2012年抚顺市中考数学试题(word版)
XXXX辽宁省抚顺市中考数学试题及参
XXXXxxxxxx数学试题及参考答案(含解析word版)正确的()8422236236222a . a \a = ab。
(﹣2a) =﹣8a特区?a = a d(a-3)= a-925。
我校四名跳远运动员前10次跳远测试的平均成绩是一样的,方差s如表所示。
如果有一名跳远成绩最稳定的运动员被选中参加抚顺市运动会,被选中的参赛选手是()参赛选手甲、乙、丙、丙、丁、丁。
为了实践“绿色生活”的理念,甲、乙双方每天都要骑自行车。
甲以匀速骑行30公里,乙以匀速骑行25公里。
众所周知,a的时速比b高2公里,假设a 的时速是x公里。
根据标题中列出的等式,正确的等式是()a.3 025?x?2x B.3025?xx?2摄氏度3025?xx?2 D.3025?x?2x7..如图所示,直线l1和l2分别穿过矩形ABCD的顶点A和D,使得L1∪l2、l2和边BC在点P相交。
如果∪1 = 38,则ABCD是()A.162B.152C.142 8。
如果主函数y=kx+b的图像如图所示。
则()d . 1281a . k 0,b > 0 9。
下列事件之一是()a .任意绘制一个规则的五边形。
它是一个中心对称图c.k 0d.k > 0,b b。
3是有意义的,那么实数x > 3 c a,b都是实数。
如果a=38,b=4,则a > bd.5数据分别为:6,6,3,2,1,则这组数据的中位数为310。
如图所示,菱形ABCD的边长为2,a .b .c .d .2 .填空(这个大问题有8个条目,每个条目有3分。
共24分)211。
因式分解:a b-a = 0 .212。
假设x上的等式x+2x-m = 0有实数解,则m的取值范围为.13。
如图所示,用平行的反面切两张纸。
随机重叠,重叠部分形成四边形ABCD,当线段AD=3时,线段BC的长度为。
14。
众所周知,A(x1,y1),B(x2,y2)是反比函数Y??3图像上的两点,以及x1 > x2 > 0,y1 y2x(填充”>“或” 15。
辽宁抚顺中考数学试题.doc
辽宁省抚顺市2011年初中毕业生学业考试数学试卷一、 选择题(每小题3分,共24分) 1. -7的相反数是( ). A. 17 B. -7 C. -17D. 7 2. 一个碗如图所示摆放,则它的俯视图是( ).3.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( ).A. 1.6×103吨B. 1.6×104吨C. 1.6×105吨D. 1.6×106吨 4. 不等式2x -6≥0的解集在数轴上表示正确的是( ).5. 一组数据13,10,10,11,16的中位数和平均数分别是( ). A. 11,13 B. 11,12 C. 13,12 D. 10,126. 七边形内角和的度数是( ).A. 1 080°B. 1 260°C. 1 620°D. 900° 7.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为( ).A. 400x -10=500xB. 400x =500x +10C. 400x +10=500xD. 400x =500x -10(第8题)8. 如图所示,在平面直角坐标系中,直线OM 是正比例函数y =-3x 的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是等腰三角形,符合条件的点N 的个数是( ).A. 2个B. 3个C. 4个D. 5个 二、 填空题(每小题3分,共24分)9. 函数y =1x +1的自变量x 的取值范围是________.10. 如图所示,BA ∥ED ,AC 平分∠BAD ,∠BAC =23°,则∠EDA 的度数是________.11. 已知点P (-1,2)在反比例函数y =k x(k ≠0)的图象上,请任意写出此函数图象上一个点(不同于P点)的坐标是________.12.如图所示,一个矩形区域ABCD ,点E 、F 分别是AB 、DC 的中点,求一只蝴蝶落在阴影部分的概率为________.13. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________. 14. 若两个连续的整数a 、b 满足a <13<b ,则1ab的值为________.15. 已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________. 16.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________个.三、 解答题(17题6分,18题8分,共14分) 17. 计算:-22+27+|-3|-(3.14-π)0.18. 先化简,再求值:x2+4x +4x2-16÷x +22x -8-2xx +4,其中x =2.四、 解答题(每题10分,共20分)19. 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置.(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1.20.甲口袋中装有两个相同的小球,它们分别写有数字4和7;乙口袋装有三个相同的小球,它们分别写有数字5、6、9,小明和小丽玩游戏:从两个口袋中随机地各取出一个小球,如果两个小球上的数字之和是偶数小丽胜;否则小明胜.但小丽认为,这个游戏不公平,你同意小丽的看法吗?用画树形图法或列表法说明现由.五、 解答题(每题10分,共20分) 21.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:男、女观众对“谍战”题材电视剧的喜爱情况统计图 男观众对“谍战”题材电视剧的喜爱情况统计图请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?22. 如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.(1)求证:CF为⊙O的切线(2)若半径ON⊥AD于点M,CE=3,求图中阴影部分的面积.六、解答题(23题10分,24题12分,共22分)23.如图,在斜坡AB上有一棵树BD,由于受台风影响而倾斜,恰好与坡面垂直,在地面上C点处测得树顶部D的仰角为60°,测得坡角∠BAE=30°,AB=6米,AC=4米.求树高BD的长是多少米?(结果保留根号)24.某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:(1)求y与x之间的函数关系式;(2)若该商品的销售单价在45元~80元之间浮动,①销售单价定为多少元时,销售利润最大?此时销售量为多少?②商场想要在这段时间内获得4 550元的销售利润,销售单价应定为多少元?七、解答题(本题12分)25. 如图1,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应点为点E,点B的对应点为点F,连接BE、CF.(1)判断BE与CF的位置、数量关系,并说明理由;(2)若连接BF、CE,请直接写出在旋转过程中四边形BEFC能形成哪些特殊四边形;(3)如图2,将△ABC中AB=BC改成AB≠BC时,其他条件不变,直接写出α为多少度时(1)中的两个结论同时成立.八、解答题(本题14分)26. 如图,在平面直角坐标系中,四边形ABCD是梯形,BC∥AD,∠BAD+∠CDA=90°,且tan∠BAD=2,AD在x轴上,点A的坐标(-1,0),点B在y轴的正半轴上,BC=OB.(1)求过点A、B、C的抛物线的解析式;(2)动点E从点B(不包括点B)出发,沿BC运动到点C停止,在运动过程中,过点E作EF⊥AD于点F,将四边形ABEF沿直线EF折叠,得到四边形A1B1EF,点A、B的对应点分别是点A1、B1,设四边形A1B1EF与梯形ABCD重合部分....的面积为S,F点的坐标是(x,0).①当点A1落在(1)中的抛物线上时,求S的值;②在点E运动过程中,求S与x的函数关系式.2011年抚顺市初中毕业生学业考试数学试卷答案及评分标准一、选择题(每题3分,共24分)1. D2. C3. C4. A5. B6. D7. B8. A二、填空题(每题3分,共24分)9. x≠-1 10. 134°11. (1,-2)答案不唯一12. 1 213. 3214.11215. 26+10π16. 150三、解答题17. 原式=-4+33+3-1 =33-2.18. 原式=+-+×-x+2-2xx+4=4x+4.当x=2时,原式=42+4=2 3.四、解答题19.(1)画图正确.∴ 图中点O 为所求. (2)画图正确.∴ 图中△A 1B 1C 1为所求.(3)如图画图正确(方法多样画出即可) . ∴ 图中点M 为所求. 20. 答:不同意. 理由:树形图:或由列表得数、偶数的各有3种.∴ P (和为奇数)=P (和为偶数)=12.∴ 游戏公平.21. (1)9090+40+20×100%=60%.答:女观众中“不喜欢”所占的百分比是60%. (2)(90+180)÷(1-10%)=300(人) . 答:这次调查的男观众有300人. 如图补全正确.(3)1 000×180300=600(人) .答:喜欢看“谍战”题材电视剧的男观众约有600人. 男、女观众对“谍战”题材电视剧的喜爱情况统计图22. (1)证明方法一:连结OC 、BC , ∵ CD 垂直平分OB , ∴ OC =BC . ∵ OB =OC , ∴ OB =OC =BC .∴ △OCB 是等边三角形. ∴ ∠BOC =60°. ∵ ∠CFO =30°, ∴ ∠OCE =90°. ∴ OC ⊥CF .∵ OC 是⊙O 的半径, ∴ CF 是⊙O 的切线.证明方法二:连结OC , ∵ CD 垂直平分OB , ∴ OE =12OB ,∠CEO =90°.∵ OB =OC ,∴ OE =12OC ,在Rt △COE 中sin ∠ECO =EO OC =12.∴ ∠E CO =30°.∴ ∠EOC =60°. ∵ ∠CFO =30°, ∴ ∠OCE =90°.∵ OC 是⊙O 的半径, ∴ CF 是⊙O 的切线.(2)连结OD ,由(1)可得∠COF =60°, 由圆的轴对称性可得∠EOD =60°, ∴ ∠DOA =120°.∵ OM ⊥AD ,OA =OD , ∴ ∠DOM =60°.在Rt △COE 中CE =3,∠ECO =30°,cos ∠ECO =ECOC ,∴ OC =2.∴ S 扇形OND =60π×22360=23π.∴ S △OMD =12OM ·DM =32.∴ S 阴影=S 扇形OND -S △OMD =23π-32.23.延长DB 交AE 于F 由题可得BD ⊥AB , 在Rt △ABF 中∠BAF =30°,AB =6, ∴ BF =AB ·tan ∠BAF =23.∴ cos30°=AB AF.∴ AF =43. ∠DFC =60°. ∵ ∠C =60°,∴ ∠C =∠C FD =∠D =60°. ∴ △CDF 是等边三角形. ∴ DF =CF . ∴ DB =DF -BF =23+4.答:树高BD 的长是(23+4)米. 24. (1)设y =kx +b (k ≠0)由题意得:⎩⎪⎨⎪⎧40k +b =170,50k +b =150, 解得⎩⎪⎨⎪⎧k =-2,b =250.∴ y =-2x +250.(2)设该商品的利润为W 元.∴ W =(-2x +250)×(x -25)=-2x 2+300x -6 250. ∵ -2<0,∴ 当x =75时,W 最大,此时销量为y =-2×75+250=100(个). (3)(-2x +250)×(x -25)=4 550 x 2-150x +5 400=0, ∴ x 1=60,x 2=90. ∵ x <80, ∴ x =60.答:销售单价应定在60元. 25. (1)FC =BE ,FC ⊥BE .证明:∵ ∠ABC =90°,BD 为斜边AC 的中线,AB =BC , ∴ BD =AD =CD . ∠ADB =∠BDC =90°.∵ △ABD 旋转得到△EFD , ∴ ∠EDB =∠FDC . ED =BD ,FD =CD . ∴ △BED ≌△CFD . ∴ BE =CF .(5分) ∴ ∠DEB =∠DFC . ∵ ∠DNE =∠FNB ,∴ ∠DEB +∠DNE =∠DFC +∠FNB . ∴ ∠FMN =∠NDE =90°. ∴ FC ⊥BE .(2)等腰梯形和正方形. (3)当α=90°(1)两个结论同时成立. 26. (1)△ABO 中∠AOB =90°tan A =OBOA =2,∵ 点A 坐标是(-1,0), ∴ OB =2.∴ 点B 的坐标是(0,2). ∵ BC ∥AD ,BC =OB , ∴ 点C 的坐标是(2,2).设抛物线表达式为y =ax 2+bx +2, ∵ 点A (-1,0)和点C (2,2)在抛物线上,∴ ⎩⎪⎨⎪⎧0=a -b +2,2=4a +2b +2.∴解得⎩⎪⎨⎪⎧a =-23,b =43.∴ y =-23x 2+43x +2.(2)①当点A 1落在抛物线上,根据抛物线的轴对称性可得A 1与点A 关于对称轴对称,由沿直线EF 折叠,所以点E 是BC 中点, 重合部分面积就是梯形ABEF 的面积. ∴ S =S 梯形ABEF =12(BE +AF )×BO =2x +1.②当0<x ≤1时,重合部分面积就梯形ABEF 的面积,由题得AF =x +1,BE =x ,S =S 梯形ABEF =12(BE +AF )×BO =2x +1.方法一:当1<x ≤2时,重合部分面积就是五边形形A 1NCEF 的面积, 设A 1B 1交CD 于点N ,作MN ⊥DF 于点N ,CK ⊥AD 于点K , △NMA 1∽△DMN , MA1NM =NMMD, ∵ ∠BAO =∠MA 1N ,tan ∠BAO =2, ∴ tan ∠MA 1N =2MNA1M . ∴ MA 1=12MN ,MD =2MN .∵ tan ∠BAO =2,∠BA O +∠CDK =90°, ∴ tan ∠CD K =12.在△DCK 中,∠CKD =90°,CK =OB =2,tan ∠CDK =CKDK =12,∴ DK =4,OD =6.∵ OF =x ,A 1F =x +1,∴ A 1D =OD -OF -A 1F =5-2x ,FD =6-x . ∴ MN =23(5-2x ).∴ S =S 梯形DCEF -S △A 1ND =8-2x -13(5-2x )2=-43x 2+143x -13.方法二:当1<x ≤2时,重合部分面积就是五边形形A 1MCEF 的面积,设A 1B 1交CD 于点M ,作MN ⊥B 1C 交CB 1延长线于点N ,由题得A 1F =x +1,B 1E =x , ∴ CE =2-x ,B 1C =2x -2. ∵ BC ∥AD ,∴ ∠A 1B 1N =∠B 1A 1A ,∠ADC =∠DCB 1.∵ ∠BAO =∠B 1A 1A ,tan ∠BAO =2,∠ADC +∠BAO =90°, ∴ tan ∠A 1B 1N =2=MNB1N ,tan ∠DCB 1=12=MNCN .∴ B 1N =12MN ,NC =2MN .∵ NC -B 1N =CB 1=2x -2,∴ MN =43(x -1),∴ S =S 梯形A 1B 1EF -S △B 1CM =2x +1-43(x -1)2=-43x 2+143x -13.。
2012中考数学试题及答案
2012中考数学试题及答案2012年中考数学试题是每年中学生们备战中考的重要资源之一。
在本篇文章中,我们将为您提供2012年中考数学试题及答案,帮助您更好地了解试题的类型和解题方法。
1. 选择题:A. 单项选择题:1. 若一个扇形的半径为8 cm,弧长为12 cm,则该扇形的圆心角为:A) 45° B) 60° C) 90° D) 120°解析:我们知道,扇形的圆心角等于扇形所对的圆心弧的度数,而弧长占的圆周长的比值就是扇形的圆心角占的整圆的比值。
因此,设该扇形的圆心角为x,则12cm/2πr = x/360°。
代入r=8 cm,解得x = 90°。
所以答案选C。
2. 若x+2 = 5,则x的值为:A) 5 B) 3 C) 4 D) 7解析:将x+2=5两边同时减去2,得x=3。
所以答案选B。
B. 完形填空:下面是一道完形填空题,请根据上下文和所给选项,选择最佳答案。
Jonas felt nervous as he 1 to the front of the classroom. His legs feltweak and shaky. He could hear his classmates 2 softly to each other, but the teacher's 3 was low and pleasant. He looked out at the rows of faces, all ofthem 4 at him. His heart was pounding, and he felt as if he could hardly breathe. But he liked that 5 . It made him feel alive.1. A) went B) go C) was going D) is going2. A) talk B) talked C) were talking D) talking3. A) voice B) noise C) sound D) words4. A) lay B) sat C) stood D) walking5. A) situation B) idea C) feeling D) chance解析:根据上下文,我们可以知道Jonas走到了教室前面,所以选项A) went符合语境。
XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版)
XXXX辽宁省抚顺市中考数学试题及参考答案(含解析word版) 正确的()8422236236222a . a \a = ab。
(﹣2a) = ﹣8a特区?a = a d(a-3)= a-925。
我校四名跳远运动员前10次跳远测试的平均成绩是一样的,方差s如表所示。
如果有一名跳远成绩最稳定的运动员被选中参加抚顺市运动会,被选中的参赛选手是()参赛选手甲、乙、丙、丙、丁、丁。
为了实践“绿色生活”的理念,甲、乙双方每天都要骑自行车。
甲以匀速骑行30公里,乙以匀速骑行25公里。
众所周知,a的时速比b高2公里,假设a的时速是x公里。
根据标题中列出的等式,正确的等式是()a.3 025?x?2x B.3025?xx?2摄氏度3025?xx?2 D.3025?x?2x7..如图所示,直线l1和l2分别穿过矩形ABCD的顶点A和D,使得L1 ∪l2、l2和边BC在点P相交。
如果∪1 = 38,则ABCD是()A.162B.152C.142 8。
如果主函数y=kx+b的图像如图所示。
则()d . 1281a . k 0,b > 0 9。
下列事件之一是()a .任意绘制一个规则的五边形。
它是一个中心对称图c.k 0d.k > 0,b b。
3是有意义的,那么实数x > 3 c a,b都是实数。
如果a=38,b=4,则a > bd.5数据分别为:6,6,3,2,1,则这组数据的中位数为310。
如图所示,菱形ABCD的边长为2,a .b .c .d .2 .填空(这个大问题有8个条目,每个条目有3分。
共24分)211。
因式分解:a b-a = 0 .212。
假设x上的等式x+2x-m = 0有实数解,则m的取值范围为. 13。
如图所示,用平行的反面切两张纸。
随机重叠,重叠部分形成四边形ABCD,当线段AD=3时,线段BC的长度为。
14。
众所周知,A(x1,y1),B(x2,y2)是反比函数Y??3图像上的两点,以及x1 > x2 > 0,y1 y2x(填充”>“或” 15。
辽宁抚顺中考数学试题及答案(wor(可编辑修改word版)
A. B. C. D.2010 年抚顺市初中毕业生学业考试数学试卷题号 一二三四五六七八总分得分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题 3 分,共 24 分) 题号 12345678答案11.- 的绝对值等于 4 1 1 1 A.-B.C.D.44442.下列汉字中,属于中心对称图形的是AB C D3.数据 0,1,2,2,4,4,8 的众数是A.2 和 4B.3C.4D.24. 下列说法正确的是A. 为了检测一批电池使用时间的长短,应该采用全面调查的方法;B.方差反映了一组数据的波动大小,方差越大,波动越大;C.打开电视一定有新闻节目;D.为了解某校学生的身高情况,从八年级学生中随机抽取 50 名学生的身高情况作为总体的一个样本.5. 有一个圆柱形笔筒如图放置,它的左视图是6. 在数据 1,-1,4,-4 中任选两个数据,均是一元二次方程 x 2 -3x-4=0 的根的概率是A.16B.13C.121D.147. 如图所示,点 A 是双曲线 y= (x >0)上的一动点,过 A 作 A C⊥y 轴,垂足为点 C ,x作AC 的垂直平分线双曲线于点 B,交x 轴于点 D.当点 A 在双曲线上从左到右运动时,四边形ABCD 的面积A.逐渐变小B.由大变小再由小变大C.由小变大再有大变小D.不变8.如图所示,在完全重合放置的两张矩形纸片ABCD 中,AB=4,BC=8,将上面的矩形纸片折叠,使点C 与点A 重合,折痕为EF,点D 的对应点为G,连接DG,,则图中阴影部分的面积为A.4 33B. 6C.185D.365(第7 题图)(第11 题图)(第8 题图)二、填空题(每小题3 分,共24 分)9.为鼓励大学生自主创业,某市可为每位大学生提供贷款150000 元,将150000 用科学记数法表示为.10.因式分解:ax 2 -4ax+4a= .11.如图所示,已知a∥b,∠1=28 0,∠2=25 0,则∠3= .12.若一次函数的图象经过第一、三、四象限,则它的解析式为(写出一个即可).13.方程12x -1+ 3 =x2x -1的根是.14.如图所示,AB 为⊙O的直径,C 为⊙O上一点,且∠AOC=800,点 D 在⊙O上(不与 B、C 重合),则∠BDC的度数是.15.如图所示, Rt ∆ABC 中,∠B=90 0 ,AC=12㎝,BC=5cm .将其绕直角边AB 所在的直线旋转一周得到一个圆锥,则这个圆锥的侧面积为.x 2 x3 x 4 x5 x616.观察下列数据: , , , , ,…它们是按一定规律排列的,依照此规律,3 15 35 63 99第n 个数据是.(第 14 题图)(第 15 题图)三、解答题(17 题题 6 分 ,18 题题 8 分共 14 分) 17.计算:∣-3∣+(- 1) -3 -(-3) 2 -1 10 + 218. 先化简,再求值:(1 +) ÷ x - 2 1 x 2 - 4- (2x-3),其中 x=3四、解答题(第 19 题 10 分、第 20 题 12 分,共 22 分)19. 某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本 20 个,乙种笔记本 10 个,共用 110 元; 且买甲种笔记本 30 个比买乙种笔记本 20 个少花 10 元.(1) 求甲、乙两种笔记本的单价各是多少元?(2) 若本次购进甲种笔记本的数量比乙种笔记本的数量的 2 倍还少 10 个,且购进两种笔记本的总数量不少于 80 本,总金额不超过 320 元.请你设计出本次购进甲、乙两种笔记本的所有方案.162? 23 3 20.2010 年 5 月 1 日上海世博会召开了,上海世博会对我国在政治、经济、文化等方面的影响很大.某校就同学们对上海世博会的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据统计图中所提供的信息解答下列问题:(1)该校参加问卷调查的学生有 名; (2)补全两个统计图;(3)若全校有 1500 名学生,那么该校有多少名学生达到基本了解以上(含基本了解)的程度? (4)为了让更多的学生更好的了解世博会,学校举办了两期专刊.之后又进行了一次调查,结果全校已有 1176 名学生达到了基本了解以上(含基本了解)的程度.如果每期专刊发表之后学生达到基本了解以上(含基本了解)的程度增长的百分数相同,试求这个百分数.(第 20 题图)五、解答题(每题 10 分,共 20 分)21. 有 4 张不透明的卡片,除正面写有不同的数字-1、2、、- 外,其他均相同.将这 4张卡片背面向上洗匀后放在桌面上.(1) 从中随机抽取一张卡片,上面的数据是无理数的概率是多少(2)若从中随机抽取一张卡片,记录数据后放回.重新洗匀后, 再从中随机抽取一张,并记录数据.请你用列表法或画树形图 法求两次抽取的数据之积是正无理数的概率.(第 21 题图)0 022. 如图所示,在 Rt ∆ ABC 中,∠C=90 ,∠BAC=60 ,AB=8.半径为 的⊙M 与射线 BA相切,切点为 N ,且 AN=3.将 Rt ∆ ABC 顺时针旋转 120 0 后得到 Rt ∆ ADE ,点 B 、C 的对应点分别是点 D 、E.(1) 画出旋转后的 Rt ∆ ADE ;(2)求出 Rt ∆ ADE 的直角边 DE 被⊙M 截得的弦 PQ 的长度;(3)判断 Rt ∆ ADE 的斜边 AD 所在的直线与⊙M 的位置关系,并说明理由.2 3 (第22 题图)六、解答题(每题10 分,共20 分)23.星期天,小强去水库大坝游玩,他站在大坝上的A 处看到一棵大树的影子刚好落在坝底的B 处(点A 与大树及其影子在同一平面内),此时太阳光与地面成60 0角.在A 处测得树顶D 的俯角为 15 0 .如图所示,已知AB 与地面的夹角为60 0,AB 为8 米.请你帮助小强计算一下这颗大树的高度?(结果精确到 1 米 .参考数据≈1.4 ≈1.7)(第23 题图)24.某服装厂批发应季 T 恤衫,其单价 y(元)与批发数量 x(件)(x 为正整数)之间的函数关系如图所示.(1)直接写出 y 与x 的函数关系式;(2)一个批发商一次购进 200 件T 恤衫,所花的钱数是多少元?(其他费用不计);(3)若每件 T 恤衫的成本价是 45 元,当 10O<X≤500件 ( x 为正整数)时,求服装厂所获利润 w(元)与 x(件)之间的函数关系式,并求一次批发多少件时所获利润最大,最大利润是多少?(第24 题图)七、解答题(本题12 分)25.如图所示(,1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90 0, 连接BE、D F.将Rt△AEF 绕点A 旋转,在旋转过程中,BE、DF 具有怎样的数量关系和位置关系?结合图(1)给予证明;(2)将(1)中的正方形 ABCD 变为矩形 ABCD,等腰Rt△AEF变为Rt△AEF,且 AD=kAB,AF=kAE, 其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;(3)将(2)中的矩形 ABCD 变为平行四边形 ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用 k 表示出线段 BE、DF 的数量关系,用表示出直线 BE、DF 形成的锐角.(第25 题图)八、解答题(本题14 分)26.如图所示,平面直角坐标系中,抛物线 y=ax 2+bx+c 经过A(0,4)、B(-2,0)、C(6,0).过点A作A D∥x轴交抛物线于点 D,过点 D 作DE⊥x轴,垂足为点 E.点M 是四边形 OADE 的对角线的交点,点 F 在y 轴负半轴上,且 F(0,-2).(1)求抛物线的解析式,并直接写出四边形 OADE 的形状;(2)当点 P、Q 从C、F 两点同时出发,均以每秒 1 个长度单位的速度沿 CB 、FA 方向运动,点P 运动到 O 时P、Q 两点同时停止运动.设运动的时间为 t 秒,在运动过程中,以 P、Q、O、M 四点为顶点的四边形的面积为 S,求出 S 与 t 之间的函数关系式,并写出自变量的取值范围; (3)在抛物线上是否存在点 N,使以 B、C、F、N 为顶点的四边形是梯形?若存在,直接写出点N 的坐标;不存在,说明理由.(第26 题备用图){ 22-1 第二次第一次2010 年抚顺市初中毕业生学业考试数学试卷答案及评分标准一. 1.B 2.D 3.A 4.B 5.C 6.A 7.D 8.C 二.9. 1.5×10 510.a(x-2) 2 11.53 ︒12. y=x-1(在 y=kx+b 中 k >0,b <0 即可)22x n +1 x n +113. x=514.50°或 130° 15.60cm16. 4n 2 - 1 或 (2n + 1)(2n - 1)x n +1或(2n )2 - 1三.17. 解:∣-3∣+(- 1) -3 -(-3) 2 -1 10 + 2=3+(-8)-9-1+4 ---------------------------------------------------------------------------------- 4 分 =3-8-9-1+4=-11 ---------------------------------------------------------------------------------------------- 6 分 18.解:(1 + x) ÷ x - 2 1 x 2 - 4- (2x-3) =x - 2⋅ (x + 2)(x - 2) - 2x + 3 -------------------------------------------------- 3 分=x 2 +2x-2x+3= x 2 +3------------------------------------------------------------------------------------------- 5 分当 x=3 时,原式=3 2 +3=12 ------------------------------------------------------------------- 8 分四.19 解:(1)设甲种笔记本的单价是 x 元,乙种笔记本的单价是 y 元 ---------------- 1 分根据题意可得 20x+10y=11030x+10=20y --------------------------------------------------------------------------- 3 分解这个方程组得{ x=3y=5 ----------------------------------------------------------------------------------- 4 分答:甲种笔记本的单价是 3 元,乙种笔记本的单价是 5 元 ------------------------------------- 5 分 (2)设本次购买乙种笔记本 m 个,则甲种笔记本(2m-10)个 ----------------------------- 6 分 根据题意可得 3(2m-10)+5m≤320 --------------------------------------------------------------- 8 分 9解这个不等式得 m ≤31 ---------------------------------------------------- 9 分11因为 m 为正整数,所以 m 的最大整数值为 31 答:本次乙种笔记本最多购买 31 个 -------------------------------------------------------------- 10 分 120.解:(1) -------------------------------------------------------------- 3 分31622 2 2 2 2 2 23 3 3 1 2(2)由列表得画树形图得 第一次 -1 2---------------7 分 或第二次-1 2 2 -1 2 2积 1 -2 - -2 4 2 - 2 2 -------------------------- 7 分 从列表或树形图可以看出,所有可能出现的结果相同,共有 9 种,其中积是无理数的只 4 4 种,分别是- ,2 2 ,- ,22 ,∴P(积为无理数)= --------------------10 分 9五 21.(1)50 --------------------------------------------------------------------------------------------------- 2 分 (2) 见统计图 6 分(3)600 8 分(4)解:设这个百分数为 x.根据题意可得 600(1+x ) 2 =1176 ------------------------------------------ 10 分(1+x ) 2 =1.96 解得 x =0.4 x =-2.4(负值不合题意舍去) -------------------- 12 分 答:这个百分数为 40℅(注:若(3)的计算结果出现错误,将其代入(4)中,按错误的结果进行解答,只要正确, 只扣 1 分.)六、22.(1)如图 Rt ADE 就是要画的(图形正确就得分) ------------------------------------ 2 分 (2) 2 ----------------------------------------------------------------------------------------------------------- 5 分 (3) AD 与⊙M 相切.6 分证法一:过点 M 作 MH⊥AD 于 H ,连接 MN , MA ,则 MN⊥AE 且 MN= MN 在 Rt△AMN 中,tan∠MAN= = ∴∠MAN=30° ----------------------------- 7 分AN3∵∠DAE=∠BAC=60° ∴∠MAD=30°∴∠MAN=∠MAD=30°∴MH=MN(由△MHA≌△MNA 或解 Rt△AMH 求得 MH = 从而得 MH=MN 亦可) ----------- 9 分2-1 22 -1 (-1, -1 ) (-1, 2 ) (-1, 2 ) 2(2, -1) (2, 2 ) (2, 2 )2 ( 2 ,-1)( 2 ,2 )( 2 , 2 )3 3 3 3 3 3 + 13 3 3 3 3 3 ∴AD 与 ⊙M 相 切 . 10 分证法二:连接 MA 、ME 、MD ,则 S ∆ADE = S ∆AMD + S ∆AME + S ∆DME -------------------------------------------- 8 分 过 M 作 MH⊥AD 于 H, MG⊥DE 于 G, 连接 MN , 则 MN⊥AE 且 MN= ,MG=1 1 1 1 1∴ AC·BC = AD·MH + AE·MN + DE·MG22 2 2由此可以计算出 MH = ∴MH=MN ----------------------------------------- 9 分 ∴AD 与⊙M 相切 10 分 23.解:∵AF∥CE ∠ABC=60° ∴∠FAB=60° ∵∠FAD=15°∴∠DAB=45° 1 分 ∵∠DBE=60° ∠ABC=60°∴∠ABD=60° ------------------------------------- 2 分 过点 D 作 DM⊥AB 于点 M ,则有 AM =DM DM DM ∵tan∠ABD=∴tan60°=∴DM= BM -------------------------- 3 分BMBM设 BM=x 则 AM =DM = x∵AB=AM+BM=8 ∴ x + x=8 ---------------------------------------------- 5 分8 ∴ x=≈3.0 或 x=4( -1)∴DM= x ≈5 或 DM= x=12-4 -------------------------------------------- 7 分∵∠ABD=∠DBE=60° DE⊥BEDM⊥AB∴DE=DM≈5(米)或 DE=DM=12-4 ≈5(米)(由△DEB≌△DMB 得 DE=DM 同样正确或根据 BD=2BM=2x,由 DE=BDsin60°= x≈5(米)亦正确) --------------------------------- 9 分 答这棵树约有 5 米高. 10 分(不同解法,参照以上给分点,只要正确均得分.)24、解:(1)当 0<x≤100 且 x 为整数(或 x 取 1,2,3,…,100)时,y=80;当 100<x≤500 且 x 为整数(或 x 取 101,102,…,500)时,y= -1 x+85;20当 x >500 且 x 为整数(或 x 取 501,502,503,…)时,y=60 -------- 4 分 (注:自变量的取值范围只要连续即可)1(2)当 x=200 时,y= -×200+85=7520∴所花的钱数为 75×200=15000(元) ------------------------------------------------------- 6 分1(3)当 100<x≤500 且 x 为整数时, y= -1x+8520∴w=(y-45)x=( -x+85-45)x20∴w= - 120∴w= - 1 20 1x 2 +40x ---------------------------------------------------- 8 分(x-400) 2+8000 ------------------------------------------- 9 分∵ - <0∴当 x=400 时, w 最大,最大值为 8000 元20答:一次批发 400 件时所获利润最大,最大利润是 8000 元 ----------------------------- 10 分 七、25.(1)证明:延长 DF 分别交 AB 、BE 于点 P 、G ------------------------- 1 分 在正方形 ABCD 和等腰直角△AEF 中AD=AB,AF=AE, ∠BAD=∠EAF =90° ∴∠FAD=∠EAB∴△FAD≌△EAB2 分 ∴∠FDA=∠EBA DF=BE3 分∵∠DPA=∠BPG, ∠ADP+∠DPA=90° ∴∠EBP+∠BPG=90° ∴∠DGB=90° ∴DF⊥BE5 分(2)改变. DF=kBE , =180°- ----------------------------------------------------------------- 7 分证法(一):延长 DF 交 EB 的延长线于点 H∵AD=kAB,AF=kAEADAF∴ =k, =kAB AE AD AF ∴=AB AE∵∠BAD=∠EAF =∴∠FAD=∠EAB ∴△FAD∽△EAB 9 分DF AF∴==kBE AE∴DF=kBE10 分由△FAD∽△EAB 得∠AFD=∠AEB∵∠AFD+∠AFH=180︒ ∴∠AEB+∠AFH=180°∵四边形 AEHF 的内角和为 360°, ∴∠EAF+∠EHF=180° ∵∠EAF=,∠EHF=∴+ =180°∴ =180°--------------------------------------------------------------- 12 分证法(二):DF=kBE 的证法与证法(一)相同{延长 DF 分别交 EB 、AB 的延长线于点 H 、G. 由△FAD∽△EAB 得∠ADF=∠ABE ∵∠ABE=∠GBH∴∠ADF=∠GBH∵ =∠BHF =∠GBH+∠G∴ =∠ADF+∠G. 在△ADG 中,∠BAD+∠ADF+∠G=180°,∠BAD=∴+ =180°∴ =180°--------------------------------------------------------------- 12 分证法(三):在平行四边形 ABCD 中 AB∥CD 可得到∠ABC+∠C=180° ∵∠EBA+∠ABC+∠CBH=180°∴∠C=∠EBA+∠CBH在∆ BHP 、 ∆ CDP 中,由三角形内角和等于 180°可得∠C+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CBH+∠CDP=∠CBH+∠BHP ∴∠EBA+∠CDP=∠BHP由△FAD∽△EAB 得∠ADP=∠EBA∴∠ADP+∠CDP=∠BHP 即∠ADC=∠BHP∵∠BAD+∠ADC=180︒ ,∠BAD=,∠BHP=∴+ =180 ︒ ∴ =180 ︒ ------------------------------------------------------------------- 12 分(有不同解法,参照以上给分点,只要正确均得分.)八、26.解:(1)∵抛物线经过 A(0,4)、B(-2,0)、C(6,0) ∴得到 c=44a-2b+c=0 36a+6b+c=0 2 分14 解得 a=-, b=, c=43 3∴抛物线的解析式为 y=- 1 x2 + 4x+4 ------------------------------------ 3 分 33(或 y=- 1(x+2)(x-6)或 y=- 1 (x-2) 2 +16 . )333四边形 OADE 为正方形.4 分(2)根据题意可知 OE=OA=4 OC=6 OB=OF=2 ∴CE=2∴CO=FA=6∵运动的时间为 t∴CP=FQ=t 过 M 作 MN⊥OE 于 N,则 MN=2当 0≤t<2 时,OP =6-t, OQ =2-t ---------------------------------------------------------------------- 5 分 1 1 1∴S= S ∆OPQ + S ∆OPM = 2(6-t)×2+ 2 (6-t)(2- t)= 2(6-t)(4- t) ∴S =1t 2 -5t+12 ------------------------------------------------------ 7 分2当 t=2 时,Q 与 O 重合,点 M 、O 、P 、Q 不能构成四边形.(不写也可)当2<t <6 时,连接MO,ME 则MO=ME 且∠QOM=∠PEM=45 ︒ ----- -----------------------8 分-----22 22 ∵FQ=CP=t,FO=CE=2∴OQ=EP∴△QOM≌△PEM1∴四边形 OPMQ 的面积 S= S MOE = 2×4×2=4 ------------------------------- 10 分综上所述,当 0≤t<2 时,S= 1t 2 -5t+12;当 2<t <6 时,S=427(3)存在 N 1 (1,5),N 2 (5, 3),N 3 (2+ ,-2),N 4 (2-,-2) --------------- 14 分。
2012抚顺中考数学题摘选
2012年抚顺中考数学试题选9.如图,过点P (2,3)分别作PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,PC 、PD 分别交反比例 函数 y=x 2(x >0) 的图像于点A 、B ,则四边形BOAP的面积为( )A. 3B. 3.5C. 4D. 510.如图,小浩从二次函数y=ax 2+bx+c(a 0)的图像中得到如下信息:①ab <0 ②4a+b=0 ③当y=5时只能得x=0 ④关于x 的一元二次方程ax 2+bx+c=10有两个不相等的实数根,你认为其中正确的有( )A. 1个B. 2个C. 3个D. 4个18.ABCD 的面积是16,对角线AC 、BD 相交于点O ,点M1、N 1、P 1分别为线段OD 、DC 、CO 的中点,顺次连接M 1N 1、N 1 P 1、 P 1 M 1得到第一个△P 1 M 1 N 1,面积为S 1,分别取M 1N 1、N 1P 1、 P 1M 1三边的中点P 2、M 2、N 2,得到第二个△P 2M 2N 2,面积记为S 2,如此继续下去得到第n 个△P n M n N n ,面积记为S n ,则S n -S n-1= 。
(用含n 的代数式表示,n ≥2,n 为整数)22.如图,距小明家楼下D 点20米的B 处有一根废弃的电线杆AB ,经测得此电线杆与水平线DB 所成锐角为60○,在小明家楼顶C 处测得电线杆顶端A 的俯角为30○,底部点B 的俯角为45○(点A 、B 、D 、C 在同一平面内)。
已知在以点B 为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B 点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A 能否落在休闲广场内?请通过计算回答。
(结果精确到0.11.414≈1.732)24.某大众汽车经销商在销售某款汽车时,以高出进价20%标价。
已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同。
辽宁省抚顺市初中毕业生学业考试数学试卷及答案(word版)
抚顺市初中毕业生学业考试数 学 试 卷考试时间 120 分钟试卷满分 150 分一、选择题(以下各题的备选答案中,只有一个是正确的.请将正确答案的选项填写在下 表中相应题号下的空格内.每题 3 分,共 24 分)1. 2 的相反数是( )A . 21 C .2 1B .D .222.某市在一次扶贫助残活动中,共捐钱2580000 元.将 2580000 元用科学记数法表示为( )A . 2.58 107 元B . 0.258 107 元C . 2.58 106 元3.一个正方体的每个面都有一个汉字, 其平面睁开图以下图,那么在该正方体中和“毒”字相对的字是( ) A .卫B .防C .讲D .生4.以下事件是必定事件的是( )A .阴天必定会下雨B .翻开电视机,任选一个频道,屏幕上正在播放篮球竞赛节目C .某种彩票的中奖率为1%,买 100 张彩票必定中奖D . 13 名学生中必定有两个人在同一个月过诞辰 5.以下运算正确的选项是( )A . a a 2a 3 B . (3a)26a 2C . a 6 a 2 a 36y( x 1)2 ,以下说法正确的选项是().对于 x 的二次函数2A .图象的张口向上B .图象的极点坐标是( 1,2)C .当 x1 时, y 随 x 的增大而减小D .图象与y 轴的交点坐标为(0, 2)D . 25.8 106 元讲 卫 生防 病 毒(第 3 题图)D . a ·a 3 a 47.以下图,已知点E 、F 分别是 △ ABC 中 AC 、AB 边的中点, BE 、CF 订交于点G ,FG2 ,则 CF 的长为()A . 4B . 4.5C . 5D . 6AADPFEEGBCBC(第 7 题图)(第 8 题图)8.以下图, 正方形 ABCD 的面积为 12,△ ABE 是等边三角形, 点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD PE 的和最小,则这个最小值为( )A .2 3B .2 6C . 3D . 6二、填空题(每题 3 分,共24 分)9.一组数据 4, 3,5, x , 4,5 的众数是 4,则 x.10.以下图,直线 a ∥ b ,点 B 在直线 b 上,且 ABBC , 2 59°,则 1度.yCB 1AA2 aA 1BxbO1B b(第 11 题图)(第 10 题图)11.以下图,在平面直角坐标系中,△OAB 三个极点的坐标是O(0,0)、 A( 3,4) 、(B 5,2).将 △OAB 绕原点 O 按逆时针方向旋转 90°后获得 △OA 1 B 1 ,则点 A 1的坐标是 .12.在反比率函数y4A(x 1, y 1) 、B(x 2, y 2 ) ,当 x 1 x 2 0 时, y 1 与的图象上有两点xy 2 的大小关系是.13.将一个含 30°角的三角板和一个含 45°角的三角板如图摆放,ACB 与 DCE 完好重合,, A 45°, EDC60°, AB 4 2, DE 6 ,则EB.C 90°E ADBAPA DCB OCBMCB B(第 14 题图)(第 15 题图)(第 13 题图)B14.以下图,已知圆锥的高 AO 为 8cm ,底面圆的直径 BC 长为 12cm ,则此圆锥的侧面睁开图的圆心角为 度.15.以下图,在梯形ABCD 中, AD ∥ BC , ABC 90°,AD AB 6,BC 14 ,点 M 是线段 BC 上必定点,且 MC =8.动点 P 从 C 点出发沿 C D A B 的路线运 动,运动到点 B 停止.在点 P 的运动过程中,使 △PMC 为等腰三角形的点 P 有个.的三角形都是全等的) ,请写出第 n 个图中最小 的三角形16.察看以下图形(每幅图中最小.... 的个数有个.第1个图第2个图第3个图第4个图三、解答题(每题8 分,共 16 分)3(π 2) 0 1 2 .17.计算:818.先化简,再对 a 取一个你喜爱的数,代入求值.a 1 a 3 a2 6a 9.a 3 a 2 a2 4四、解答题(每题10 分,共 20 分)19.某学校为了进一步丰富学生的体育活动,欲增购一些体育器械,为此对该校一部分学生进行了一次“你最喜爱的体育活动”的问卷检查(每人只选一项).依据采集到的数据,绘制成以下统计图(不完好):人数10090808070跳绳6050 40球类403040% 30其余20踢毽1015% 0球类跳绳踢毽其余类型图①图②(第 19 题图)请依据图中供给的信息,达成以下问题:(1)在此次问卷检查中,一共抽查了名学生;(2)请将上边两幅统计图增补完好;(3)图①中,“踢毽”部分所对应的圆心角为度;(4)假如全校有1860 名学生,请问全校学生中,最喜爱“球类”活动的学生约有多少人?20.以下图,甲、乙两人在玩转盘游戏时,准备了两个能够自由转动的转盘 A 、B ,每个转盘被分红面积相等的几个扇形, 并在每一个扇形内标上数字. 游戏规则: 同时转动两个转盘,当转盘停止后, 指针所指地区的数字之和为 0 时,甲获胜;数字之和为 1 时,乙获胜.(假如指针恰巧指在切割线上,那么重转一次,直到指针指向某一地区为止)( 1)用树状图或列表法求乙获胜的概率;( 2)这个游戏规则对甲乙两方公正吗?请判断并说明原因.1 21 243 3AB10 分,共 20 分)(第 20 题图)五、解答题(每题21.以下图,AC 与 ⊙O 相切于点 C ,线段 AO 交⊙O 于点 B .过点 B 作 BD ∥ AC 交⊙O 于点 D ,连结 CD 、OC ,且 OC 交 DB 于点 E .若 CDB 30 , DB 5 3cm .( 1)求 ⊙O 的半径长;( 2)求由弦 CD 、 BD 与弧 BC 所围成的暗影部分的面积. (结果保存 π)CADEBO(第 21 题图)22.因为受甲型 H1N1 流感(开初叫猪流感)的影响, 4 月初某地猪肉价钱大幅度下调,下调后每斤猪肉价钱是原价钱的2,本来用 60 元买到的猪肉下调后可多买2 斤. 4 月中旬,3H1N1 流感.所以,猪肉价钱 4经专家研究证明,猪流感不是由猪传染,很快更名为甲型月尾开始上升,经过两个月后,猪肉价钱上浮为每斤 14.4 元.( 1)求 4 月初猪肉价钱下调后每斤多少元?( 2)求 5、 6 月份猪肉价钱的月均匀增加率.六、解答题(每题10 分,共20 分)23.以下图,已知:(1)尺规作图:作Rt△ ABC 中,BAC 的均分线 AMACB 90°.交 BC 于点 D (只保存作图印迹,不写作法);(2)在( 1)所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC 于点 E ,交 AB 于点 F ,连结 DE、DF ,再展回到原图形,获得四边形AEDF .①试判断四边形AEDF 的形状,并证明;②若 AC 8,CD 4,求四边形AEDF 的周长和 BD 的长.AC B(第 23 题图)24.某食品加工厂,准备研制加工两种口胃的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410 克,核桃粉 520 克.计划利用这两种主要原料,研制加工上述两种口胃的巧克力共 50 块.加工一块原味核桃巧克力需可可粉13 克,需核桃粉 4 克;加工一块益智核桃巧克力需可可粉 5 克,需核桃粉 14 克.加工一块原味核桃巧克力的成本是1.2 元,加工一块益智核桃巧克力的成本是 2 元.设此次研制加工的原味核桃巧克力x 块.(1)求该工厂加工这两种口胃的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y 元,求 y 与x的函数关系式,并说明哪一种加工方案使总成本最低?总成本最低是多少元?七、解答题(此题 12 分)25.已知:以下图,直线 MA ∥ NB , MAB 与NBA 的均分线交于点 C ,过点 C 作一条直线 l 与两条直线 MA 、 NB 分别订交于点 D 、E .( 1)如图 1 所示,当直线 l 与直线 MA 垂直时,猜想线段 AD 、BE 、AB 之间的数目关系,请直接写出结论,不用证明;( 2)如图 2 所示,当直线 l 与直线 MA 不垂直且交点 D 、E 都在 AB 的同侧时,( 1)中的结论能否建立?假如建立,请证明:假如不建立,请说明原因;( 3)当直线 l 与直线 MA 不垂直且交点 D 、E 在 AB 的异侧时,( 1)中的结论能否仍旧建立?假如建立, 请说明原因; 假如不建立, 那么线段 AD 、BE 、AB 之间还存在某种数目关系吗?假如存在,请直接写出它们之间的数目关系.M NMNM N M NDCE DCE lCCAAAl ABBBB图 1图 2备用图备用图(第 25 题图)八、解答题(此题 14 分)262x c(a 0)与 x 轴交于点 A( 2,0)、点.已知:以下图,对于 x 的抛物线B(6,0) ,与 y 轴交于点 C .(1)求出此抛物线的分析式,并写出极点坐标;(2)在抛物线上有一点D ,使四边形 ABDC 为等腰梯形, 写出点 D 的坐标,并求出直线 AD的分析式;(3)在( 2)中的直线 AD 交抛物线的对称轴于点 M ,抛物线上有一动点 P , x 轴上有一动点 Q .能否存在以 A 、 M 、 P 、Q 为极点的平行四边形?假如存在,请直接写出点 Q 的坐标;假如不存在,请说明原因.yCA OB x(第 26 题图)抚顺市初中毕业生学业考试数学试题参照答案及评分标准(注:本参照答案只给出一种至几种解法(或证法) ,若用其余方法解答正确,可参照此评分标准相应步骤赋分)一、选择题(每题 3 分,共 24 分)题号 1 2 3 4 5 6 7 8 答案ACBDDCDA二、填空题(每题3 分,共 24 分)9. 4 10. 31 11. ( 4,3) 12. y 1 y 213.3 3 414. 21615. 416. 4n 1三、解答题(每题 8 分,共 16 分)17.解:原式 = 2 1( 2 1) ·····································6 分= 2 12 1= 2 2 ···········································8 分a 1 a 3 (a 3) 218.解:原式 =3 a 2·····························2 分a (a 2)( a 2)a 1 a 3 ( a 2)( a 2) ······································3 分=3 a ·(a 3)2a 2a1 a 2a 3 a ···············································4 分33=······················································6 分a 3a 取值时只需不取, 2 , 3 就能够. ································ 分27 求值正确. ···················································8 分四、解答题(每题10 分,共 20 分)人数19.10090 808070跳绳 60 50球类 25%504040%403030其余20踢毽20%1015%球类 跳绳 踢毽 其余 类型图①图②第 19题图( 1) 200······················································2 分(2)增补图:扇形图中增补的 跳绳 25% ·······························3 分其余 20% ······················································4 分条形图中增补的高为 50··········································5 分( 3) 54 ······················································7 分( 4)解: 1860× 40%=744(人). ·····································9 分答:最喜爱“球类”活动的学生约有744 人. ···························10 分 20.解:( 1)解法一:(列表法)A 盘B 盘12341 0 123 2 1 0123211由列表法可知:会产生12 种结果,它们出现的时机相等,此中和为1 的有 3 种结果.P(乙获胜 )3 1 12···············································6 分4解法二:(树状图)12 3 412 3 1 23123123和为 01210 121321·················4 分由树状图可知:会产生12 种结果,它们出现的时机相等,此中和为1 的有 3 种结果.P(乙获胜 )3 1 12 ···············································6 分4(2)公正. ···············································7 分P (乙获胜 )1, P (甲获胜 )3 1 ····································8 分412 4P (乙获胜 ) =P (甲获胜 ) ···············································9 分游戏公正. ·············································10 分 五、解答题(每题 10 分,共 20 分)21.解:( 1)AC 与 ⊙O 相切于点 CCAACO90°·························1 分BD ∥ ACD E BBEO ACO 90°ODEEB1 BD 5 32(cm ) ··············3 分2(第 21 题图)D 30°O 2 D60°·············································4 分BE 3 5 32在 Rt △BEO 中, sin 60 °=,OB2OBOB 5 即 ⊙O 的半径长为 5cm . ·······························5 分 ( 2)由( 1)可知, O 60°, BEO 90°EBO D 30°又CED BEO , BE ED △CDE ≌△OBE ·············································7 分S 阴 S 扇OBC 60 ·2 25π 2 )360 π5 6 (cm答:暗影部分的面积为25πcm 2 . ···································10 分6x 元.22.解:( 1)设 4 月初猪肉价钱下调后每斤 依据题意,得60 60 2 ······································2 分x 3 x2解得 x10················································3 分经查验, x 10 是原方程的解 ······································4 分答: 4 月初猪肉价钱下调后每斤 10 元. ································5 分 (2)设 5、 6 月份猪肉价钱的月均匀增加率为 y .依据题意,得 10(1 y) 2 14.4 ····································7 分 解得 y 1 0.220%, y 22.2 (舍去) ······························9 分答: 5、 6 月份猪肉价钱的月均匀增加率为 20%. ·······················10 分六、解答题(每题 10 分,共 20 分)23.解:( 1)作图正确 ··········································1 分写出结论:射线AM 就是所要求的角均分线 ······························2 分(2) ① 四边形 AEDF 是菱形. ·····································3 分 证明:如图,依据题意,可知 EF 是线段 AD 的垂直均分线A则 AE ED ,AF FD , AGE AGF 90°由( 1)可知, AD 是 BAC 的均分线FGEAD DAFAGE AGF ,AG AGE△ AEG ≌△ AFG ····················4 分AE AFC BD M AE ED DF AF第23题图 四边形 AEDF 是菱形. ······································5 分②设AEx ,则 ED x ,CE 8 x在 Rt △ECD 中, 42(8 x)2x 2解得x54x 20 即四边形 AEDF的周长是 20······························7 分由 ① 可知,四边形AEDF是菱形FD ∥ AC△ BFD ∽△ BACBD DF ················································8 分BC AC BD 5BD 4 8解得 BD20即 BD 的长是20. ·······························10 分3324.解:( 1)依据题意,得13x5(50 x) ≤ 410 4x14(50 ········································2 分x) ≤ 520解得 18≤ x ≤ 20 ·············································3 分x 为整数x1819,,20 ···············································4 分当 x18 时, 50 x 50 18 32当 x 19 时, 50 x 50 19 31 当 x 20 时, 50 x 50 20 30一共有三种方案: 加工原味核桃巧克力 18 块,加工益智巧克力 32 块;加工原味核桃巧克力 19 块,加工益智巧克力31 块,加工原味核桃巧克力20 块,加工益智巧克力30 块. 6 分(2)y1.2 x2(50x)=0.8x 100 ··············································8 分0.8 0y 随 x 的增大而减小当 x20 时,y 有最小值,y 的最小值为 84.······················9 分当加工原味核桃巧克力20 块、加工益智巧克力30 块时,总成本最低.总成本最低是84元. ·····················································10 分七、解答题(此题 12 分)25.解:( 1) AD BE AB ··················2 分MN(2)建立. ·····························3 分CE(方法一):在 AB上截取 AG AD ,连结 CG .Dl581 2,AC AC1 764A 23 B△ ADC ≌△ AGC ·······················4 分5 6 AM ∥BN 第 25 题( 2)方法一图1 2 3 4180°1 2, 3 42 3 90°ACB 90° 即6 790°5 6 7 8 180° 5 8 90° 7 834,BC BC△ BGC ≌△ BEC ·············································6 分BG BEAD BE AG BGAD BE AB ···············································7 分(方法二):过点 C 作直线 FGAM ,垂足为点 F ,交 BN 于点 G .作 CH AB ,垂足为点 H . ·····························4 分 MN 由( 1)得 AF BG ABAM ∥ BN , AFG 90° F C EBGF FGE 90° D 5 l1 2, 3 4 6G14CF CH ,CHCGA23BCF CG ·····························5 分H5 6第 25 题( 2)方法二图△CFD ≌△ CGE DF EGAD BE AF BG AB ·····································7 分(方法三):延伸 BC ,交 AM 于点 F . ·······························4 分AM ∥BN5 43 45 3 AF AB1 2,AC AC△ AFC ≌△ ABCCFCB ···············································5 分67△ FCD ≌△ BCE ·············································6 分DF BEAD BE AD DFAFAB ·······························7 分( 3)不建立. ················································8 分存在.当点 D 在射线 AM 上、点 E 在射线 BN 的反向延伸线上时(如图① ),AD BEAB·············································10 分当点 D 在射线 AM 的反向延伸线上,点 E 在射线 BN 上时(如图 ② ),BE ADAB ·············································12 分MMMNENFDCElCCD65712 4ABA BA3BE Dl l第 25 题( 2)方法三图 第 25 题( 3)图①第 25 题( 3)图②八、解答题(此题 14 分)26.解:( 1)依据题意,得4a2 c················1 分yD36a 6c 0CP 2 P 11CQ 4aQ 1解得4 ··················3 分Q 2AO Q 3B xc 3P 3第 26题图 P 41 x 2抛物线的分析式为yx 3 ···4 分4极点坐标是( 2, 4) ·············································5 分(2) D (4,3) ················································6 分设直线 AD 的分析式为 ykx b(k 0)直线经过点 A( 2,0)、点 D (4,3)2k b 0················································7 分4k b 3k12····················································8 分b 1y1x 1 ················································9 分2(3)存在.··············································10 分Q 1 (2 2 2,0) ···············································11 分Q 2 ( 2 2 2,0) ··············································12 分 Q 3 (6 2 6,0) ···············································13 分 Q 4 (62 6,0) ···············································14 分。
辽宁省各市2012年中考数学分类解析 专题3 方程(组)和不等式(组)
辽宁各市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012辽宁本溪3分)已知一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC的周长为【】A、13B、11或13C、11D、12【答案】B。
【考点】因式分解法解一元二次方程,等腰三角形的性质,三角形三边关系。
【分析】∵x2-8x+15=0 ,∴(x-3)(x-5)=0。
∴x-3=0或x-5=0,即x1=3,x2=5。
∵一元二次方程x2-8x+15=0 的两个解恰好分别是等腰△ABC的底边长和腰长,∴当底边长和腰长分别为3和5时,3+3>5,∴△ABC的周长为:3+3+5=11;∴当底边长和腰长分别为5和3时,3+5>5,∴△ABC的周长为:3+5+5=13。
∴△ABC的周长为:11或13。
故选B。
2. (2012辽宁本溪3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为【】A、88+15=x 2.5xB、88=+15x 2.5xC、818+=x4 2.5xD、881=+x 2.5x4【答案】D。
【考点】由实际问题抽象出分式方程(行程问题)。
【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程:881=+x 2.5x4。
故选D。
3. (2012辽宁丹东3分)不等式组x30x40+>⎧⎨-<⎩的解集是【】A.-3<x<4B.3<x≤4C.-3<x≤4D.x<4 【答案】A。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
2012年中考数学样题参考答案.doc
2012年中考数学样题参考答案选择题(每题3分,共30分)一、BADCD BADBA二、填空题(每题3分,共18分)11. 15; 12. 6; 13. (-4,3) 14.38; 15.53; 16. 4n ;三、解答题(每小题8分,共16分)17..解:原式21=····································································· 6分3=··················································································· 8分18. 解:原式=213(3)32(2)(2)a a a a a a a +---÷-++- ······················································ 2分 =213(2)(2)32(3)a a a a a a a +-+---+-· ··········································································· 3分 1233a a a a +-=--- ······························································································ 4分 =33a - ········································································································ 6分 a 取值时只要不取2,2-,3就可以. ······························································· 7分求值正确.原式 ····························································································· 9分四、解答题(每小题9分,共18分)19.(1)200 ······································································································· 2分 (2)补充图:扇形图中补充的 跳绳25% ························································· 3分 其它20% ······································································································ 4分 条形图中补充的高为50 ···················································································· 5分(3)54 ········································································································ 7分 (4)解:1860×40%=744(人)答:最喜欢“球类”活动的学生约有744人. ······················································ 9分 20.解:(1)根据题意可列表或树状图如下:第一次第二次12341 —— (1,2) (1,3) (1,4)2 (2,1) —— (2,3) (2,4)3 (3,1) (3,2) —— (3,4) 4(4,1)(4,2)(4,3)——·············································································· 5分···························································································· 5分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种, ∴P (和为奇数)23= ···················································································· 7分 (2)不公平.∵小明先挑选的概率是P (和为奇数)23=,小亮先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ····················································································· 9分五、解答证明题(每小题8分,共16分) 21.(1)证明:∵AD 平分∠BAC∴∠BAD=21∠BAC . (1,2) (1,3) (1,4) 2341 (1,1) (2,3) (2,4) 1342 (3,1) (3,2) (3,4) 1243 (4,1) (4,2) (4,3)1234 第一次摸球第二次摸球∵AE 平分∠BAF . ∴∠BAE=21∠BAF . 2分 ∵∠BAC+∠BAF=180°∴∠BAD+∠BAE=21 (∠BAC+∠BAF )= 21×180°=90° ∴∠DAE=90°.即DA ⊥AE . 4分 (2)AB=DE 5分 理由是:∵AB=AC ,AD 平分∠BAC . ∴AD ⊥BC ,即∠ADB=90°. ∵BE ⊥AE .∴∠AEB=90° 又∵∠DAE=90°(已证),∴四边形AEBD 是矩形.故AB=DE . 8分22、解:(1)不同.理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时,∴往、返速度不同. ··················································································· 2分(2)设返程中y 与x 之间的表达式为y kx b =+,则120 2.505.k b k b =+⎧⎨=+⎩,解之,得48240.k b =-⎧⎨=⎩,···················································································· 5分∴48240y x =-+.(2.55x x ≤≤)(评卷时,自变量的取值范围不作要求) ······ 6分 (3)当4x =时,汽车在返程中,48424048y ∴=-⨯+=.∴这辆汽车从甲地出发4h 时与甲地的距离为48km . ········································· 8分六、解答证明题(23小题10分,24小题12分,共22分) 23、证明:(1) 连结AC ,如图∵C 是弧BD 的中点∴∠BDC =∠DBC 1分 又∠BDC =∠BAC在三角形ABC 中,∠ACB =90°,CE ⊥AB ∴ ∠BCE=∠BAC∠BCE =∠DBC 3分 ∴ CF =BF 4分因此,CF =BF . (2)解法一:作CG ⊥AD 于点G , ∵C 是弧BD 的中点∴ ∠CAG =∠BAC , 即AC 是∠BAD 的角平分线.·············· 5分 ∴ CE =CG ,AE =AG 6分 在Rt △BCE 与Rt △DCG 中,CE =CG , CB =CD ∴Rt △BCE ≌Rt △DCG∴BE =DG 7分 ∴AE =AB -BE =AG =AD +DG 即 6-BE =2+DG∴2BE =4,即 BE =2 8分又 △BCE ∽△BAC∴ 212BC BEAB ==· 9分 32±=BC (舍去负值)∴32=BC 10分(2)解法二:∵AB 是⊙O 的直径,CE ⊥AB∴∠BEF=︒=∠90ADB , 5分 在Rt ADB △与Rt FEB △中,∵FBE ABD ∠=∠ ∴ADB △∽FEB △,则BFABEF AD =即BFEF 62=, ∴EF BF 3= 6分 又∵CF BF =, ∴EF CF 3= 利用勾股定理得:EF EF BF BE 2222=-= 7分又∵△EBC ∽△ECA 则CEBE AE CE =,即则BE AE CE ⋅=28分 ∴BE BE EF CF ⋅-=+)6()(2即EF EF EF EF 22)226()3(2⋅-=+∴22=EF 9分 ∴3222=+=CE BE BC 10分24.解:(1)解方程01682=+-x x ,得421==x x由实数m 是方程01682=+-x x 的一个实数根,得m=4 ∴点A ,C 的坐标分别是A (4,0)和C (0,4). 1分将A (4,0)和C (0,4)的坐标分别代人c bx x y ++-=221 得⎩⎨⎧==⇒⎩⎨⎧==++-414048c b c c b ∴抛物线的解析式为4212++-=x x y 3分 (2)由4212++-=x x y ,令y=0,得04212=++-x x ,解此方程得2,421-==x x∴点B 的坐标为B (2,0),故AB=6, S △ABC =21·AB ·CO=12 4分设AD=k (0≤k ≤6), ∵ED ∥BC ∴△ADE ∽△ABC ,从而36)6()(222k k AB AD S S ABC ADE ===∆∆ ∴32k S ADE=∆ (5分) 同理可知,3)6(2-=∆k S BDF6分∴S 四边形DECF =S △ABC -S △ADE -S △BDF=6)3(3243222+--=+-k k k (7分) 当且仅当k =3时,S 四边形DECF 有最大值为6,此时D (1,0) 8分 (3)存在满足条件的点N ,使得∠NOB=∠AMO ,设点N (y x ,) ∵若M 是⊙G 的优弧ACO 上的一个动点∴∠NOB=∠AMO=∠ACO=45° 9分 ①当点N 在x 轴上方时,tan45°=x y xy-=⇒=-1 又∵4212++-=x x y ∴4212++-x x 3220842±=⇒=--⇒-=x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (232,322--) 10分 ②当点N 在x 轴下方时,tan45°=x y xy=⇒=--1 又∵4212++-=x x y ∴22842122±=⇒=⇒=++-x x x x x ∵点N 在这个抛物线位于y 轴左侧的图象上,从而有N (22,22--) 12分。
2012年中考数学试题(含答案)
2012年中考数学试题一、选择题:1.若x 5=,则x 的值是【 】A .5B .-5C .5±D .51 2.下列运算正确的是【 】A .5510a a a +=B .339a a a ⋅=C .()3393a 9a = D .1239a a a ÷=3.函数y x 2=-中自变量x 的取值范围是【 】A .x 2>B .x 2≥C .x 2≤D .x 2<4.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字应为【 】 A .56.7510⨯- 克 B .56.7410-⨯ 克 C .66.7410-⨯ 克 D . 66.7510-⨯克 5.若关于x 的一元二次方程2x 2x m 0-+=有两个不相等的实数根,则m 的取值范围是【 】 A .m 1< B .m 1<- C .m 1> D . m 1>- 6.下列命题中,真命题是【 】A .有两条对角线相等的四边形是等腰梯形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形既是轴对称图形又是中心对称图形D .有一个角是60°的等腰三角形是等边三角形7.如图,在△ABC 中,∠ACB =90°,∠A =20°,若将△ABC 沿CD 折叠,使B 点落在AC 边上的E 处,则∠ADE 的度数是【 】A .30°B .40°C .50°D .55°8.一组数据为2、3、5、7、3、4,对于这组数据,下列说法错误的是【 】A .平均数是4B .极差是5C .众数是3D . 中位数是6 9.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是【 】 A .-7 B .7 C .3 D . -310.圆锥底面圆的半径为1㎝,母线长为6㎝,则圆锥侧面展开图的圆心角是【 】 A .30° B .60° C .90° D . 120°第Ⅱ卷(非选择题)二、填空题:11.因式分解:2ax 2ax a -+= ▲ .12.如图,□ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于F 点,则CF = ▲ .13.已知:P A 、PB 与⊙O 相切于A 点、B 点,OA =1,P A =3,则图中阴影部分的面积是 ▲ (结果保留π).14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若有40%的人参加优育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.直线y (3a)x b 2=-+-在直角坐标系中的图象如图所示, 化简:2b a a 6a 92b ---+--= ▲ .16.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 ▲ .第14题 第15题 第17题 三、计算题:本大题共2个小题,每小题6分,共12分.17.计算:)2014cos301212-⎛⎫+-⎪⎝⎭18.解方程:11x 3x 22x -+=-- 解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<19.如图,图中的小方格都是边长为1的正方形,△ABC的顶点坐标分别为A(-3 ,0),B(-1 ,-2),C(-2 ,2).(1)请在图中画出△ABC绕B点顺时针旋转90°后的图形;(2)请直接写出以A、B、C为顶点的平行四边形的第四个顶点D的坐标.20.如图,在与河对岸平行的南岸边有A、B、D三点,A、B、D三点在同一直线上,在A点处测得河对岸C点在北偏东60°方向;从A点沿河边前进200米到达B点,这时测得C点在北偏东30°方向,求河宽CD.21.有质地均匀的A.B.C.D四张卡片,上面对应的图形分别是圆、正方形、正三角形、平行四边形,将这四张卡片放入不透明的盒子中摇匀,从中随机抽出一张(不放回),再随机抽出第二张.(1)如果要求抽出的两张卡片上的图形,既有圆又有三角形,请你用列表或画树状图的方法,求出出现这种情况的概率;(2)因为四张卡片上有两张上的图形,既是中心对称图形,又是轴对称图形,所以小明和小东约定做一个游戏,规则是:如果抽出的两个图形,既是中心对称图形又是轴对称图形,则小明赢;否则,小东赢。
2012年中考数学试题及答案
2012年中考数学试题及答案一、选择题1. ( ) 设a、b、c、d是四个不同的整数,且a<b<c<d,那么它们中最小的一个是?A. aB. bC. cD. d2. ( ) 从一个圆盘上切下一个小扇形的时候,整个圆盘的周长减小7cm,小扇形的周长减小7cm的结果是原来的周长的等于1/3,那么整个圆盘的面积减小的结果是?A. 2/7B. 1/3C. 1/7D. 3/73. ( ) 如果x+y=200,x>y,那么x.y的最大值是A. 40000B. 40401C. 40500D. 405014. ( ) 如图,正方形ABCD中,E、F分别为AB和CD的中点,连结EF.求证:EF⊥BC.A. 对,方法不唯一B. 对,方法唯一C. 对,方法准确D. 错5. ( ) 如图,已知∠A=42°,AP和BP分别是△ABC的角平分线,且∠APC=∠BPC=96°,求∠PBC=_______°.A. 18B. 42C. 48D. 54二、填空题6. 六个完全相同的圆半径的和是90,则r的值为______.8. 如图,是一块标有长方体的正六面体.4、5、6三点所在直线交EF于点P,其中,exE=16cm,则EP=________cm.9. √(7+√41) +(7-√41) = ______10. 如图,ABCD是一个平行四边形,四边中点依次为E、F、G、H.则EFHG是平行四边形吗?(是或否)三、解答题11. 一个正整数恰好被13整除,当它的各位数字交换后,所得的数恰好被17整除,那么这个数是多少?12. 如图,①是一个等边三角形,边长为20cm.分别以A、B为圆心,AB为半径交于点P.连结OP,OP与②的交点为Q.求过P,Q两点的直线的长度13. 解方程:3(x-1)+4(x-2)=5(x+3)14. 如图,是一个摄影器材专卖店的平面图.把ㄨBCD┼縄顺时针旋转100°。
抚顺中考数学试题及答案
抚顺中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 1C. 4x + 5 = 3x + 7D. 5x - 6 = 4x + 2答案:B2. 计算下列哪个表达式的结果为负数?A. 3 - (-2)B. -4 + 5C. -7 - 3D. 2 * 3答案:C3. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 不规则多边形答案:B4. 一个圆的半径为3厘米,它的面积是多少?A. 9π cm²B. 18π cm²C. 27π cm²D. 36π cm²答案:C5. 一个等腰三角形的底边长为6厘米,高为4厘米,它的周长是多少?A. 16厘米B. 20厘米C. 24厘米D. 28厘米答案:B6. 以下哪个函数是一次函数?A. y = x²B. y = 2x + 3C. y = 3/xD. y = x^3答案:B7. 一个数的平方根是它本身,这个数是多少?A. 0B. 1C. -1D. 2答案:A8. 下列哪个选项表示的是锐角?A. 90°B. 120°C. 45°D. 180°答案:C9. 一个长方体的长、宽、高分别是5厘米、4厘米、3厘米,它的体积是多少?A. 60 cm³B. 120 cm³C. 180 cm³D. 240 cm³答案:A10. 下列哪个选项是正确的比例关系?A. 3:4 = 6:8B. 2:3 = 4:6C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题3分,共15分)11. 一个数的相反数是-5,这个数是 _______。
答案:512. 一个数的绝对值是7,这个数可以是 _______ 或 _______。
答案:7 或 -713. 一个直角三角形的两个锐角的度数之和是 _______ 度。
2012中考数学试题及答案
2012中考数学试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 2答案:C2. 一个圆的半径是5厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的周长是多少厘米?A. 16B. 21C. 22D. 26答案:B4. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C5. 一个数的平方根是4,这个数是?A. 16B. 8C. 4D. 2答案:A6. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少立方米?A. 24B. 12C. 8D. 6答案:B7. 一个数的倒数是1/5,这个数是?A. 5B. 1/5C. 1/4D. 4/5答案:A8. 一个直角三角形的两条直角边分别是3和4,斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个分数的分子是8,分母是它的4倍,这个分数是多少?A. 1/4B. 1/3C. 1/2D. 2/3答案:A10. 一个数的立方是27,这个数是?A. 3B. 9C. 27D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是______或______。
答案:5或-512. 如果一个数的平方是25,那么这个数是______或______。
答案:5或-513. 一个数的立方是-8,这个数是______。
答案:-214. 一个数的平方根和立方根相等,这个数是______。
答案:0或115. 如果一个数的对数是2,那么这个数是______。
答案:10016. 一个数的平方是36,那么这个数是______或______。
答案:6或-617. 一个数的倒数是2/3,这个数是______。
答案:3/218. 如果一个数的立方是-27,那么这个数是______。
2012年中考数学试题及答案
2012年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -3B. 0C. 5D. -1答案:C2. 如果一个角的度数是30°,那么它的补角是:A. 30°B. 45°C. 60°D. 120°答案:D3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. 8答案:A5. 一个三角形的三边长分别为3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形答案:B6. 一个数的倒数是1/2,那么这个数是:A. 2B. 1/2C. 1/3D. 1答案:A7. 一个长方体的长、宽、高分别是4cm,3cm,2cm,那么它的体积是:A. 24 cm³B. 36 cm³C. 48 cm³D. 52 cm³答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 3D. 5 或 -5答案:D9. 一个分数的分子是3,分母是5,那么它的最简形式是:A. 3/5B. 1/5C. 3/1D. 5/3答案:A10. 如果一个数的立方根是3,那么这个数是:A. 27B. 3C. 9D. 81答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是____。
答案:±412. 一个数的立方是-27,这个数是____。
答案:-313. 一个圆的直径是14cm,那么它的半径是____cm。
答案:714. 如果一个三角形的内角和是180°,那么一个四边形的内角和是____°。
答案:36015. 一个数的相反数是-5,这个数是____。
2012中考数学试卷及答案
2012年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一项符合题意,请用2B 铅笔在答题卡上规定的位置进行填涂。
)1.16-的相反数是A. 16B. 6C.-6D. 16-2.若|2|a -与2(3)b +互为相反数,则a b 的值为A.-6B. 18C.8D.93.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、园,则该几何体是A.长方体B.球体C.圆锥体D.圆柱体 4.“一方有难。
八方支援”,在我国四川省汶川县今年“5·12”发生特大地震灾难后,据媒体报道,截止2008年6月4日12时,全国共接受国内外各界捐助救灾款物已达到人民币436.81亿元,这个数据用科学记数法(保留三个有效数字)表示为A. 94.3710⨯元B. 120.43710⨯元C.104.3710⨯元D.943.710⨯元 5.已知:一次函数(1)y a x b =-+的图象如图1所示,那么,a 的取值范围是A. 1a >B. 1a <C. 0a >D. 0a <6. m 是方程21x x +-的根,则式子3222007x m ++的值为A.2007B.2008C.2009D.20107.小亮的爸爸想对小亮中考前的6次数学考试成绩进行统计分析,判断小亮的数学成绩是否稳定,则小亮的爸爸需要知道这6次数学考试成绩的A.平均数或中位数B.众数或频数C.方差或标准差D.频数或众数 8.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合x 的方程是A. 1201803x x =+B. 1201803x x =-C. 1201803x x =+D.1201803x x =- 9.如图2,边长为1的正三角形和边长为2的正方形在同一水平线上,正三角形沿水平线自左向右匀速穿过正方形。
辽宁省抚顺市2012年中考数学试卷及参考答案
A. B. C. D. 8. 如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y= 点A、B,则四边形BOAP的面积为( )
(x>0)的图象于
三 、 解 答 题 ( 第 19题 10分 , 第 20题 12分 , 共 22分 )
18. 先化简,再求值.
,其中m= ﹣1.
19. 为了贯彻教育部关于中小学生“每天锻炼一小时”的要求,某市教育局做了一次随机抽样调查,其内容是:(1)学 生每天锻炼时间是否达到1小时;(2)学生每天锻炼时间未达到1小时的原因.随机调查了600名学生,把所得的数据制成
七 、 解 答 题 ( 满 分 14分 )
24. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右 侧作等边△ADE.
(1) 如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论; (2) 当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立
,请直接写出新的结论;
(3) 若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段 CD的长度;如果不存在,请说明理由.
八 、 解 答 题 ( 满 分 16分 )
25. 如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.
六 、 解 答 题 ( 满 分 12分 )
23. 某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2 万元销售4辆获利相同.
2012年辽宁省抚顺市初中毕业生学业考试
2012年辽宁省抚顺市初中毕业生学业考试语文试卷考生注意:请在答题卡各题目规定答题区域内作答,答在本试卷上无效。
一、积累与运用(满分30分)1.选出下列词语中加点字音形..完全正确的一项()。
(2分)A.挫.折cuò狼籍.jí细胞.pāo 玲珑剔.透tīB.脉搏.bó辐.射fú解剖.pāo 忍俊不禁.jīnC.玷.污diàn 挨.饿ái 跋涉.shè鲜.为人知xiǎnD.污秽.huì脂.肪zhī崭.新zǎn 相辅相承.chèng2.选出填在下列语段中空白处的词语最恰当...的一项()。
(2分)创新是人类社会发展的不竭动力,是技术创新还是艺术创新,其背后都有创新者的好奇、洞见和决心在散发光芒,成功离不开机会,机会只为那些专一的创新者敞开大门。
A.推动无论固然但B.触动只要所以因为C.推动即使只有才D.触动不管虽然但3.选出对下列病句修改有误..的一项()。
(2分)A.影片《飞向未来》讲述了一个十三岁的男孩许愿“大人”。
修改:在句末加“的故事”。
B.今年为了防止高考试卷押送车不发生意外,我们在每辆车上都安装的GPS。
修改:去掉“不”。
C.斑海豹宁宁击败众多对手,成为“十二运”吉祥物的桂冠。
修改:把“成为”改成“摘得”。
D.神舟九号搭载的三名航天员,正在认真地、一丝不苟地训练。
修改:把“认真地”与“一丝不苟”的调换位置。
4.选出下列文学常识表述有误..的一项()。
(2分)A.曹操是东汉末年的政治家、军事家、诗人,“日月之行,若出其中;星汉灿烂,若出其里”出自他的《观沧海》。
B.《岳阳楼记》是北宋政治家、文学家范仲淹所作,我们还学过他写的《渔家傲·秋思》。
C.《山坡羊·潼关怀古》的作者是元代张养浩,其中“山坡羊”是曲牌名。
D.《送东阳马生序》是宋代文学家宋濂写的一篇赠序。
5.选出对刘禹锡的《酬乐天扬州初逢席上见赠》赏析有误..的一项()。
辽宁省各市2012年中考数学分类解析 专题10 四边形
某某各市2012年中考数学试题分类解析汇编专题10:四边形一、选择题1. (2012某某某某3分)在菱形ABCD 中,对角线AC 、BD 相交于点O ,AB=5,AC=6,过点D 作AC的平行线交BC 的延长线于点E ,则△BDE 的面积为【 】A 、22B 、24C 、48D 、44【答案】B 。
【考点】菱形的性质,平行四边形的判定和性质,勾股定理和逆定理。
【分析】∵AD∥BE,AC∥DE,∴四边形ACED 是平行四边形。
∴AC=DE=6。
在Rt△BCO 中,2222AC BO AB AO AB =42⎛⎫=-=- ⎪⎝⎭,∴BD=8。
又∵BE=BC+CE=BC+AD=10,∴222DE BD BE +=。
∴△BDE 是直角三角形。
∴BDE 1S DE BD 242∆=⋅⋅=。
故选B 。
2. (2012某某某某3分)如图,菱形ABCD 中,AC =8,BD =6,则菱形的周长为【】【答案】A 。
【考点】菱形的性质,勾股定理。
【分析】设AC 与BD 相交于点O ,由AC=8,BD=6,根据菱形对角线互相垂直平分的性质,得AO=4,BO=3,∠AOB=900。
在Rt△AOB中,根据勾股定理,得AB=5。
根据菱形四边相等的性质,得AB=BC=CD=DA=5。
∴菱形的周长为5×4=20。
故选A。
3. (2012某某某某3分)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E 是AD的中点,连接OE,则线段OE的长等于【】A.3cmB.4cmC.cmD.2cm【答案】A。
【考点】菱形的性质,三角形中位线定理。
【分析】∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm。
∵对角线AC、BD相交于O点,∴BO=DO。
又∵E是AD的中点,∴OE是△ABD的中位线。
∴OE=12AB=12×6=3(cm)。
故选A。
4. (2012某某某某3分)如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90° , ②OC=OE,③tan∠OCD =43,④ODC BEOFS S∆=四边形中,正确的有【】个【答案】C 。
辽宁抚顺中考数学试题.doc
辽宁省抚顺市2011年初中毕业生学业考试数学试卷一、 选择题(每小题3分,共24分) 1. -7的相反数是( ). A. 17 B. -7 C. -17D. 7 2. 一个碗如图所示摆放,则它的俯视图是( ).3.据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为( ).A. 1.6×103吨B. 1.6×104吨C. 1.6×105吨D. 1.6×106吨 4. 不等式2x -6≥0的解集在数轴上表示正确的是( ).5. 一组数据13,10,10,11,16的中位数和平均数分别是( ). A. 11,13 B. 11,12 C. 13,12 D. 10,126. 七边形内角和的度数是( ).A. 1 080°B. 1 260°C. 1 620°D. 900° 7.某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为( ).A. 400x -10=500xB. 400x =500x +10C. 400x +10=500xD. 400x =500x -10(第8题)8. 如图所示,在平面直角坐标系中,直线OM 是正比例函数y =-3x 的图象,点A 的坐标为(1,0),在直线OM 上找点N ,使△ONA 是等腰三角形,符合条件的点N 的个数是( ).A. 2个B. 3个C. 4个D. 5个 二、 填空题(每小题3分,共24分)9. 函数y =1x +1的自变量x 的取值范围是________.10. 如图所示,BA ∥ED ,AC 平分∠BAD ,∠BAC =23°,则∠EDA 的度数是________.11. 已知点P (-1,2)在反比例函数y =k x(k ≠0)的图象上,请任意写出此函数图象上一个点(不同于P点)的坐标是________.12.如图所示,一个矩形区域ABCD ,点E 、F 分别是AB 、DC 的中点,求一只蝴蝶落在阴影部分的概率为________.13. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为________. 14. 若两个连续的整数a 、b 满足a <13<b ,则1ab的值为________.15. 已知圆锥的高是12,底面圆的半径为5,则这个圆锥的侧面展开图的周长为________. 16.用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________个.三、 解答题(17题6分,18题8分,共14分) 17. 计算:-22+27+|-3|-(3.14-π)0.18. 先化简,再求值:x2+4x +4x2-16÷x +22x -8-2xx +4,其中x =2.四、 解答题(每题10分,共20分)19. 如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置.(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1; (3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1.20.甲口袋中装有两个相同的小球,它们分别写有数字4和7;乙口袋装有三个相同的小球,它们分别写有数字5、6、9,小明和小丽玩游戏:从两个口袋中随机地各取出一个小球,如果两个小球上的数字之和是偶数小丽胜;否则小明胜.但小丽认为,这个游戏不公平,你同意小丽的看法吗?用画树形图法或列表法说明现由.五、 解答题(每题10分,共20分) 21.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:男、女观众对“谍战”题材电视剧的喜爱情况统计图 男观众对“谍战”题材电视剧的喜爱情况统计图请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?22. 如图,AB为⊙O的直径,弦CD垂直平分OB于点E,点F在AB延长线上,∠AFC=30°.(1)求证:CF为⊙O的切线(2)若半径ON⊥AD于点M,CE=3,求图中阴影部分的面积.六、解答题(23题10分,24题12分,共22分)23.如图,在斜坡AB上有一棵树BD,由于受台风影响而倾斜,恰好与坡面垂直,在地面上C点处测得树顶部D的仰角为60°,测得坡角∠BAE=30°,AB=6米,AC=4米.求树高BD的长是多少米?(结果保留根号)24.某商场新进一批商品,每个成本价25元,销售一段时间发现销售量y(个)与销售单价x(元/个)之间成一次函数关系,如下表:(1)求y与x之间的函数关系式;(2)若该商品的销售单价在45元~80元之间浮动,①销售单价定为多少元时,销售利润最大?此时销售量为多少?②商场想要在这段时间内获得4 550元的销售利润,销售单价应定为多少元?七、解答题(本题12分)25. 如图1,在△ABC中,∠ABC=90°,AB=BC,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°),得到△EFD,点A的对应点为点E,点B的对应点为点F,连接BE、CF.(1)判断BE与CF的位置、数量关系,并说明理由;(2)若连接BF、CE,请直接写出在旋转过程中四边形BEFC能形成哪些特殊四边形;(3)如图2,将△ABC中AB=BC改成AB≠BC时,其他条件不变,直接写出α为多少度时(1)中的两个结论同时成立.八、解答题(本题14分)26. 如图,在平面直角坐标系中,四边形ABCD是梯形,BC∥AD,∠BAD+∠CDA=90°,且tan∠BAD=2,AD在x轴上,点A的坐标(-1,0),点B在y轴的正半轴上,BC=OB.(1)求过点A、B、C的抛物线的解析式;(2)动点E从点B(不包括点B)出发,沿BC运动到点C停止,在运动过程中,过点E作EF⊥AD于点F,将四边形ABEF沿直线EF折叠,得到四边形A1B1EF,点A、B的对应点分别是点A1、B1,设四边形A1B1EF与梯形ABCD重合部分....的面积为S,F点的坐标是(x,0).①当点A1落在(1)中的抛物线上时,求S的值;②在点E运动过程中,求S与x的函数关系式.2011年抚顺市初中毕业生学业考试数学试卷答案及评分标准一、选择题(每题3分,共24分)1. D2. C3. C4. A5. B6. D7. B8. A二、填空题(每题3分,共24分)9. x≠-1 10. 134°11. (1,-2)答案不唯一12. 1 213. 3214.11215. 26+10π16. 150三、解答题17. 原式=-4+33+3-1 =33-2.18. 原式=+-+×-x+2-2xx+4=4x+4.当x=2时,原式=42+4=2 3.四、解答题19.(1)画图正确.∴ 图中点O 为所求. (2)画图正确.∴ 图中△A 1B 1C 1为所求.(3)如图画图正确(方法多样画出即可) . ∴ 图中点M 为所求. 20. 答:不同意. 理由:树形图:或由列表得数、偶数的各有3种.∴ P (和为奇数)=P (和为偶数)=12.∴ 游戏公平.21. (1)9090+40+20×100%=60%.答:女观众中“不喜欢”所占的百分比是60%. (2)(90+180)÷(1-10%)=300(人) . 答:这次调查的男观众有300人. 如图补全正确.(3)1 000×180300=600(人) .答:喜欢看“谍战”题材电视剧的男观众约有600人. 男、女观众对“谍战”题材电视剧的喜爱情况统计图22. (1)证明方法一:连结OC 、BC , ∵ CD 垂直平分OB , ∴ OC =BC . ∵ OB =OC , ∴ OB =OC =BC .∴ △OCB 是等边三角形. ∴ ∠BOC =60°. ∵ ∠CFO =30°, ∴ ∠OCE =90°. ∴ OC ⊥CF .∵ OC 是⊙O 的半径, ∴ CF 是⊙O 的切线.证明方法二:连结OC , ∵ CD 垂直平分OB , ∴ OE =12OB ,∠CEO =90°.∵ OB =OC ,∴ OE =12OC ,在Rt △COE 中sin ∠ECO =EO OC =12.∴ ∠E CO =30°.∴ ∠EOC =60°. ∵ ∠CFO =30°, ∴ ∠OCE =90°.∵ OC 是⊙O 的半径, ∴ CF 是⊙O 的切线.(2)连结OD ,由(1)可得∠COF =60°, 由圆的轴对称性可得∠EOD =60°, ∴ ∠DOA =120°.∵ OM ⊥AD ,OA =OD , ∴ ∠DOM =60°.在Rt △COE 中CE =3,∠ECO =30°,cos ∠ECO =ECOC ,∴ OC =2.∴ S 扇形OND =60π×22360=23π.∴ S △OMD =12OM ·DM =32.∴ S 阴影=S 扇形OND -S △OMD =23π-32.23.延长DB 交AE 于F 由题可得BD ⊥AB , 在Rt △ABF 中∠BAF =30°,AB =6, ∴ BF =AB ·tan ∠BAF =23.∴ cos30°=AB AF.∴ AF =43. ∠DFC =60°. ∵ ∠C =60°,∴ ∠C =∠C FD =∠D =60°. ∴ △CDF 是等边三角形. ∴ DF =CF . ∴ DB =DF -BF =23+4.答:树高BD 的长是(23+4)米. 24. (1)设y =kx +b (k ≠0)由题意得:⎩⎪⎨⎪⎧40k +b =170,50k +b =150, 解得⎩⎪⎨⎪⎧k =-2,b =250.∴ y =-2x +250.(2)设该商品的利润为W 元.∴ W =(-2x +250)×(x -25)=-2x 2+300x -6 250. ∵ -2<0,∴ 当x =75时,W 最大,此时销量为y =-2×75+250=100(个). (3)(-2x +250)×(x -25)=4 550 x 2-150x +5 400=0, ∴ x 1=60,x 2=90. ∵ x <80, ∴ x =60.答:销售单价应定在60元. 25. (1)FC =BE ,FC ⊥BE .证明:∵ ∠ABC =90°,BD 为斜边AC 的中线,AB =BC , ∴ BD =AD =CD . ∠ADB =∠BDC =90°.∵ △ABD 旋转得到△EFD , ∴ ∠EDB =∠FDC . ED =BD ,FD =CD . ∴ △BED ≌△CFD . ∴ BE =CF .(5分) ∴ ∠DEB =∠DFC . ∵ ∠DNE =∠FNB ,∴ ∠DEB +∠DNE =∠DFC +∠FNB . ∴ ∠FMN =∠NDE =90°. ∴ FC ⊥BE .(2)等腰梯形和正方形. (3)当α=90°(1)两个结论同时成立. 26. (1)△ABO 中∠AOB =90°tan A =OBOA =2,∵ 点A 坐标是(-1,0), ∴ OB =2.∴ 点B 的坐标是(0,2). ∵ BC ∥AD ,BC =OB , ∴ 点C 的坐标是(2,2).设抛物线表达式为y =ax 2+bx +2, ∵ 点A (-1,0)和点C (2,2)在抛物线上,∴ ⎩⎪⎨⎪⎧0=a -b +2,2=4a +2b +2.∴解得⎩⎪⎨⎪⎧a =-23,b =43.∴ y =-23x 2+43x +2.(2)①当点A 1落在抛物线上,根据抛物线的轴对称性可得A 1与点A 关于对称轴对称,由沿直线EF 折叠,所以点E 是BC 中点, 重合部分面积就是梯形ABEF 的面积. ∴ S =S 梯形ABEF =12(BE +AF )×BO =2x +1.②当0<x ≤1时,重合部分面积就梯形ABEF 的面积,由题得AF =x +1,BE =x ,S =S 梯形ABEF =12(BE +AF )×BO =2x +1.方法一:当1<x ≤2时,重合部分面积就是五边形形A 1NCEF 的面积, 设A 1B 1交CD 于点N ,作MN ⊥DF 于点N ,CK ⊥AD 于点K , △NMA 1∽△DMN , MA1NM =NMMD, ∵ ∠BAO =∠MA 1N ,tan ∠BAO =2, ∴ tan ∠MA 1N =2MNA1M . ∴ MA 1=12MN ,MD =2MN .∵ tan ∠BAO =2,∠BA O +∠CDK =90°, ∴ tan ∠CD K =12.在△DCK 中,∠CKD =90°,CK =OB =2,tan ∠CDK =CKDK =12,∴ DK =4,OD =6.∵ OF =x ,A 1F =x +1,∴ A 1D =OD -OF -A 1F =5-2x ,FD =6-x . ∴ MN =23(5-2x ).∴ S =S 梯形DCEF -S △A 1ND =8-2x -13(5-2x )2=-43x 2+143x -13.方法二:当1<x ≤2时,重合部分面积就是五边形形A 1MCEF 的面积,设A 1B 1交CD 于点M ,作MN ⊥B 1C 交CB 1延长线于点N ,由题得A 1F =x +1,B 1E =x , ∴ CE =2-x ,B 1C =2x -2. ∵ BC ∥AD ,∴ ∠A 1B 1N =∠B 1A 1A ,∠ADC =∠DCB 1.∵ ∠BAO =∠B 1A 1A ,tan ∠BAO =2,∠ADC +∠BAO =90°, ∴ tan ∠A 1B 1N =2=MNB1N ,tan ∠DCB 1=12=MNCN .∴ B 1N =12MN ,NC =2MN .∵ NC -B 1N =CB 1=2x -2,∴ MN =43(x -1),∴ S =S 梯形A 1B 1EF -S △B 1CM =2x +1-43(x -1)2=-43x 2+143x -13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年抚顺市初中毕业学业考试
数学试卷
考试时间120分钟 试卷满分150分
考生注意:请在答题卡各项目规定区域内答题,答在本试卷上无效。
第一部分 选择题(共30分)
一选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1. - 5的倒数为( )
A. 5 B 15 C -5 D -
15
2.2012年6月2日新疆科克苏湿地进行第四次生态补水,补水约46万米3,46万米3用科学记数法表示为( )
A.4.6×106
米3
B.4.6×105
米3
C.4.6×102
米3
D. 4.6×10米3
3.如图,是五个相同的小正方体搭成的几何体,其主视图是( )
4、下列运算中,结果正确的是( )
A. (-2y)3=-6y 3 B (-ab 2)3=-ab 6 C.(-a)3÷(-a 2)=a D .(12
)-1-22=2
5下列图形中既是轴对称图形又是中心对称图形的是( )
6.不等式组 的整数解为
A. 3 ,4 ,5
B.4 ,5
C. 3 ,4
D.5 ,6
7.已知∥O 1和⊙O 2的半径长分别是一元二次方程 x 2
-6x+8=0 的两个根,O 1O 2 =2, 则这两个圆的位置关系是( )
A 相离
B 相交
C 外切
D 内切
8.从-2,2,3这三个数中任取两个不同的数相乘,积为负数的概率是( ) A.
12
B.23
C.34
D.56
9.如图,过点P (2,3)分别作PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,PC 、PD 分别交反比例 函数 y=
2x
(x >0) 的图像于点A 、B ,则四边形BOAP 的面积为( )
A. 3
B. 3.5
C. 4
D. 5
10.如图,小浩从二次函数y=ax 2
+bx+c(a ≠0)的图像中得到如下信息:
①ab <0 ②4a+b=0 ③当y=5时只能得x=0 ④关于x 的一元二次方程ax 2+bx+c=10有两个不相等的实数根,你认为其中正确的有( )
A. 1个
B. 2个
C. 3个
D. 4个
第二部分 非选择题(共120分)
二、填空题(本题共8小题,每小题3分,共24分) 11.若分式
21
x x + 有意义,则x 的取值范围是 .
12.因式分解4x 2y-y 3= .
13.已知数据0,-1 ,1 ,a ,3 ,2的众数是3,则中位数为.
14.已知点A(-1,y1),B(-2,y2)在双曲线y=-
2
x
上,则y1y2.(填“<”或
“>”或“=”)
15.已知一副三角板如图(1)摆放,其中两条斜边互相平行,则图(2)中∠1= .
16.在一个不透明的盒子中装有2个红球和若干个白球,若再放进4个红球(盒子中所有球除颜
色外其它完全相同),摇匀后,从中摸出一个球,摸到红球的概率恰好是
2
3
,那么此盒子中原有
白球的个数是。
17.已知等腰三角形的两条边长分别为5cm和6cm,则此等腰三角形的周长为。
18.
ABCD的面积是16,对角线AC、BD相交于点O,点M1、N1、P1分别为线段
OD、DC、CO的中点,顺次连接M1N1、N1 P1、P1 M1得到第一个△P1 M1 N1,面积为S1,分
别取M1N1、N1P1、P1M1三边的中点P2、M2、N2,得到第二个△P2M2N2,面积记为S2,如此
继续下去得到第n个△P n M n N n,面积记为S n,则S n-S n-1= 。
(用含n的代数式
表示,n≥2,n为整数)
三、解答题(第19题10分,第20题12分,共22分)
19.先化简,再求值。
2
1
m
m+
-
2
2
21
1
m m
m
-+
-
÷
1
m
m
-
,其中 1
20.为了贯彻教育部关于中小学生“每天锻炼一小时”的要求,某市教育局做了一次随机抽样调
查,其内容是:(1)学生每天锻炼时间是否达到1小时;(2)学生每天锻炼时间未达到1小时
的原因。
随机调查了600名学生,把所得的数据制成了如下的扇形统计图和条形统计图(不完
整)
根据图示,回答以下问题:
(1)每天锻炼时间达到1小时的人数占被调查总人数的百分比是;
每天锻炼时间未达到1小时的人数占被调查总人数的百分比是;
每天锻炼时间未达到1小时的人数为人,其中原因是“时间被挤占”的人数
是人;
(2)补全扇形统计图和条形统计图;
(3)若该市现有中小学生约27万人,据此调查,可估计今年该市中小学生每天锻炼未达到1
小时的学生约有多少万人?
(4)从这次接受调查的学生中,随机抽取一名学生的“每天锻炼一小时”的情况,回答内容为
“时间被挤占”的概率是多少?
四、解答题(第21题12分,第22题12分,共24分)
21.如图,已知一次函数y=-
1
2
x+b的图像经过点A(2,3),AB⊥x轴,垂足为B,连接
OA。
(1)求此一次函数的解析式;
(2)设点P为直线y=-
1
2
x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q。
若S
△POQ
=
5
4
S△AOB,求点P的坐标。
22.如图,距小明家楼下D 点20米的B 处有一根废弃的电线杆AB ,经测得此电线杆与水平线DB 所成锐角为60○
,在小明家楼顶C 处测得电线杆顶端A 的俯角为30○
,底部点B 的俯角为45○(点A 、B 、D 、C 在同一平面内)。
已知在以点B 为圆心,10米长为半径的圆形区域外是一休闲广场,有关部门想把此电线杆水平放倒,且B 点不动,为安全起见,他们想知道这根电线杆放倒后,顶端A 能否落在休闲广场内?请通过计算回答。
(结果精确到0.1米,
≈1.414
1.732)
五、解答题(满分12分)
23.如图,AB 是⊙O 的直径,延长弦BD 到点C ,使DC=BD ,连接AC ,过点D 作DE ⊥AC,垂足为E 。
(1)判断直线DE 与⊙O 的位置关系,并证明你的结论;
(2)若⊙O 的半径为6,∠BAC=60○
,延长ED 交AB 延长线于点F ,求阴影部分的面积。
六、解答题(满分12分)
24.某大众汽车经销商在销售某款汽车时,以高出进价20%标价。
已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同。
(1)求该款汽车的进价和标价分别是多少万元?
(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆。
求该款汽车降价多少万元出售每月获利最大?最大利润是多少?
七、解答题(满分14分)
25.如图,在Rt △ABC 中,∠ACB=90○,∠ABC=30○。
点D 是直线BC 上的一个动点,连接AD ,并以AD 为边在AD 的右侧作等边△ADE.
(1)如图①当点E 恰好在线段BC 上时,请判断线段DE 和BE 的数量关系,并结合图①证明你的结论;
(2)当点E 不在直线BC 上时,连接BE ,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D 在直线BC 上移动的过程中,是否存在以A 、C 、D 、E 为顶点的四边形是梯形?如果存在,直接写出线段CD 的长度;如果不存在,请说明理由。
八、解答题(满分16分)
26.如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上。
(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120○,如果存在,请直接写出D点坐标;如果不存在,请说明理由。