卫东区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫东区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )
A.()||x f e x =
B.2()x x
f e e = C.2(ln )ln f x x = D.1(ln )f x x x
=+
【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.
2. 如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若
1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )
A.直线
B.圆
C.双曲线
D.抛物线
【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.
3. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则
()()
21
0x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,
,
C .()1-∞-,
D .()1+∞,
4. 阅读下面的程序框图,则输出的S=( )
A.14 B.20 C.30 D.55
5.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.7
6.若a=ln2,b=5,c=xdx,则a,b,c的大小关系()
A.a<b<cB B.b<a<cC C.b<c<a D.c<b<a
7.在下列区间中,函数f(x)=()x﹣x的零点所在的区间为()
A .(0,1)
B .(1,2)
C .(2,3 )
D .(3,4)
8. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( ) A
. B
. C
. D
.
9. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0
,则不等式>0的解集为( )
A .(﹣2,0)∪(2,+∞)
B .(﹣∞,﹣2)∪(0,2)
C .(﹣∞,﹣2)∪(2,+∞)
D .(﹣2,
0)∪(0,2)
10.方程x 2+2ax+y 2=0(a ≠0)表示的圆( ) A .关于x 轴对称
B .关于y 轴对称
C .关于直线y=x 轴对称
D .关于直线y=﹣x 轴对称
11.学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )
A .20种
B .24种
C .26种
D .30种
12.若函数()y f x =的定义域是[]
1,2016,则函数()()1g x f x =+的定义域是( )
A .(]
0,2016 B .[]0,2015 C .(]1,2016 D .[]1,2017 二、填空题
13.在矩形ABCD 中,=(1,﹣3),
,则实数k= .
14
.定积分
sintcostdt= .
15.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.
16
是 .
17.如果椭圆+
=1弦被点A (1)平分,那么这条弦所在的直线方程是 .
18.已知1a b >>,若log log a b b a + 三、解答题
19.已知函数f (x )=(log 2x ﹣2)()(1)当x ∈[2,4](2)若f (x )>mlog 2x 对于x ∈[4,S =T
20.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的
最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
21.(本小题满分12分)椭圆C :x 2a 2+y 2
b
2=1(a >b >0)的右焦点为F ,P 是椭圆上一点,PF ⊥x 轴,A ,B
是C 的长轴上的两个顶点,已知|PF |=1,k P A ·k PB =-1
2.
(1)求椭圆C 的方程;
(2)过椭圆C 的中心O 的直线l 交椭圆于M ,N 两点,求三角形PMN 面积的最大值,并求此时l 的方程.
22.在数列
中,
,
,其中
,
.
(Ⅰ)当时,求
的值;
(Ⅱ)是否存在实数,使
构成公差不为0的等差数列?证明你的结论; (Ⅲ)当时,证明:存在
,使得
.
23.(本小题满分13分)
设1
()1f x x
=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.
(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫
-⎨⎬-⎩⎭
为等比数列;
(Ⅱ)证明:存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
)
24.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.
卫东区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】D. 【
解
析
】
2. 【答案】C.
【解析】易得//BP 平面11CC D D ,所有满足1PBD PBX ∠=∠的所有点X 在以BP 为轴线,以1BD 所在直线为母线的圆锥面上,∴点Q 的轨迹为该圆锥面与平面11CC D D 的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点Q 的轨迹是双曲线,故选C. 3. 【答案】B 【解析】
试题分析:由
()()()()()2121
02102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()
()11-∞-+∞,,.
考点:1、函数的单调性;2、函数的奇偶性;3、不等式. 4. 【答案】C
【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4; S 5=30,i=5>4 退出循环, 故答案为C .
【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.
5.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6
…
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
6.【答案】C
【解析】解:∵a=ln2<lne即,
b=5=,
c=xdx=,
∴a,b,c的大小关系为:b<c<a.
故选:C.
【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.
7.【答案】A
【解析】解:函数f(x)=()x﹣x,
可得f(0)=1>0,f(1)=﹣<0.f(2)=﹣<0,
函数的零点在(0,1).
故选:A.
8.【答案】B
【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C63=20种,其中恰有两个球同色C31C41=12种,
故恰有两个球同色的概率为P==,
故选:B.
【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.
9.【答案】B
【解析】解:∵f(x)是偶函数
∴f(﹣x)=f(x)
不等式,即
也就是xf(x)>0
①当x>0时,有f(x)>0
∵f(x)在(0,+∞)上为减函数,且f(2)=0
∴f(x)>0即f(x)>f(2),得0<x<2;
②当x<0时,有f(x)<0
∵﹣x>0,f(x)=f(﹣x)<f(2),
∴﹣x>2⇒x<﹣2
综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)
故选B
10.【答案】A
【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),
∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,
故选:A.
【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.
11.【答案】A
【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;
甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;
甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;
甲班级分配5个名额,有1种不同的分配方案.
故共有10+6+3+1=20种不同的分配方案,
故选:A.
【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想.
12.【答案】B
【解析】
二、填空题
13.【答案】 4 .
【解析】解:如图所示,
在矩形ABCD 中,=(1,﹣3),,
∴=﹣
=(k ﹣1,﹣2+3)=(k ﹣1,1),
∴
•
=1×(k ﹣1)+(﹣3)×1=0,
解得k=4. 故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.
14.【答案】 .
【解析】解: 0sintcostdt=
0sin2td (2t )=
(﹣cos2t )|=×(1+1)=.
故答案为:
15.【答案】6
【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,
13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,
21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程
序结束.
16.【答案】 50π .
【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,
所以长方体的对角线就是球的直径,长方体的对角线为:,
所以球的半径为:;则这个球的表面积是: =50π.
故答案为:50π.
【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.
17.【答案】 x+4y ﹣5=0 .
【解析】解:设这条弦与椭圆
+
=1交于P (x 1,y 1),Q (x 2,y 2),
由中点坐标公式知x 1+x 2=2,y 1+y 2=2,
把P (x 1,y 1),Q (x 2,y 2)代入x 2+4y 2
=36,
得, ①﹣②,得2(x 1﹣x 2)+8(y 1﹣y 2)=0,
∴k=
=﹣,
∴这条弦所在的直线的方程y ﹣1=﹣(x ﹣1),
即为x+4y ﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y ﹣5=0.
故答案为:x+4y ﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
18
.【答案】 【解析】
试题分析:因为1a b >>,所以log 1b a >,又101101log log log log 33log 33
a b b b b b a a a a +=
⇒+=⇒=或(舍),
因此
3a b =,因为b a a b =,所以3
333,1b b b b b b b b a =⇒=>⇒=a b +=考点:指对数式运算
三、解答题
19.【答案】
【解析】解:(1)f (x )=(log 2x ﹣2)(log 4x ﹣)
=(log 2x )2﹣log 2x+1,2≤x ≤4
令t=log 2x ,则y=t 2
﹣t+1=(t ﹣)2﹣,
∵2≤x ≤4, ∴1≤t ≤2.
当t=时,y min =﹣,当t=1,或t=2时,y max =0.
∴函数的值域是[﹣,0].
(2)令t=log 2x ,得t 2
﹣t+1>mt 对于2≤t ≤4恒成立.
∴m <t+﹣对于t ∈[2,4]恒成立,
设g (t )=t+﹣,t ∈[2,4],
∴g (t )=t+﹣=(t+)﹣,
∵g (t )=t+﹣在[2,4]上为增函数, ∴当t=2时,g (t )min =g (2)=0, ∴m <0.
20.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,
②
①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*
n N ∈).
(5分)
21.【答案】 【解析】解:
(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2
b
2=1, ∴m =±b 2
a ,
∵|PF |=1 ,
即|m |=1,∴b 2=a ,①
又A ,B 的坐标分别为(-a ,0),(a ,0),
由k P A ·k PB =-1
2
得
b 2a
c +a ·b 2a c -a
=-12,即b 2=12a 2,②
由①②解得a =2,b =2,
∴椭圆C 的方程为x 24+y 2
2
=1.
(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =1
2
×22×2=
2.
当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±2
1+2k
2
,
∴y =±2k
1+2k 2
,
即M (21+2k
2
,
2k 1+2k
2
),N (
-21+2k
2
,
-2k 1+2k
2
),
∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭
⎪⎫4k 1+2k 22 =4
1+k 21+2k 2
,
点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =1
2
·
4
1+k 21+2k 2·|2k -1|
k 2+1
=2·|2k -1|1+2k 2
=2
2k 2+1-22k
1+2k 2
=2
1-22k 1+2k 2
, 当k >0时,22k 1+2k 2≤22k
22k =1, 此时S ≥0显然成立, 当k =0时,S =2.
当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1,
当且仅当2k 2=1,即k =-
2
2
时,取等号. 此时S ≤22,综上所述0≤S ≤2 2.
即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-2
2x .
22.【答案】
【解析】【知识点】数列综合应用 【试题解析】(Ⅰ)
,
,
.
(Ⅱ)
成等差数列,
,
即
,
,即
.
,
.
将,代入上式, 解得.
经检验,此时的公差不为0. 存在,使
构成公差不为0的等差数列.
(Ⅲ)
,
又
,
令.
由
,
,
……
, 将上述不等式相加,得
,即. 取正整数,就有
23.【答案】
【解析】解:证明:2
()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴211
2
22
11λλλλ⎧-=⎪⎨-=⎪⎩. ∵1
21111111
121222222221
11111n n n n n n n n n n
a a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分)
11120a a λλ-≠-,12
0λ
λ≠,
∴数列12n n a a λλ⎧⎫
-⎨
⎬-⎩⎭
为等比数列. (4分)
(Ⅱ)证明:设m =
()f m m =.
由112a =
及111n n
a a +=+得223a =,335a =,∴130a a m <<<. ∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分) 下面用数学归纳法证明:当n N *
∈时,2121222n n n n a a m a a -++<<<<. ①当1n =时,命题成立. (9分)
②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>
由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)
由①②知,对一切n N *
∈命题成立,即存在实数m ,使得对n N *
∀∈,2121222n n n n a a m a a -++<<<<.
24.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】
试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1
试题解析:(1)∵2230n S n n =-,
∴当1n =时,1128a S ==-.
当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-. ∴432n a n =-,n N +∈. (2)∵432n a n =-, ∴1270a a a <<
<,80a =,
当9n ≥时,0n a >.
∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用.。