【30天大冲刺之12月27日】数学运算之排列组合问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12/27 数学运算之排列组合问题

一、排列组合问题

(一)基本概念

(1)加法原理:分类的用加法乘法原理:分步的用乘法

排列:与顺序有关组合:与顺序无关

(2)主要解题技巧:逆向考虑法,特殊位置先排,隔板法,插空法,分类法,捆绑法等。

因为这部分内容比较多,所以抽屉原理另外在下一个专题里单独讲。

(二)习题与解析:

1、用1、

2、

3、

4、

5、

6、

7、8可组成多少个没有重复数字的五位数?

解析:这是一个从8个元素中取5个元素的排列问题,由排列数公式,共可组成:P85=8*7*6*5*4=6720

2、由数字0、1、2、3可以组成多少个没有重复数字的偶数?

解析:分类法

注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.

第一类:一位偶数只有0、2,共2个;

第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;

第三类:三位偶数,它包含个位为0、2的两类.若个位取0,则十位和百位共有P23种取法;若个位取2,则十位和百位只能在0、1、3中取,百位有2种取法,十位也有2种取法,由乘法原理,个位为2的三位偶数有2×2个,三位偶数共有(P23+2×2)个;

第四类:四位偶数.它包含个位为0、2的两类.若个位取0,则共有P33个;若个位取2,则其他3位只能在0、1、3中取.千位有2种取法,百位和十位在剩下的两个数中取,再排成一列,有P22种取法.由乘法原理,个位为2的四位偶数有2×P22个.所以,四位偶数共有(P33+2×P22)种不同的取法.

由加法原理知,共可以组成

2+(C13+C12)+(P23+2×2)+(P33+2×P22)=2+5+10+10=27个不同的偶数.

3、从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?

解析:分类法。首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.

解:符合要求的选法可分三类:

设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.

因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.

运用加法和乘法原理时要注意:

①抓住两个基本原理的区别,千万不能混.

不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.

②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.

③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下

个步骤不同的方法来说是一样的.

4、一学生把一个一元硬币连续掷三次,试列出各种可能的排列.

解析:画图

由此可知,排列共有如下八种:

正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.

5、参加会议的人两辆都彼此握手,有人统计共握手36次,到会共有多少人?()

A、9

B、10

C、11

D、12

解析:两人握手与顺序无关,(甲与乙握手和乙与甲握手是一样的),假设共有N个人,两两彼此握手可以握C2N次,有C2N=N(N-1)/2*1=36.解得N=9,选A

6、五个瓶子都贴了标签,其中恰好贴错了三个,则错的可能情况共有多少种?()

A、6

B、10

C、12

D、20

解析:第一步:从五个瓶子中选出三个瓶子共有C35=10种方法

第二步:对这三个瓶子进行错位排列,共有D3=2种方法

第三步:根据乘法原理,所有可能的方法数为10*2*1=20种

PS:有关错位排列问题。请看下一题。将有比较详细的解释。

7、甲乙丙丁四个人站成一排,已知:甲不站在第一位,乙不站在第二位,丙不站在第三位,丁不站在第四位,则所有可能的站法数为多少种?()

A、6

B、12

C、9

D、24

解析:甲不能站在第一位,因此甲必然站在后三个位置中的某一个位置。

如果甲站在第二位,则共有三种可能:乙甲丁丙,丙甲丁乙,丁甲丙乙

如果甲站在第三位,则共有三种可能,乙丁甲丙,丙丁甲乙,丁丙甲乙

如果甲站在第四位,则共有三种可能,乙丙丁甲,丙丁乙甲,丁丙乙甲

因此一共有9种可能

总结:错位排列问题:有N封信和N个信封,则每封信都不装在自己的信封里,可能的方法的种数记作Dn。则D1=0,D2=1,D3=2,D4=9,D5=44,D6=265。。

8、A、B、C、D、E五个人排成一排,其中A、B两个人不站在一起,共有()种排法。

解析:采用插空法。第一步:CDE排成一排,共有P33=6种排法

第二步:口C口D口E口,共有4个空,将A、B插入这4个空中,共有P24=12种排法

根据乘法原理,共有不同的排法6*12=72种

9、A、B、C、D、E五个人排成一排,其中A、B两人必须站在一起,共有()种排法。

解析:采用捆绑法。

第一步:将A、B捆绑在一起,共有P22=2种捆法。第二步:用它们的整体和CDE一起拍,共有P44=24种排法

根据乘法原理,共有不同排法2*24=48种。总结:相邻问题---捆绑法。不邻问题---插空法。

10、有10颗糖,每天至少吃一粒,直到吃完为止,共有多少种不同的吃法?

解析:10片药并成一排,内部形成9个空。想象每个空上方都有一块隔板,如果隔板放下了,就是把那部分的糖果分成2天来吃了。每个隔板都有放下和不放下的2个选择。所以一共的可能性是2^9=512种方法。这个就是插板法。是为了解决相同元素的分配问题的。

11、6人站在一排,要求甲站在乙的左边,有多少种不同的排法?

相关文档
最新文档