最新重庆市2014年高考预测押题压轴卷理科数学试题(含答案)

合集下载

(重庆市)2014年高考真题数学(理)试题

(重庆市)2014年高考真题数学(理)试题

2014年重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2.对任意等比数列{}n a ,下列说法一定准确的是( ) 139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+4.已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.1525.执行如题(5)图所示的程序框图,学科 网若输出k 的值为6,则判断框内可填入的条件是( ) A.12s>B.35s >C.710s >D.45s >6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.728.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存有一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.3 9.某次联欢会要安排3个歌舞类节目、学科 网2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.310.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.216b)+ab(a >C.126≤≤abcD.1224abc ≤≤ 二、填空题11.设全集=⋂==≤≤∈=B A C B A n N n U U )(},9,7,5,3,1{},8,5,3,2,1{},101|{则______. 12.函数)2(log log )(2x x x f ⋅=的最小值为_________.13. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 ABC ∆为等边三角形,学 科网则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14. 过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C , 若6=PA ,AC =8,BC =9,则AB =________. 15. 已知直线l 的参数方程为⎩⎨⎧+=+=t y tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________. 16. 若不等式2212122++≥++-a a x x 对任意实数x 恒成立,学 科网则实数a 的取值范围是 ____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫ ⎝⎛+23cos πα的值.18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字 是2,2张卡片上的数字是3,学 科 网从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数).19.(本小题满分12分)如图(19),四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (1)求PO 的长;(2)求二面角C PM A --的正弦值。

2014年重庆市高考理科数学试卷及答案解析(版)(最新整理)

2014年重庆市高考理科数学试卷及答案解析(版)(最新整理)
[答案] 5
16. 若不等式 2x 1 x 2 a2 1 a 2 对任意实数 x 恒成立,则实数 a 的取值范围是________. 2
[核心考点]考查含绝对值的不等式,含绝对值的函数以及恒成立等综合问题。
3x 1, x 2
[解析]令
f
(x)
2x 1
x2
x 3, 2
[答案]D
7. 某几何体的三视图如图所示,则该几何体的表面积为( )
A.54
B.60
C.66
D.72
[核心考点]根据几何体的三视图求该几何体的表面积。
[解析]根据三视图可得该几何体如右图所示,
则其表面积 S SABC SA1B1C1 S梯形B1BAA1 S梯形B1BCC1 S矩形ACC1A1
D.第四象限
[解析] i(1 2i) 2 i ,其在复平面上对应的点为 Z (2,1) ,位于第一象限。
[答案]A
2. 对任意等比数列an ,下列说法一定正确的是( )
A. a1 、 a3 、 a9 成等比数列
B. a2 、 a3 、 a6 成等比数列
C. a2 、 a4 、 a8 成等比数列
D. a3 、 a6 、 a9 成等比数列
2
2
化简得 sin Asin B sin C 1 ,设 ABC 的外接圆半径为 R , 8
由S
1 ab sin C 及正弦定理得: sin
2
Asin B sin C
S 2R2
1 ,所以 R2 8
4S ,
因为1 S 2 ,所以 4 R2 8 ,由 sin Asin B sin C 1 可得 abc R3 [8,16 2] ,显然选项 C、D 均不 8
一定正确。

2014年全国普通高等学校招生统一考试理科数学(重庆卷带解析)试题

2014年全国普通高等学校招生统一考试理科数学(重庆卷带解析)试题

2014年全国普通高等学校招生统一考试理科(重庆卷)数学试题1、【题文】复平面内表示复数的点位于A.第一象限B.第二象限C.第三象限D.第四象限2、【题文】对任意等比数列,下列说法一定正确的是A.成等比数列B.成等比数列C.成等比数列D.成等比数列3、【题文】已知变量与正相关,且由观测数据算得样本平均数,,则由该观测的数据算得的线性回归方程可能是A.B.C.D.4、【题文】已知向量,且,则实数=()A.B.0 C.3D.5、【题文】执行如题图所示的程序框图,若输出的值为6,则判断框内可填入的条件是()A.B.C.D.6、【题文】已知命题对任意,总有;是的充分不必要条件,则下列命题为真命题的是()A.B.C.D.7、【题文】某几何体的三视图如图所示,则该几何体的表面积为()A.54 B.60 C.66 D.728、【题文】设分别为双曲线的左、右焦点,双曲线上存在一点使得则该双曲线的离心率为D.3A.B.C.9、【题文】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.16810、【题文】已知的内角,面积满足所对的边,则下列不等式一定成立的是A.B.C.D.11、【题文】设全集______. 12、【题文】函数的最小值为_________.13、【题文】已知直线与圆心为的圆相交于两点,且为等边三角形,则实数_________.14、【题文】过圆外一点作圆的切线(为切点),再作割线分别交圆于、,若,AC=8,BC=9,则AB=________.15【题文】已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为则直线与曲线的公共点的极径________.16、【题文】若不等式对任意实数恒成立,则实数的取值范围是____________.17、【题文】已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.18、【题文】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)表示所取3张卡片上的数字的中位数,求的分布列与数学期望.(注:若三个数满足,则称为这三个数的中位数).19、【题文】如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且.(1)求的长;(2)求二面角的正弦值.20、【题文】已知函数的导函数为偶函数,且曲线在点处的切线的斜率为.(1)确定的值;(2)若,判断的单调性;(3)若有极值,求的取值范围.21、【题文】如图,设椭圆的左、右焦点分别为,点在椭圆上,,,的面积为.(1)求该椭圆的标准方程;(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..22、【题文】设(1)若,求及数列的通项公式;(2)若,问:是否存在实数使得对所有成立?证明你的结论.。

2014·重庆(理科数学)

2014·重庆(理科数学)

2014·重庆卷(理科数学)1.[2014·重庆卷] 复平面内表示复数i(1-2i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.A [解析] i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限. 2.[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列2.D [解析] 因为在等比数列中a n ,a 2n ,a 3n ,…也成等比数列,所以a 3,a 6,a 9成等比数列.3.[2014·重庆卷] 已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A .y ^=0.4x +2.3B .y ^=2x -2.4C .y ^=-2x +9.5D .y ^=-0.3x +4.43.A [解析] 因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将x =3,y =3.5分别代入A ,B 中的方程只有A 满足,故选A.4.[2014·重庆卷] 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92 B .0C .3 D.1524.C [解析] ∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.5.[2014·重庆卷] 执行如图1-1所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >455.C [解析] 第一次循环结束,得s =1×910=910,k =8;第二次循环结束,得s =910×89=45,k =7;第三次循环结束,得s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.7.[2014·重庆卷] ( )A .54B .60C .66D .727.B [解析] 由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S =12×3×4+3×52+2+52×4+2+52×5+3×5=60.8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 8.B [解析] 不妨设P 为双曲线右支上一点,根据双曲线的定义有|PF 1|-|PF 2|=2a ,联立|PF 1|+|PF 2|=3b ,平方相减得|PF 1|·|PF 2|=9b 2-4a 24,则由题设条件,得9b 2-4a 24=94ab ,整理得b a =43,∴e =c a =1+⎝⎛⎭⎫b a 2=1+⎝⎛⎭⎫432=53.9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.B [解析] 分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 22)=120(种).10.,[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤2410.A [解析] 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sin A sin B sin C ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sinA sinB sinC =R 3≥8.11.[2014·重庆卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}. 12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14 [解析] f (x )=log 2 x ·log 2(2x )=12log 2 x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.13.[2014·重庆卷] 已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.13.4±15 [解析] 由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax+y -2=0的距离d =|a +a -2|a 2+1=|2a -2|a 2+1.∵△ABC 为等边三角形,∴|AB |=r =2.又|AB |=2r 2-d 2,∴222-⎝ ⎛⎭⎪⎫|2a -2|a 2+12=2,即a 2-8a +1=0,解得a =4±15. 14.[2014·重庆卷] 过圆外一点P 作圆的切线P A (A 为切点),再作割线PBC 依次交圆于B ,C .若P A =6,AC =8,BC =9,则AB =________.14.4 [解析] 根据题意,作出图形如图所示,由切割线定理,得P A 2=PB ·PC =PB ·(PB +BC ),即36=PB ·(PB +9)∴PB =3,∴PC =12.由弦切角定理知∠P AB =∠PCA ,又∠APB=∠CP A ,∴△P AB ∽△PCA ,∴AB CA =PB,即AB =PB ·CA =3×86=4.15.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.15. 5 [解析] 由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 与曲线C 的公共点的极径ρ=(1-0)2+(2-0)2= 5.16.[2014·重庆卷] 若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a的取值范围是________.16.⎣⎡⎦⎤-1,12 [解析] 令f (x )=|2x -1|+|x +2|,则①当x <-2时,f (x )=-2x +1-x -2=-3x -1>5;②当-2≤x ≤12时,f (x )=-2x +1+x +2=-x +3,故52≤f (x )≤5;③当x >12时,f (x )=2x -1+x +2=3x +1>52.综合①②③可知f (x )≥52,所以要使不等式恒成立,则需a 2+12a+2≤52,解得-1≤a ≤12.17.,,[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.19.,[2014·重庆卷]如图1-3所示,四棱锥P ­ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长; (2)求二面角A -PM -C19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎫-34,-14,0,从而OM →=OB →+BM →=⎝⎛⎭⎫-34,34,0,即M ⎝⎛⎭⎫-34,34,0.设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎫-3,0,32,MP →=⎝⎛⎭⎫34,-34,32,CP →=⎝⎛⎭⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎨⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝⎛⎭⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A -PM -C 的正弦值为105. 20.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x =t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).21.,[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.22.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n+2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式. (2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。

2014年重庆市高考数学试卷(理科)最新修正版

2014年重庆市高考数学试卷(理科)最新修正版

2014年重庆市高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54 B.60 C.66 D.728.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A.B.C.D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8 B.ab(a+b)>16C.6≤abc≤12 D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B=.12.(5分)函数f(x)=log 2•log(2x)的最小值为.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,a n+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{a n}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.2014年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1﹣2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.2.(5分)对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x >2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为()A.54 B.60 C.66 D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为()A.B.C.D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex ﹣a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率.【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex﹣a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2﹣a2=ab∴b2﹣a2=ab,即9b2﹣4a2﹣9ab=0,∴(3b﹣4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120 C.144 D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是()A.bc(b+c)>8 B.ab(a+b)>16C.6≤abc≤12 D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论.【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+,∴sin2A+sin2B=﹣sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B﹣C)=,2sinA(cos(B﹣C)﹣cos(B+C))=,化为2sinA[﹣2sinBsin(﹣C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁U A)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁U A)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log 2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值.【解答】解:∵f(x)=log 2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣1)2+(y﹣a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2﹣8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC=8,BC=9,则AB=4.【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论.【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[﹣1,] .【分析】利用绝对值的几何意义,确定|2x﹣1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x﹣1|+|x+2|=,∴x=时,|2x﹣1|+|x+2|的最小值为,∵不等式|2x﹣1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a﹣≤0,∴﹣1≤a≤,∴实数a的取值范围是[﹣1,].故答案为:[﹣1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合﹣≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α﹣)=.再根据α﹣的范围求得cos(α﹣)的值,再根据cos(α+)=sinα=sin[(α﹣)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得2×+φ=kπ+,k∈z.结合﹣≤φ<可得φ=﹣.(Ⅱ)∵f()=(<α<),∴sin(α﹣)=,∴sin(α﹣)=.再根据0<α﹣<,∴cos(α﹣)==,∴cos(α+)=sinα=sin[(α﹣)+]=sin(α﹣)cos+cos(α﹣)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,所以X的分布列为:X123P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P﹣ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A﹣PM﹣C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A﹣PM﹣C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O﹣xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(﹣,0,0),=(0,1,0),=(﹣,﹣1,0),又∵BM=,∴=(﹣,﹣,0),则=+=(﹣,,0),设P(0,0,a),则=(﹣,0,a),=(,﹣,a),∵MP⊥AP,∴•=﹣a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(﹣,0,),=(,﹣,),=(,0,),设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,﹣,﹣2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===﹣故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)∴f′(x)=2ae2x+2be﹣2x﹣c,由f′(x)为偶函数,可得2(a﹣b)(e2x﹣e﹣2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4﹣c,即f′(0)=2a+2b﹣c=4﹣c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e﹣2x﹣3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e﹣2x﹣c,而2e2x+2e﹣2x≥2=4,当且仅当x=0时取等号,当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+﹣c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(﹣∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF 1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0.当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C.由F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,知CP1⊥CP2,又|CP1|=|CP2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.22.(12分)设a1=1,a n+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{a n}的通项公式;(Ⅱ)若b=﹣1,问:是否存在实数c使得a2n<c<a2n+1对所有的n∈N*成立,证明你的结论.=+b,可求a2,a3;证明{(a n﹣1)【分析】(Ⅰ)若b=1,利用a n+12}是首项为0,公差为1的等差数列,即可求数列{a n}的通项公式;=f(a n),令c=f(c),即c=﹣(Ⅱ)设f(x)=,则a n+11,解得c=.用数学归纳法证明加强命题a2n<c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,a n+1=+b,b=1,∴a2=2,a3=+1;又(a n﹣1)2=(a n﹣1)2+1,+1∴{(a n﹣1)2}是首项为0,公差为1的等差数列;∴(a n﹣1)2=n﹣1,∴a n=+1(n∈N*);=f(a n),(Ⅱ)设f(x)=,则a n+1令c=f(c),即c=﹣1,解得c=.下面用数学归纳法证明加强命题a2n<c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=﹣1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k<c<a2k+1<1∵f(x)在(﹣∞,1]上为减函数,)>f(1)=a2,∴c=f(c)>f(a2k+1∴1>c>a2k>a2,+2)<f(a2)=a3<1,∴c=f(c)<f(a2k+2∴c<a2k<1,+3<c<a2(k+1)+1<1,即n=k+1时结论成立,∴a2(k+1)综上,c=使得a2n<c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。

2014年普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)

2014年普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)

2014年重庆高考数学试题〔理〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.在复平面内表示复数(12)i i -的点位于〔〕.A 第一象限.B 第二象限 .C 第三象限.D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,如下说法一定正确的答案是〔〕139.,,A a a a 成等比数列236.,,B a a a 成等比数列 248.,,C a a a 成等比数列239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,如此由观测的数据得线性回归方程可能为〔〕.0.4 2.3A y x =+.2 2.4B y x =-.29.5C y x =-+.0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,如此实数k=9.2A -.0B C.3 D.152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题〔5〕图所示的程序框图,假设输出k 的值为6,如此判断框内可填入的条件是。

A .12s >B.1224abc ≤≤35s >C.710s >D.45s >【答案】C 【解析】.∴10787981091C S 选=•••=6.命题:p 对任意x R ∈,总有20x >; :"1"q x >是"2"x >的充分不必要条件如此如下命题为真命题的是〔〕.A p q ∧.B p q ⌝∧⌝.C p q ⌝∧.D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如下列图,如此该几何体的外表积为〔〕A.54B.60C.66D.72【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+如此该双曲线的离心率为〔〕A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,如此类节目不相邻的排法种数是〔〕A.72B.120C.144D.3 【答案】B【解析】解析完成时间2014-6-12 373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,如此如下不等式成立的是〔〕A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12 373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每一小题5分,共25分,把答案填在答题卡相应位置上。

重庆市2014届高三考前模拟数学理试卷Word版含解析

重庆市2014届高三考前模拟数学理试卷Word版含解析

重庆市2014届高三考前模拟数学(理)试题满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并收回。

【试卷综析】本试卷是高三考前模拟理科数学试卷,命题模式与高考一致,紧扣考纲,考查了高考考纲上的诸多热点问题,突出考查考纲要求的基本能力,重视学生基本数学素养的考查。

知识考查注重基础、注重常规,也有综合性较强的问题。

试题重点考查:函数、三角函数、数列、立体几何、统计与概率、解析几何、不等式、向量、极坐标与参数方程、推理与证明等,涉及到的基本数学思想有函数与方程、转化与化归、分类讨论等,试题题目新颖,导向性强,非常适合备战高考的高三学生使用。

一、选择题:本大题10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. (1)己知i 为虚数单位,复数的虚部是(A ) (B )一(C )一i(D )i【知识点】复数的代数形式;复数的除法运算 【答案解析】A 解析:i i i i i i 212121)1)(1(111+=+=+-+=-,其虚部为21, 故选:A【思路点拨】根据复数的除法运算把复数化成一般形式,再根据虚部的定义即可得到答案。

(2)设集合A= {-1,0,2),集合,则B=(A ){1} (B ){一2} (C ){-1,-2}(D ){-1,0}【知识点】元素与集合的关系【答案解析】A 解析:当1-=x 时,A ∉=--3)1(2,所以1-=x 满足题意,此时{}{}1=-=x B ;当0=x 时,A ∈=-202,所以0=x 不满足题意;当2=x 时,A ∈=-022,所以2=x 不满足题意,所以={}1, 故选:A【思路点拨】根据已知知集合B 中的元素属于集合A ,因为集合A 中的元素不多,可以把各个元素分别代入检验,从中选出符合条件的元素即可。

2014年高考数学压轴卷及答案

2014年高考数学压轴卷及答案

绝密★启用前 试卷类型:A2014年高考数学压轴卷22()x x -++第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、定义集合运算:A ⊙B ={z ︳z =xy ,x ∈A ,y ∈B },设集合A ={—2013,0,2013},B ={ln a ,e a },则集合A ⊙B 的所有元素之和为 【 】 A. 2013 B. 0 C. —2013 D. ln2013+e 20132、奇函数f (x )在(0,+∞)上的解析式是f (x )= x (1—x ),则在(-∞,0)上,f (x )的函数解析式是【 】A. f (x )= —x (1—x )B. f (x )= x(1+x ) C. f (x )= —x (1+x ) D. f (x )= x (x —1) 3、若复数221z i i=++,其中i 是虚数单位,则复数z 的模为 【 】 A.2B.C. D. 24、设a ∈R ,则“a =1”是“直线l 1:ax +2y —1=0与直线l 2:x +(a +1)y +4=0平行的【 】A.充分不必要条件B.必要不充分条件 C. 充分必要条件 D. 既不充分不必要条件 5、若一个螺栓的底面是正六边形,它的主视图和俯视图如图所示,则它的体 积是 【 】 A . B . π C .D .6、为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像 【 】 A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位 D .向右平移5π6个长度单位7、若程序框图如图所示,则该程序运行后输出k 的值是( ) A. 4 B. 5C. 6D. 7容器8、从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程0.56y x a =+,据此模型预报身高为172 cm 的高三男生的体重为【 】A . 70.09B . 70.12C . 70.55D . 71.059、在棱长分别为1,2,3的长方体上随机选取两个相异顶点,若每个顶点被选 的概率相同,则选到两个顶点的距离大于3的概率为 【 】A.47 B.37 C.27 D.31410、设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(1,0)d ∈-. 若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是 【 】 A. 74,63ππ⎛⎫ ⎪⎝⎭B. 43,32ππ⎛⎫⎪⎝⎭ C. 74,63ππ⎡⎤⎢⎥⎣⎦D.43,32ππ⎡⎤⎢⎥⎣⎦第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案值填在答题卡的相应位置) 11、给n 个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1所示,由此推断,当n=6时,黑色正方形互不相邻的着色方案共有____________种,至少有两个黑色正方形相邻的着色方案共有____________.(结果用数值表示) 12、设(5nx 的展开式的各项系数之和为M ,二项式系数之和为N ,若M —N=240,则展开式中3x 的系数为13、如图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干 根等长的铁筋焊接在一起的架子支撑。

2014年重庆高考数学理科试卷(带详解)

2014年重庆高考数学理科试卷(带详解)

14重庆理一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数i(12i)-的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 【测量目标】复数的基本运算和复数在复平面中的表示. 【考查方式】考查复数的运算和在复平面中的表示. 【难易程度】容易. 【参考答案】A【试题解析】i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限,故选A. 2.对任意等比数列{}n a ,下列说法一定正确的是( ) A.139,,a a a 成等比数列 B.236,,a a a 成等比数列 C.248,,a a a 成等比数列 D.369,,a a a 成等比数列【测量目标】等比数列的性质.【考查方式】考查等比数列等比中项性质的运用. 【难易程度】容易. 【参考答案】D【试题解析】因为在等比数列中23n n n a a a ,,,…也成等比数列,所以369a a a ,,成等比数列,故选D. 3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( )A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.4y x =-+ 【测量目标】线性回归方程的概念.【考查方式】考查对线性回归方程的理解 【难易程度】容易. 【参考答案】A【试题解析】因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将x =3,y =3.5分别代入A ,B 中的方程只有A 满足,故选A.4.已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥ ,则实数k =( )A.92- B.0 C.3 D.152【测量目标】向量的运算及关系. 【考查方式】考查向量的运算及关系. 【难易程度】容易. 【参考答案】C【试题解析】∵232(3)3(14)(236)a b k k -=,-,=-,-,又(23)a b c ⊥-,∴(2k -3)×2+(-6)=0,解得k =3.故选C.5.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A.12s >B.35s >C.710s >D.45s >第5题图【测量目标】程序框图,判断语句,循环语句.【考查方式】考查阅读程序框图,读懂判断语句,循环语句的能力. 【难易程度】容易. 【参考答案】C【试题解析】第一次循环结束,得99S=1=1010⨯,k =8;第二次循环结束,得984S==1095⨯,k =7;第三次循环结束,得477S==5810⨯,k =6,此时退出循环,输出k =6.故判断框内可填7s>10.故选C.6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件.则下列命题为真命题的是( )A.p q ∧B.p q ⌝∧⌝C.p q ⌝∧D.p q ∧⌝ 【测量目标】命题的真假判断和命题连接词.【考查方式】考查命题的判断和命题连接词的理解. 【难易程度】容易. 【参考答案】D【试题解析】根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以q ⌝为真命题,所以p q ∧⌝为真命题.故选D. 7.某几何体的三视图如图所示,则该几何体的表面积为( )第7题图A.54B.60C.66D.72【测量目标】三视图,几何体的面积计算,空间想象能力.【考查方式】给出三视图,由三视图求几何体的面积,平面图形向立体图形转化. 【难易程度】容易.【参考答案】B【试题解析】由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为1352+52+5S=34+4+5+35=602222⨯⨯⨯+⨯⨯⨯.故选B.8.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得12||||3PF PF b +=,129||||4PF PF ab ⋅=,则该双曲线的离心率为( ) A.34 B.35 C.49D.3 【测量目标】由已知条件求双曲线离心率.【考查方式】根据给出几何条件,向代数关系转化,解出参数间的关系,进而求出离心率. 【难易程度】容易. 【参考答案】B【试题解析】不妨设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,平方相减得221294·=4b a PF PF -,则由题设条件,得22949=44b a ab -,整理得43b a =,∴22451133c b e a a ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭.故选B.9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.3 【测量目标】排列组合问题.【考查方式】考查排列组合问题中插入法的应用. 【难易程度】容易. 【参考答案】B【试题解析】分两步进行:(1)先将3个歌舞进行全排,其排法有33A 种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有332A 种.若两歌舞之间有两个其他节目时插法有122222C A A 种.所以由计数原理可得节目的排法共有3312233222A (2A C A A )120+= (种).故选B.10.已知ABC △的内角,A B C ,满足1sin 2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S 剟,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.(+)162ab a b >C.612abc 剟D.1224abc 剟 【测量目标】三角函数,三角函数和差化积公式,正弦定理.【考查方式】考查三角形内角三角函数的变换,和差化积公式以及正弦定理的运用. 【难易程度】中等. 【参考答案】A【试题解析】因为πA BC ++=,所以πA C B +=-,π()C A B =-+,所以由已知等式可得1sin 2+sin(π2)=sin[π2(+)]+2A B A B --,即1sin 2+sin 2=sin 2(+)+2A B A B ,所以1sin[()()]sin[()()]=sin 2(+)+2A B A B A B A B A B ++-++--,所以12 sin()cos()=2sin(+)cos(+)+2A B A B A B A B +-,所以12sin()[cos()cos(+)]=2A B A B A B +--,所以1sin sin sin =8A B C .由12S 剟,2sin 2sin 2sin a R A b R B c R C =,=,=,得11s i n 22bc A 剟.由正弦定理得2sin 2sin 2sin a R A b R B c R C =,=,=,所以21sin sin sin R A B C剟22, 所以2124R 剟,即222R 剟,所以33()8sin sin sin 8bc b c abc R A B C R >+==….故选A.二、填空题11.设全集{|110}U n n=∈N 剟,{1,2,3,5,8},{1,3,5,7,9}A B ==则()U A B = ð______.【测量目标】集合的基本运算.【考查方式】考查集合的概念,交集,并集. 【难易程度】容易. 【参考答案】{7,9} 【试题解析】由题知U A ð={4,6,7,9,10},∴()U A B = ð{7,9}.12.函数22()=log log (2)f x x x的最小值为________. 【测量目标】对数函数和二次函数的性质.【考查方式】考查对数函数的换底公式以及二次函数的最大值. 【难易程度】容易. 【参考答案】14-【试题解析】22221()=log log (2)=log 2log (2)2f x x x x x222211log (1log )=(log )24x x x +- =+,所以当2=2x 时,函数f (x )取得最小值14-.13.已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC △为等边三角形,则实数=a _________. 【测量目标】圆的方程,点到直线距离.【考查方式】考查圆的方程,点到直线距离,圆的半径与弦的关系. 【难易程度】中等.【参考答案】415±【试题解析】由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax +y -2=0的距离22|+2||22|=1+1a a a d a a --=+.∵ABC △为等边三角形,∴=2AB r =.又22||=2AB r d -,∴2222222()=21a a --+,即2810a a -+=,解得415±.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6=PA ,AC =8,BC =9,则AB =________.【测量目标】切割线定理,弦切角定理,相似三角形.【考查方式】考查对有关圆内图形的有关图形和相似图形的确定以及相似性的应用. 【难易程度】中等. 【参考答案】4【试题解析】根据题意,作出图形如图所示,由切割线定理,得2··()PA PB PC PB PB BC ==+,即36=PB ·(PB +9)∴PB =3,∴PC =12.由弦切角定理知∠P AB =∠PCA ,又∠APB =∠CP A ,∴PAB PCA △∽△,=AB PB CA PA ∴,即38===46PB CA AB PA ⨯ .第14题图15.已知直线l 的参数方程为⎩⎨⎧+=+=ty tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极径=ρ________.【测量目标】极坐标方程及有关的概念.【考查方式】考查极坐标方程和直角坐标系方程的转化,直线和曲线焦点的求解. 【难易程度】容易.【参考答案】5【试题解析】由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得=1=2x y ⎧⎨⎩,所以直线l 与曲线C 的公共点的极径2210)(20)5ρ-+-==(.16.若不等式2121222x x a a -++++…对任意实数x 恒成立,则实数a 的取值范围是_______. 【测量目标】绝对值不等式,二次函数.【考查方式】考查恒成立问题即最值问题,分类讨论思想. 【难易程度】中等.【参考答案】112a剟- 【试题解析】令()|21||2|f x x x =-++,则①当x <-2时,()212315f x x x x >=-+--=--;②当122x-剟时,()2123f x x x x =-+++=-+,故5()52f x 剟;③当12x >时, 5()=21+2=31>.2f x x x x ++-综合①②③可知5()2f x …,所以要使不等式恒成立,则需215++222a a …,解得112a -剟.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17.(本小题13分)已知函数()()ππ3sin 022f x x ωϕωϕ⎛⎫=+>-< ⎪⎝⎭,…的图像关于直线π3x =对称,且图像上相邻两个最高点的距离为π.(I)求ω和ϕ的值; (II)若3π2π2463f αα⎛⎫⎛⎫=<<⎪ ⎪⎝⎭⎝⎭,求3πcos 2α⎛⎫+ ⎪⎝⎭的值. 【测量目标】三角函数的性质,三角恒等变换.【考查方式】通过三角函数具有的一些图像上的性质确定三角函数中的位置参数,考查将已知的三角函数值变换成为需要的形式的能力.. 【难易程度】中等.【试题解析】(I)因()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期=πT ,从而2π2T ω==.又因()f x 的图象关于直线π3x =对称,所以ππ22π,0,1,2,,32k k ϕ⋅+=+=±± 因ππ22ϕ-<…得0k =,所以π2ππ236ϕ=-=-.(II)由(I)得π33sin 22264f αα⎛⎫⎛⎫=⋅-= ⎪ ⎪⎝⎭⎝⎭,所以π1sin 64α⎛⎫-= ⎪⎝⎭.由π2π63α<<得ππ0,62α<-< 所以22ππ115cos 1sin 1.6644αα⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因此3πππcos sin sin 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 6666αα⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ =1315131542428+⨯+⨯=. 18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足a b c 剟,则称b 为这三个数的中位数).【测量目标】古典概型,排列组合和分布列.【考查方式】考查排列如何在求古典概型中的应用以及分布列. 【难易程度】中等.【试题解析】(Ⅰ)由古典概型中的概率计算公式知所求概率为334339C C 5C 84P +==.(Ⅱ)X 的所有可能值为1,2,3,且()21345439171,42C C C P X C +===()11121334236339C C C +C C +C 432C 84P X ===, ()212739C C 13C 12P X ===.故X 的分布列为:X 1 2 3P1742 4384 112从而()174314712342841228E X =⨯+⨯+⨯=. 19.(本小题满分12分)如图,四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD ,π2,3AB BAD =∠=,M 为BC 上一点,且AP MP BM ⊥=,21.(1)求PO 的长;(2)求二面角C PM A --的正弦值。

2014年高考理科数学重庆卷(含答案解析)

2014年高考理科数学重庆卷(含答案解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.复平面内表示复数i(12i)-的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )A .1a ,3a ,9a 成等比数列B .2a ,3a ,6a 成等比数列C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数 据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+4.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92-B .0C .3D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框 内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题p :对任意x ∈R ,总有20x >;q :“1x >”是“x >2”的充分不必要条件,则下列命题 为真命题的是( ) A .p q ∧ B .p q ⌝∧⌝ C .p q ⌝∧D .p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .728.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12||+||3PF PF b =,129||||4PF PF ab =,则该双曲线的离心率为 ( )A .43B .53C .94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72B .120C .144D .16810.已知ABC △的内角A ,B ,C 满足1sin2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是 ( )A .()8bcb c +>B.()ab a b +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)C .612abc ≤≤D .1224abc ≤≤二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设全集={|110}U n n ∈N ≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则)U A B =(ð.12.函数22()log log (2)f x x x =的最小值为 .13.已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC △为等边三角形,则实数a = .考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,8AC =,9BC =,则AB = .15.已知直线l 的参数方程为2,()3,x t t y t =+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02π)ρθθρθ-=≥≤≤,则直线l 与曲线C 的公共点的极径ρ= .16.若不等式21|21||2|22x x a a -++++≥对任意实数x 恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)已知函数ππ())(0,)22f x x ωϕωϕ+>-≤<的图象关于直线π3x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和ϕ的值;(Ⅱ)若π2π()()263a f α<<,求3πcos(+)2α的值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)19.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =,MP AP ⊥. (Ⅰ)求PO 的长;(Ⅱ)求二面角A PM C --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()e e (,,)x xf x a b cx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定a ,b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x ya b a b+=>>的左、右焦点分别为1F ,2F,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F △. (Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设11a =,*1()n a b n ++∈N .(Ⅰ)若1b =,求2a ,3a 及数列{}n a 的通项公式;数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.数学试卷 第7页(共18页) 数学试卷 第8页(共18页)2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)答案解析一、选择题 1.【答案】A【解析】i(12i)2i -=+,其在复平面内对应的点为(2,1),位于第一象限,故选:A. 【提示】根据复数乘法的运算法则,我们可以将复数z 化为i()a b a b =∈R ,的形式,分析实部和虚部的符号,即可得到答案. 【考点】复数的基本运算,复数在复平面中的表示 2.【答案】D【解析】因为在等比数列中23n n n a a a ,,,也成等比数列,所以369a a a ,,成等比数列,故选:D.【提示】运用等比数列的等比中项性质即可达到答案. 【考点】等比数列的性质 3.【答案】A【解析】因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将3x =, 3.5y =分别代入A ,B 中的方程只有A 满足,故选:A. 【提示】通过x 与y 的关系先排除B 、D ,然后采用代入法得到答案. 【考点】线性回归方程的概念 4.【答案】C 【解析】232(,3)3(1a b k k -=-=--(,,又(23)a b c-⊥,(23)2(6)0k ∴-⨯+-=,解得3k =.故选:C.【提示】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k 的方程,解方程即可. 【考点】向量的运算及关系 5.【答案】C【解析】由程序框图知:程序运行的981091kSk =⨯⨯⨯-,输出的6k =,9877109810S ∴=⨯⨯=, ∴判断框的条件是710S >,故选:C.【提示】程序运行的981091kS k =⨯⨯⨯-,根据输出k 的值,确定S 的值,从而可得判断框的条件.【考点】程序框图,判断语句,循环语句 6.【答案】D【解析】根据指数函数的图像可知p 为真命题.由于“1x >”是“2x >”的必要不充分条件,所以q 为假命题,所以q ⌝为真命题,所以p q ∧⌝为真命题.故选:D. 【提示】判定命题p ,q 的真假,利用复合命题的真假关系即可得到结论. 【考点】命题的真假判断,命题连接词 7.【答案】B【解析】由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为1352525S 344535602222⨯++=⨯⨯++⨯+⨯+⨯=.故选:B.【提示】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算. 【考点】三视图,几何体的面积计算8.【答案】B【解析】不妨设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,平方相减得221294b a PF PF -=,则由题设条件,得2294944b a ab -=,整理得43b a =,所以53c e a ==.故选:B.【提示】可设P 为双曲线右支上一点,根据双曲线的定义有122PF PF a -=,联立123PF PF b +=,运算后得到ba,即可得到答案.【考点】双曲线的简单性质数学试卷 第9页(共18页) 数学试卷 第10页(共18页)9.【答案】B【解析】分两步进行:(1)先将3个歌舞进行全排,其排法有33A 种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有332A 种.若两歌舞之间有两个其他节目时插法有122222C A A 种.所以由计数原理可得节目的排法共有33122332222120()A A C A A +=(种).故选:B.【提示】根据题意,分两步进行分析:(1)先将三个歌舞类节目全排列,(2)因为三个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案. 【考点】排列组合问题 10.【答案】A【解析】因为πA B C ++=,所以πA C B +=-,π()C A B =-+, 所以由已知等式可得1sin 2sin(π2)sin[π2()]2A B A B +-=-++,即1s i n 2s i n 2s i n 2()2A B A B +=++, 所以1sin[()()]sin[()()]sin 2()2A B A B A B A B A B +-++--=+++,所以12 sin()cos()2sin()cos()2A B A B A B A B +-=+++,所以12sin()[cos()cos()]2A B A B A B +--+=,所以1sin sin sin 8A B C =.由12S ≤≤,2sin 2sin 2sin a R Ab R Bc R C ===,,,得11sin 22bc A ≤≤. 由正弦定理得2sin 2sin 2sin a R Ab R Bc R C ===,,,所以21sin sin sin 2R A B C ≤≤, 所以2124R ≤≤,即22R ≤≤所以33()8sin sin sin 8bc b c abc R A B C R +>==≥.故选:A.【提示】运用三角形内角三角函数的变换与和差化积公式求得sin sin sin A B C ,再根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【考点】三角函数,三角函数和差化积公式,正弦定理 二、填空题 11.【答案】{7,9}【解析】由题知{4,6,7,9,10}U A =ð,(){7,9}U A B ∴=ð.故答案为:{7,9}.【提示】由条件利用补集的定义求得U A ð,再根据两个集合的交集的定义求得()U A B ð.【考点】集合的基本运算 12.【答案】14- 【解析】22221()log log (2)log 2log (2)2f x x x x ==222211log (1log )log24x x x ⎛⎫=+=+- ⎪⎝⎭,所以当x 时,函数()f x 取得最小值14-.故答案为:14-.【提示】利用对数的运算性质可得2211()log 24f xx ⎛⎫=+- ⎪⎝⎭,即可求得()f x 最小值.【考点】对数函数,二次函数的性质13.【答案】4【解析】由题意可知圆的圆心为(1,)C a,半径2r =,则圆心C 到直线20ax y +-=的距离d==ABC △为等边三角形,2AB r ∴==.又||AB =,2∴,即2810a a -+=,解得=4a ±.故答案为:4±. 【提示】根据圆的标准方程,求出圆心和半径,再根据点到直线的距离公式即可得到答案.【考点】圆的方程,点到直线距离 14.【答案】4【解析】根据题意,作出图形如图所示,由切割线定理,得2()PA PB PC PB PB BC ==+,即36(9)PB PB =+3PB ∴=,12PC ∴=.由弦切角定理知P A B P C A ∠=∠,又A P B C P A ∠=∠, PAB PCA ∴△∽△,AB PB CA PA ∴=,即3846PB CA AB PA ⨯===.故答案为:4.数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【提示】通过弦切角定理知PAB PCA ∠=∠,又AP B C P A ∠=∠,得到PAB PCA △∽△,AB PBCA PA=,由此求得AB. 【考点】切割线定理,弦切角定理,相似三角形 15.【解析】由题意得直线l 的普通方程为10x y -+=,曲线C 的平面直角坐标方程为24y x =,联立直线l 与曲线C 的方程,解得12x y =⎧⎨=⎩,所以直线l 与曲线C 的公共点的极径ρ=【提示】把直线l 的参数方程化为普通方程10x y -+=,曲线C 的极坐标方程化为直角坐标方程24y x =,联立求出公共点的坐标,即可求出极径.【考点】直线的参数方程 16.【答案】112a ≤≤- 【解析】令()|21||2|f x x x =-++,则①当2x <-时,()=212315f x x x x -+--=-->;②当122x ≤≤-时,()2123f x x x x =-+++=-+,故5()52f x ≤≤;③当12x >时,5()21231>2f x x x x =-++=+.综合①②③可知5()2f x ≥,要使不等式恒成立,则需215222a a ++≤,解得112a -≤≤.故答案为:112a -≤≤.【提示】利用绝对值的几何意义,确定|21||2|x x -++的最小值,然后让2122a a ++小于等于它的最小值即可求得答案. 【考点】绝对值不等式的解法 三、解答题17.【答案】(Ⅰ)2ω=π6ϕ=-(Ⅱ)3πcos 2α⎛⎫+= ⎪⎝⎭ 【解析】(Ⅰ)因()f x 的图像上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,从而2π2Tω==. 又因()f x 的图像关于直线π3x =对称,所以ππ22π32k ϕ+=+,0,1,2,k =±±.因ππ22ϕ-≤<得0k =,所以π2ππ23ϕ=-=-. (Ⅱ)由(Ⅰ)得π2226f αα⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,所以由π2π63α<<得ππ062α<-<,所以πcos 6α⎛⎫-= ⎪⎝⎭. 因此3πππcos sin sin 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 6666αα⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭ 1142=+=. 【提示】(Ⅰ)由题意可得函数()f x 的最小正周期为π.求得2ω=.再根据图像关于直线π3x =对称,结合ππ22ϕ-≤<可得ϕ的值.(Ⅱ)根据π6α-的范围求得πc o s 6α⎛⎫- ⎪⎝⎭的值,再根据3πππc o s s i n s i n 266ααα⎡⎤⎛⎫⎛⎫+==-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用两角和的正弦公式计算求得结果. 【考点】三角函数的性质,三角恒等变换18.【答案】(Ⅰ)由古典概型中的概率计算公式知所求概率为334339584C C P C +==. (Ⅱ)X 的所有可能值为1,2,3,且2134543917(1),42C C C P X C +===1112133423633943(2)84C C C C C C P X C++===, 2127391(3)12C C P X C ===.数学试卷 第13页(共18页) 数学试卷 第14页(共18页)从而47()12342841228E X =⨯+⨯+⨯=. 【提示】(Ⅰ)先算出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可.(Ⅱ)先根据题意求出随机变量X 的所有可能取值,按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现. 【考点】古典概型,排列组合和分布列 19.【答案】(Ⅰ)PO =【解析】(Ⅰ)如图,连结AC BD ,,因ABCD 为菱形,则ACBD O =,且AC BD ⊥,以O 为坐标原点,,,OA OB OP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz -,因π3BAD ∠=,故πcos36OA AB ==πsin 16OB AB ==,所以()0,0,0O ,A ,(0,1,0)B ,(C ,(0,1,0)OB =,(1,0)BC =-.由122BM BC ==,知,11,044BM BC ⎛⎫==-- ⎪ ⎪⎝⎭, 从而3,044OM OB BM ⎛⎫=+= ⎪ ⎪⎝⎭,即3,0.44M ⎛⎫- ⎪ ⎪⎝⎭设(0,0,)P a ,0a >,则(,0,)A Pa =,33,4MP a ⎛⎫=-⎪⎪⎝⎭.因为MP AP ⊥,故0M P A P =即2304a -+=,所以a ,a =,即PO =. (Ⅱ)由(Ⅰ)知,33333,0,,,,,3,0,4AP MP CP ⎛⎫⎛⎫⎛=-=-=⎪ ⎪⎝⎭⎝⎭⎭, 设平面APM 的法向量为()1111,,n x y z =,平面PMC 的法向量为()2222,,n x y z =由0n AP =,0n MP =得1111102304z x y ⎧+=⎪⎪-=故可取1,n ⎛⎫= ⎪ ⎪⎝⎭由20n MP =,20n CP =得222223040y-=⎨=,故可取2(1,2)n =-,从而法向量12,n n 的夹角的余弦值为12121215cos ,||||n n n n n n <>==-故所求二面角A PM C --的正弦值为5.【提示】(Ⅰ)连接AC ,BD ,以O 为坐标原点,OA ,OB ,OP 方向为x ,y ,z 轴正方向建立空间坐标系O xyz -,分别求出向量AP ,MP 的坐标,进而根据MP AP ⊥,得到0MP AP =,进而求出PO 的长.(Ⅱ)求出平面APM 和平面PMC 的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得二面角A PM C --的正弦值. 【考点】空间直角坐标系,二面角 20.【答案】(Ⅰ)1a =1b =(Ⅱ)()f x 在R 上为增函数 (Ⅲ)(4,)+∞【解析】(Ⅰ)对()f x 求导得22()22x xf x ae be c-'=+-,由()f x '为偶函数,知()()f x f x ''-=,即222()()0x xa b e e --+=.因220x x e e -+>,所以a b =,又(0)224f a b c c '=+-=-,故11a b ==,.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)(Ⅱ)当3c =时,22()3x x f x e e x-=--,那么22()223310x x f x e e -'=+-≥=>,故()f x 在R 上为增函数.(Ⅲ)由(Ⅰ)知22()22x x f x e e c -'=+-,而22224x x e e -+≥,当0x =时等号成立.下面分三种情况进行讨论.当4c <时,对任意22()220x xx f x e e c -'∈=+->R ,,此时()f x 无极值; 当4c =时,对任意0x ≠,22()2240x xf x e e -'=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t +-=有两根,1,20t =>,即()0f x '=有两个根111ln 2x t =或221ln 2x t =.当12x x x <<时,()0f x '<;又当2x x >时,()0f x '>,从而()f x 在2x x =处取得极小值.综上,若()f x 有极值,则c 的取值范围为(4,)+∞. 【提示】(Ⅰ)根据函数22()(,,)xxf x ae becx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -,构造关于a ,b 的方程,可得a ,b 的值.(Ⅱ)将3c =代入,利用基本不等式可得()0f x '>恒成立,进而可得()f x 在定义域R 为均增函数.(Ⅲ)结合基本不等式,分4c <时、4c =、4c >时三种情况讨论()f x 极值的存在性,最后综合讨论结果,可得答案. 【考点】导函数,函数单调性,函数的极值21.【答案】(Ⅰ)设1(,0)F c -,2(,0)F c ,其中222c a b =-,由121F F DF =得12DF ==,从而12211212222DF F S DF F F ∆===1c =.从而12DF =由112DF F F ⊥得222211292DF DF F F =+=,因此22DF =.所以122a DF DF =+=,故2221a b a c =-=.因此,所求椭圆的标准方程为:2212x y +=. (Ⅱ)如图,设圆心在y 轴上的圆C 与椭圆2212xy +=相交,111(,)P x y ,222(,)P x y 是两个交点,120,0y y >>,11F P ,22F P 是圆C 的切线,且1122F P F P ⊥.由圆和椭圆的对称性,易知21x x =-,12y y =,1212||PP x =,由(Ⅰ)知1(1,0)F -,2(1,0)F ,所以1111(1,)F P x y =+,2211(1,)F P x y =--,再由1122F P F P ⊥得2211(1)0x y -++=,由椭圆方程得22111(1)2x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C . 由11F P ,22F P 是圆C 的切线,且1122F P F P ⊥,知21CP CP ⊥, 又12||||CP CP=,故圆C的半径1121CP ===.【提示】(Ⅰ)设1(,0)F c -,2(,0)F c,依题意可求得1c =,易求得12DF ==,2DF =2a =,于是可求得椭圆的标准方程. (Ⅱ)设圆心在y 轴上的圆C 与椭圆2212x y +=相交,111(,)P x y ,222(,)P x y 是两个交点,依题意,利用圆和椭圆的对称性,易知21x x =-,12y y =,1212||PP x =,由1122FP FP ⊥,得143x =-或10x =,分类讨论即可求得圆的半径. 22.【答案】(Ⅰ)解法一:因为11a =,1na b +,1b =,所以22a =,数学试卷 第17页(共18页) 数学试卷 第18页(共18页)31a =,再由题设条件知221(1)(1)1n n a a +-=-+,从而2{(1)}n a -是首项为0公差为1的等差数列,故2(1)1n a n -=-,即1n a ,*()n ∈N .解法二:因为11a =,1n a b +,1b =,所以22a =,31a =+,可写为11a =,21a =,31a =.因此猜想1n a =.数学归纳法证明:1n a =. 当1n =时结论显然成立. 假设n k=时结论成立,即1k a =.则1111k a +,这就是说,当1n k =+时结论成立.所以1n a =,*()n ∈N .(Ⅱ)解法一:设()1f x ,则1()n n a f a +=.令()c f c =,即11c ,解得14c =. 数学归纳法证明:2211n n a c a +<<<.当1n =时,2(1)0a f ==,3(0)1a f =所以23114a a <<<,结论成立.假设n k =时结论成立,即2211k k a c a +<<<,易知()f x 在(,1]-∞上为减函数,从而212()(a )(1)k c f c f f a +=>>=,即2221k ca a +>>>,再由()f x 在(,1]-∞上为减函数得2223()()()1k c f c f a f a a +=<<=<.故231k c a +<<, 因此2(1)2(1)11k k a c a +++<<<,这就是说,当1n k =+时结论成立.综上,符合条件的c 存在,其中一个值为14c =.解法二:设()1f x ,则1()n n a f a +=,先证:01n a ≤≤(*n ∈N ①,当1n =时,结论明显成立.假设n k =时结论成立,即01k a ≤≤,易知()f x 在(,1]-∞上为减函数,从而0(1)()(0)11k f f a f =≤≤<,即101k a +≤≤ 这就是说,当1n k =+时结论成立,故①成立.再证:221n n a a +<()*n ∈N ②,当1n =时,2(1)0a f ==,3(0)1a f =,有23a a <,即当1n =时结论②成立.假设n k =时,结论成立,即221k k a a +<,由①及()f x 在(,1]-∞上为减函数,得21221()()k k k ka f a f a a +++=>=,()21222(1)121()()k k k k a f a f a a +++++=<=,这就是说,当1n k =+时②成立,所以②对一切*n ∈N 成立.由②得21k a <,即22222(1)22k k k a a a +<-+,因此214k a <③, 又由①、②及()f x 在(,1]-∞上为减函数得221()()n n f a f a +>,即2122n n a a ++>,所以211,n a +解得2114n a +>④. 综上,由②③④知存在14c =使2211n n a c a +<<<对一切*n ∈N 成立. 【提示】(Ⅰ)解法一:若1b =,利用1n a b +=,可求2a ,3a ;证明2{(1)}n a -是首项为0,公差为1的等差数列,即可求数列{}n a 的通项公式;解法二:若1b =,利用1n a b +,可求2a ,3a ;通过观察2a ,3a ,猜想1n a =通过数学归纳法证明.(Ⅱ)解法一:设()1f x ,则1()n n a f a +=,令()c f c =,即11c ,解得14c =.用数学归纳法证明2211n n a c a +<<<即可.解法二:设()1f x -,则1()n n a f a +=,用数学归纳法先证:01n a ≤≤()*n ∈N ①,再证:221nn aa +<()*n ∈N ②,依题意可解得214k a <③2114n a +>④,由②③④知存在14c =使2211n n a c a +<<<对一切*n ∈N 成立. 【考点】等差数列,数学归纳法,函数的性质。

2014年高考理科数学重庆卷-答案

2014年高考理科数学重庆卷-答案
∴判断框的条件是 ,故选:C.
【提示】程序运行的 ,根据输出k的值,确定S的值,从而可得判断框的条件.
【考点】程序框图,判断语句,循环语句
6.【答案】D
【解析】根据指数函数的图像可知p为真命题.由于“ ”是“ ”的必要不充分条件,所以q为假命题,所以 为真命题,所以 为真命题.故选:D.
【提示】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.
【解析】分两步进行:(1)先将3个歌舞进行全排,其排法有 种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有 种.若两歌舞之间有两个其他节目时插法有 种.所以由计数原理可得节目的排法共有 (种).故选:B.
【提示】根据题意,分两步进行分析:(1)先将三个歌舞类节目全排列,(2)因为三个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.
【提示】把直线l的参数方程化为普通方程 ,曲线C的极坐标方程化为直角坐标方程 ,联立求出公共点的坐标,即可求出极径.
【考点】直线的参数方程
16.【答案】
【解析】令 ,则①当 时, ;
②当 时, ,故 ;
③当 时, .
综合①②③可知 ,要使不等式恒成立,则需 ,解得 .故答案为: .
【提示】利用绝对值的几何意义,确定 的最小值,然后让 小于等于它的最小值即可求得答案.
(Ⅱ)先根据题意求出随机变量X的所有可能取值,按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.
【考点】古典概型,排列组合和分布列
19.【答案】(Ⅰ)
(Ⅱ)
【解析】(Ⅰ)如图,连结 ,因 为菱形,则 ,且 ,以 为坐标原点, 的方向分别为 轴, 轴, 轴的正方向,建立空间直角坐标系 ,因 ,故 , ,所以 , , , , , .由 知, ,

2014全国统一高考数学真题及逐题详细解析(理科)—重庆卷

2014全国统一高考数学真题及逐题详细解析(理科)—重庆卷

2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.复平面内表示复数)21(i i -的点位于 ( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2.对任意等比数列}{n a ,下列说法一定正确的是( )A . 139,,a a a 成等比数列B . 632,,a a a 成等比数列C . 842,,a a a 成等比数列D . 963,,a a a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能是( )A . 3.24.0ˆ+=x yB . 4.22ˆ-=x yC . 5.92ˆ+-=x yD . 4.43.0ˆ+-=x y 4.已知向量)1,2(),4,1(),3,(===c b k a,且c b a ⊥-)32(,则实数=k ( ) A . 29- B . 0 C . 3 D . 2155.执行题如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A . 21>s B . 53>s C . 107>s D . 54>s6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件,则下列命题为真命题的是( )A . q p ∧B . q p ⌝∧⌝C . q p ∧⌝D . q p ⌝∧开始k 9, s 1==1k k =-1k s s k =⋅+输出k结束7.某几何体的三视图如图所示,则该几何体的表面积为( )A . 54B . 60C . 66D . 728.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A .34 B . 35 C . 49D . 3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A . 72B . 120C . 144D . 310.已知A B C ∆的内角21)s i n ()s i n (2s i n ,+--=+-+B A C C B AA CB A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A . 8)(>+c b bcB . )(c a ac +C . 126≤≤abcD . 1224abc ≤≤ 二、填空题11.设全集=⋂==≤≤∈=B A C B A n N n U U )(},9,7,5,3,1{},8,5,3,2,1{},101|{则______. 12.函数)2(log log )(2x x x f ⋅=的最小值为_________.13.已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且 A B C ∆为等边三角形,则实数=a _________.14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6=PA ,AC =8,BC =9,则AB =________.15.已知直线l 的参数方程为⎩⎨⎧+=+=ty tx 32(t 为参数),以坐标原点为极点,x 正半轴为极轴线l 与曲线C 的公共点的极经=ρ________.正视图 左视图 俯视图543216.若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是 ____________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π.(I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫ ⎝⎛+23cos πα的值.18.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字 是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列(注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数). 19.(本小题满分12分)如图(19),四棱锥ABCD P -,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (1)求PO 的长;(2)求二面角C PM A --的正弦值。

2014年高考理科数学重庆卷(含详细答案)

2014年高考理科数学重庆卷(含详细答案)

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.复平面内表示复数i(12i)-的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )A .1a ,3a ,9a 成等比数列B .2a ,3a ,6a 成等比数列C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数 据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+4.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92-B .0C .3D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框 内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题p :对任意x ∈R ,总有20x>;q :“1x >”是“x >2”的充分不必要条件,则下列命题 为真命题的是( ) A .p q ∧ B .p q ⌝∧⌝ C .p q ⌝∧D .p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .728.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12||+||3PF PF b =,129||||4PF PF ab =,则该双曲线的离心率为 ( )A .43B .53C .94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72B .120C .144D .16810.已知ABC △的内角A ,B ,C 满足1sin2sin()sin()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是 ( )A .()8bcb c +>B.()ab a b +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)C .612abc ≤≤D .1224abc ≤≤二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设全集={|110}U n n ∈N ≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则)U A B =(ð.12.函数22()log log (2)f x x x =的最小值为 .13.已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC △为等边三角形,则实数a = .考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,8AC =,9BC =,则AB = .15.已知直线l 的参数方程为2,()3,x t t y t =+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02π)ρθθρθ-=≥≤≤,则直线l 与曲线C 的公共点的极径ρ= .16.若不等式21|21||2|22x x a a -++++≥对任意实数x 恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)已知函数ππ())(0,)22f x x ωϕωϕ+>-≤<的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和ϕ的值;(Ⅱ)若π2π()()263a f α=<<,求3πcos(+)2α的值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数)19.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =,MP AP ⊥.(Ⅰ)求PO 的长;(Ⅱ)求二面角A PM C --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()e e (,,)x x f x a b cx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定a ,b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x ya b a b+=>>的左、右焦点分别为1F ,2F ,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F △ (Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)设11a =,*1)n a +N .(Ⅰ)若1b =,(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.3 / 13,也成等比数列,所以【提示】运用等比数列的等比中项性质即可达到答案C 【解析】232(,3)a b k -=-(23)a b c -⊥,(2k ∴-故选:C.1kk ⨯⨯-,输出的1kk ⨯⨯-,根据输出【考点】程序框图,判断语句,循环语句数学试卷 第7页(共26页)数学试卷 第8页(共26页)2129b PF =21⎫⎛=+⎪5 / 13){7,9}B =,再根据两个集合的交集的定义求得)B .2221log (2)log 2log (2)2x x x x =22log (1log )x x =+()f x 取得最小值14-.故答案为:14-.数学试卷 第11页(共26页)数学试卷 第12页(共26页).ABC △为等边三角形,,即28a -()PB PC PB PB BC =+,(9)PB PB +∴PCA ,又APB CPA ∠=∠PCA ∽△,CA PA 386PB CA PA ⨯=AB PB7 / 13π223k ϕ+=2,.因π2-≤π226α⎫-=⎪⎭11⎛⎫=-数学试卷 第15页(共26页)数学试卷 第16页(共26页)ACBD O =,,,OA OB OP 的方向分别为轴的正方向,建立空间直角坐标系故πcos 36OA AB ==πsin 16AB =,所以)0,0,0,(A (0,1,0)OB =,(3,BC =-由12BM =,知,1BM BC ⎛==- 而3OM OB BM ⎛=+=- (A P =-33MP ⎛⎫= ,故0MP AP =即39 / 13(Ⅱ)由(Ⅰ)知,33333,0,,,,,3,0,AP MP CP ⎛⎫⎛⎫⎛=-=-= ⎪ ⎪ 的法向量为(),,n x y z =,平面PMC 的法向量为(,n x =由0n AP =,0n MP =得3⎧⎪⎪-故可取531,n ⎛= 由20n MP =,20n CP =得,故可取(1,n =-从而法向量,n n 的夹角的余弦值为12215,5||||n n n n n n <>==-故所求二面角A PM -105.方向为,,轴正方向建立空间坐标系分别求出向量AP ,MP 的坐标,进而根据,得到0MP AP =,进而求出的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得二面角A PM C --数学试卷 第19页(共26页)数学试卷 第20页(共26页)231x x e --=24x x e -=,当0x =时等号成立无极值; 11222F F =22DF DF =所以(F P x=+,(F P x=-,即134x x+,解得1x=-2311 / 13数学试卷第23页(共26页)数学试卷第24页(共26页)13 / 13。

2014年高考理科数学重庆卷及答案

2014年高考理科数学重庆卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.复平面内表示复数i(12i)-的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对任意等比数列{}n a ,下列说法一定正确的是( )A .1a ,3a ,9a 成等比数列B .2a ,3a ,6a 成等比数列C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列3.已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数 据算得的线性回归方程可能是( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+4.已知向量(,3)k =a ,(1,4)=b ,(2,1)=c ,且(23)-⊥a b c ,则实数k =( )A .92- B .0 C .3 D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题p :对任意x ∈R ,总有20x >;q :“1x >”是“x >2”的充分不必要条件,则下列命题 为真命题的是( ) A .p q ∧ B .p q ⌝∧⌝ C .p q ⌝∧D .p q ∧⌝7.某几何体的三视图如图所示,则该几何体的表面积为( )A .54B .60C .66D .728.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12||+||3PF PF b =,129||||4PF PF ab =,则该双曲线的离心率为 ( )A .43B .53C .94D .3 9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A .72 B .120C .144D .16810.已知ABC △的内角A ,B ,C 满足1si n 2s i n ()s i n ()2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)A .()8bc b c +> B.()ab a b +>C .612abc ≤≤D .1224abc ≤≤二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.设全集={|110}U n n ∈N ≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则)U A B =(ð.12.函数22()log log (2)f x x =的最小值为 .13.已知直线20ax y +-=与圆心为C 的圆22(1)()4x y a -+-=相交于A ,B 两点,且ABC △为等边三角形,则实数a = .考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 依次交圆于B ,C .若6PA =,8AC =,9BC =,则AB = .15.已知直线l 的参数方程为2,()3,x t t y t =+⎧⎨=+⎩为参数,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos 0(0,02π)ρθθρθ-=≥≤≤,则直线l 与曲线C 的公共点的极径ρ= .16.若不等式21|21||2|22x x a a -++++≥对任意实数x 恒成立,则实数a 的取值范围是 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)已知函数ππ())(0,)22f x x ωϕωϕ+>-≤<的图象关于直线π3x=对称,且图象上相邻两个最高点的距离为π. (Ⅰ)求ω和ϕ的值;(Ⅱ)若π2π()()263a f α<<,求3πcos(+)2α的值. 18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a b c ≤≤,则称b 为这三个数的中位数) 19.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =,MP AP ⊥. (Ⅰ)求PO 的长;(Ⅱ)求二面角A PM C --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分)已知函数22()e e (,,)x x f x a b cx a b c -=--∈R 的导函数()f x '为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定a ,b 的值;(Ⅱ)若3c =,判断()f x 的单调性; (Ⅲ)若()f x 有极值,求c 的取值范围.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F,点D 在椭圆上,112DF F F ⊥,121||||F F DF =,12DF F △. (Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)数学试卷 第5页(共18页) 数学试卷 第6页(共18页)设11a =,*1()n a b n +=∈N .(Ⅰ)若1b =,求2a ,3a 及数列{}n a 的通项公式;(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n ∈N 成立?证明你的结论.。

2014年普通高等学校招生全国统一考试(重庆卷)(理科数学)【全word,精心排版】

2014年普通高等学校招生全国统一考试(重庆卷)(理科数学)【全word,精心排版】

2014年普通高等学校招生全国统一考试(重庆卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项符合题目要求. 1.在复平面内表示复数()i 12i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2.对任意等比数列{}n a ,下列说法一定正确的是( )A .139,,a a a 成等比数列B .236,,a a a 成等比数列C .248,,a a a 成等比数列D .369,,a a a 成等比数列 3.已知变量x 与y 正相关,且由观测数据算得样本平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程 可能为( )A .0.4 2.3y x =+B .2 2.4y x =-C .29.5y x =-+D .0.3 4.4y x =-+ 4.已知向量()()(),3,1,4,2,1k ===a b c ,且()23-⊥a b c ,则实数k =( )A .92-B .0C .3D .1525.执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .12s >B .35s >C .710s >D .45s >6.已知命题:p x ∀∈R ,20x >;:q “1x >”是“2x >”的充分不必要条件. 则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝ 7.某几何体的三视图如图所示,则该几何体的表面积为( ) A .54 B .60 C .66 D .728.设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得 121293,4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( ) A .43 B .53 C .94D .39.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .16810.已知ABC △的内角,,A B C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S 剟, 记,,a b c 分别为,,A B C 所对的边,则下列不等式成立的是( ) A .()8bc b c +> B .()ab a b +> C .612abc 剟D .1224abc 剟 二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。

重庆市2014届高三下学期考前模拟(二诊)理科数学试卷(带解析)

重庆市2014届高三下学期考前模拟(二诊)理科数学试卷(带解析)

重庆市2014届高三下学期考前模拟(二诊)理科数学试卷(带解析)1.已知i 为虚数单位,复数11i-的虚部是( ) (A )12 (B )12- (C )12i - (D )12i【答案】A 【解析】 试题分析:111111122i i i +==+-+.选A 考点:复数的概念及基本运算2.设集合{}1,0,2A =-,集合{}2B x x A x A =-∈-∉且,则B =( ) (A ){}1 (B ){}2- (C ){}1,2-- (D ){}1,0-【答案】A 【解析】 试题分析:根据集合B 的定义可得,当1x =-时,23x A -=∉,所以1x B -=∈;当0x =时,22x A -=∈,所以0x B -=∉;当2x =时,20x A -=∈,所以2x B -=-∉;所以{1}B =.考点:集合的基本运算.3.若p 是q 的必要条件,s 是q 的充分条件,那么下列推理一定正确的是( ) (A )p s ⌝⇔⌝ (B )p s ⇔ (C )p s ⌝⇒⌝ (D )s p ⌝⇒⌝ 【答案】C 【解析】试题分析:由题意得,,,q p s q s p ⇒⇒∴⇒,从而p s ⌝⇒⌝.考点:逻辑与命题.4.如图是收集重庆市2013年9月各气象采集点处的平均气温(单位:℃)的数据制成的频率分布直方图,图中有一处因污迹看不清。

已知各采集点的平均气温范围是[]20.5,26.5,且平均气温低于22.5℃的采集点个数为11,则平均气温不低于25.5℃的采集点个数为( )(A )6 (B )7 (C )8 (D )9 【答案】D 【解析】试题分析:根据频率分布直方图可得,[21.5,23.5]的频率是0.24,所以[20.5,22.5]的频率是0.22,所以采集点总数为11500.22n ==,平均气温不低于25.5℃的采集点个数为500.189⨯=.考点:频率分布直方图.5.执行如图所示的程序框图,则输出的a 为( )(A )20 (B )14 (C )10 (D )7 【答案】A 【解析】 试题分析:根据程序框图可得:10,1;5,2;14,3;7,4;20,5;10,6a i a i a i a i a i a i ============,由此可知,所有a 构成一个周期为5的周期数列,2015i =时,20a =,此时循环结束,故输出20. 考点:程序框图.6.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为( )(A )1 (B )12 (C )14 (D )18【答案】C 【解析】试题分析:这是由两个三棱锥拼成的几何体,其体积为11234V =⨯=.选C.考点:三视图及几何体的体积.7.设,A P 是椭圆2212x y +=上两点,点A 关于x 轴的对称点为B (异于点P ),若直线,AP BP 分别交x 轴于点,M N ,则OM ON ⋅=( )(A )0 (B )1 (C(D )2 【答案】D 【解析】试题分析:(特例法)不妨设(0,1),(0,1),A B P -,则,0),2,0)M N ,2OM ON ⋅=.选D.考点:椭圆及向量.8.对任意实数,x y ,定义运算⊗:()()x x y x y y x y ≥⎧⎪⊗=⎨<⎪⎩,设ln 2ln 3ln 5,,4925a b c ===,则b c a ⊗⊗的值是( )(A )a (B )b (C )c (D )不确定【答案】A 【解析】试题分析:题中所定义运算即为取最大值.设2ln ()xf x x=,则432ln 12ln ()x x x x f x x x --'==,当x >2ln ()x f x x =单调递减,所以2ln 2(2)2f a ==最大,选A.考点:1、新定义;2、导数的应用.9.已知ABC ∆中,D BC 是边的中点,过点D 的直线分别交直线AB 、AC 于点E 、F ,若AE AB λ=,AF AC μ=,其中0,0λμ>>,则λμ的最小值是( ) (A )1 (B )12 (C )13 (D )14【答案】A 【解析】试题分析:由已知得:11112222AD AB AC AE AF λμ=+=+,因为D 、E 、F 三点共线,所以11122λμ+=,由重要不等式得:11122λμλμ+≥≥.B考点:向量的运算. 10.已知113k ≤<,函数()21x f x k =--的零点分别为()1212,x x x x <,函数()2121x kg x k =--+的零点分别为()3434,x x x x <,则()()4321x x x x -+-的最小值为( )(A )1 (B )2log 3 (C )2log 6 (D )3 【答案】B 【解析】试题分析:由题知,k x -=121,k x +=122,12123+-=k k x ,12124++=k kx . k k x x -+=∴-11212,113234++=-k k x x k k k x x x x -+-=-+=∴-+-1431132)()(1234 又)1,31[∈k ),3[143+∞∈-+-∴k),3[log 21234+∞∈-+-∴x x x x 故选B . 考点:1、函数的零点;2、指数运算;3、函数的最值.11.已知椭圆()22122:10x y C a b a b +=>>和椭圆222:12x C y +=的离心率相同,且点)在椭圆1C 上.(1)求椭圆1C 的方程;(2)设P 为椭圆2C 上一点,过点P 作直线交椭圆1C 于A 、C 两点,且P 恰为弦AC 的中点。

14年高考真题理科数学重庆卷

14年高考真题理科数学重庆卷

2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题(本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的)(1)在复平面内表示复数的点位于( )()12i i - (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(2)对任意等比数列,下列说法一定正确的是( ){}n a (A )成等比数列 (B )成等比数列 139,,a a a 236,,a a a (C )成等比数列 (D )成等比数列248,,a a a 239,,a a a (3)已知变量与正相关,且由观测数据算得样本的平均数,,则x y 2.5x = 3.5y =由观测的数据得线性回归方程可能为( )(A ) (B ) (C ) (D ) 0.4 2.3y x =+ 2 2.4y x =- 29.5y x =-+ 0.3 4.4y x =-+ (4)已知向量,,,且,则实数( (),3a k = ()1,4b = ()2,1c = ()23a b c -⊥ k =)(A ) (B )0 (C )3 (D )92-152(5)执行如题(5)图所示的程序框图,若输出的值为k 6,则判断框内可填入的条件是( )(A ) (B ) 12s >35s >(C ) (D )710s >45s >(6)已知命题:对任意,总有;:“p x R ∈20x >q ”是“”的充分不必要条件。

则下列命题为真命题的1x >2x >是( ) (A ) (B )p q ∧p q ⌝∧⌝(C ) (D )p q ⌝∧p q ∧⌝(7)某几何体的三视图如右图所示,则该几何体的表面积为( ) (A )54 (B )60 (C )66 (D )72(8)设分别为双曲线的左、右焦点,双曲线上存在一12,F F ()222210,0x y a b a b-=>>点P 使得,。

2014年高考终极押题卷理科综合——重庆卷-推荐下载

2014年高考终极押题卷理科综合——重庆卷-推荐下载
2014 年高考终极押题卷理科综合——重庆卷
理科综合能力测试试题卷分为物理、化学、生物、三个部分,满分 300 分,考试时间为 150 分钟
物理试题
一、选择题(本题共 5 小题,每小题 6 分。在每小题给出的四个选项中,只有一项符合题目要求,选对
的得 6 分,选错的得 0 分)
1、下列说法正确的是(
C.电场强度的大小 E mg q
D.小环在 B 点时受到大环对它的弹力大小 F mg 1 kL 2
5.2013 年 6 月 l3 日,“神舟十号”飞船与“天宫一号”目标飞行器在离地面 343km 的近的大气。下列说法正确的是(
4
第 3 页(共 18 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014重庆高考压轴卷数学(理)一、选择题(每小题5分,10小题,共50分,每小题只有一个选项符合要求)1.设复数z 满足关系i i z 431+-=⋅,那么z 等于 ( ) A .i +43 B. i +-43 C. i --43 D.i -432.直线2202ax by a b x y +++=+=与圆的位置关系为 ( )A .相交B .相切C .相离D .相交或相切3.的系数为中362)1(x xx +( ) A . 20 B. 30 C . 25 D . 404. 已知R b a ∈,,则“33log log a b >”是 “11()()22a b<”的 ( )A .充分不必要条件B 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5.函数22cos y x =的一个单调增区间是 ( )A . ππ2⎛⎫ ⎪⎝⎭,B .π02⎛⎫ ⎪⎝⎭,C .π3π44⎛⎫⎪⎝⎭,D . ππ44⎛⎫- ⎪⎝⎭,6.已知向量)2,(),2,1(-==x b a ,且)(b a a -⊥,则实数x 等于 ( ) A.7- B. 9 C. 4 D. 4-7.实数y x ,满足条件⎪⎩⎪⎨⎧≥++-≤+≥05242y x y x x 则该目标函数y x z +=3的最大值为 ( )A .10B .12C .14D .158.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f(x)=k 有两个不同的实根,则数k 的取值范围是 ( ) A . ()1,0 B . []2,0 C .(]1,0 D .(]2,09.数列}{n a 中,),()1(2,211*+∈++==N n n n a a a n n 则=10a ( )A.517B.518C.519 D.410.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则)0('f =( )A .62 B. 92 C. 122 D. 152二、填空题:(本大题5个小题,每小题5分,共25分)11.过点M )23,3(--且被圆2522=+y x 截得弦长为8的直线的方程为 12.设a >0,b >0,且不等式1a +1b +k a +b ≥0恒成立,则实数k 的最小值等于 ;13.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。

这样的八位数共有 个.(用数字作答)考生注意:(14)(15)(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.若曲线的极坐标方程为p=2sin 4cos θθ+,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为 。

15.设圆O 的直径AB=2,弦AC=1,D 为AC 的中点,BD 的延长线与圆O 交于点E ,则弦AE= 16.不等式12sin x a y x+≥-+对一切非零实数,x y 均成立,则实数a 的范围为 .三、解答题:(本大题6个小题,共75分) 17.(本小题满分13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足22265b c a b c +=+,3AB AC ⋅=.(1)求ABC ∆的面积; (2)若1c =,求cos()6B π+的值。

18.(本小题满分13分)已知数列{}n a 的首项135a =,13,1,2,21n n n a a n a +==+.(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2) 记12111n nS a a a =++,若100n S <,求最大的正整数n . 19.(本小题满分13分)若a =(3cos ωx ,sin ωx ),b =(sin ωx,0),其中ω>0,记函数f (x )=(a +b )·b +k . (1)若f (x )图象中相邻两条对称轴间的距离不小于π2,求ω的取值范围.(2)若f (x )的最小正周期为π,且当x ∈⎣⎡⎦⎤-π6,π6时,f (x )的最大值是12,求f (x )的解析式。

20.(本小题满分12分) 已知抛物线C: 22(0)ypx p => ,F 为抛物线的焦点,点(,)2p M p 。

(1)设过F 且斜率为1的直线L 交抛物线C 于A 、B 两点,且|AB|=8,求抛物线的方程。

(2)过点(,)2pM p 作倾斜角互补的两条直线,分别交抛物线C 于除M 之外的D 、E 两点。

求证:直线DE 的斜率为定值。

21.(本小题满分12分)设函数a x a e a x x f x+-+-=)1()()(,R a ∈。

(1)当1=a 时,求)(x f 的单调区间。

(2)设)(x g 是)(x f 的导函数,证明:当2>a 时,在),0(+∞上恰有一个0x 使得0)(0=x g 。

22.(本小题满分12分)设椭圆E 中心在原点,焦点在x 轴上,短轴长为4,点Q (2,2)在椭圆上。

(1)求椭圆E 的方程;(2)设动直线L 交椭圆E 于A 、B 两点,且OA OB ⊥,求△OAB 的面积的取值范围。

(3)过M (11,y x )的直线1l :28211=+y y x x 与过N (22,y x )的直线2l :28222=+y y x x 的交点P (00,y x )在椭圆E 上,直线MN 与椭圆E 的两准线分别交于G ,H 两点,求−→−OG ∙−→−OH 的值。

数学(理)参考答案一、选择题(每小题5分,10小题,共50分,每小题只有一个选项符合要求) 1 A 2 D 3 A 4 A 5 A 6 B 7 A 8 A 9 C 10C 二、填空题:(本大题5个小题,每小题5分,共25分) 11341503x y x ++==-和 12 —4 13 2881402422=--+y x yx 15 16[]1,3三、解答题:(本大题6个小题,共75分)17 22265b c a bc +=+,bc a c b 56222=-+∴,532cos 222=-+=bc a c b A 又),0(π∈A ,∴54cos 1sin 2=-=A A , 而353cos ==⋅⋅=⋅bc A AC AB AC AB 所以5=bc , 所以ABC ∆的面积为:254521sin 21=⨯⨯=A bc (2)由(1)知5=bc ,而1=c ,所以5=b所以5232125cos 222=⨯-+=-+=A bc c b a2225cos 25a c b B ac +-∴==-,25sin 5B = 31351251525cos()cos sin ()622252510B B B π+∴+=-=⋅--⋅=-18.(1)∵112133n n a a +=+,∴1111133n n a a +-=-,且∵1110a -≠,∴110()*N nn a -≠∈,∴数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列. (2)由(1)可求得11211()33n n a --=⨯,∴112()13n n a =⨯+.2121111112()333n n n S n a a a =+++=++++111133211313n nn n +-=+⋅=+--若100n S <,则111003nn +-<,∴max 99n =. 19[解析] ∵a =(3cos ωx ,sin ωx ),b =(sin ωx,0) ∴a +b =(3cos ωx +sin ωx ,sin ωx ).故f (x )=(a +b )·b +k =3sin ωx cos ωx +sin 2ωx +k =32sin2ωx +1-cos2ωx 2+k=32sin2ωx -12cos2ωx +12+k =sin ⎝⎛⎭⎫2ωx -π6+k +12. (1)由题意可知T 2=π2ω≥π2,∴ω≤1.又ω>0,∴0<ω≤1. (2)∵T =πω=π,∴ω=1.∴f (x )=sin ⎝⎛⎭⎫2x -π6+k +12. ∵x ∈⎣⎡⎦⎤-π6,π6,∴2x -π6∈⎣⎡⎦⎤-π2,π6. 从而当2x -π6=π6,即x =π6时,f max (x )=f ⎝⎛⎭⎫π6=sin π6+k +12=k +1=12, ∴k =-12,故f (x )=sin ⎝⎛⎭⎫2x -π6.20222211221212212122,2230,4(,),(,),,42()448, 2.4.pF y x y px p y x px p x y B x y x x p x x x x x x p p y x =-=-+=+∙+-∙====解(1)设过的直线为将它与联立消得:1分设A 由韦达定理得:=3=3分由弦长公式得|AB|=所以5分故所求抛物线方程为6分22343434342234432234(,),(,)222,10222211222MD ME DE y y y E y k k p pp y p y y y p y y p p p py y k y y p p--=-+=----∴==--(2)不妨设D 由=-得:,化简得分分21解:(1)当1a =时,()(1)1,'()x xf x x e f x xe =-+=-当'()0f x <时,0x <;当'()0f x >时,0x > 所以函数()f x 的减区间是(,0)-∞;增区间是(0,)+∞-(2)(ⅰ)()'()(1)(1),'()(2)x x g x f x e x a a g x e x a ==-++-=-+ 当'()0g x <时,2x a <-;当'()0g x >时,2x a >-因为2a >,所以函数()g x 在(0,2)a -上递减;在(2,)a -+∞上递增 又因为(0)0,()10a g g a e a ==+->, 所以在(0,)+∞上恰有一个0x 使得0()0g x =.22解:(1)因为椭圆E: 22221x y a b+=(a>b>0)过M (2,2) ,2b=4故可求得b=2,a=22 椭圆E 的方程为22184x y +=(2)设P (x,y ),A (x1,y1),B (x2,y2),当直线L 斜率存在时设方程为y kx m =+,解方程组22184x y y kx m+==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>, 即22840k m -+>(*)12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++要使OA OB ⊥,需使12120x x y y +=,即2222228801212m m k k k--+=++, 所以223880m k --=, 即22883k m += ①将它代入(*)式可得2[0,)k ∈+∞ P 到L 的距离为2||1m d k=+又212222121211||||1||2211[()4]2m S AB d k x x k m x x x x ∴==+-∙+=+-将22883k m +=及韦达定理代入可得242813441k S k k =+++ ① 当0k ≠时242228811113441344k S k k k k=+=+++++ 由2214[4,)k k +∈+∞ 故228181(,22]13344S k k=+∈++ ② 当0k =时, 83S =③ 当AB 的斜率不存在时, 83S =,综上S 8,223⎡⎤∈⎢⎦⎣(3)点P (00,y x )在直线1l :28211=+y y x x 和2l :28222=+y y x x 上,2820101=+y y x x ,2820202=+y y x x故点M (11,y x )N (22,y x )在直线28200=+y y x x 上 故直线MN 的方程,28200=+y y x x 上 设G ,H 分别是直线MN 与椭圆准线,4±=x 的交点 由28200=+y y x x 和4-=x 得G (-4,224y x +)由28200=+y y x x 和4=x 得H (4,224y x -)故−→−OG ∙−→−OH =-16+22432y x -又P (00,y x )在椭圆E :14822=+y x有1482020=+y x 故20208324y x -=−→−OG ∙−→−OH =-16+220)832(32y y --=-8。

相关文档
最新文档