of hypergeo-metric type[J].Russian Math Surveys,1989,44:227-278.[19]Cheng J F,Jia L K.Generalizations of rodrigues type formulas for hypergeometric difference equations on nonuniform[J].Journal of Difference Equations and Applications,2020,26(4):435-457.[20]Cheng J F,Dai W Z.Adjoint difference equation for a Nikiforov-Uvarov-Suslov difference equation of hypergeometric typeon non-uniform Lattices[J].Ramanujan Journal,2020,53:285-318.[21]Cheng J F.On the complex difference equation of hypergeometric type on non-uniform lattices[J].Acta Mathematical Sinica,English Series,2020,36(5):487–511.[责任编辑:钟国翔]程金发:非一致格子上离散分数阶差分与分数阶和分第1期13。

Chapter 1 Derivation of Reaction-Diffusion Equations

Chapter 1 Derivation of Reaction-Diffusion Equations

where J is the flux of P , d(x) is called diffusion coefficient at x, and ∇x is the gradient operator ∇x f (x) = (∂f /∂x1 , ∂f /∂x2 , · · · , ∂f /∂xn ). On the other hand, the number of particles at any point may change because of other reasons like birth, death, hunting, or chemical reactions. We assume that the rate of change of the density function due to these reasons is f (t, x, P ), which we usually call the reaction rate. Now we derive a differential equation using the balanced law. We choose any region O, then the total population in O is O P (t, x)dx, and the rate of change of the total population is d dt P (t, x)dx.
Chapter 1
Derivation of Reaction-Diffusion Equations
1.1 Fick’s Law
Diffusion mechanism models the movement of many individuals in an environment or media. The individuals can be very small such as basic particles in physics, bacteria, molecules, or cells, or very large objects such as animals, plants, or certain kind of events like epidemics, or rumors. The particles reside in a region, which we call Ω, and we assume that Ω is open subset of Rn (the n-th dimensional space with Cartesian coordinate system) with n ≥ 1. In particular, we are interested in the cases of n = 1, 2 and 3, but most material here are true regardless of the dimensions of the space (sometimes n = 1 and n ≥ 2 may be different as we will see.) The main mathematical variable we consider here is the density function of the particles: P (t, x), where t is the time, and x ∈ Ω is the location. The dimension of the population density usually is number of particles or organisms per unit area (if n = 2) or unit volume (if n = 3). For example, the human population density is often expressed in number of people per square kilometer. A list of world population and population density can be found at /wiki/List_of_countries_by_population_density. However in such data table, we can only find the population density for countries, and a country is not a “point” on our map. In reality, population density is always associated with a scale, like country, city, county, town, and street. But as in many other mathematical models, we will assume that the function P (t, x) has nicer properties, like continuity and differentiability, which is in fact reasonable, when a population with a large number of organisms is considered. Technically, we define the population density function P (t, x) as follows: let x be a point in the habitat Ω, and let {On }∞ n=1 be a sequence of spatial regions (which have the same dimension as Ω) surrounding x; here On is chosen in a way that the spatial measurement |On | of On (length, area, volume, or 1

TIMIT

TIMIT

5 Output from T¯ I MIT 5.1 Hydrostatic Quantities . . . . . . . . . . . . . . . 5.1.1 The format of the hydrostatic output . . 5.2 Time Domain Hydrodynamic Quantities . . . . . 5.2.1 Format of the time domain hydrodynamic 5.3 Frequency Domain Hydrodynamic Quantities . . 5.3.1 Format of the frequency domain output .
T¯ I MIT
A panel-method program for transient wave-body interactions.
VERSION 4.0: For zero and forward speed analysis of a single body with any number of waterlines, arbitrary wave heading, generalized modes, and infinite or finite depth.
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
The development of T¯ I MIT has been supported by the Office of Naval Reseach, the Joint Industry Project “Wave Effects on Offshore Structures”, the Consortium for Numerical Analysis of Wave Effects on Offshore Structures, and the Naval Ship Warfare Center.

A Generalization of the Theory of Normal Forms

A Generalization of the Theory of Normal Forms

a r X i v :c h a o -d y n /9510014v 1 23 O c t 1995A Generalization of the Theory of Normal FormsW.H.Warner,P.R.SethnaAerospace Engineering and MechanicsUniversity of MinnesotaandJames P.SethnaPhysicsCornell Universitychao-dyn/9510014Normal form theory is a technique for transforming the ordinary differential equations describing nonlinear dynamical systems into certain standard ing a particular class of coordinate transformations,one can remove the inessential part of higher-order nonlinearities.Unlike the closely-related method of averaging,the standard development of normal form theory involves several technical assumptions about the allowed classes of coordinate transformations (often restricted to homogeneous polynomials).In a recent paper [1],the second author considered the equivalence of the methods of averaging and of normal forms.The references given there,particularly Chow and Hale [2],should be consulted for a full treatment of Lie Transforms.In this paper,we relax the restrictions on the transformations allowed.We start with the Duffing equation,and show that a singular coordinate transformation can remove the nonlinearity associated with the usual normal form.We give two interpretations of this coordinate transformation,one with a branch cut reminiscent of a Poincar´e section.We then show,when the generating problem is linear and autonomous with diagonal Jordan form,that we can remove all nonlinearities order by order using singular coordinate trans-formations generated by the solution to the first-order linear partial differential equation produced by the Lie Transform method of normal form theory.A companion paper [4]discusses these methods in a more general context and treats a specific example with a nondiagonal Jordan form for the generating matrix.1.Duffing’s Equation:Removing the NonlinearitiesThe second-order problems modeled by Duffing’s equation or van der Pol’s equation under near-resonance forcing are examples of the behavior that concerns us here.We use the notation of the Duffing example in[1],Eqn.(37):¨x+ω2x+ε˜c˙x+ε˜hx3=ε˜R cos(Ωt)(1) whereΩ≈ω,εis a small parameter,and the other constants are positive.If we manipulate the variables and parameters in a standard way(see[1])by choosing˜R=Ω2R,˜h=Ω2h,˜c=Ωc,ω2=Ω2(1+εσ),τ=Ωt,y=dx/dτ=x′and changing to complex state variablesp(τ)=12(x−iy),then Eqn.(1)becomesp′=−ip+iε −12(σ+ic)¯p−h4(e iτ+e−iτ) (2) and its conjugate.In[1],standard methods are used to show that the coordinate transformationp=z+εW(z,¯z,τ),...¯p=¯z+ε¯W(z,¯z,τ)(3) withW=−18e iτ+h2 (4)can transform the p-equation into the normal formz′=−iz+εf1(z,¯z,τ)+O ε2 (5)wheref1=K1z+K2z2¯z+K3e−iτ,K1=−i2,K3=iRIt is the z2¯z term that standard normal form theory considers as essential to keep at the cubic order for equations of this type.Now consider the coordinate transformation from(p,¯p)to(u,¯u)given byp=u+εV(u,¯u,τ)=u+ε W(u,¯u,τ)+i¯u (7) and its conjugate.Explicit computation shows that u(τ)satisfies a differential equation of the formu′=−iu+O ε2 .(8) By using a coordinate transformation with a logarithmic singularity at u=0,we have removed thefirst-order term inε,including the u2¯u term which normal form theory tells us is essential and irremovable.A special case of Equation(5)occurs when f1=z−z2¯z(note that this does not correspond to a Duffing equation with real coefficients).For this special case,the exact solution z(τ)=r(τ)exp(iθ(τ))to the nonlinear equation through orderεterms can be written down for initial conditions r(0)=r0=1,θ(0)=θ0:r(τ)=r0r20+(1−r20)exp[−2ετ],θ(τ)=+θ0−τ.Our transformation Equation(7)generates the approximate solutionr(1)(τ)=r0+r0(1−r20)(ετ),θ(1)=θ(τ)=θ0−τGraphs of both types of functions starting from the same initial conditions z(0)=(1+i)/2 are shown in Figures1and2.−101Re(z)−11I m (z )Duffing EquationExact SolutionFigure 1shows the trajectory corresponding to the exact solution r (τ)for ε=0.05.−101Re(z)−11I m (z )Duffing to First OrderFigure 2shows the corresponding graph of the approximate solution r (1)(τ).It is clear that the approximate solution spirals outward,crossing the limit cycle after a finite time τ0of order 1/ε.One can verify that our approximate solution is the first term in the power series expansion of the exact solution in the parameter ε.Notice that the approximation is good to first order in ε,but not uniformly accurate in time.−101Re(z)−11I m (z )Duffing, ApproximationOn a Riemann SheetFigure 3shows trajectories for various initial conditions generated by our coordinate transformation V .Here we have restricted V to a single Riemann sheet of the logarithm:hence the discontinuity at the branch cut along Re [z ]<0,Im [z ]=0.This branch cut is what allows the logarithm to “unwrap”the singularity of the Duffing equation.Thus it is natural not to continue increasing θwith time,but to restart the approximate solution every time one crosses the negative real axis.This may at first seem strange,as we are making a jump in the nonphysical variable u (τ).On the other hand,we are forced into this to make the coordinate transformation V (u,¯u ,τ)a single-valued function:the discontinuity in u is needed to make the dynamics of p =u +ǫV continuous.Our O (ε)solution now systematically approximates a Poincar´efirst-return map T along the negative real axis:T(1)(r)=r+r(1−r2)(2πε)giving a systematic approximation for the next intersection T(r)of a curve which crosses Im[z]=0at r=Re(z)<0.This interpretation of the dynamics preserves the qualita-tive behavior of the original dynamical system,although admittedly does not produce an explicit analytical solution for the dynamics.2.Solving the Lie Differential EquationWhy does normal form theory miss this useful transformation?(Alternatively,how does normal form theory avoid this nasty singular transformation?)We must look more closely at how the transformation of state variables is found by solving the partial differ-ential equation produced by the Lie transform process.For the case when the state equations have linear generating terms in diagonal Jordan form(A=diag(λα)with noλα=0,α=1,2,...,N),the state equation governing the component xαof x will bedxα2f(2)α(f,x)+...The equation for the corresponding component W(1)α≡Wα(t,y)in the transformation x=y+εW(1)+(ε2/2)W(2)+...is the Lie equationL(Wα)≡∂Wα∂yβ−λαWα=f(1)α(t,y).For autonomous f(1),the∂/∂t term on the left is dropped from L.In that case,by restricting the class of coordinate transformations to homogeneous polynomials,normal form theory cannot remove any nonlinearities in f(1)that lie in the null space of the Lie operator.These nonlinear terms therefore comprise the“normal form”:all other termsare removed by the coordinate transformation.But why should the null space of L(the set of functions satisfying L(W)=0)have anything to do withfinding a particular solution to the equation L(W)=f?To understand this,consider a different linear operator,corresponding to solutions of the forced harmonic oscillator:H(x)≡¨x+x=f(t)There is something special about solutions x(t)for forcing functions in the null space of H.If we force at resonance f(t)=sin(t),then f is in the null space of H:H(f)=0, and we see that the particular solution x(t)=t sin(t)is qualitatively different from the solution for f(t)=sin(ωt)for other frequenciesω.If we restrict the class of perturbations and solutions tofinite sums of harmonic waves,then there would be no solution to H(f)= sin(t).Normal form theory makes precisely this kind of restriction:by restricting the perturbations and solutions to be homogeneous polynomials or in the Hamiltonian case to canonical transformations,they have defined away the possibly singular coordinate transformations that we study here.We now demonstrate,for perturbations of the form f(1)α(t,y)above,that we canfind solutions W to the Lie operator partial differential equationL(Wα)≡∂Wα∂yβ−λαWα=f(1)α(t,y).in complete generality by reducing it to an ordinary ing the method of character-istics,one discovers(see Courant-Hilbert[3],p.11,for a related transformation)that the coordinate transformation from(y,t)to(ξ,τ)given byξ1=y1;ξβ=(y1/λββ)/(y1/λ11),β=2,3,...,N;τ=y1exp(−λ1t)will reduce the partial differential equation to the ordinary differential equationλ1ξ1∂Vαyαf(1)α(t,y).where the Vα=Wα/yαare now to be considered as functions of(ξ,τ)and the G’s are equal to the functions on the far right evaluated in the new variables.Our solution(7)removing the O(ε)term in the Duffing equation,was generated using precisely this method.3.Concluding RemarksWe have studied the Duffing equation using a new approach to the calculation of an approximate solution.What about our methods in general?Our use of the method of characteristics is perfectly general:the same coordinate transformations used in the theory of normal forms can be shown[4]to remove all non-linearities if the space of allowed functions is not restricted.Important questions remain about the nature of the higher order terms inε,and about the estimates of thefinite time for which the approximate solution is valid.(Here wefind results valid to times of order 1/ε,but for the example of[4]times of order1/ε(1/4)are found.)Our simple interpretation of the resulting logarithmic transformation as a Poincar´e return map gave us a correct qualitative picture of the global dynamics for the Duffing equation.We do not have a general formula for analyzing other systems in this way,but wefind intriguing the implied link between the singularities of the coordinate transfor-mations introduced by the method of characteristics and the qualitative structure of the corresponding dynamics.References1.P.R.Sethna,On Averaged and Normal Form Equations,Nonlinear Dynamics,7,1-10(1995).2.S.N.Chow and J.R.Hale,Methods of Bifurcation Theory,Springer-Verlag,New York(1982).3.R.Courant and D.Hilbert,Methods of Mathematical Physics,Vol.II:Partial Differ-ential Equations,Wiley:Interscience Publishers,New York(1962).4.W.H.Warner,An Extension of Normal Form Methods for Calculating ApproximateSolutions,submitted for publication(1995).。

弹性力学专业英语英汉互译词汇

弹性力学专业英语英汉互译词汇

弹性力学elasticity弹性理论theory of elasticity 均匀应力状态homogeneous state of stress 应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid 均匀应变状态homogeneous state ofstrain 应变协调方程equation of straincompatibility 拉梅常量Lame constants 各向同性弹性isotropic elasticity 旋转圆盘rotating circular disk 楔wedge开尔文问题Kelvin problem 布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利什维Kolosoff-利法Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis 板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforcedPlate 中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell [圆]柱壳Cylindrical shell 锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion 翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method莱维法Levy method松弛Relaxation 量纲分析Dimensional analysis自相似[性] self-similarity 影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity 颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle 褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity 大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing 破坏机构Collapse mechanism 回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling 塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave 简单加载Simple loading比例加载Proportional loading 卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension 加速度波acceleration wave本构方程constitutive equation 完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization 应变率strain rate应变率敏感性strain rate sensitivity 应变空间strain space有限应变finite strain塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material 材料稳定性stability of material应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening 强化模量strain-hardening modulus幂强化power hardening塑性极限弯矩plastic limit bendingMoment塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion 粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plasticMaterial 极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy 屈服Yield 屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity 塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response 塑性波plastic wave 运动容许场kinematically admissibleField 静力容许场statically admissibleField 流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge 塑性增量理论incremental theory ofPlasticity 米泽斯屈服准则Mises yield criterion 普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应力空Haigh-Westergaard 间stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocityEquation结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line 三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method 力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix 总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan eliminationMethod 屈曲模态buckling mode 复合材料力学mechanics of composites 复合材料composite material 纤维复合材料fibrous composite单向复合材料unidirectional composite泡沫复合材料foamed composite颗粒复合材料particulate composite 层板Laminate夹层板sandwich panel正交层板cross-ply laminate 斜交层板angle-ply laminate 层片Ply 多胞固体cellular solid 膨胀Expansion压实Debulk劣化Degradation脱层Delamination脱粘Debond 纤维应力fiber stress层应力ply stress层应变ply strain层间应力interlaminar stress比强度specific strength强度折减系数strength reduction factor 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy正交各向异Orthotropy剪滞分析shear lag analysis短纤维chopped fiber长纤维continuous fiber纤维方向fiber direction纤维断裂fiber break纤维拔脱fiber pull-out纤维增强fiber reinforcement致密化Densification最小重量设计optimum weight design网格分析法netting analysis 混合律rule of mixture失效准则failure criterion蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model 断裂力学fracture mechanics概率断裂力学probabilistic fractureMechanics格里菲思理论Griffith theory线弹性断裂力学linear elastic fracturemechanics, LEFM弹塑性断裂力学elastic-plastic fracturemecha-nics, EPFM 断裂Fracture 脆性断裂brittle fracture解理断裂cleavage fracture蠕变断裂creep fracture延性断裂ductile fracture晶间断裂inter-granular fracture 准解理断裂quasi-cleavage fracture 穿晶断裂trans-granular fracture 裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink 椭圆裂纹elliptical crack深埋裂纹embedded crack[钱]币状裂纹penny-shape crack 预制裂纹Precrack短裂纹short crack表面裂纹surface crack裂纹钝化crack blunting裂纹分叉crack branching裂纹闭合crack closure裂纹前缘crack front裂纹嘴crack mouth裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement,COD 裂纹阻力crack resistance裂纹面crack surface裂纹尖端crack tip裂尖张角crack tip opening angle,CTOA裂尖张开位移crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularityField裂纹扩展速率crack growth rate稳定裂纹扩展stable crack growth定常裂纹扩展steady crack growth亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest 止裂韧度arrest toughness断裂类型fracture mode滑开型sliding mode张开型opening mode撕开型tearing mode复合型mixed mode撕裂Tearing 撕裂模量tearing modulus断裂准则fracture criterionJ积分J-integral J阻力曲线J-resistance curve断裂韧度fracture toughness应力强度因子stress intensity factor HRR场Hutchinson-Rice-RosengrenField 守恒积分conservation integral 有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate 内聚区cohesive zone塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transitiontempe- rature 剪切带shear band剪切唇shear lip无损检测non-destructive inspection 双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula 空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRA 损伤力学damage mechanics 损伤Damage连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage脆性损伤brittle damage延性损伤ductile damage宏观损伤macroscopic damage细观损伤microscopic damage微观损伤microscopic damage损伤准则damage criterion损伤演化方程damage evolution equation 损伤软化damage softening损伤强化damage strengthening损伤张量damage tensor损伤阈值damage threshold损伤变量damage variable损伤矢量damage vector损伤区damage zone疲劳Fatigue 低周疲劳low cycle fatigue应力疲劳stress fatigue随机疲劳random fatigue蠕变疲劳creep fatigue腐蚀疲劳corrosion fatigue疲劳损伤fatigue damage疲劳失效fatigue failure 疲劳断裂fatigue fracture 疲劳裂纹fatigue crack 疲劳寿命fatigue life疲劳破坏fatigue rupture 疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue 应力循环stress cycle应力比stress ratio安全寿命safe life过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage裂纹扩展crack growth, crackPropagation 裂纹萌生crack initiation 循环比cycle ratio实验应力分析experimental stressAnalysis工作[应变]片active[strain] gage基底材料backing material应力计stress gage 零[点]飘移zero shift, zero drift 应变测量strain measurement应变计strain gage 应变指示器strain indicator 应变花strain rosette 应变灵敏度strain sensitivity机械式应变仪mechanical strain gage 直角应变花rectangular rosette 引伸仪Extensometer应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage 平衡电桥balanced bridge粘贴式应变计bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge电阻应变计resistance strain gage 温度自补偿应变计self-temperaturecompensating gage半导体应变计semiconductor strainGage 集流器slip ring应变放大镜strain amplifier疲劳寿命计fatigue life gage电感应变计inductance [strain] gage 光[测]力学Photomechanics 光弹性Photoelasticity光塑性Photoplasticity杨氏条纹Young fringe双折射效应birefrigent effect 等位移线contour of equalDisplacement 暗条纹dark fringe条纹倍增fringe multiplication 干涉条纹interference fringe 等差线Isochromatic等倾线Isoclinic等和线isopachic应力光学定律stress- optic law主应力迹线Isostatic 亮条纹light fringe光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coatingMethod光弹性夹片法photoelastic sandwichMethod动态光弹性dynamic photo-elasticity 空间滤波spatial filtering空间频率spatial frequency起偏镜Polarizer反射式光弹性仪reflection polariscope残余双折射效应residual birefringentEffect应变条纹值strain fringe value应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect应力条纹值stress fringe value应力光图stress-optic pattern暂时双折射效应temporary birefringentEffect脉冲全息法pulsed holography透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographicinterfero - metry 网格法grid method全息光弹性法holo-photoelasticity 全息图Hologram全息照相Holograph全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry, shearography 散斑图Specklegram白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern 离面云纹法off-plane moire method 参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method脆性涂层法brittle-coating method 条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple 修正变分原理modified variationalPrinciple 约束变分原理constrained variationalPrinciple 混合法mixed method杂交法hybrid method边界解法boundary solution method 有限条法finite strip method半解析法semi-analytical method协调元conforming element非协调元non-conforming element混合元mixed element杂交元hybrid element边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement 广义载荷generalized load广义应变generalized strain广义应力generalized stress界面变量interface variable 节点node, nodal point[单]元Element角节点corner node边节点mid-side node内节点internal node无节点变量nodeless variable 杆元bar element桁架杆元truss element 梁元beam element二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element 板元plate element壳元shell element厚板元thick plate element三角形元triangular element四边形元quadrilateral element 四面体元tetrahedral element 曲线元curved element二次元quadratic element线性元linear element三次元cubic element四次元quartic element等参[数]元isoparametric element超参数元super-parametric element 亚参数元sub-parametric element节点数可变元variable-number-node element 拉格朗日元Lagrange element拉格朗日族Lagrange family巧凑边点元serendipity element巧凑边点族serendipity family 无限元infinite element单元分析element analysis单元特性element characteristics 刚度矩阵stiffness matrix几何矩阵geometric matrix等效节点力equivalent nodal force 节点位移nodal displacement节点载荷nodal load位移矢量displacement vector载荷矢量load vector质量矩阵mass matrix集总质量矩阵lumped mass matrix相容质量矩阵consistent mass matrix 阻尼矩阵damping matrix瑞利阻尼Rayleigh damping刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements局部坐标系local coordinate system局部坐标local coordinate面积坐标area coordinates体积坐标volume coordinates曲线坐标curvilinear coordinates 静凝聚static condensation合同变换contragradient transformation 形状函数shape function试探函数trial function检验函数test function权函数weight function样条函数spline function代用函数substitute function降阶积分reduced integration零能模式zero-energy modeP收敛p-convergenceH收敛h-convergence掺混插值blended interpolation等参数映射isoparametric mapping双线性插值bilinear interpolation小块检验patch test非协调模式incompatible mode 节点号node number单元号element number带宽band width带状矩阵banded matrix变带状矩阵profile matrix带宽最小化minimization of band width 波前法frontal method子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method 纽马克法Newmark威尔逊法Wilson拟牛顿法quasi-Newton method牛顿-拉弗森法Newton-Raphson method 增量法incremental method初应变initial strain初应力initial stress切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration子结构Substructure子结构法substructure technique 超单元super-element网格生成mesh generation结构分析程序structural analysis program 前处理pre-processing后处理post-processing网格细化mesh refinement应力光顺stress smoothing组合结构composite structure。

弹性力学专业英语英汉互译词汇

弹性力学专业英语英汉互译词汇

弹性力学elasticity弹性理论theory of elasticity均匀应力状态homogeneous state of stress 应力不变量stress invariant应变不变量strain invariant应变椭球strain ellipsoid均匀应变状态homogeneous state ofstrain 应变协调方程equation of straincompatibility 拉梅常量Lame constants各向同性弹性isotropic elasticity旋转圆盘rotating circular disk 楔wedge开尔文问题Kelvin problem 布西内斯克问题Boussinesq problem艾里应力函数Airy stress function克罗索夫--穆斯赫利什维Kolosoff-利法Muskhelishvili method 基尔霍夫假设Kirchhoff hypothesis 板Plate矩形板Rectangular plate圆板Circular plate环板Annular plate波纹板Corrugated plate加劲板Stiffened plate,reinforcedPlate 中厚板Plate of moderate thickness 弯[曲]应力函数Stress function of bending 壳Shell扁壳Shallow shell旋转壳Revolutionary shell球壳Spherical shell [圆]柱壳Cylindrical shell 锥壳Conical shell环壳Toroidal shell封闭壳Closed shell波纹壳Corrugated shell扭[转]应力函数Stress function of torsion 翘曲函数Warping function半逆解法semi-inverse method瑞利--里茨法Rayleigh-Ritz method 松弛法Relaxation method莱维法Levy method松弛Relaxation 量纲分析Dimensional analysis 自相似[性] self-similarity影响面Influence surface接触应力Contact stress赫兹理论Hertz theory协调接触Conforming contact滑动接触Sliding contact滚动接触Rolling contact压入Indentation各向异性弹性Anisotropic elasticity颗粒材料Granular material散体力学Mechanics of granular media 热弹性Thermoelasticity超弹性Hyperelasticity粘弹性Viscoelasticity对应原理Correspondence principle 褶皱Wrinkle塑性全量理论Total theory of plasticity 滑动Sliding微滑Microslip粗糙度Roughness非线性弹性Nonlinear elasticity大挠度Large deflection突弹跳变snap-through有限变形Finite deformation格林应变Green strain阿尔曼西应变Almansi strain弹性动力学Dynamic elasticity运动方程Equation of motion准静态的Quasi-static气动弹性Aeroelasticity水弹性Hydroelasticity颤振Flutter弹性波Elastic wave简单波Simple wave柱面波Cylindrical wave水平剪切波Horizontal shear wave竖直剪切波Vertical shear wave 体波body wave无旋波Irrotational wave畸变波Distortion wave膨胀波Dilatation wave瑞利波Rayleigh wave等容波Equivoluminal wave勒夫波Love wave界面波Interfacial wave边缘效应edge effect塑性力学Plasticity可成形性Formability金属成形Metal forming耐撞性Crashworthiness结构抗撞毁性Structural crashworthiness 拉拔Drawing破坏机构Collapse mechanism 回弹Springback挤压Extrusion冲压Stamping穿透Perforation层裂Spalling塑性理论Theory of plasticity安定[性]理论Shake-down theory运动安定定理kinematic shake-down theorem静力安定定理Static shake-down theorem 率相关理论rate dependent theorem 载荷因子load factor加载准则Loading criterion加载函数Loading function加载面Loading surface塑性加载Plastic loading塑性加载波Plastic loading wave简单加载Simple loading比例加载Proportional loading 卸载Unloading卸载波Unloading wave冲击载荷Impulsive load阶跃载荷step load脉冲载荷pulse load极限载荷limit load中性变载nentral loading拉抻失稳instability in tension 加速度波acceleration wave本构方程constitutive equation 完全解complete solution名义应力nominal stress过应力over-stress真应力true stress等效应力equivalent stress流动应力flow stress应力间断stress discontinuity应力空间stress space主应力空间principal stress space静水应力状态hydrostatic state of stress 对数应变logarithmic strain工程应变engineering strain等效应变equivalent strain应变局部化strain localization应变率strain rate应变率敏感性strain rate sensitivity 应变空间strain space有限应变finite strain塑性应变增量plastic strain increment 累积塑性应变accumulated plastic strain 永久变形permanent deformation内变量internal variable应变软化strain-softening理想刚塑性材料rigid-perfectly plasticMaterial 刚塑性材料rigid-plastic material理想塑性材料perfectl plastic material 材料稳定性stability of material 应变偏张量deviatoric tensor of strain 应力偏张量deviatori tensor of stress 应变球张量spherical tensor of strain 应力球张量spherical tensor of stress 路径相关性path-dependency线性强化linear strain-hardening应变强化strain-hardening随动强化kinematic hardening各向同性强化isotropic hardening强化模量strain-hardening modulus幂强化power hardening 塑性极限弯矩plastic limit bendingMoment 塑性极限扭矩plastic limit torque弹塑性弯曲elastic-plastic bending 弹塑性交界面elastic-plastic interface 弹塑性扭转elastic-plastic torsion粘塑性Viscoplasticity非弹性Inelasticity理想弹塑性材料elastic-perfectly plasticMaterial 极限分析limit analysis极限设计limit design极限面limit surface上限定理upper bound theorem上屈服点upper yield point下限定理lower bound theorem下屈服点lower yield point界限定理bound theorem初始屈服面initial yield surface后继屈服面subsequent yield surface屈服面[的]外凸性convexity of yield surface 截面形状因子shape factor of cross-section沙堆比拟sand heap analogy 屈服Yield 屈服条件yield condition屈服准则yield criterion屈服函数yield function屈服面yield surface塑性势plastic potential 能量吸收装置energy absorbing device 能量耗散率energy absorbing device 塑性动力学dynamic plasticity 塑性动力屈曲dynamic plastic buckling 塑性动力响应dynamic plastic response 塑性波plastic wave运动容许场kinematically admissibleField 静力容许场statically admissibleField 流动法则flow rule速度间断velocity discontinuity滑移线slip-lines滑移线场slip-lines field移行塑性铰travelling plastic hinge 塑性增量理论incremental theory ofPlasticity米泽斯屈服准则Mises yield criterion 普朗特--罗伊斯关系prandtl- Reuss relation 特雷斯卡屈服准则Tresca yield criterion洛德应力参数Lode stress parameter莱维--米泽斯关系Levy-Mises relation亨基应力方程Hencky stress equation赫艾--韦斯特加德应力空Haigh-Westergaard 间stress space洛德应变参数Lode strain parameter德鲁克公设Drucker postulate盖林格速度方程Geiringer velocityEquation结构力学structural mechanics结构分析structural analysis结构动力学structural dynamics拱Arch三铰拱three-hinged arch抛物线拱parabolic arch圆拱circular arch穹顶Dome空间结构space structure空间桁架space truss雪载[荷] snow load风载[荷] wind load土压力earth pressure地震载荷earthquake loading弹簧支座spring support支座位移support displacement支座沉降support settlement超静定次数degree of indeterminacy机动分析kinematic analysis结点法method of joints截面法method of sections结点力joint forces共轭位移conjugate displacement影响线influence line三弯矩方程three-moment equation单位虚力unit virtual force刚度系数stiffness coefficient柔度系数flexibility coefficient力矩分配moment distribution力矩分配法moment distribution method 力矩再分配moment redistribution分配系数distribution factor矩阵位移法matri displacement method 单元刚度矩阵element stiffness matrix 单元应变矩阵element strain matrix总体坐标global coordinates贝蒂定理Betti theorem高斯--若尔当消去法Gauss-Jordan eliminationMethod 屈曲模态buckling mode复合材料力学mechanics of composites复合材料composite material 纤维复合材料fibrous composite单向复合材料unidirectional composite泡沫复合材料foamed composite颗粒复合材料particulate composite 层板Laminate夹层板sandwich panel正交层板cross-ply laminate斜交层板angle-ply laminate 层片Ply多胞固体cellular solid 膨胀Expansion压实Debulk劣化Degradation脱层Delamination脱粘Debond纤维应力fiber stress层应力ply stress层应变ply strain层间应力interlaminar stress比强度specific strength强度折减系数strength reduction factor 强度应力比strength -stress ratio 横向剪切模量transverse shear modulus 横观各向同性transverse isotropy正交各向异Orthotropy剪滞分析shear lag analysis短纤维chopped fiber长纤维continuous fiber纤维方向fiber direction纤维断裂fiber break纤维拔脱fiber pull-out纤维增强fiber reinforcement致密化Densification最小重量设计optimum weight design 网格分析法netting analysis混合律rule of mixture失效准则failure criterion蔡--吴失效准则Tsai-W u failure criterion 达格代尔模型Dugdale model断裂力学fracture mechanics概率断裂力学probabilistic fractureMechanics格里菲思理论Griffith theory线弹性断裂力学linear elastic fracturemechanics, LEFM弹塑性断裂力学elastic-plastic fracturemecha-nics, EPFM 断裂Fracture 脆性断裂brittle fracture解理断裂cleavage fracture蠕变断裂creep fracture延性断裂ductile fracture晶间断裂inter-granular fracture 准解理断裂quasi-cleavage fracture 穿晶断裂trans-granular fracture 裂纹Crack裂缝Flaw缺陷Defect割缝Slit微裂纹Microcrack折裂Kink椭圆裂纹elliptical crack深埋裂纹embedded crack[钱]币状裂纹penny-shape crack预制裂纹Precrack短裂纹short crack表面裂纹surface crack裂纹钝化crack blunting裂纹分叉crack branching裂纹闭合crack closure裂纹前缘crack front裂纹嘴crack mouth裂纹张开角crack opening angle,COA 裂纹张开位移crack opening displacement,COD裂纹阻力crack resistance裂纹面crack surface裂纹尖端crack tip裂尖张角crack tip opening angle,CTOA裂尖张开位移crack tip openingdisplacement, CTOD裂尖奇异场crack tip singularityField裂纹扩展速率crack growth rate稳定裂纹扩展stable crack growth定常裂纹扩展steady crack growth亚临界裂纹扩展subcritical crack growth 裂纹[扩展]减速crack retardation 止裂crack arrest 止裂韧度arrest toughness断裂类型fracture mode滑开型sliding mode张开型opening mode撕开型tearing mode复合型mixed mode撕裂Tearing 撕裂模量tearing modulus断裂准则fracture criterionJ积分J-integralJ阻力曲线J-resistance curve断裂韧度fracture toughness应力强度因子stress intensity factor HRR场Hutchinson-Rice-RosengrenField 守恒积分conservation integral 有效应力张量effective stress tensor 应变能密度strain energy density 能量释放率energy release rate内聚区cohesive zone塑性区plastic zone张拉区stretched zone热影响区heat affected zone, HAZ 延脆转变温度brittle-ductile transitiontempe- rature 剪切带shear band剪切唇shear lip无损检测non-destructive inspection 双边缺口试件double edge notchedspecimen, DEN specimen 单边缺口试件single edge notchedspecimen, SEN specimen 三点弯曲试件three point bendingspecimen, TPB specimen 中心裂纹拉伸试件center cracked tensionspecimen, CCT specimen 中心裂纹板试件center cracked panelspecimen, CCP specimen 紧凑拉伸试件compact tension specimen,CT specimen 大范围屈服large scale yielding 小范围攻屈服small scale yielding 韦布尔分布Weibull distribution 帕里斯公式paris formula空穴化Cavitation应力腐蚀stress corrosion概率风险判定probabilistic riskassessment, PRA 损伤力学damage mechanics 损伤Damage连续介质损伤力学continuum damage mechanics 细观损伤力学microscopic damage mechanics 累积损伤accumulated damage脆性损伤brittle damage延性损伤ductile damage宏观损伤macroscopic damage细观损伤microscopic damage微观损伤microscopic damage损伤准则damage criterion损伤演化方程damage evolution equation 损伤软化damage softening损伤强化damage strengthening损伤张量damage tensor损伤阈值damage threshold损伤变量damage variable损伤矢量damage vector损伤区damage zone疲劳Fatigue 低周疲劳low cycle fatigue应力疲劳stress fatigue随机疲劳random fatigue蠕变疲劳creep fatigue腐蚀疲劳corrosion fatigue疲劳损伤fatigue damage疲劳失效fatigue failure疲劳断裂fatigue fracture 疲劳裂纹fatigue crack疲劳寿命fatigue life疲劳破坏fatigue rupture疲劳强度fatigue strength 疲劳辉纹fatigue striations 疲劳阈值fatigue threshold 交变载荷alternating load 交变应力alternating stress 应力幅值stress amplitude 应变疲劳strain fatigue应力循环stress cycle应力比stress ratio安全寿命safe life过载效应overloading effect 循环硬化cyclic hardening 循环软化cyclic softening 环境效应environmental effect 裂纹片crack gage裂纹扩展crack growth, crackPropagation裂纹萌生crack initiation 循环比cycle ratio实验应力分析experimental stressAnalysis工作[应变]片active[strain] gage基底材料backing material应力计stress gage零[点]飘移zero shift, zero drift 应变测量strain measurement应变计strain gage应变指示器strain indicator应变花strain rosette应变灵敏度strain sensitivity 机械式应变仪mechanical strain gage 直角应变花rectangular rosette引伸仪Extensometer应变遥测telemetering of strain 横向灵敏系数transverse gage factor 横向灵敏度transverse sensitivity 焊接式应变计weldable strain gage 平衡电桥balanced bridge粘贴式应变计bonded strain gage粘贴箔式应变计bonded foiled gage粘贴丝式应变计bonded wire gage 桥路平衡bridge balancing电容应变计capacitance strain gage 补偿片compensation technique 补偿技术compensation technique 基准电桥reference bridge电阻应变计resistance strain gage 温度自补偿应变计self-temperaturecompensating gage半导体应变计semiconductor strainGage 集流器slip ring应变放大镜strain amplifier疲劳寿命计fatigue life gage电感应变计inductance [strain] gage 光[测]力学Photomechanics光弹性Photoelasticity光塑性Photoplasticity杨氏条纹Young fringe双折射效应birefrigent effect等位移线contour of equalDisplacement 暗条纹dark fringe条纹倍增fringe multiplication 干涉条纹interference fringe 等差线Isochromatic等倾线Isoclinic等和线isopachic应力光学定律stress- optic law主应力迹线Isostatic亮条纹light fringe光程差optical path difference 热光弹性photo-thermo -elasticity 光弹性贴片法photoelastic coatingMethod光弹性夹片法photoelastic sandwichMethod动态光弹性dynamic photo-elasticity 空间滤波spatial filtering空间频率spatial frequency起偏镜Polarizer反射式光弹性仪reflection polariscope残余双折射效应residual birefringentEffect 应变条纹值strain fringe value应变光学灵敏度strain-optic sensitivity 应力冻结效应stress freezing effect 应力条纹值stress fringe value应力光图stress-optic pattern暂时双折射效应temporary birefringentEffect 脉冲全息法pulsed holography透射式光弹性仪transmission polariscope 实时全息干涉法real-time holographicinterfero - metry 网格法grid method全息光弹性法holo-photoelasticity 全息图Hologram全息照相Holograph全息干涉法holographic interferometry 全息云纹法holographic moire technique 全息术Holography全场分析法whole-field analysis散斑干涉法speckle interferometry 散斑Speckle错位散斑干涉法speckle-shearinginterferometry, shearography 散斑图Specklegram白光散斑法white-light speckle method 云纹干涉法moire interferometry [叠栅]云纹moire fringe[叠栅]云纹法moire method 云纹图moire pattern离面云纹法off-plane moire method参考栅reference grating试件栅specimen grating分析栅analyzer grating面内云纹法in-plane moire method 脆性涂层法brittle-coating method条带法strip coating method坐标变换transformation ofCoordinates计算结构力学computational structuralmecha-nics 加权残量法weighted residual method 有限差分法finite difference method 有限[单]元法finite element method 配点法point collocation里茨法Ritz method广义变分原理generalized variationalPrinciple 最小二乘法least square method胡[海昌]一鹫津原理Hu-Washizu principle赫林格-赖斯纳原理Hellinger-ReissnerPrinciple 修正变分原理modified variationalPrinciple 约束变分原理constrained variationalPrinciple 混合法mixed method杂交法hybrid method边界解法boundary solution method 有限条法finite strip method半解析法semi-analytical method协调元conforming element非协调元non-conforming element混合元mixed element杂交元hybrid element边界元boundary element 强迫边界条件forced boundary condition 自然边界条件natural boundary condition 离散化Discretization离散系统discrete system连续问题continuous problem广义位移generalized displacement 广义载荷generalized load广义应变generalized strain广义应力generalized stress界面变量interface variable 节点node, nodal point [单]元Element角节点corner node边节点mid-side node内节点internal node无节点变量nodeless variable 杆元bar element桁架杆元truss element 梁元beam element二维元two-dimensional element 一维元one-dimensional element 三维元three-dimensional element 轴对称元axisymmetric element 板元plate element壳元shell element厚板元thick plate element三角形元triangular element四边形元quadrilateral element 四面体元tetrahedral element曲线元curved element二次元quadratic element线性元linear element三次元cubic element四次元quartic element等参[数]元isoparametric element超参数元super-parametric element 亚参数元sub-parametric element节点数可变元variable-number-node element 拉格朗日元Lagrange element拉格朗日族Lagrange family巧凑边点元serendipity element巧凑边点族serendipity family无限元infinite element单元分析element analysis单元特性element characteristics 刚度矩阵stiffness matrix几何矩阵geometric matrix等效节点力equivalent nodal force 节点位移nodal displacement节点载荷nodal load位移矢量displacement vector载荷矢量load vector质量矩阵mass matrix集总质量矩阵lumped mass matrix相容质量矩阵consistent mass matrix 阻尼矩阵damping matrix瑞利阻尼Rayleigh damping刚度矩阵的组集assembly of stiffnessMatrices载荷矢量的组集consistent mass matrix质量矩阵的组集assembly of mass matrices 单元的组集assembly of elements局部坐标系local coordinate system局部坐标local coordinate面积坐标area coordinates体积坐标volume coordinates曲线坐标curvilinear coordinates静凝聚static condensation合同变换contragradient transformation 形状函数shape function试探函数trial function检验函数test function权函数weight function样条函数spline function代用函数substitute function降阶积分reduced integration零能模式zero-energy modeP收敛p-convergenceH收敛h-convergence掺混插值blended interpolation等参数映射isoparametric mapping双线性插值bilinear interpolation小块检验patch test非协调模式incompatible mode节点号node number单元号element number带宽band width带状矩阵banded matrix变带状矩阵profile matrix带宽最小化minimization of band width 波前法frontal method子空间迭代法subspace iteration method 行列式搜索法determinant search method 逐步法step-by-step method纽马克法Newmark威尔逊法Wilson拟牛顿法quasi-Newton method牛顿-拉弗森法Newton-Raphson method 增量法incremental method初应变initial strain初应力initial stress切线刚度矩阵tangent stiffness matrix 割线刚度矩阵secant stiffness matrix 模态叠加法mode superposition method 平衡迭代equilibrium iteration子结构Substructure子结构法substructure technique 超单元super-element网格生成mesh generation结构分析程序structural analysis program 前处理pre-processing后处理post-processing网格细化mesh refinement应力光顺stress smoothing组合结构composite structure。

遇事不决量子力学 英语

遇事不决量子力学 英语

遇事不决量子力学英语Quantum Mechanics in Decision-MakingIn the face of complex and uncertain situations, traditional decision-making approaches often fall short. However, the principles of quantum mechanics, a field of physics that explores the behavior of matter and energy at the subatomic level, can provide valuable insights and a new perspective on problem-solving. By understanding and applying the fundamental concepts of quantum mechanics, individuals and organizations can navigate challenging scenarios with greater clarity and effectiveness.One of the key principles of quantum mechanics is the idea of superposition, which suggests that particles can exist in multiple states simultaneously until they are observed or measured. This concept can be applied to decision-making, where the decision-maker may be faced with multiple possible courses of action, each with its own set of potential outcomes. Rather than prematurely collapsing these possibilities into a single decision, the decision-maker can embrace the superposition and consider the various alternatives in a more open and flexible manner.Another important aspect of quantum mechanics is the principle of uncertainty, which states that the more precisely one property of a particle is measured, the less precisely another property can be known. This principle can be applied to decision-making, where the decision-maker may be faced with incomplete or uncertain information. Instead of trying to eliminate all uncertainty, the decision-maker can acknowledge and work within the constraints of this uncertainty, focusing on making the best possible decision based on the available information.Furthermore, quantum mechanics introduces the concept of entanglement, where two or more particles can become inextricably linked, such that the state of one particle affects the state of the other, even if they are physically separated. This idea can be applied to decision-making in complex systems, where the actions of one individual or organization can have far-reaching and unpredictable consequences for others. By recognizing the interconnectedness of the various elements within a system, decision-makers can better anticipate and navigate the potential ripple effects of their choices.Another key aspect of quantum mechanics that can inform decision-making is the idea of probability. In quantum mechanics, the behavior of particles is described in terms of probability distributions, rather than deterministic outcomes. This probabilistic approach can be applied to decision-making, where the decision-maker canconsider the likelihood of different outcomes and adjust their strategies accordingly.Additionally, quantum mechanics emphasizes the importance of observation and measurement in shaping the behavior of particles. Similarly, in decision-making, the act of observing and gathering information can influence the outcomes of a situation. By being mindful of how their own observations and interventions can impact the decision-making process, decision-makers can strive to maintain a more objective and impartial perspective.Finally, the concept of quantum entanglement can also be applied to the decision-making process itself. Just as particles can become entangled, the various factors and considerations involved in a decision can become deeply interconnected. By recognizing and embracing this entanglement, decision-makers can adopt a more holistic and integrated approach, considering the complex web of relationships and dependencies that shape the outcome.In conclusion, the principles of quantum mechanics offer a unique and compelling framework for navigating complex decision-making scenarios. By embracing the concepts of superposition, uncertainty, entanglement, and probability, individuals and organizations can develop a more nuanced and adaptable approach to problem-solving. By applying these quantum-inspired strategies, decision-makers can navigate the challenges of the modern world with greater clarity, resilience, and effectiveness.。

高等数学中定义定理的英文表达

高等数学中定义定理的英文表达

高等数学中定义定理的英文表达Value of function :函数值Variable :变数Vector :向量Velocity :速度Vertical asymptote :垂直渐近线Volume :体积X-axis :x轴x-coordinate :x坐标x-intercept :x截距Zero vector :函数的零点Zeros of a polynomial :多项式的零点TTangent function :正切函数Tangent line :切线Tangent plane :切平面Tangent vector :切向量Total differential :全微分Trigonometric function :三角函数Trigonometric integrals :三角积分Trigonometric substitutions :三角代换法Tripe integrals :三重积分SSaddle point :鞍点Scalar :纯量Secant line :割线Second derivative :二阶导数Second Derivative Test :二阶导数试验法Second partial derivative :二阶偏导数Sector :扇形Sequence :数列Series :级数Set :集合Shell method :剥壳法Sine function :正弦函数Singularity :奇点Slant asymptote :斜渐近线Slope :斜率Slope-intercept equation of a line :直线的斜截式Smooth curve :平滑曲线Smooth surface :平滑曲面Solid of revolution :旋转体Space :空间Speed :速率Spherical coordinates :球面坐标Squeeze Theorem :夹挤定理Step function :阶梯函数Strictly decreasing :严格递减Strictly increasing :严格递增Sum :和Surface :曲面Surface integral :面积分Surface of revolution :旋转曲面Symmetry :对称RRadius of convergence :收敛半径Range of a function :函数的值域Rate of change :变化率Rational function :有理函数Rationalizing substitution :有理代换法Rational number :有理数Real number :实数Rectangular coordinates :直角坐标Rectangular coordinate system :直角坐标系Relative maximum and minimum :相对极大值与极小值Revenue function :收入函数Revolution , solid of :旋转体Revolution , surface of :旋转曲面Riemann Sum :黎曼和Riemannian geometry :黎曼几何Right-hand derivative :右导数Right-hand limit :右极限Root :根P、QParabola :拋物线Parabolic cylinder :抛物柱面Paraboloid :抛物面Parallelepiped :平行六面体Parallel lines :并行线Parameter :参数Partial derivative :偏导数Partial differential equation :偏微分方程Partial fractions :部分分式Partial integration :部分积分Partiton :分割Period :周期Periodic function :周期函数Perpendicular lines :垂直线Piecewise defined function :分段定义函数Plane :平面Point of inflection :反曲点Polar axis :极轴Polar coordinate :极坐标Polar equation :极方程式Pole :极点Polynomial :多项式Positive angle :正角Point-slope form :点斜式Power function :幂函数Product :积Quadrant :象限Quotient Law of limit :极限的商定律Quotient Rule :商定律M、N、OMaximum and minimum values :极大与极小值Mean Value Theorem :均值定理Multiple integrals :重积分Multiplier :乘子Natural exponential function :自然指数函数Natural logarithm function :自然对数函数Natural number :自然数Normal line :法线Normal vector :法向量Number :数Octant :卦限Odd function :奇函数One-sided limit :单边极限Open interval :开区间Optimization problems :最佳化问题Order :阶Ordinary differential equation :常微分方程Origin :原点Orthogonal :正交的LLaplace transform :Leplace 变换Law of Cosines :余弦定理Least upper bound :最小上界Left-hand derivative :左导数Left-hand limit :左极限Lemniscate :双钮线Length :长度Level curve :等高线L'Hospital's rule :洛必达法则Limacon :蚶线Limit :极限Linear approximation:线性近似Linear equation :线性方程式Linear function :线性函数Linearity :线性Linearization :线性化Line in the plane :平面上之直线Line in space :空间之直线Lobachevski geometry :罗巴切夫斯基几何Local extremum :局部极值Local maximum and minimum :局部极大值与极小值Logarithm :对数Logarithmic function :对数函数IImplicit differentiation :隐求导法Implicit function :隐函数Improper integral :瑕积分Increasing/Decreasing Test :递增或递减试验法Increment :增量Increasing Function :增函数Indefinite integral :不定积分Independent variable :自变数Indeterminate from :不定型Inequality :不等式Infinite point :无穷极限Infinite series :无穷级数Inflection point :反曲点Instantaneous velocity :瞬时速度Integer :整数Integral :积分Integrand :被积分式Integration :积分Integration by part :分部积分法Intercepts :截距Intermediate value of Theorem :中间值定理Interval :区间Inverse function :反函数Inverse trigonometric function :反三角函数Iterated integral :逐次积分HHigher mathematics 高等数学/高数E、F、G、HEllipse :椭圆Ellipsoid :椭圆体Epicycloid :外摆线Equation :方程式Even function :偶函数Expected Valued :期望值Exponential Function :指数函数Exponents , laws of :指数率Extreme value :极值Extreme Value Theorem :极值定理Factorial :阶乘First Derivative Test :一阶导数试验法First octant :第一卦限Focus :焦点Fractions :分式Function :函数Fundamental Theorem of Calculus :微积分基本定理Geometric series :几何级数Gradient :梯度Graph :图形Green Formula :格林公式Half-angle formulas :半角公式Harmonic series :调和级数Helix :螺旋线Higher Derivative :高阶导数Horizontal asymptote :水平渐近线Horizontal line :水平线Hyperbola :双曲线Hyper boloid :双曲面DDecreasing function :递减函数Decreasing sequence :递减数列Definite integral :定积分Degree of a polynomial :多项式之次数Density :密度Derivative :导数of a composite function :复合函数之导数of a constant function :常数函数之导数directional :方向导数domain of :导数之定义域of exponential function :指数函数之导数higher :高阶导数partial :偏导数of a power function :幂函数之导数of a power series :羃级数之导数of a product :积之导数of a quotient :商之导数as a rate of change :导数当作变率right-hand :右导数second :二阶导数as the slope of a tangent :导数看成切线之斜率Determinant :行列式Differentiable function :可导函数Differential :微分Differential equation :微分方程partial :偏微分方程Differentiation :求导法implicit :隐求导法partial :偏微分法term by term :逐项求导法Directional derivatives :方向导数Discontinuity :不连续性Disk method :圆盘法Distance :距离Divergence :发散Domain :定义域Dot product :点积Double integral :二重积分change of variable in :二重积分之变数变换in polar coordinates :极坐标二重积分CCalculus :微积分differential :微分学integral :积分学Cartesian coordinates :笛卡儿坐标图片一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西均值定理Chain Rule :连锁律Change of variables :变数变换Circle :圆Circular cylinder :圆柱Closed interval :封闭区间Coefficient :系数Composition of function :函数之合成Compound interest :复利Concavity :凹性Conchoid :蚌线Cone :圆锥Constant function :常数函数Constant of integration :积分常数Continuity :连续性at a point :在一点处之连续性of a function :函数之连续性on an interval :在区间之连续性from the left :左连续from the right :右连续Continuous function :连续函数Convergence :收敛interval of :收敛区间radius of :收敛半径Convergent sequence :收敛数列series :收敛级数Coordinate:s:坐标Cartesian :笛卡儿坐标cylindrical :柱面坐标polar :极坐标rectangular :直角坐标spherical :球面坐标Coordinate axes :坐标轴Coordinate planes :坐标平面Cosine function :余弦函数Critical point :临界点Cubic function :三次函数Curve :曲线Cylinder:圆柱Cylindrical Coordinates :圆柱坐标A、BAbsolute convergence :绝对收敛Absolute extreme values :绝对极值Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值Absolute value function :绝对值函数Acceleration :加速度Antiderivative :反导数Approximate integration :近似积分Approximation :逼近法by differentials :用微分逼近linear :线性逼近法by Simpson’s Rule :Simpson法则逼近法by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数Arc length :弧长Area :面积under a curve :曲线下方之面积between curves :曲线间之面积in polar coordinates :极坐标表示之面积of a sector of a circle :扇形之面积of a surface of a revolution :旋转曲面之面积Asymptote :渐近线horizontal :水平渐近线slant :斜渐近线vertical :垂直渐近线Average speed :平均速率Average velocity :平均速度Axes, coordinate :坐标轴Axes of ellipse :椭圆之轴Binomial series :二项级数。

求数列极限的若干方法

求数列极限的若干方法
关键词
极限理论,数列极限,数列问题,微积分
Some Methods of Solving the Sequence Limit
Zhitai Ke, Minfeng Chen* School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou Guangdong
对分母进行适当的放缩。此外,迫敛性还经常用于求含根式的数列极限。

1.5:设 ai
≥ 0,(i
= 1, 2,
,
k
)
,求极限
lim
n→∞
n
a1n
+ a2n
+ + akn

解令 M 表示 ai ≥ 0 (i = 1, 2,, k ) 中最大的数,即
M = max{a1, a2 ,, ak } ,

M= n M n ≤ n a1n + a2n + + akn ≤ n kM=n n k M ,
n→∞ n
解原= 式 lim 1 ⋅sin n 。又由于 lim 1 = 0 ,即 1 为无穷小量,且 sin n ≤ 1 (n → ∞) , sin n 为有界量。
n→∞ n
n→∞ n
n
故原式 = lim 1 ⋅sin n = 0 。 n→∞ n
注:本题在四则运算法则的基础上运用了无穷小乘以有界量依然为无穷小的结论,最终的结果为 0。
柯至泰,陈敏风
注:本题在四则运算法则的基础上,观察式子,定型为 ∞ − ∞ 型未定式,采用分子有理化对根式进
行化简,使得最终的极限形式一目了然。
(−2)n + 3n

and

and

k ∈ R,
(1.6)
k ∈ R,
where [f ; g ] := f g − f g denotes the Wronskian. It is known that |L(k )| < 1 and |R(k )| < 1 for k ∈ R \ {0}, and hence none of the four functions fl (k, ·), fr (k, ·), fl (k, ·), and fr (k, ·) can vanish when x ∈ R for k ∈ R \ {0}. We refer the reader to [Fa64,DT79,CS89] for the basic facts on the scattering theory for (1.1). The potential V is ‘generic’ if fl (0, x) and fr (0, x) are linearly independent, and it is ‘exceptional’ if fl (0, x) and fr (0, x) are linearly dependent. In the exceptional case we have (1.7) γ= fl (0, x) , fr (0, x) x ∈ R,
SMALL-ENERGY ASYMPTOTICS FOR ¨ THE SCHRODINGER EQUATION ON THE LINE Dedicated to Pierre C. Sabatier on the occasion of his 65th birthday
Tuncay Aktosun Department of Mathematics North Dakota State University Fargo, ND 58105, USA and Martin Klaus Department of Mathematics Virginia Polytechnic Institute and State University Blacksburg, VA 24061, USA

幂律型非牛顿流体能量边界层本构方程

幂律型非牛顿流体能量边界层本构方程

The constitutive equation for energy boundary layer inpower law non-Newtonian fluidsLiancun Zheng 1, Xinxin Zhang 21Department of Mathematics and Mechanics, University of Science and Technology Beijing,Beijing 100083, China, e-mail: liancunzheng@2Mechanical Engineering School, University of Science and Technology Beijing,Beijing 100083, China, e-mail: xxzhang@Abstract: A new energy boundary layer equation model for power law non-Newtonian fluids is established first time by assuming that the thermal diffusivity a is characterized as a power law function of temperature gradient. The Prandtl number is characterized by a relationship of velocity gradient, temperature gradient, and the power law index. Furthermore, a new similarity number are derived by supposing that the heat boundary layer equation existing similarity solution.Keywords: Power law fluids, heat transfer, similarity solution, nonlinear boundary value problem. AMS Subject Classification: 34B15, 76D101. IntroductionRecently, considerable attention has been devoted to the problem of how to predict the drag force behavior of non-Newtonian fluids. The main reason for this is probably that fluids(such as molten plastics, pulps, slurries, emulsions), which do not obey the Newtonian postulate that the stress tensor is directly proportional to the deformation tensor, are produced industrially in increasing quantities, and are therefore in some cases just as likely to be pumped in a plant as the more common Newtonian fluids. Understanding the nature of this force by mathematical modeling with a view to predicting the drag forces and the associated behavior of fluid flow has been the focus of considerable research work. In addition, the mathematical model considered in the present paper has significance in studying many problems of engineering [1-3, 6-16].2. Boundary Layer Governing EquationsWhen a fluid flows past a solid body at high Reynolds number , a thin viscous boundary layer is known to form at least along the forward portion of the solid surface. Historically, the boundary layer flow past a flat plate was first example considered by Blasius to illustrate the application of Prandtl’s boundary layer theory. Schowalter R [2] applied the boundary layer theory to power law pseu-doplastic fluids and developed the two-dimensional and three dimensional boundary layer equations for the momentum transfer. Acrivos and Shah [3] considered the momentum and heat transfer for a non-Newtonian fluids pastarbitrary external surfaces. Following the discussion by Schowalter and Acrivos, the similarity equation of momentum boundary layer has been known as0)('' )())'('')(''(1 =+−ηηηηf f f f n (1)Eqs.(1) has been used to describe the momentum transfer in power law fluids boundary layer for more than 40 years [2-20]. However, the similarity equation for thermal boundary layer has not been established up to now. This paper investigates the applicability of boundary layer theory for the flow of power law fluids.A special emphasis is given to the formulation of boundary layer equations, which provide similarity solutions.Consider a semi-infinite plate aligned with a uniform power law flow of constant speed U at uniform wall temperature. The laminar boundary layer equations expressing conservation of mass, momentum and energy should be written as follows: ∞∂∂∂∂U X V Y+=0 (2) YY U V X U U XY ∂∂=+τρ∂∂∂∂1 (3) (Y T a Y Y T V X T U ∂∂∂∂=+∂∂∂∂ (4)where the and axes are taken along and perpendicular to the plate, and V are the velocitycomponents parallel and normal to the plate, X Y U 1−∂∂=n YU γν(γ) is the kinematic viscosity, the thermal diffusivity may be defined as ρ/K =a 1−∂∂=n Y T ω0<n a with and as positive constant. The casecorresponds to a Newtonian fluid and the case is “power law” relation proposed as being descriptive of pseudo-plastic non-Newtonian fluids and n describes the dilatant fluid. The appropriate boundary conditions are:γω1<1>1=n ∞+∞======U U VU Y Y Y ,0 ,000 (5) ,0∞+∞====T T T T Y w Y (6)3. Nonlinear Boundary Value Problem.The dimensionless variables, the stream function ),( y x ψ, the similarity variable ηand the dimensionless temperature function are introduced as )(ηw [12-14], we arrive at the nonlinear boundary value problems of the form:0)('' )())'('')(''(1 =+−ηηηηf f f f n (7)1)(' ,0)0(' ,0)0(===+∞=ηηf f f (8)0)(')())'(')('(1=+−ηηηηw f N w w Zh n (9)1)( ,0)0(==+∞=ηηw w (10)Eqs.(7)-(10) are the similarity equations for both momentum and thermal boundary layer in non-Newtonian fluids. It is clearly that when , Eqs.(7)-(10) reduce to the Falkner-Skan’s equations for Newtonian fluid.1=n Where the similarity number definedas Zh N ω⋅−=∞∞Re )(N T T L U N W n Zh (11) Assuming the solution of Eqs.(7)-(10) possesses a positive second derivative in and ( it is closely related to boundary conditions). Defining the general Crocco variable transformation as:)(ηf ′′) ,0(∞+0)(=+∞′′f []nf tg )( )(η′′=,φ, (12) )()(ηw t =)('ηf t =where is the dimensionless tangential velocity, is the dimensionless shear force, φ is the dimensionless temperature. Substituting (12) into Eqs.(7)-(10) and applying the chain rule yield the following singular nonlinear boundary value problems:t )(t g )(t 10 , )()(1<<−=′′−t t tg t g n (13)0=(1) ,0)0(g g =′ (14)0)()())'())('((=′′+t g t N t g t zh n φφ (15)1)1( ,0)0(==φφ (16)The momentum equation and the energy equation are decoupled since the fluid is incompressible. As the positive solutions of Eqs.(13)-(14) is concerned, Zheng et al.[12-14] discussed some general cases of power law fluid boundary layer equations for . Sufficient conditions for existence, non-uniqueness, uniqueness and analyticity of positive solutions to the problems were established utilizing the perturbation and shooting techniques. It was shown that for special parameters of , Eqs.(13)-(14) have an analytical solution which may be represented by a power series for at t (i.e.,10≤<n )(t g n 0=∑∞==0)(!)0()(i i i t i g t g ) and converges at . 1=t The nonlinear differential equations (7)-(8)(momentum equation) and (9)-(10)(energy equation) are solved for the dependent variables and as a function of . Clearly, the nonlinear boundary value problems(7)-(8) are de-coupled and can be discussed firstly. The solutions then may be used immediately for solving the nonlinear boundary value problems (9)-(10).f w ηUtilizing the solutions of momentum equations (8)-(9), the solutions of energy equations (10)-(11) can be solved by a shooting technique. For all the results are qualitatively agree very well with that of the classical Blasius problems for Newtonian Fluids which have been discussed by many authors 1=n [1]. 4. ConclusionsThe new energy boundary layer model are developed which can be characterized by a power law relationship between shear stress and velocity gradient. A new similarity number are derived by supposing that the heat boundary layer equation existing similarity solution. The solutions may be presented numerically by using the standard Runge-Kutta formulas and a shooting technique and the associated transfer characteristics are discussed in detail.Acknowledgement: The work is supported by the National Natural Science Foundations of China ( No. 50476083).References[1] Schlichting H., Boundary Layer Theory, New York: McGraw-Hill, 1979.[2] Schowalter W. R., The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids:Similar Solutions, A.I.Ch.E.Journal, 1960, 6:24-28.[3] Acrivos A., M.J.Shah, and E.E.Petersen, Momentum and Heat Transfer in Laminar Boundary-LayerFlows of Non-Newtonian Fluids Past External Surfaces, A.I.Ch.E.Journal, 1960, 6:.312-317.[4] Callegari A. J. and Nachman A., Some singular, non-linear differential equations arising in boundarylayer theory, J. Math. Anal. Appl., 1978,46: 96-105.[5] Nachman A. and Callegari A., A Nonlinear Singular Boundary Value Problem in the Theory ofPseudoplastic Fluids, SIAM J.Appl. Math. 1980, 38(3): 275-281.[6] Hopwell T.G., Momentum and heat transfer on a continuous moving surface in power law fluid, Int. J.Heat Mass Transfer, 1997, 40(9): 1853-1861.[7] Wang T.Y., Mixed convection from a vertical plate to Non-Newtonian fluids with uniform surfaceheat flux. Int. Comm. in heat and mass transfer, 1995, 22(3): 369-380.[8] Wang T.Y., Mixed convection heat transfer from a vertical plate to non-Newtonian fluids, Int. J. heatand fluid flow, 1995, 16(1): .56-61.[9] Hassanien I. A., Abdullah A. A. and Gorla R.S.R., Flow and heat transfer in a power-law fluid over aNon-isothermal stretching sheet, Math. Comput. Modeling, 1998, 28(9): 105-116.[10] Kumari K., Pop I. And Takhar H.S., Free-convection boundary-layer flow of a non-Newtonian fluidalong a vertical wavy surface, Int. J. heat and fluid flow, 1997, 18(6): 625-631.[11] Hady F.M., Mixed convection boundary-layer flow of Non-Newtonian fluids on a horizontal plate,Applied mathematics and computation, 1995, 68: 105-112.[12] Howell T.G., Jeng D.R., and De Witt K. J., Momentum and heat transfer on a continuous movingsurface in power law fluid, Int. J. Heat Mass Transfer, 40(1997): 1853-1861.[13] Rao J.H., Jeng D.R., andDe Witt K. J., Momentum and heat transfer in a power-law fluid witharbitrary injection/suction at a moving wall, Int. J. Heat Mass Transfer, 42(1999) 2837-2847.[14] Vajravelu K., Soewono E., and Mohapatra R.N., On Solutions of Some Singular, Non-linearDifferential Equations Arising in Boundary Layer Theory, J. Math. Anal. Appl., 155(1991)499-512. u&&[15] Akcay M., Adil Y kselen M., Drag reduction of a nonnewtonian fluid by fluid injection on a movingwall, Archive of applied mech., 69(1999) 215-225.[16] Liancun Zheng, lianxi Ma, and Jicheng He, Bifurcation solutions to a boundary layer problem arisingin the theory of power law fluids, Acta Mathematica Scientia, 2000, 20(2):19-26.[17] Liancun Zheng and Jicheng He, Existence and non-uniqueness of positive solutions to a non-linearboundary value problems in the theory of viscous fluids, Dynamic systems and applications, 1999, 8: 133-145.[18] Liancun Zheng, Xinxin Zhang, and Jicheng He, Bifurcation behavior of reverse flow boundary layerproblem with special injection/suction, Chinese Phys. Lett., 2003, 20(1): 83-86.[19] Liancun Zheng, Xiaohong Su, Xinxin Zhang, Similarity Solutions for Boundary Layer Flow on aMoving Surface in an Otherwise Quiescent Fluids Medium, International Journal of Pure and Applied Mathematics, V ol.19, No.4, 2005, 541-552.[20] Liancun Zheng, Xinxin Zhang, Jicheng He, Existence and Estimate of Positive Solutions to aNonlinear Singular Boundary Value Problem in the Theory of Dilatant non-Newtonian Fluids, Mathematical Computers Modelling,in press.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 Limitations of Equation-based Congestion Control in Mobile Ad Hoc NetworksKai Chen and Klara NahrstedtComputer Science DepartmentUniversity of Illinois at Urbana-ChampaignUrbana,IL61801,U.S.A.Email:kaichen,klara@Abstract—Equation-based congestion control has been a promising alternative to TCP for real-time multimedia streaming over the Internet.However,its behavior remains unknown in the mobile ad hoc wireless network(MANET) domain.In this paper,we study the behavior of TFRC (TCP Friendly Rate Control[1],[2])over a wide range of MANET scenarios,in terms of throughput fairness and smoothness.Our result shows that while TFRC is able to maintain throughput smoothness in MANET,it obtains less throughput than the competing TCPflows(i.e.,being conservative).We analyze several factors contributing to TFRC’s conservative behavior in MANET,many of which are inherent to the MANET network.We also show that TFRC’s conservative behavior cannot be completely corrected by tuning its loss event interval estimator.Our study shows the limitations of applying TFRC to the MANET domain,and reveals some fundamental difficulties in doing so.At the same time,our study in this paper opens up the question of how to properly perform multimedia streaming over MANET.To this end,we propose an alternative scheme(called EXACT-AA)based on router’s explicit rate signaling and application’s adaptation policies.We demonstrate the feasibility of our scheme using an audio streaming application over a real MANET test-bed.Index Terms—Equation-based congestion control, TFRC,fairness,smoothness,mobile ad hoc networks (MANET).I.I NTRODUCTIONRecent years have seen a stream of TCP-friendly congestion control mechanisms designed for the Internet [1]–[5].They are driven by the need of multimedia streaming over the network,which requires smooth rate adaptation,instead of TCP’s abrupt“cut-half”rate change policy.At the same time,they attempt to maintain long-term throughput fairness with other competing TCP flows in the network,i.e.,their long-term throughput should approximately equal to that of a TCPflow under the same network condition.Among the class of TCP-friendly congestion control mechanisms,the TCP equation-based approach has been one of the most well-studied algorithm[1]–[3],[6]–[8].It relies on a“TCP throughput equation”which captures the TCP throughput over a network path with certain loss rate and round-trip time(RTT).Past studies have shown that the TCP equation is able to achieve reasonable fairness with com-peting TCPflows under a wide range of traffic conditions in wireline networks[6],[7].Real experiments over the Internet also suggest that it is safe to be deployed[1]. In fact,the protocol that implements the TCP-equation based approach,TFRC(TCP Friendly Rate Control),has recently become a standard RFC[2].Now we shift our attention from Internet to a mobile ad hoc network(MANET).In MANET,each node is free to move about,creating not onlyfluctuating wireless link bandwidth,but also link breakage,route breakage and dynamic routing.Currently TCP remains the de facto standard for congestion control in MANET(despite its many well-known deficiencies in this environment), simply because of its wide acceptance and deployment over the Internet.With the emerging need of multime-dia streaming over MANET,equation-based congestion control is likely tofind its way into MANET as well, for example,by reusing the same software that has been developed for the Internet.However,the behavior of equation-based congestion control(TFRC)is very much unknown in MANET where the degrees of network dynamics are far more di-verse than those in wireline networks.For instance,wire-less link’s bandwidth can vary greatly in very small time-scale,due to the randomness in channel contention and signal fading.Packet loss can occur due to congestion-related queuing loss,wireless-related random loss,and mobility-related routing loss.Under this environment,it is unclear whether TFRC will be able to compete fairly with TCP,and if not,what are the factors that contribute to such behavior.In this paper,we study the behavior of TFRC in MANET.Ourfinding indicates that,while TFRC is ableto maintain smooth rate change,its throughput is often “beaten”down by competing TCPflows to a certain degree,especially under heavy background traffic and dynamic topology conditions.To explain TFRC’s con-servative behavior,we analyze several factors including loss rate discrepancy,inaccuracy of loss rate prediction, and lack of auto-correlation in MANET’s loss process. We also explore TFRC’s response to the tuning of its loss event interval estimator,and show that its conservative behavior cannot be completely corrected.Our study shows the limitations of applying TFRC to the MANET domain,and reveals some fundamental difficulties in doing so.Ourfindings in this paper also open up the ques-tion of how to properly perform multimedia streaming over MANET.To this end,we propose an alternative scheme(called EXACT-AA)based on router’s explicit rate signaling and application’s adaptation policies.We demonstrate the feasibility of our scheme using an audio streaming application over a real MANET test-bed. The rest of the paper is organized as follows.In Sec-tion II we discuss background and related work of TFRC. In Section III,we study TFRC’s behavior in MANET, and explain the factors that lead to such behavior in Section IV.In Section V we explore parameter tuningof TFRC.In Section VI we propose an explicit rate signaling scheme for multimedia streaming and present its test-bed experiment results.We then conclude the paper in Section VII.II.B ACKGROUND AND R ELATED W ORKA.Background of TFRCTFRC is a protocol that implements equation-based congestion control.1In TFRC,the receiver measures the loss event rate(i.e.,loss rate)and feeds this information to the sender.The sender uses the feedback messages to measure the RTT,and then inputs the loss rate and RTT to a TCP throughput equation to compute its acceptable transmission rate.The core of TFRC is the TCP throughput equation, which is a slightly simplified version of the equation from[3]:. This arrangement gives equal weights to the recent samples,and linearly decreasing weights after that. B.Related WorkThe TCP throughput equation(Equation(1))wasfirst derived by Padhye et al.[3],where a deterministic network loss process is assumed,i.e.,network’s loss rate is constant.This equation was later adopted by TFRC and has been extensively evaluated by Floyd et al.[1], which shows approximate fairness with TCP over a wide range of simulated wireline networks and over the real Internet.Bansal et al.[6]and Yang et al.[7]studied the dynamic behavior of TFRC in a wireline network with time-varying background traffic.They found that TFRC may not always get its equitable share when the network condition changes dynamically,and it may incur higher packet loss rate than TCP due to its slow response to network congestion.In a similar study performed on TCP with different responsive parameters(i.e.,GAIMD), Zhang and Tsaoussidis[9]observed that a less respon-sive TCPflow may lose throughput to a more responsive one,especially when the network has high transient error rates.2Vijnovic and LeBoudec[8]studied the long-term behavior of an adaptive source using the TCP throughput equation.They found that if the network loss pro-cess is deterministic,the equation-based adaptive source achieves comparable long-term throughput with TCP; however,if the loss process is random,the long-term throughput guided by the TCP equation may not be TCP-friendly,due to the non-linearity of the equation. Especially,they showed that if the loss event intervals of the network are not correlated or negatively correlated, the equation-based source will under-shoot the long-term throughput of TCP,i.e.,being systematically conserva-tive,and the degree of conservativeness depends on the variation of the estimated loss event intervals.III.B EHAVIOR OF TFRC IN MANETIn this section we study the behavior of TFRC in terms of long-term and short-term fairness and smoothness, under various static and dynamic MANET topologies and with different levels of background traffic.A.Simulation Network and ParametersWe consider two types of MANET topologies:static and dynamic.In static topology,we consider a chain that consists of2to7stationary nodes,which provides a controlled environment where TFRC can be evalu-ated over a path with increasing number of hops.In dynamic topology,two scenarios are considered:a small 600600m network with50nodes(where a path has1to 4hops),and a larger1500300m network with60nodes (where a path has1to7hops).In both scenarios,random way-point mobility is used with maximum speed of10 m/s and pause time of0seconds,and the network is not partitioned at any time.We hope to use these scenarios (6static and2dynamic)to represent the spectrum of MANET topologies.In each scenario,10TCP-SACKflows and10TFRC flows are created to compete with each other over the same path.2In the static chain scenarios,TCP and TFRC flows run from one end of the chain to the other.In the dynamic scenarios,a pair of nodes are randomly chosen to be the sender and receiver of the TCP and TFRC flows.Since they travel through the same path,they should encounter the same network conditions.Sharing a path also shields the potential discrepancy of route discovery for different paths.We use Dynamic Source Routing(DSR[11])as the underlying routing protocol. 2There are many existing studies in enhancing TCP performance in MANET,e.g.TCP-ELFN[10].Similar techniques may be applied to TFRC as well.In this paper,we only focus on the behaviors of unmodified TCP and TFRCflows.Background traffic consists of non-adaptive CBR flows to create consistent but varying levels of congestion within the network.In the chain scenarios,a CBRflow is created with various data rates,from one end of the chain to the other.In the dynamic scenarios,in order to spread out the background traffic across the network,10 CBRflows are created each between a pair of randomly selected nodes.In order to avoid stalling the TCP and TFRCflows,we have carefully selected different levels of CBR data rates for each of the simulated scenarios, such that the non-adaptive CBR traffic does not over-flood the whole network.We keep most of TFRC’s default settings in the ns-2(2.1b9a)simulator,which mostly corresponds to the parameters suggested in[1],[2].We use the same data packet size(1000bytes)for TCP and TFRC,so that we can also compare their throughputs by the number of data packets.Each simulation run lasts for1000seconds. B.FairnessWe consider both the long-term and short-term fair-ness between TCP and TFRC.To evaluate long-term fairness,we obtain the average throughput of all the TCP (or TFRC)flows over the entire course of their simula-tion(1000seconds),and then normalize TFRC’s average throughput again TCP’s(so that TCP’s throughput is always one).Figure1shows the results under different simulated topologies with various levels of background traffic.Three observations can be made from thefigure: 1)TFRC shows conservative behavior over all simulated scenarios;2)TFRC is generally more conservative with heavier background traffic and in a dynamic topology; and3)overall TFRC obtains0.2to0.8the throughput of TCP.Therefore,although TFRC can be used in situations where strict throughput fairness is not a major concern,it consistently possesses conservative behavior in MANET.To evaluate short-term fairness,we use the average short-term throughput of all the TCP(or TFRC)flows, over every10-second time interval.We choose the10-second interval to measure short-term throughput,be-cause the RTT over a long path(e.g.over5hops)in MANET may take as long as several seconds.Therefore, the10-second interval we use is within the time-scale of several RTTs,which is the time-scale usually used in measuring short-term fairness.For each MANET scenario,we choose a mid-level background traffic rate. Figure2plots the average10-second throughputs of the TFRC and TCPflows,in four representative scenarios (others are omitted for brevity).Two observations can be made from thisfigure:1)the short-term throughputs of 3N o r m a l i z e d A v e r a g e T h r o u g h p u t o f T F R CCross Traffic (Kbps)Fig.1.Normalized long-term throughput of TFRC.TCP and TFRC are very fluctuating,and in most cases,TFRC has less throughput than TCP;2)TCP is more aggressive to increase its throughput when bandwidth becomes available,and more agile to reduce throughput when bandwidth becomes scarce.For instance,in Figure 2(d),TCP grows much faster than TFRC at time 20s,100s,210s,320s and 900s,and it slows down quicker at time 90s,200s,450s and 960s.This slow response behavior of TFRC is same as in wireline networks.C.Smoothness of rate changeSmooth rate change is an important feature of TFRC.Here we use a flow’s throughput-change ratio between two consecutive time windows to measure its smooth-ness,as:,where is the average throughput over the i-th interval for that flow (each interval is 10seconds).It can also be interpreted as a flow’s throughput fluctuation over two consecutive time intervals.A flow’s smoothness index is then defined as the average throughput-change ratio during its lifetime,as:,where the total number of time intervals during the simulation.3A smaller smoothness index indicates smoother throughput change for a flow.Figure 3shows the average smoothness index of all the TFRC flows,normalized against that of the TCP flows (so that the TCP flows’smoothness index is one).It shows that TFRC is able to maintain its smooth rate change over a wide range of MANET scenarios,and in most cases,TFRC’s throughput fluctuates only 0.3to 0.7as much as TCP’s.In sum,TFRC consistently shows conservative behav-ior over both long-term and short-term,while it is able to3Unlike using the coefficient of variation of a flow’s short-term throughputs,for instance,in [7],our definition of the smoothness index captures the time serial of rate changes,whereas the coefficient of variation metric considers the short-term throughputs only as a set of samples without any relation in the timedomain.N o r m a l i z e d S m o o t h n e s s I n d e x o f T F R CCross Traffic (Kbps)Fig.3.Normalized smoothness index of TFRC.N o r m a l i z e d L o s s R a t e o f T F R CCross Traffic (Kbps)Fig.4.Normalized loss rate of TFRC.maintain throughput smoothness,under a wide range of MANET topologies with varying levels of background traffic.IV.F ACTORS C ONTRIBUTING TO TFRC’SC ONSERVATIVE B EHAVIORIn this section,we study the factors that contribute to TFRC’s conservative behavior in MANET.A.TFRC may experience higher loss rate than TCP Under dynamic network conditions,loss rate expe-rienced by TFRC flows may be higher than that by TCP flows,due to TFRC’s slow response to network congestion.As a result,the larger loss rate experienced by a TFRC flow may drive down its throughput based on the TCP equation.Figure 4shows the average loss rate experienced by all TFRC flows over the entire course of each simulation,normalized against that of the TCP flows.It shows that TFRC’s loss rate is much larger than TCP’s,especially in a dynamic network topology with heavy background traffic.40510152025303501002003004005006007008009001000A v e r a g e T h r o u g h p u t (p k t s /b i n )Time (sec)TCP bin 10 secs TFRC bin 10 secs(a)Static 3-node Chain with background 50Kbps 024*********1002003004005006007008009001000A v e r a g e T h r o u g h p u t (p k t s /b i n )Time (sec)TCP bin 10 secs TFRC bin 10 secs(b)Static 7-node Chain with background 10Kbps0102030405060708001002003004005006007008009001000A v e r a g e T h r o u g h p u t (p k t s /b i n )Time (sec)TCP bin 10 secs TFRC bin 10 secs(c)Dynamic 600600Network with background 100Kbps0102030405060708001002003004005006007008009001000A v e r a g e T h r o u g h p u t (p k t s /b i n )Time (sec)TCP bin 10 secs TFRC bin 10 secs(d)Dynamic 1500300Network with background 20KbpsFig.2.Short-term throughput of TCP and TFRC.B.TFRC’s loss rate estimator is highly inaccurate TFRC relies on the recent history of loss event intervals to estimate the current loss event interval (equivalently the loss rate),using a weighted average estimator as in Equation (2).However,the estimation may not be accurate,due to many random factors in the network’s loss process.We define a prediction-error ratio metric as:at the end of the i-th loss event interval,,where is thepredicted value for this interval,and is the true value.We then average the prediction-error ratios for each loss event interval,during a TFRC flow’s lifetime,as:,where is the number of loss event intervals.Figure 5shows the average prediction-error ratio of all the TFRC flows.The result can be roughly divided into three groups:a)short-chain (2to 4nodes)with 70%to 80%error;b)long-chain (5to 7nodes)with 80%to 90%error;and c)dynamic network scenarios have highly varying and sometimes very high (i.e.over 100%)error ratio.Overall,this suggests that TFRC’s loss event interval prediction is highly unreliable in MANET,and that the prediction is worse over a longer path or in a more dynamic topology.TFRC’s inaccuracy in predicting loss event interval can be attributed to a number of reasons:1)highly varying packet losses due to dynamic wireless linkA v e r a g e P r e d i c t i o n E r r o r R a t i oCross Traffic (Kbps)Fig.5.TFRC’s prediction error of loss event intervals.bandwidth;and 2)some packet losses are wireless-medium or route-disruption related,and hence highly random and unpredictable.For instance,Figure 6shows the measured 10-second averaged link bandwidth from node 1to 2in the 5-node chain scenario with 50Kbps background traffic (using the bandwidth measurement method in [12],[13]).Unlike wireline networks where a physical link’s bandwidth is constant,in MANET,a wireless link’s effective bandwidth is time-varying,depending on channel contention and signal fading.This MAC layer property is clearly unique in MANET,and we believe it is a fundamental difficulty in doing loss 56000065000 70000 75000 80000 85000 90000 95000 100000 105000 0 100 200 300 400 500 600 700 800 900 1000A v e r a g e L i n k T h r o u g h p u t (b y t e s /s e c )Time (sec)Average throughput from node 1 to 2 in 10 sec binFig.6.Measured link bandwidth in 10-second interval.rate estimation in such network.C.MANET’s loss process shows little auto-correlation To further understand the difficulty for TFRC to estimate the current loss event interval,we study the covariance (cov)of the estimated loss event interval ()and its true value (),experienced by a TFRC flow.4Since the loss event interval is estimated based on the weighted average of the past intervals (as in Equation (2)),the covariance of the estimated interval and its true value can be computed as:(3)where is the same set of weights as in Equation (2).In other words,depends only on the spectral property of the auto-covariance (with lags from 1to )of the loss event intervals.The loss event intervals should possess significant auto-correlation in order for TFRC to have an accurate prediction;otherwise it is impossible to do so no matter how the weights are chosen.We compute the covariance of and using auto-covariance of with lags to .Figure 7shows the result of normalized into range [-1,1](same as its )in our simulated scenarios.The small in Figure 7suggests that is a bad estimator for ,which helps to explain the large prediction error we have seen earlier.The auto-covariance of ,not shown here,is also very small.That means MANET’s loss process possesses little auto-correlation for its loss event intervals.Furthermore,as mentioned in Section II,the4Recall that covariance of two random variables is defined by.Their statistical correlationis defined byThe number of history samples determines not onlythe responsiveness of a TFRCflow,but also the variationof the estimated loss event intervals.Intuitively,includ-ing more history samples(larger)makes TFRC less responsive to network condition,hence leading to bettersmoothness behavior.However,the effect on the long-term fairness between TFRC and TCP is less certain,because it must be determined by two counter-activefactors.On one hand,when TFRC is less responsiveto network condition,its loss rate may increase,makingTFRC more conservative.On the other hand,using morehistory samples makes the variation of the estimated in-tervals lower,which in turn drives the TFRC control lessconservative(according to Claim1in[8]).Therefore,thelong-term fairness should be the combined effect of thesetwo counter-active factors.We pick two of our earlier MANET scenarios toexplore TFRC’s response to parameter tuning of.Figure9shows the result of a4-node static chainwith30Kbps background traffic.Two observations areevident.First,TFRC’s rate change is smoother withthe increase of history samples.Second,TFRC is moreconservative when is small(2to4),and it remains roughly unchanged when becomes larger(8to128). Now let’s look at the two factors that drive the long-term fairness of TFRC:1)loss rate experienced by TFRC,and2)the coefficient of variation of the estimated loss intervals.5Figure9(c)shows that the loss rate only slightly increases when increases from2to128 (because the auto-correlation of the loss event intervals is small),while the coefficient of variation of the estimated loss intervals decreases,significantly with2to16, and moderately with32to128.This shows the trade-off between these two factors,which underscores the dilemma in tuning parameter to improve TFRC’s long-term fairness behavior.The result of the dynamic 600600m scenario is similar and omitted for brevity. Therefore,TFRC’s conservative behavior cannot be completely corrected by tuning the number of history samples()in its loss event interval estimator.Based on our simulated scenarios,and considering the fairness, smoothness and responsiveness metrics,we conclude that using8to16samples appears to be an appropriate choice.VI.M ULTIMEDIA S TREAMING IN MANETSo far we have uncovered the limitations of TFRC in MANET.Ourfindings open up the question of how to 5Recall that the coefficient of variation of a random variable is denoted by and defined by0.511.521234567A v e r a g e T h r o u g h p u t (p k t s /s e c )Use History Samples (2^x)TCP TFRC(a)Long Term Fairness 00.10.20.30.40.50.60.70.81234567S m o o t h n e s s I n d e xUse History Samples (2^x)TCP TFRC(b)Smoothness00.020.040.060.080.10.120.140.160.181234567T o t a l L o s s R a t eUse History Samples (2^x)TCP TFRC(c)Loss Rate00.10.20.30.40.50.60.70.80.91234567C x o f E s t i m a t e d L o s s I n t e r v a lUse History Samples (2^x)Coefficien of variation of estimated loss event interval(d)Coefficient of Variation of Estimated Loss Event IntervalsFig.9.Effect of tuning the number of history samples ()in the static 4-node chain scenario.IP header,called flow control header ,which is modified by the intermediate routers to signal the flow’s allowed sending rate based on the current available bandwidth at the router.When the packet reaches destination,its flow control header carries the bottleneck rate for the flow,and such rate information is returned to the sender in a feedback packet.In the event of re-routing,the first data packet traveling through the new path collects the new allowed rate of the flow,and returns that to the sender after just one round-trip time of delay.In EXACT,router bears the responsibility of com-puting and marking the explicit rates for the flows,i.e.,the router allocates its bandwidth resources to the competing flows passing that router.As a result,fairnessamong the competing flows can be guaranteed,and by accurately allocating the total available bandwidth resources,efficiency can also be achieved.In [15],we have shown that EXACT outperforms TCP in terms of fairness and efficiency in a dynamic mobile MANET environment.C.EXACT-AA:Application Adaptation Policies We enhance EXACT with application adaptation policies (EXACT-AA)in orderto support multimedia streaming over MANET.There are many choices of adaptation policies.As an example,we propose a policy called Delayed Increase Immediate Decrease (DIID),(a)Each data packet explicitly carries the allowed sending rate of the forward path.The rate information is returned to the sender by feedback packets.(b)After re-routing,the allowed sending rate of the new path is immediately “learned”by the data packets going through the new path.Fig.10.Overview of the EXACT flow control scheme.where a flow can increase its rate only when the rate signal from the routers has increased and sustained over a certain period of time,and the flow has to reduce its rate immediately when the rate signal decreases in order to conform to the underlying flow control scheme.The intuition of this policy is that,many rate increases in MANET are temporary and short-lived,due to wireless8channel contention and interference.Therefore,the DIID policy avoids temporary spikes in bandwidth allocation, and captures only those that are sustainable.It has similar effects of a low-passfilter.Other adaptation policies are also possible.Over the long-term,the DIID policy is conservative,i.e.,it has less throughput than those who closely follow router’s rate signals.Since the router’s rate signal is time-varying,there is an inherent trade-off between smooth-ness and fairness in our scheme,which is similar to the observations of TFRC in Section III.However,in our scheme,the trade-off is controllable by each application. Therefore,it provides a tunable knob where users can pro-actively adjust their preferences of this trade-off. D.Test-bed Experiments of EXACT-AAWe show the results of an audio streaming application using the EXACT-AA scheme over a MANET test-bed.Our test-bed consists of four Redhat Linux laptops equipped with Lucent WaveLAN802.11b cards in ad hoc mode.The laptops are configured withfixed-routing tables such that they form a3-hop chain topology, and they are moved around in an office building with channel interferences from a nearby wireless LAN.We implement two types offlows:1)greedy UDPflow which sends out data according to the rate signal from the routers;and2)audio streamingflow which sends out audio data based on the rate signal from the routers and with a5-second DIID adaptation policy,i.e.,the audio flow will increase its rate only when the rate increase has sustained for5seconds.Threeflows are created with staggered starting times. Two UDPflows start at time0s and65s,respectively.An audioflow starts later around time130s.Figure11shows router’s rate signals for the threeflows.It is evident that their allowed sending rates are highly dynamic,and that many rate increases are temporary and short-lived.We show the audio streamingflow’s rate signal with and without the DIID policy in Figure12.It shows that without the DIID policy,the audioflow has to adjust its media quality(i.e.the audio sampling rate from the microphone)frequently.After applying the DIID policy, the rate change events are greatly reduced,and theflow’s smoothness is significantly improved.Our EXACT-AA scheme provides a tunable knob for the application to perform its own adaptations.Such informed adaptation is possible because of the explicit rate signals provided by the underlying EXACTflow control scheme.E.Feasibility in MANETAdmittedly,the EXACT(and EXACT-AA)scheme incurs additional complexity and overhead at the routers,2000040000600008000010000012000030507090110130150170190210230250270290 Sender’sGrantedRate(Bytes/sec)Time (sec)sending rate of the first flow(a)First Greedy UDP Flow2000040000600008000010000012000030507090110130150170190210230250270290 Sender’sGrantedRate(Bytes/sec)Time (sec)sending rate of the second flow(b)Second Greedy UDP Flow2000040000600008000010000012000030507090110130150170190210230250270290 Sender’sGrantedRate(Bytes/sec)Time (sec)granted rate of the third flow (audio)(c)Audio Streaming FlowFig.11.Explicit rate signal from the routers.such as computing rate allocation for theflows.There-fore,our scheme is not targeted for the large scale Internet(where core routers have to process huge number of concurrentflows),but rather as a solution for the special MANET environment.Since MANET is often a small scale network and there is no“core”router in the network,the number of concurrentflows going through a MANET router is likely to be relatively small.We conduct stress tests on the test-bed in order to gauge router’s overhead in running the EXACT scheme. We create10concurrent UDPflows over the3-hop path, and use a slow speed laptop(Pentium II266Hz with224 KB memory)as one of the intermediate routers.The result shows that,even with a Java implementation,the Pentium II laptop’s CPU occupancy is less than4%.That means EXACT is well within the computing power of today’s mobile devices.9。

相关文档
最新文档