7热力学基础
7-热力学基础(题库)
三、 简答题
1、卡诺循环的效率与哪些因素有关?试写出其效率表达式。 2、什么是准静态过程?
四、计算题
1、一氧气瓶的容积为 V,充了气未使用时压强为 p1,温度为 T1;使用后瓶内氧气的质量减少为原来 的一半,其压强降为 p2,试求此时瓶内氧气的温度 T2 。
2、理想气体做卡诺循环,设热源温度为 100℃,冷却器温度为0℃时,每一循环做净功 8kJ,今维持
(A) 0.5%
(B)4%
(C)9%
(D )21%
10、一定量的理想气体,分别进行如图所示的两个卡诺循环 abcda 和 abcda。若在 P V 图上这两个循环曲线所围面积相等,则可以由此得知
这两个循环
(A)效率相等。
(B)由高温热源处吸收的热量相等。
(C)在低温热源处放出的热量相等。 (D)在每次循环中对外做的净功相
尔热容 CV ,m 12.46J mol1K 1,CP,m 20.78J mol1K 1 )
4、一定量的某种理想气体进行如图所示的循环过程.已知气体在 状态 A 的温度为 TA=300 K,求
(1) 气体在状态 B、C 的温度;
p (Pa)
300
A
200
100
C
(2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热
7、一卡诺热机低温热源的温度为 27C,效率为 40% ,高温热源的温度 T1 =
.
8、设一台电冰箱的工作循环为卡诺循环,在夏天工作,环境温度在 35C,冰箱内的温度为 0C,这台电冰
箱的理想制冷系数为 e=
.
9、将 1kg 温度为100 C 的水置于 200 C 的恒温热源内,最后水的温度与热源的温度相同,则水的熵变
热力学基础
第七章 热力学基础基 本 要 求一、理解功和热量的概念以及准静态过程。
二、掌握热力学第一定律;能熟练地分析、计算理想气体各等值过程和绝热过程中的功、热量、内能改变量及卡诺循环等简单循环过程的效率。
三、理解摩尔热容量的定义,并会用它来计算等压、等容过程中的热量。
四、了解热力学第二定律及其统计意义。
内 容 提 要一、准静态过程平衡态 不受外界影响时,系统的宏观性质不随时间改变的状态。
准静态过程 由无数个平衡态组成的过程,即系统的每个中间态都是平衡态。
准静态过程是一个理想化的过程,是实际过程的近似。
实际过程仅当进行得无限缓慢时才可看作是准静态过程 。
二、热力学第一定律W E E Q +-=12对于一元过程:dW dE dQ +=符号规定:Q > 0系统吸热;W > 0系统对外界做正功; ∆E >0系统内能增加。
热力学第一定律适用于任何系统(固、液、气)的任何过程(非准静态过程亦成立)。
三、功、内能、热量的数学表达式和意义功 通过做功可以改变系统的状态。
功是过程量,是分子的有规则运动能量和分子的无规则运动能量的转化和传递。
⎰=21V V PdV W内能 内能是状态的函数。
对于一定质量的某种气体,内能一般是T 、V 或P 的函数;对于刚性分子的理想气体,内能只是T 的函数,即T C RT iE V νν==2)(12T T C E V -=∆ν热量 传热也可改变系统的状态,其条件是系统和外界的温度不同。
Q=νC (T 2 –T 1) 其中C 为摩尔热容量。
四、气体的摩尔热容量摩尔热容量 一摩尔物质温度升高一度所吸收的热量,即⎪⎭⎫ ⎝⎛=dT dQ C ν1 理想气体等容摩尔热容量 R i C V 2=理想气体等压摩尔热容量 R C R R iC V P +=+=2泊松比 12>+==ii C C V P γ 对刚性理想气体单原子分子,i = 3,γ = 1.67; 对刚性理想气体双原子分子,i = 5,γ = 1.40; 对刚性理想气体多原子分子,i = 6,γ = 1.33。
7热力学基础1(12)
引力刚球模型
f
引力刚球模型
简化
O d
s
r
d —分子有效直径(10-10m)
r0 — 平衡距离(d )
s —分子有效作用距离(102d )
引力刚球模型:
1、分子是直径为d 的刚性球。
2、在 d - s 范围内,分子间有引力。 二、范德瓦耳斯方程 设气体为1 mol。 对理想气体
p RT v
二、热力学第一定律
某一过程,系统从外界吸热 Q,对外界做功 A,系统 内能从初始态 U1变为 U2,则由能量守恒:
Q ( A ) U
Q U A
规定
热力学第一定律 的普遍形式
Q>0,系统吸收热量;Q<0,系统放出热量;A>0,系统 对外作正功;A<0,系统对外作负功;U>0,系统内能增
加,U<0,系统内能减少。
对无限小过程
dQ dU dA
定律表述了内能增量、热量、和功之间数量关系, 适用于自然界中一切系统的所有过程。
对于准静态过程,如果系统对外作功是通过体积的 变化来实现的,则
Q U pdV
V 1
V 2
dQ dU pdV
热力学第一定律另一表述: 制造第一类永动机(能对外不断自动作功而不需要消 耗任何燃料、也不需要提供其他能量的机器)是不可能的。
绝热过程,C=0 等温过程,C=无穷大 一般过程,介于上述两者之间
等体和等压过程中的热容量分别称为定体热容CV 和 定压热容Cp (1 摩尔物质)
(1) 定体摩尔热容CV,m
C dQ V 1 C ( ) ( dQ ) C dT V , m V V V , m dT
(2) 定压摩尔热容Cp,m
热力学基础
§7.1 §7.2 §7.3 §7.4 §7.5 §7.6 §7.7 §7.8
热力学基础
内能 功和热量 准静态过程 热力学第一定律 气体的摩尔热容量 绝热过程 循环过程 卡诺循环 热力学第二定律 热力学第二定律的统计意义 玻尔兹曼熵 卡诺定理 克劳修斯熵
§7.1 热力学的一些基本概念
一、内能 功和热量 1.态函数
每一时刻系统都无限接近于平衡态的过程。
由一系列依次接替的平衡态组成。 对 “无限缓慢” 的实际过程的近似描述。
无限缓慢: 微小变化时间 >> 驰豫时间 弛豫时间:系统由非平衡态趋于平衡态所需时间
§ 7.2 热力学第一定律
一、热力学第一定律
1.
数学表式
Q E A
对微小变化过程
பைடு நூலகம்d Q dE d A
RT
RT ln V2
V2
V1
等温
RT ln
p1
p2
RT ln
p1
0
p2
绝热
PV = 常量 dQ g-1 V T = 常量 0 g-1 - g = P T 常量
g
cV T
0
p2V2 p1V1 cV T 1
§7.5 循环过程 卡诺循环
一、 循环过程
系统的工作物质,经一系列变化过程又回到了初始状态,如果 每一段过程都是平衡过程,表现在 P—V 图上就是: P a P P a
Q
Q
A
Q
E
热量从高温物体传到低温物 体的过程是不可逆的!
(3)气体的自由膨胀过程
气体不须任何外界的帮助即从左室扩散到 整个容器,是否也可以不须外界任何帮助就回到左室 呢? 不行!
热力学基础知识点总结
热力学基础知识点总结
热力学是研究能量转化与传递规律的科学,主要包括以下基础知识点:
1. 系统与环境:热力学研究的对象是一个被称为系统的物体、组织或区域,而系统与其周围的一切被称为环境。
2. 状态量与过程量:状态量是描述系统状态的量,如温度、压力、体积等,它们只依赖于系统的初始和最终状态;而过程量是描述系统变化过程中的性质,如热量、功等。
3. 热平衡与温度:当两个物体处于热平衡时,它们之间不存在热量的净传递,此时它们的温度相等。
4. 热传递与热传导:热传递是指热量从高温物体流向低温物体的过程,可以通过热传导、辐射和对流等方式实现。
热传导是通过物质分子间的碰撞传递热量的过程。
5. 热容与比热容:热容是指物体吸收或释放单位温度变化所需的热量,而比热容是单位质量物质所需的热量。
6. 理想气体状态方程:理想气体状态方程描述了理想气体的压力、体积和温度之间的关系,常用的方程有理想气体状态方程
(PV=nRT)和绝热过程公式(PV^γ=常数)。
7. 熵与熵增:熵是描述系统无序度的物理量,熵增原理表明在孤立系统中,熵总是增加的。
8. 热力学第一定律:热力学第一定律是能量守恒定律在热力学中的表现,它表明能量可以从一个形式转化为另一个形式,但总能量守恒。
9. 热力学第二定律:热力学第二定律是描述热量传递方向性的原理,它指出热量只能从高温物体传递到低温物体,不会自发地从低温物体传递到高温物体。
10. 吉布斯自由能:吉布斯自由能是描述系统在恒温、恒压条件下的可用能量,通过最小化吉布斯自由能可以预测系统的平衡态。
这些是热力学基础知识点的概述,它们在热力学的研究和应用中扮演着重要的角色。
第七章统计热力学基础
练习7.7一个U,N,V确定的系统,任何一种分布均不能随意的,而必须满足①与②两个条件。
练习7.8对于一定量的某气态、液态、固态物质,其微观状态数的排序是。
练习7.9最概然分布的微观状态数随粒子增加而①,该分布出现的概率随粒子数增加而②。
自测7.15转动特征温度定义为( )。
(A) (B) (C) (D)
自测7.16双原子分子在温度很低时且选取振动基态能量为零,则振动配分函数值为()。
(A)0(B)1(C)<0(D)>0
自测7.17对于N个粒子构成的定位独立可辨粒子系统熵的表达式为( )。
(A) (B)
(C) (D)
自测7.18对理想气体分子的平动,下面的结果中正确的是( )。
自测7.23已知CO与N2的质量、转动特征温度基本相同,若电子运动与振动能级均未开放,则()。
(A) (B) (C) 与 无法比较(D)
自测7.241mol双原子分子理想气体,当其温度由T1升到2T1时,若其转动惯量不变,则其转动熵变将是()。
(A) 5.763J·mol1K1(B)RlnT1
(C)RlnT2(D) 11.526J·mol1K1
练习7.22一个体积为V,粒子质量为m的离域子系统,其最低平动能级和其相邻能级间隔为①。若平动能级的 ,该能级的统计权重 是②。
练习7.23NH3分子的对称数是3,BF3分子的对称数是。
练习7.24已知HI的转动惯量I为4.31×1045kg·m2,h=6.626×1034J·s,k=1.38×1023J·K1,则其转动特征温度是。
(C)它的定义是 (D)它不是状态函数
自测7.32用J代表分子具有的各独立运动项目,分子在能级i的统计权重gi为下式中的()
第七章 热力学基础
p1 m RT ln 由 Q =W = T T M p2
得
QT = WT = 246J
mi R(T2 − T1 ) 得 由 QV = E2 − E1 = M2 mi QV = Ed − Ec = R(Td − Tc ) M2 i = ( pdVd − pcVc ) 2 3 2 = (1× 3 − 2 × 3) ×1.013 ×10 J = −456J 2
dW = pdV,W = p(V2 −V1 )
■ 热力学第一定律的形式
(dQ ) p = dE + pdV m RdT = dE + M
热源
■ 有限等压过程 对等压过程,气体从状态Ⅰ(p、V1、T1) 对等压过程, 变到状态Ⅱ (p、V2、T2)时:
m R(T2 − T1 ) Wp = ∫ pdV = p(V2 −V1 ) = V1 M
pbVb 3.039 ×105 Pa × 2 5 pc = = = 2.026 ×10 Pa 3 Vc
在状态d 压强为p 1.013× Pa,体积为V 在状态d,压强为pd=1.013×105Pa,体积为Vd= 3L
在全过程中内能的变化△E 为末状态内能减去 初状态内能,有理想气体内能公式及理想气体状态 初状态内能,有理想气体内能公式及理想气体状态 方程得: 方程得: ∆E = Ed − Ea
E = E(T,V )
二、热与功的等效性 如图: 如图:温度都由 T1→ T2 状态发生了相同的变化。 状态发生了相同的变化。 等效 传热 —— 作功 加热 搅拌作功
因为功是能量传递的一种形式, 因为功是能量传递的一种形式,是系统能量变 化的一种量度。 所以热量也是能量传递的一种形式, 化的一种量度。 所以热量也是能量传递的一种形式, 是系统能量变化的一种量度。 是系统能量变化的一种量度。
高中物理竞赛课件 第七章 热力学基础 (共67张PPT)
E i RT dE i RdT
2
2
CP
dQP dT
dQP
dE
PdV
i 2
RdT
RdT
PV RT d(PV) PdV VdP PdV RdT
14
单原子:i 3 双原子:i 5 多原子:i 6 二、三种等值过程
5
3
7
5
8
6
1.等容过程 特征:dV 0 dA 0
p
过程方程:
(1)状态d的体积Vd; (2)整个过程对外所做的功;
(3)整个过程吸收的热量.
p
2p1
c
解: (1)由绝热过程方程:
TcVc 1 TdVd 1
p1
ab
d
1
得:Vd
Tc Td
1
Vc
根据题意:
Td
Ta
p1V1 R
o v1 2v1
v
Vc 2V1
Tc
pcVc R
4 p1V1 R
4Ta
5
3
27
(2)整个过程对外所做的功;
真空
T
T0
2V0
∵绝热过程
(E E0) A 0
而 A=0
V0 1T0 (2V0) 1T T P0V0 P(2V0) P
E E0 (T T0)
始末两态满足 P0V0 P(2V0)
状态方程
T0
T
P
1 2
P0
26
例7-4 1mol单原子理想气体,由状态a(p1,V1)先等压加热至体积增大1倍,再等体加热至压 力增大1倍,最后再经绝热膨胀,使其温度降至初始温度,如图所示,试求:
i 2 1
1
i
大学物理电子教案ch7热力学基础
大学物理电子教案ch7热力学基础教案内容:一、教学内容本节课的教学内容选自大学物理教材第七章,热力学基础。
本章主要介绍了热力学的基本概念、定律和应用。
具体内容包括:温度、热量、内能的概念及它们之间的关系;热力学第一定律和第二定律;热力学常见现象和应用。
二、教学目标1. 理解温度、热量、内能的概念及它们之间的关系。
2. 掌握热力学第一定律和第二定律的基本内容。
3. 能够运用热力学知识解释一些日常生活中的现象。
三、教学难点与重点1. 教学难点:热力学第二定律的内涵及应用。
2. 教学重点:热力学第一定律和第二定律的理解和应用。
四、教具与学具准备1. 教具:黑板、粉笔、PPT投影仪。
2. 学具:教材、笔记本、三角板、计算器。
五、教学过程1. 实践情景引入:讨论冬季取暖和夏季降温的原理,引导学生思考热量传递的过程。
2. 概念讲解:介绍温度、热量、内能的概念,并通过示例解释它们之间的关系。
3. 定律讲解:讲解热力学第一定律和第二定律的内容,并通过实例演示其应用。
4. 例题讲解:分析生活中的一些热力学现象,如热机效率、制冷原理等,引导学生运用热力学知识进行解释。
5. 随堂练习:布置一些与本节课内容相关的练习题,让学生现场解答,巩固所学知识。
6. 知识拓展:介绍热力学在现代科技领域中的应用,如空调、冰箱等。
六、板书设计板书内容主要包括:温度、热量、内能的概念及关系;热力学第一定律和第二定律的公式及解释;热力学现象及应用。
七、作业设计1. 作业题目:(1)解释温度、热量、内能的概念及它们之间的关系。
(2)运用热力学第一定律和第二定律,分析一个热力学现象。
(3)讨论热力学在现代科技领域中的应用。
2. 答案:(1)温度是物体分子平均动能的度量;热量是热能的传递;内能是物体所有分子的动能和势能之和。
它们之间的关系是:温度升高,热量增加,内能增加。
(2)示例:分析热水沸腾的过程,应用热力学第一定律,解释水蒸气产生的原因。
第七章热力学基础
强不变时,温度改变1 K所吸收或放出的热量,用CP表示。
QP
E
A
M
(CV
R)(T2
T1)
QP
M
CP (T2
T1)
Cp CV R 迈耶公式
CP
i
2 2
R
在等压过程,温度升高1度时,1mol理想气体多吸收8.31J的
热量,用来转换为膨胀时对外做功。
第二节 理想气体的等值过程
二、等压过程、定压摩尔热容、摩尔热容比
CV
iR 2
i3
CV
3 2
R
12.47J
mol1 K 1
i5
CV
5 2
R
20.78JBiblioteka mol1 K 1i6
CV
6 2
R
24.93J
mol1 K 1
理想气体的定容摩尔热容只与气体分子的自由度有关。
第二节 理想气体的等值过程
二、等压过程、定压摩尔热容、摩尔热容比
等压过程
系统的压强始终保持不变的过程称为 p
1247
J
Q23 A23 822 J
M
2.8 103 7 8.31
Q34 (CV R)(T4 T3 ) 28 103 2 (450 900) 1309 J
Q14 Q12 Q23 Q34 1247 822 -1309 760 J
或 Q14 E14 A14 312 448 760 J
氮气为双原子分子气体,其定容摩尔热容
CV
5R 2
,可求得:
E14
M
CV (T4
T1 )
2.8 103 28 103
5 8.31 (450 2
300)
热力学基础知识
二、压力 垂直作用在单位面积上的力称为压力,以符号P表示,这就 是物理学上所称的压强.按分子运动论的观点,压力是气体的 大量分子向容器壁面撞击所产生的平均结果。若气体作用在 器壁面积A上的垂直作用力为F,那么该壁上的压力为: P=F/A 压力通常用各种压力计来测定。这些压力计的测量原理部是 建立在力的平衡的基础上。由于压力计本身处于大气压力Pb 作用下,因此压力计上测得的压力是工质的真实压力和大气 压力Pb的差值,是一个相对压力,称为表压力或工作压力, 用符号Pg表示,而工质的实际压力称绝对压力,用P表示。 P, Pg 和Pb之间的关系是: P=Pb+Pg
热力学基础识
樟洋电厂 运行部
第一节
热力学定律
一、热力学第零定律 定义:与第三个系统处于热平衡的两个系统,彼此也处于 热平衡。 热力学第零定律是进行体系测量的基本依据。1)、 可以通过使两个体系相接触,并观察这两个体系的性质是 否发生变化而判断这两个体系是否已经达到平衡。2)、 当外界条件不发生变化时,已经达成热平衡状态的体系, 其内部的温度是均匀分布的,并具有确定不变的温度值。 3)、一切互为平衡的体系具有相同的温度,所以,一个 体系的温度可以通过另一个与之平衡的体系的温度来表达; 或者也可以通过第三个体系的温度来表达。
t,c
w0 q2 T2 1 1 q1 q1 T1
即:
q2 q1 T2 T1
对于任意的可逆循环, 如图所示循环1A2B1。假 如用一组可逆绝热线将它分 割成无数个微元循环,当绝 热线间隔极小时,例如绝热 线ad与 bc 间隔极小,ab 段温度差极小,接近于定温 过程,同理cd段也是定温 过程,那么微元循环abcda。 就是由两个可逆绝热过程与 两个可逆定温过程组成的微 小卡诺循环。
化学工业出版社物理化学答案第7章 统计热力学基础
第七章 统计热力学基础习题详解1. (1) 10个可分辨粒子分布于 n 0=4,n 1=5,n 2=1 而简并度 g 0=1,g 1=2,g 2=3 的 3 个能极上的微观状态数为多少?(2) 若能级为非简并的,则微观状态数为多少?。
解: (1)451D g 123W =N =10=120960451i n i i n ⋅⋅Π⋅⋅!!!!!!(2)D 110W =N ==1260451i n Π⋅⋅!!!!!!2. 某一分子集合在100 K 温度下处于平衡时,最低的3个能级能量分别为 0、2.05×10-22J 和 4.10×-22J ,简并度分别为1、3、5。
计算3个能级的相对分布数 n 0:n 1:n 2。
解:-22-2202.051011.38101001==1:2.593N N e⎛⎞−×⎜⎟⎜⎟××⎝⎠⋅()-22-222.05 4.10101.3810100123==0.6965N e N ⎡⎤−×−⎢⎥××⎢⎥⎣⎦⋅123=1:2.59:3.72N N N ::3. I 2分子的振动能级间隔是0.42×10-20 J ,计算在25℃时,某一能级和其较低一能级上分子数的比值。
已知玻尔兹曼常数k =1.3806×10-23 J·cm -1。
解:根据Boltzmann 分布对于一维谐振子,能级为非简并的,即+1==1i i g g ,因此 I 2分子-201+1-230.4210=exp =exp =0.360T1.380610298i+i i i N g N g k ε⎛⎞−∆−×⎛⎞⎜⎟⎜⎟××⎝⎠⎝⎠4. 一个含有N 个粒子的系统只有两个能级,其能级间隔为ε,试求其配分函数q 的最大可能值是多少?最小值是多少?在什么条件下可能达到最大值和最小值?设ε=0.1 k T 。
热力学基础
第一章热力学基础目的要求:1. 理解热力学的一些基本概念:系统与环境、状态与状态函数、热和功、各种热力学过程。
2. 明确热力学能和焓的定义及状态函数的特征,理解热力学能变与恒容热,焓变与恒压热之间的关系。
3. 理解热力学第一定律的文字表述,掌握热力学第一定律的数学表达式及其应用。
4. 理解可逆过程及其特征。
5. 明确过程量热和功的正、负,理解体积功、热容、显热、潜热、化学反应热、摩尔相变焓、标准摩尔反应焓、标准摩尔生成焓、标准摩尔燃烧焓等概念。
6. 能熟练地运用热力学第一定律计算系统在理想气体的纯P V T变化、在相变化及化学变化中的应用(计算功、热、热力学能变、焓变)。
7. 能熟练地应用标准摩尔生成焓、标准摩尔燃烧焓求标准摩尔反应焓,能用基尔霍夫公式计算不同温度下化学反应的焓变。
8. 了解自发过程的共同特征。
理解热力学第二定律的文字表达。
9. 了解熵判据的表达式和熵增原理,较熟练地计算单纯P、V、T变化过程、相变和化学反应的熵变。
10. 理解规定摩尔熵、标准摩尔熵,理解标准摩尔反应熵的定义及掌握化学反应熵差的计算。
11. 理解熵的物理意义,了解热力学第三定律、卡诺循环、卡诺定理。
12. 明确亥姆霍兹函数、吉布斯函数的概念,较熟练地计算各种恒温过程的△ G13. 明确熵判据、亥姆霍兹函数判据、吉布斯函数判据应用条件,会用熵判据、吉布斯函数判据判断过程的方向和限度。
14. 了解热力学基本方程及一些重要关系式。
教学重点难点:1. 基本概念:系统与环境、状态与状态函数、热和功、各种热力学过程2 •热力学的状态函数:热力学能、焓、熵、亥姆霍兹函数、吉布斯函数过程量:热和功3 •基本定律:热力学第一定律、热力学第二定律、热力学第三定律4 •热力学第一定律对理想气体的状态变化过程、相变过程及化学变化过程的应用(计算Q W △ U>A H)o5 •热力学判据:熵判据、亥姆霍兹函数判据、吉布斯函数判据的具体应用(计算A S A G A F)o教学难点:1 •状态与状态函数2•热力学第一定律、热力学第二定律3•熵判据、亥姆霍兹函数判据、吉布斯函数判据教学内容:第一章热力学基础热力学的研究对象及方法热力学是研究能量相互转化过程中所遵循的规律及各种因素对能量转化的影响的科学。
大学物理课后习题答案(上下册全)武汉大学出版社 第7章 热力学基础习题解答
第7章 热力学基础7-1在下列准静态过程中,系统放热且内能减少的过程是[ D ] A .等温膨胀. B .绝热压缩. C .等容升温. D .等压压缩.7-2 如题7-2图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A →B 等压过程; A →C 等温过程; A →D 绝热过程 . 其中吸热最多的过程是[ A ] A .A →B 等压过程 B .A →C 等温过程.C .A →D 绝热过程. 题7-2图 D .A →B 和A → C 两过程吸热一样多.7-3 一定量某理想气体所经历的循环过程是:从初态(V 0 ,T 0)开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度T 0, 最后经等温过程使其体积回复为V 0 , 则气体在此循环过程中[ B ]A .对外作的净功为正值.B .对外作的净功为负值.C .内能增加了.D .从外界净吸收的热量为正值. 7-4 根据热力学第二定律,判断下列说法正确的是 [ D ] A .功可以全部转化为热量,但热量不能全部转化为功.B .热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体.C .不可逆过程就是不能向相反方向进行的过程.D .一切自发过程都是不可逆的.7-5 关于可逆过程和不可逆过程有以下几种说法,正确的是[ A ] A .可逆过程一定是准静态过程. B .准静态过程一定是可逆过程. C .无摩擦过程一定是可逆过程.D .不可逆过程就是不能向相反方向进行的过程.7-6 理想气体卡诺循环过程的两条绝热线下的面积大小(题7-6图中阴影部分)分别为S 1和S 2 , 则二者的大小关系是[ B ] A .S 1 > S 2 . B .S 1 = S 2 .C .S 1 < S 2 .D .无法确定. 题7-6图 7-7 理想气体进行的下列各种过程,哪些过程可能发生[ D ] A .等容加热时,内能减少,同时压强升高 B . 等温压缩时,压强升高,同时吸热 C .等压压缩时,内能增加,同时吸热 D .绝热压缩时,压强升高,同时内能增加7-8 在题7-8图所示的三个过程中,a →c 为等温过程,则有[ B ] A .a →b 过程 ∆E <0,a →d 过程 ∆E <0. B .a →b 过程 ∆E >0,a →d 过程 ∆E <0. C .a →b 过程 ∆E <0,a →d 过程 ∆E >0.D .a →b 过程 ∆E >0,a →d 过程 ∆E >0. 题7-8图7-9 一定量的理想气体,分别进行如题7-9图所示的两个卡诺循环,若在p V -图上这两个循环过程曲线所围的面积相等,则这两个循环的[ D ] A .效率相等.B .从高温热源吸收的热量相等.C .向低温热源放出的热量相等.D .对外做的净功相等. 题7-9图7-10一定质量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单原子分子气体,则该过程中需吸热__500__ J ;若为双原子分子气体,则需吸热__700___ J 。
工程热力学课件第7章化学热力学基础
热力学第二定律在化学反应中的应用
02
01
03
热力学第二定律指出自然发生的反应总是向着熵增加 的方向进行,即向着更加混乱无序的状态进行。
在化学反应中,热力学第二定律用于判断反应是否自 发进行以及反应的进行方向。
工程热力学课件第7章化学热 力学基础
目
CONTENCT
录
• 化学热力学基础概述 • 化学反应的热力学性质 • 化学反应过程的动力学分析 • 化学反应的能量转换与利用 • 化学反应过程的优化与控制 • 化学热力学的应用与发展
01
化学热力学基础概述
化学热力学的定义与目的
定义
化学热力学是研究化学反应和相变化过程中能量转化和平衡的学 科。
化学反应过程的安全与环保
总结词
化学反应过程的安全与环保是化学工业可持续发展的关键因素,需要采取有效的措施来保障安全和减少环境污染。
详细描述
在化学反应过程中,应关注安全问题和环保要求,采取一系列措施来预防事故发生和减少环境污染。例如,加强 设备维护和安全检查、采用环保型的原料和工艺、严格控制废弃物排放等。这些措施有助于保障化学反应过程的 安全性,同时也有利于保护环境和促进可持续发展。
质量作用定律
反应速率方程
反应速率与反应物质浓度的幂次方成 正比。
根据质量作用定律和速率常数推导得 出。
速率常数
描述反应速率快慢的常数,与温度有 关。
反应速率的影响因素
01
02
03
04
温度
温度升高,分子运动加快,碰 撞频率增加,反应速率提高。
压力
压力增大,分子碰撞频率增加 ,反应速率提高。
第七章 热力学基础
1 1 1
2
2
2
V
二、准静态过程的功、热量和内能
1.准静态过程中的功
无摩擦准静态过程,其特点是没有摩擦力,外 界在准静态过程中对系统的作用力,可以用系统本 身的状态参量来表示。
[例] 右图活塞与汽缸无摩擦,当气体作准静态压缩 或膨胀时,外界的压强Pe必等于此时气体的压强P, 否则系统在有限压差作用 dx 下,将失去平衡,称为非 静态过程。若有摩擦力存 P S Pe 在,虽然也可使过程进行 得“无限缓慢”,但Pe≠P 。
( ) Wca 0 , Qca
Eca
( ) Eabca Eab Ebc Eca Ebc Eca 0
m CVm T1 T2 7.79 103 J M
Eca Ebc 7.79 10 3 J
23
四、绝热过程
2. 摩尔热容量
1mol 物质,温度升高或降低dT 时, 吸收或放出的 热量为dQ ,则C m dQ 称该物质的摩尔热容量. dT 单位: J/ mol · 。 K 对于m´ 质量理想气体,dQ 为过程量,则有: m ( dQ )P m C Pm dT CP m , 等压摩尔热容量 ( dQ )P M dT
6
为简化问题,只考虑无摩擦准静态过程的功。 当活塞移动微小位移dx时,外力所作的元功为:
dW Fdx Pe Sdx
在该过程中系统对外界作功:
dx
S
dW PSdx PdV
W PdV
V2 V1
P
Pe
系统体积由V1变为V2,系统对外界作的总功为:
dV 0 , W 0 , 系统对外作正功;
2
⑵ 非静态过程
热力学基础
汽液平衡,饱和压力、饱和温度
2、定压加热汽化过程
五种状态;
干度;
(1)
(2)
(3)
(4)
(5)
● 饱和状态 (Saturated state) 当汽化速度 = 液化速度时,宏观上气、液两相保持 一定的相对数量,系统处于动态平衡—饱和状态。
◇ 饱和温度,ts (Ts) —饱和状态的温度
◇ 饱和压力,ps— 饱和状态的压力
t=ts
t>ts
干度(dryness)
定义:湿蒸汽中干饱和蒸汽的质量分数,用x表示。
干度x=
湿蒸汽中含干蒸汽的质量 湿蒸汽的总质量
x m汽 m汽 m液
饱和水
x=0
湿饱和蒸汽 0<x<1
干饱和蒸汽 x=1
● 湿度 y=1–x 表示湿蒸汽中饱和水的含量。
第五节 水蒸气
• 预热阶段:未饱和水区
• 气化阶段:饱和水区(湿蒸汽区)
• 准平衡过程 特点:自动恢复;实线示图;
• 可逆过程 特点:准平衡过程+ 无能量耗散; 实际过程均为不可逆过程;
★ 可逆过程熵的变化: 系统吸热 q 0, ds 0 熵增; 系统放热 q 0, ds 0 熵减; 绝热过程 q 0, ds 0 熵不变。
(可逆绝热过程)
可逆绝热过程又称等熵过程。
(表明与实际气体的区别)
(2) 状态方程式:
pv= RgT 2、理想气体的比热
定义:单位物量的工质,温度升高或降低一度所吸收 的热量。
c = (δq/dT)
注意:三种不同单位。
第三节 理想气体
3、定容比热、定压比热:
cv= (∂u/∂T)v = du/dT (理想气体)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)等温过程
pV RT V p
(2)绝热过程
pபைடு நூலகம்
pA
PS
P T
绝热线
A 等温线
V
pV RT V , T p
o
VA
V
二、绝热方程的推导
dQ 0
在绝热过程中:三个状态参量(p,V,T)均变化
dQ dE pdV dQ 0 M pdV dE CV dT (1)式 M mol
1
1
摩尔热容量:1mol 物质的热容量(Cm)
M C Cm M mol
单位:
J K mol
1
1
物质的热容量、比热容量和摩尔热容量都 是过程量。 (因为热量是过程量) 对于给定的系统(物质),进行的过程不同 其热容量也不同。理想气体常用等体或等 压过程的摩尔热容量;固体和液体的膨胀 系数小,因膨胀而对外所作的功可以忽略 这两种热容量的差值很小,近似相等。
对于理想气体的绝热准静态过程,有关系式
pV 恒量 V p
1 1
T 恒量
称为: 绝热方程
T
恒量
特例:理想气体向真空自由膨胀 ---- 由于 膨胀迅速,可视过程为绝热膨胀
dV 0 pdV 0 dQ 0 dQ dE pdV dE 0
表明:理想气体向真空自由膨胀时,系 统与外界无热量交换,系统对外不作功, 系统的内能不变!
C p CV R
迈耶公式
在等压过程,温度每升高1K, 1mol 理想气体多吸 收8.31J的热量,用来转换为膨胀时对外作的功。
3、比热容比
Cp CV
工程上称:绝热系数
i2 i 理想气体 C p CV R CV R i 2
7-4 绝热过程
一、绝热过程:系统不与外界交换热量的过程 (1)包围系统的材料,绝热性能良好; (2)过程进行得太快,系统来不及与外界交换热量.
下的面积。
比较 a , b两个过程可知:功的数值不仅与初态
和末态有关,而且还依赖于所经历的中间状态。
功与具体过程的路径有关 ——功是过程量
准静态过程中热量的计算
1、热容法
M dQ C m dT M mol
M Q C m ( T2 T1 ) M mol
Cm (摩尔热容):1mol物质升高1K所吸收的热量
开尔文
卡诺
克劳修斯
7-1 内能 功和热量 准静态过程
一、内能 功和热量
M i 理想气体内能 E RT M mol 2
内能是状态量,是状态参量T 的单值函数. 实际气体在压强较低时与理想气体相同. 压强较大时实际气体的内能:所有分子热 运动的动能和分子间势能的总和。内能是 状态参量 T、V 的单值函数;反之则不成 立状态不是内能的单值函数,一个内能对 应的状态可以有多个。(状态量:p/V/T )
2、利用热力学第一定律
7-2 热力学第一定律
一、热力学第一定律
Q E A
Q ( A ) E
热力学第一定律 的普遍形式
表明:系统吸收的热量Q,一部分转化成系统的内 能E ;另外一部分转化为系统对外所作的功A。
规定:在热力学第一定律中,功和热量都是代数量! Q>0,系统吸收热量;Q<0,系统放出热量; A>0,系统对外作正功;A<0,系统对外作负功;
E>0,系统内能增加,E<0,系统内能减少。
对于一个无限小过程
dQ dE dA
对于准静态过程,如果系统对外作功 是通过体积的变化来实现的,则
dQ dE pdV
Q E pdV
V1 V2
热力学第一定律另一表述:制造第一类永动机 (能对外不断自动作功而不需要消耗任何燃料, 也不需要提供其他能量的机器)是不可能的。
对状态方 程取微分
M pV RT M mol
M pdV Vdp RdT (2)式 M mol
将(1)式代入(2)式,有
pdV Vdp dE Vdp M CV dT Vdp M mol M RdT M mol
M M Vdp RdT CV dT M mol M mol M M ( R CV )dT C p dT M mol M mol
联立(1)式
M pdV CV dT (1)式 M mol
将上面两式相除,消去 dT ,有
Cp Vdp Vdp pdV pdV CV dp dV Vdp pdV 0 0 p V
上式两 边积分
或者 应用状态 方程可得
ln p ln V 恒量
dV 0 , dA 0 , 系统对外作负功;
dV 0 , dA 0 , 系统不作功。
注意:在此功和热量都是代数量!
2、体积功的图示
p
p1
I
A pdV
V1
V2
b
由积分意义可知: 功的大小等于p-V
p p2
a
II
o V V V dV V 2 1
V
图上过程曲线 p(V)
dQ 0, dQ dE pdV M i pdV dE RdT M mol 2 M CV dT M mol
As pdV dE
T2
T1
M CV dT M mol
M M CV (T2 T1 ) CV T E M mol M mol
7-3 气体的摩尔热容量
一、热容量与摩尔热容量
热容量:系统在某一无限小过程中,吸收 的热量 dQ 与系统温度的变化 dT 的比值 称为系统在该过程的热容量(C)。
dQ C dT
单位:
J K
1
表示:系统温度每升高1K时所吸收的热量
单位质量的热容量叫比热容(c比)
C Mc比
单位:
J K kg
i CV R 2
单原子理想气体 双原子理想气体
多原子理想气体
3 i 3; CV R 2 5 i 5; CV R 2 i 6; CV 3R
理想气体的内能另一表述
M E CV T M mol M E CV T M mol
理想气体的等体过程
M QV E CV T M mol
表明:在绝热过程中,系统对外作功 是以系统内能的减少为代价的。
上式还表明: 当气体绝热膨胀对外作功时, 气体的内能将减少,则温度要降低;根据理 想气体的状态方程知,对应的压强将减小。 (p、V、T 三个量都在变化)
M i E RT E T M mol 2 M pV RT V , T p M mol
系统内能改变的两种方式
1、做功可以改变系统的状态 摩擦力作功----升温(机械功) 电加热----升温(电功) 功是过程量 2、热量传递可以改变系统的内能 例如:两杯温度不同的水混合一段 时间后同温。 热量是过程量。 热量传递的方式—传导/对流/辐射
热功当量: 1卡 = 4.18焦耳
1cal 4.18J
p
I ( p1 ,V1 , T1 )
V
o II ( p2 ,V2 , T2 )
三、准静态过程的功和热量 1、体积功的计算
dl
当活塞移动微小位 移dl 时,系统对外 界所作的元功为
p F S
pe
光滑
dA Fdl pSdl pdV
系统体积由V1变为V2,系统对外界作总功
A
dA
二、热力学第一定律在理想气体等值过程中的应用
dQ dE pdV
1.等体过程
V = 恒量 dV = 0 dA = pdV = 0
p
b T2
0
a T1 V
M i M i E RT dE RdT M 2 M 2
mol mol
M i RdT ( dQ )V dE M mol 2
V2
V1
pdV
外界对系统作功 准静态过程
pe p
dA pe Sdl pe dV dA pdV
A dA p dV A V pdV 1
V2 V1 e
V2
A
dA
V2
V1
pdV
dV 0 , dA 0 , 系统对外作正功;
二、理想气体的摩尔热容量(1mol)
1、理想气体的定体摩尔热容量
dQV dEV pdV dV 0 dA pdV 0 i dQV dEV RdT 2 dQ dE CV ( )V ( )V dT dT dE CV dT
M i i dE RdT RdT CV dT M mol 2 2
M i QV E2 E1 R( T2 T1 ) M mol 2
等体过程中:外界传给气体的热量全部 用来增加气体的内能,系统对外不作功.
dQ dE pdV
2. 等压过程
p = 恒量
p
1
O V1
2
V2 V
M pV RT M
mol 2 1
M p (V V ) R (T T ) M
准静态过程:系统从一平衡态到另一平衡态,如果过
程中所有中间态都可以近似地看作平衡态的过程. 非静态过程:系统从一平衡态到另一平衡态,过程 中所有中间态为非平衡态的过程。
弛豫时间:系统从一个平衡态变到相邻平衡态 所经过的时间----系统的弛豫时间
对于实际过程,若系统状态发生变化的特征时 间远远大于弛豫时间,则可近似看作准静态过 程。准静态过程是一种理想的极限。 P--V图上,一点代表一个平衡态,一条连续曲线 代表一个准静态过程.曲线的方程称为过程方程. 设有一瓶气体在一个 平衡态,瓶口的活塞上 方放在一小堆砂子。 如果缓慢地将砂子一 粒又一粒地取走---准静态过程。