一般电动机启动的方式。

合集下载

电动机的启动与控制方法

电动机的启动与控制方法

电动机的启动与控制方法电动机作为一种广泛应用于各个领域的动力设备,它的启动和控制方法是十分重要的。

本文将介绍几种常见的电动机启动和控制方法,并分析它们的特点和适用场景。

一、直接启动方法直接启动是最简单、最常见的电动机启动方法之一。

它通过将电源直接连接到电动机绕组,使电动机获得足够的起动转矩,从而实现启动。

这种方法的优点是简单可靠,操作方便,适用于小型、中型电动机。

但是直接启动会引起电网电压的瞬间下降,对电力系统造成较大冲击负荷,因此不适合对电动机有起动要求的大型设备。

二、星三角启动方法星三角启动是一种经典的电动机启动方法,它通过在启动过程中分两步改变电动机绕组的连接方式来减小启动时的起动电流。

首先将电动机的绕组接成星形,使其电流较大。

待电动机达到一定的转速后,再将其绕组接成三角形,使电流减小至额定运行电流,实现正常运行。

星三角启动方法适用于电动机容量较大的情况,可以减小启动时的电网冲击。

三、自耦变压器启动方法自耦变压器启动方法是一种常用的降低启动电流的方法。

它通过自耦变压器改变电动机绕组的电压,从而降低启动时的起动电流。

在启动阶段,自耦变压器先以较低的电压供电,待电动机达到一定转速后再切换回额定电压。

自耦变压器启动方法具有启动电流小、启动过程平稳的优点,适用于起动电流较大、对电网负荷影响较大的电动机。

四、变频启动方法变频启动是一种通过改变电动机供电频率来实现启动和控制的方法。

它利用变频器将电源频率转变为电动机所需的频率,可以调整电动机的转速和输出功率。

变频启动方法具有调速范围广、启动平稳、控制精度高等优点,适用于对启动平稳性和控制精度要求较高的场合,如电梯、风机等。

五、软启动方法软启动是一种通过控制器逐步增加电动机的起动电压来实现启动的方法。

它可以在启动过程中逐渐提高电压,减小启动时的冲击电流,从而保护电动机和电力系统。

软启动方法适用于电动机启动时起动电流较大、对电力系统稳定性要求较高的情况,如大型压缩机、水泵等设备。

直流电动机常用的启动方法

直流电动机常用的启动方法

直流电动机常用的启动方法直流电动机是一种常见的电动机类型,广泛用于各种工业生产与民用设备中。

对于直流电动机的启动方法,有很多种不同的选择,这些选择的依据包括电动机的型号、工作环境、驱动力矩的大小以及控制方式等因素。

下面是10种关于直流电动机常用的启动方法,并分别进行详细描述。

1. 电阻启动法电阻启动法是直流电动机最常见的启动方式,其原理是通过依次接入不同电阻来使电动机的起动电流随之逐渐减小。

当起动电流达到设定的安全范围之后,电阻便会逐渐减少,直到电机正常运行。

这种启动方式起动起来比较平稳,价格较为低廉。

电阻启动法需要使用大量的电阻器,造成能量的浪费。

2. 串联启动法串联启动法是一种将电动机的电源与电阻器串联连接在一起的启动方法。

与电阻启动法相似,它也是通过连续连接电阻器来降低电流的方法来启动电动机,与电阻启动不同的是,串联启动法每次只启动一个电阻器。

这种启动方式对电机来说更加低温,启动更加快速。

在起动阶段,会产生高电压,并且会造成能量的浪费。

3. 并联启动法并联启动法是一种将电动机的电源与电阻器并联连接在一起的启动方法。

并联启动法直接输入电机供电电压,通常需要通过控制继电器来控制电动机的启动。

这种启动方式比较经济实用,并且启动过程中对电机起动电流和电机结构的影响最小。

4. 自励磁通启动法自励磁通启动法是通过电机冷态下挂上外接的直流电源,使电机发生自励磁通,再接上负载进行启动。

这种启动方法具有启动电流小,启动时间短,启动前不需预充电等特点。

但是自励磁通启动方式不适用于需要一直处于低速转动状态的电机。

5. 逆励磁通启动法逆励磁通启动法是通过将直流电动机转子两端分别接上两个反向或相同的电极来实现启动的方法。

这种启动方式不需要任何外接电阻器和其他控制器等,启动过程非常快速。

在实际使用中,逆励磁通启动需要一定的起动电流,不利于电机的长时间运转。

6. 惯性位移启动法惯性位移启动法也称为惯性磁力启动法,是一种利用电机转子上的惯性力和轴承摩擦力产生的惯性磁力来实现启动的方法。

各种启动方式的特点

各种启动方式的特点

各种启动方式的特点低压电工2016-07-10 06:08原创作者:晓月池塘基础知识/各种启动方式的特点常见电动机启动方式有以下几种:1.全压直接启动;2.自耦减压起动;3.Y-Δ起动;4.软起动器;5.变频器启动。

目前软启动器和变频器启动为市场发展的潮流。

当然也不是必须要使用软启动器和变频器启动,以成本和适用性为主要参考,下面简要介绍各种启动方式的特点。

1全压直接起动:图一在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。

主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。

直接启动的优点是所需设备少,启动方式简单,成本低。

电动机直接启动的电流是正常运行的5倍左右,经常启动的电动机,提供电源的线路或变压器容量应大于电动机容量的5倍以上不经常启动的电动机,向电动机提供电源的线路或变压器容量应大于电动机容量的3倍以上。

这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。

对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网稳定运行不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。

2自耦减压起动:图二图三利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。

它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。

自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。

缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。

电动机的5种启动方式(图文)

电动机的5种启动方式(图文)
变频器能完成实现电机的软起软停,所以在相对负载较大的 场合,Y-Δ、自耦减压启动或软启动都比不上变频器。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
软启动,变频器,减压启动综合分析
价格问题自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。对于 投入较小的项目,经济性就会成为首选; 可控问题 Y-Δ、自耦减压启动简单,但仅仅只是启动。但在自动化程度高的 场合,估计就会使用得较少,甚至软起也少。而通过变频器调控 电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。 所以变频器在大型或自动化程度高的生产线就是首选了。
这是利用了可控硅的移相调压 原理来实现电动机的调压起动,主 要用于电动机的起动控制,起动效 果好但成本较高。因使用了可控硅 元件,可控硅工作时谐波干扰较大, 对电网有一定的影响。
另外电网的波动也会影响可控 硅元件的导通,特别是同一电网中 有多台可控硅设备时。因此可控硅 元件的故障率较高,因为涉及到电 力电子技术,因此对维护技术人员 的要求也较高适用于无载或者轻载起动的场合。并且同任何别的减压 起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时, 可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹 配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。

他励直流电动机的启动方法

他励直流电动机的启动方法

他励直流电动机的启动方法直流电动机是一种常用的电动机类型,其启动方法有多种,下面我将详细介绍几种常见的启动方法。

1. 直接启动法直接启动法是最简单和常见的直流电动机启动方法。

该方法的基本原理是将直流电源直接连接到电动机的电枢和电枢绕组中,从而使电动机产生转矩,实现启动。

该方法适用于小功率的电动机,特别是要求启动时间较短且转矩较小的场合。

2. 电阻启动法电阻启动法是在直接启动法的基础上增加起动电阻,通过起动电阻的调节来改变电动机的转矩和启动电流。

这样可以降低启动电流、减小对电源和电动机的冲击,同时延长电动机的寿命。

在启动时,起动电阻接入电枢回路,随着电动机转速的逐渐上升,逐渐减小起动电阻的接入量,直到全压法。

3. 电压变频启动法电压变频启动法是通过调节电压和频率来控制电动机启动的方法。

其主要原理是通过变频器将电源的固定电压和频率转换为可调的电压和频率,以实现电动机的平稳启动。

该方法适用于中小功率的电动机,并且可以实现起动转矩平稳调节,避免启动过程中的冲击和电动机的热保护。

4. 惰性启动法惰性启动法是一种通过改变电动机绕组接入方式,在启动时降低电枢电源电压减小电枢回路电阻,从而减小电动机启动时的起动电流和转矩。

该方法适用于对启动电流要求较小的场合,能够有效降低起动对电源和电动机的影响。

5. 自耦变压器启动法自耦变压器启动法是通过将变压器的辅助绕组与电动机连接,自耦变压器提供起动能时,使电动机实现先低压起动,再逐渐升压,从而保护电动机免受起动过程的冲击。

该方法适用于较大功率的电动机,能够提供较稳定的起动性能和较小的启动电流。

总的来说,直流电动机的启动方法有多种,根据实际需求和电动机的特性选择合适的启动方法非常重要。

不同的启动方法有各自的优缺点,需要根据具体情况进行选择。

在实际应用中,还可以根据需要采用多种启动方法的组合,以达到更好的启动效果和保护电动机的目的。

电动机常用的启动方法

电动机常用的启动方法

电动机常用的启动方法
电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法、变频启动法等。

1. 直接启动法
直接启动法是最简单、最常见的电动机启动方法。

即将电动机直接连接到电源,通过闭合启动电机的电源开关来完成启动。

这种方法适用于起动转矩小、机械负载较小的电动机。

2. 自耦变压器启动法
自耦变压器启动法是使用自耦变压器来降低电动机启动时的电压,以减小启动电流并提高电动机的转矩。

自耦变压器启动法适用于起动转矩较大、起动时需限制电流的电动机。

3. 星三角启动法
星三角启动法是将电动机启动时的绕组连接方式从星型切换到三角形,以降低启动时的电流,减小电动机起动时对电网的影响。

星三角启动法适用于起动转矩较大的电动机。

4. 电阻启动法
电阻启动法是通过在电动机绕组中串联电阻,降低电动机的起动电压,以减小启动时的电流和起动转矩,保护电动机和负载设备。

适用于起动转矩较大、负载设
备对起动电流敏感的电动机。

5. 变频启动法
变频启动法是通过变频器来调整电源频率,通过改变电动机的转速来改变电动机的转矩和起动特性。

变频启动法适用于需要控制电动机启动转矩和速度的场合,如需要在启动过程中缓慢加速和平稳运行的电动机。

总结来说,电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法和变频启动法。

不同的启动方法适用于不同的电动机起动特性和负载要求。

需要根据具体的工作需求和负载情况选择最合适的启动方法,以保障电动机的正常运行和负载设备的安全运行。

直流电机的启动方法

直流电机的启动方法

直流电机的启动方法直流电机的启动方法有很多种,以下将详细介绍几种常见的启动方法。

1. 直流电机的直接启动:直接将直流电源连接到直流电机的绕组,使其获得足够的电压和电流来启动。

这种方法简单直接,适用于小功率的直流电机。

但是,直接启动会产生较大的启动电流冲击,可能造成电网压降和电机烧毁。

2. 利用电阻启动:在直流电机的电源回路中添加一个外部电阻,通过调节电阻的大小来控制启动电压和电流。

启动时,先将电阻接入电路,限制初始电流,待电机达到设定转速后,再逐渐减小电阻的值,使电机获得全额电压。

这种方法可以减小启动时的电流冲击,保护电网和电机。

3. 利用变压器启动:通过变压器来调整电源电压,控制启动电机的电流。

在启动时,通过变压器将电机所需的启动电流限制在可接受范围内,待电机转速达到一定值后,逐渐增加变压器输出的电压,使电机获得额定电压。

这种方法适用于大功率电机的启动,可以减小电网负荷和电机启动时的电流冲击。

4. 利用电容启动:在直流电机的电源回路中添加一个起动电容,通过起动电容的电势差产生的电流相位差,使电机启动。

起动电容可以改变电机线路的相位,相当于改变了电压和电流的相对位置,从而产生助力启动的效果。

这种方法适用于小功率的直流电机,可以减小启动电流和启动扭矩。

5. 利用外加转矩启动:当电机的起动扭矩较大,超过了电机自身的启动扭矩时,可以通过外加转矩的方式来启动电机。

常见的外加转矩启动方法有电动机激励、外驱励、机械传动等,通过这些方式施加外力或外磁场,使电机获得足够的启动扭矩。

这种方法适用于启动难度较大或启动时负载较大的直流电机。

需要注意的是,不同的启动方法适用于不同规格和功率的直流电机,选择合适的启动方法可以保障电机的正常启动运行。

在选择启动方法时,需要综合考虑电机额定功率、转速、负荷情况以及所在工作环境等因素,并遵循电机制造商提供的启动参数和指导。

此外,在启动过程中要注意避免过载和过电流现象的发生,及时检查电机的运行状态和工作温度,确保电机的安全运行。

常用电动机起动方式比较表

常用电动机起动方式比较表

4 软起动
软起动器设备价格仅次于变频器软起 动。但随着软启动技术越来越成 适用于不需要调速的、起动转矩大的电动机。起 熟,其综合成本越来越低,多数已 动时工作,起动后退出。 经低于自耦减压起动,甚至低于Y/ △起动。
在低速时可以任意调节电动机转矩, 起动转矩可达150%的额定转矩,也可 以恒转矩起动电动机,起动电流可限 制在1.5倍额定电流以内。可以软停 5 变频器软起动 车。变频器软启动更在于能够根据需 求调节电机运行频率与提高功率因 数,具有刹车制动功能,满足高精尖 的各种工艺要求,降低能耗,特别是 风机泵类应用上有显著的节能效果。
运行时在电源测产生谐波电流,使电 压、电流波形畸变,影响电能质量, 适用于需要调速的、起动转矩大的电动机;具有 干扰电子设备的正常工作。设备价格 节能降耗条件的风机泵类电机。 比Y/△起动、自耦减压起动、软起动 起动及运行过程中一直工作。 设备高。
2 Y/△起动
通过降低电压(60%Ue、80 Ue),恒 起动过程中电动机冲击电流较大,冲 压起动。起动电流小,起动转矩较 3 自耦减压起动 击转矩大,不能频繁起动。允许连续 适用于大中容量电机的起动。 大,设备价格较Y/△起动高,但性价 起动2~3次。 比较优,得到广泛应用。 通常为斜坡电压起动,也可突跳起 动;起动电流、起动转矩。上升下降 的时间可调,有多种控制方式 ;可 带ห้องสมุดไป่ตู้种保护;允许起动次数较高;可 以使电机“柔性”起动, “柔性” 停止,是一种电机电压平滑上升的无 级减压起动模式,减缓了起动时造成 的机械和电气冲击。
常用电动机起动方式比较表
序号 启动方式 优点 缺点 备注 1 直接启动 起动电流大(4~7Ie),对电网冲击大 全压起动,线路简单,设备价格最低。 适用于小容量(7.5Kw以下)电动机的起动。 。 起动过程中二次冲击电流大,冲击转 起动时为分步跳跃上升的恒压起动, 矩大。电机电缆线需要6+1,需要考 起动电流小,起动转矩小,允许起动 适用于定子绕组为三角形接线的中小型电机的起 虑电缆成本,控制柜与电机距离稍 次数较高。设备价格较低,技术成 动。 远就会造成整体成本与软启动差不 熟,应用较广。 多甚至超过。

电动机的启动方式与起动装置选择研究

电动机的启动方式与起动装置选择研究

电动机的启动方式与起动装置选择研究电动机是现代工业中最常见的一种驱动设备,它能将电能转化为机械能,广泛应用于各个领域。

电动机的启动方式以及起动装置的选择对电动机的运行效果、工作寿命以及能源利用效率等方面都具有重要影响。

因此,研究电动机的启动方式与起动装置选择是提高电动机性能的关键之一。

一、电动机的启动方式电动机的启动方式主要有直接启动、自耦启动、星三角启动、变压器启动和电阻启动等。

1. 直接启动直接启动是指将电动机直接连接到电源,通过开关控制电动机启动。

这种启动方式简单方便,但启动电流大,容易造成电网压降和电动机设备损坏。

2. 自耦启动自耦启动通过降低电动机接线装置的电压,从而降低电动机的启动电流。

这种启动方式能减少启动电流对电网压降的影响,但启动转矩较小。

3. 星三角启动星三角启动是一种较为常用的启动方式,它通过启动器将电动机的绕组连接在星形和三角形两种不同的接线方式下,实现启动和正常运行之间的切换。

这种启动方式适用于中小型电动机,能够减小启动电流,但启动转矩也较小。

4. 变压器启动变压器启动通过变压器将电动机供电电压降低到其额定电压的一部分,从而降低启动电流。

这种方式适用于大型电动机,能够减少对电网的冲击,但成本较高。

5. 电阻启动电阻启动通过在电动机转子绕组中串联电阻来降低电动机的起动电流。

这种启动方式适用于大型电动机,能够控制电动机的启动转矩和电流,但能效较低。

二、起动装置选择研究起动装置的选择对电动机的启动方式以及启动效果起着关键性作用。

根据电动机功率、负载特性以及启动要求等方面的不同,可以选择不同的起动装置。

1. 直接启动器直接启动器适用于功率较小、负载较轻的电动机。

它结构简单,操作方便,但对电网冲击较大。

2. 自耦变压器启动器自耦变压器启动器适用于负载特性较重、启动转矩要求较高的电动机。

它通过变压器来降低电动机的启动电流,保护电动机和电网免受大电流的冲击。

3. 软起动器软起动器是一种采用电子器件控制的起动装置,适用于对电动机启动过程中起动转矩和电流有严格要求的情况。

如何选择电动机的启动方式

如何选择电动机的启动方式

如何选择电动机的启动方式?
电动机的启动方式有两种:
1、直接启动
直接启动就是利用闸刀开关或接触器把电动机直接接到具有额定电压的电源上。

这种启动方式的优点是操作和启动设备简单,启动快。

但对一台电动机是否能够采用直接启动,还受电网容量的限制。

因为直接启动时,电动机加的是额定电压,旋转磁场较强,转子切割磁力线的速度又很快,所以启动电流很大,是额定电流的4~7倍。

这样大的电流通过线路会造成较大的电压降。

由于转矩与电压平方成正比,电网电压降低会使电动机因本身启动转矩减小而不能启动,此外还会影响电网上其它电器的正常工作(如电灯突然变暗、正在工作的电动机突然停止转动等)。

如果电动机功率较小,上述问题还不太突出。

通常,电动机功率在7KW以下的可以直接启动。

随着电力系统容量的不断增大,鼠笼式感应电动机采用直接启动的也越来越多。

目前有些地区确定10KW以下的电动机都可采用直接启动。

2、降压启动
降压启动是当电源的容量不够大时所采用的启动方法。

在启动时通过一定的设备使加到电动机上的电压适当降低,这样旋转磁场就要减弱,转子电流与定子电流都会随着减少,直到电动机转速稳定后,再使电动机在额定电压下正常运转。

降压启动时,电动机启动转矩也
降低了,所以降压启动只适于对启动转矩要求不高的场合。

电动机的启动方式与起动器选择

电动机的启动方式与起动器选择

电动机的启动方式与起动器选择电动机是现代社会中非常常见的一种电气设备,广泛应用于各个领域,如工业生产、交通运输、农业等。

而电动机的启动方式和起动器选择直接关系到电动机的性能和使用效果。

本文将探讨电动机的几种启动方式和对应的起动器选择,以帮助读者更好地理解和应用电动机。

一、电动机的启动方式1. 直接启动直接启动是电动机最简单、最常见的启动方式之一。

它的原理是电动机直接将电能转化为机械能,从而使电动机启动。

直接启动适用于小功率电动机,因为小功率电动机通常只需要短时间的加速和启动。

直接启动的优点是结构简单、成本低,但缺点是启动时电流峰值较大,对电网冲击较大。

2. 步进启动步进启动是通过逐渐增加电动机的起动线圈来实现电动机的启动。

可以根据电动机的负载情况和启动要求来调整步进启动的步进程度。

步进启动的优点是可以减小启动过程中的启动电流,避免电动机和电网的冲击,提高电动机的使用寿命。

但步进启动的缺点是启动过程时间较长。

3. 磁阻启动磁阻启动是通过在电动机的转子上加装磁阻器,改变电动机的转矩特性,实现电动机的启动。

磁阻启动适用于大功率电动机,因为大功率电动机的启动电流较大,需要通过加装磁阻器来实现缓慢启动,以减小对电网的冲击。

磁阻启动的优点是启动电流小,启动过程平稳,但缺点是成本较高,在实际应用中需谨慎选择。

二、起动器的选择起动器是用来控制电动机启动和停止的装置,通常由接触器、断路器和保护装置组成。

根据电动机的启动方式和使用要求,可以选择合适的起动器来实现电动机的安全启动和停止。

1. 直接启动器直接启动器适用于小功率电动机的直接启动方式。

它包括一个接触器和断路器,通过手动或自动控制,将电能直接输送给电动机,实现电动机的启动和停止。

直接启动器的优点是结构简单、使用方便,但缺点是适用范围有限。

2. 自动起动器自动起动器适用于中、大功率电动机及需要较长启动时间的电动机。

自动起动器包括接触器、断路器、保护装置和计时器等,通过设定启动时间和启动过程中的电流变化,控制电能的逐步输入,实现电动机的平稳启动和停止。

电机启动原理

电机启动原理

电机启动原理
电机启动是指将电动机从静止状态转变为运行状态的过程。

电机启动原理是电
机工作的基础,对于电机的正常运行具有重要的意义。

电机启动的原理可以分为直流电机启动原理和交流电机启动原理两种。

直流电机启动原理:
直流电机的启动原理主要是利用电动机的电磁感应原理。

当直流电机通电后,
电流通过电枢产生磁场,同时在电枢中产生转矩,使电机开始转动。

直流电机启动时,需要通过外部电源施加电压,以激励电机产生电磁力,从而实现电机的启动。

交流电机启动原理:
交流电机的启动原理主要包括了直接启动、星角启动、自耦启动和变压器启动
等方式。

其中,星角启动是最常用的一种方式。

在星角启动中,电机首先以星形连接启动,当电机达到一定转速后,再切换为三角形连接运行。

这种启动方式可以减小电机的启动电流,降低对电网的冲击。

电机启动原理的应用:
电机启动原理在实际工程中有着广泛的应用。

例如,在工业生产中,电机的启
动是生产过程中必不可少的一环,合理的启动方式可以有效降低电机的启动电流,减小对电网的影响,延长电机的使用寿命。

在家用电器中,电机启动原理也被广泛应用,例如空调、洗衣机、冰箱等家电产品都离不开电机的启动。

总结:
电机启动原理是电机工作的基础,了解电机启动原理对于提高电机的启动效率、延长电机的使用寿命具有重要意义。

在实际应用中,根据不同的电机类型和启动需求,选择合适的启动方式是至关重要的。

只有充分理解电机启动原理,才能更好地
应用于实际生产和生活中,提高电机的工作效率,减少能源消耗,促进工业生产的可持续发展。

电机的五种启动方式

电机的五种启动方式

电机的五种启动方式
电机的五种启动方式包括:
1.全压直接启动:在电网容量和负载两方面都允许全压直接启动的情况下,可
以考虑采用全压直接启动。

这种方式操作控制方便,维护简单,且成本较低,主要用于小功率电动机的启动。

2.自耦减压启动:利用自耦变压器的多抽头减压,既能适应不同负载启动的需
要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。

3.Y-Δ启动:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,
如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻对电网的冲击。

这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ 启动)。

4.软启动器:利用可控硅的移相调压原理来实现电动机的调压启动,主要用于
电动机的启动控制,启动效果好但成本较高。

5.变频器:是现代电动机控制领域技术含量最高、控制功能最全、控制效果最
好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。

在实际应用中,应根据电机的具体参数、使用环境、负载大小和需求来选择合适的启动方式。

电动机的启动方式与控制方法

电动机的启动方式与控制方法

电动机的启动方式与控制方法电动机作为现代工业领域中最为常见的动力装置之一,广泛应用于各行各业。

在工业生产中,为了确保电动机的正常运行,正确的启动方式和控制方法是至关重要的。

本文将探讨电动机的启动方式和控制方法,旨在帮助读者更好地理解和应用电动机。

一、电动机的启动方式1. 直接启动方式直接启动是最简单、最常见的启动方式之一。

通过将电动机的定子绕组与电源直接连接,使电动机在启动时直接接受电源供电。

这种方式适用于小功率电动机,并且操作简单、成本低廉。

然而,直接启动方式存在启动电流大、启动冲击力大等缺点,容易对电网产生冲击,因此在大功率电动机启动中较为少见。

2. 死点启动方式死点启动方式是通过调整电动机绕组的初始位置,使其处于死点位置,然后再启动电动机,借助电机自身的转矩将电机带动起来。

这种方式可以减小启动电流,减少启动冲击,对电网的影响较小,适用于中小功率的电动机。

3. 变压器启动方式变压器启动方式是通过在电动机的起动电源线路上串接变压器来降低电源电压,从而减小启动时的电流和冲击。

该方式使得电动机可以以较低的电压启动,在启动后逐渐恢复到额定电压。

这种方式适用于大功率电动机,能够有效降低对电网的冲击影响。

4. 变频启动方式变频启动方式是通过变频器控制电动机的转速和转矩来实现启动。

变频器可以调节电源频率,从而改变电动机的输出转速和扭矩。

该方式具有启动平稳、调速范围广、对电网影响小的特点,适用于对启动平稳性要求较高的场合。

二、电动机的控制方法1. 直接启动控制方法直接启动控制方法是最简单的电动机控制方式。

通过开关控制电动机的启停,达到控制电动机运行和停止的目的。

这种控制方法操作方便,成本低廉,适用于工作环境稳定、负载变化较小的场合。

2. 自耦变压器控制方法自耦变压器控制方法是通过自耦变压器实现对电动机的启动和停止控制。

通过改变电源输入电压、变压器绕组的联接方式来实现不同的启动方式,如星-三角启动等。

这种控制方法可以减低电源的冲击,保护电动机和负载。

10kv高压电机的启动方法

10kv高压电机的启动方法

10kv高压电机的启动方法
10kV高压电机可以采用以下几种启动方式:
1. 直接启动:在全电压条件下直接启动电机。

如果电网条件允许,可以采用直接启动。

但在实际生产过程中往往由于电网容量有限,很少采用直接启动。

2. 串联电抗器启动:在电机启动的时候串入电抗器,以限制和降低电机启动时的启动电流及电网压降。

当电机运行稳定且电流达到一定值时,切除电抗器变为电机直接启动模式。

3. 自耦变压器启动:电动机启动时利用自耦变压器来降低加在电动机定子绕组上的启动电压。

待电动机启动后,再使电动机与自耦变压器脱离,从而在全压下正常运行。

4. 液体电阻软启动:通过在回路中串入可变的液态电阻来分担部分压降。

这种方式包括热变电阻启动和液阻启动。

这些启动方式各有优缺点,需要根据电机的具体情况以及电网的条件进行选择。

同时请注意,启动方式的选择需要专业人员进行评估和决定。

直流电动机的启动方法

直流电动机的启动方法

直流电动机的启动方法一、直流电动机的启动方法1. 直接启动法直接启动法是最简单的直流电动机启动方法。

它的步骤很简单,只需要将直流电源的正极和负极依次连接到电动机的正、反极上即可实现启动。

这种方式的优点是简单、方便,缺点是启动过程冲击大、机械负载大,不能应对过大负载的启动。

2. 电阻启动法电阻启动法在直接启动法的基础上增加了电阻,使得电动机在启动初期可以经过一段时间的缓慢的逐渐加速,以减少启动时的机械冲击和电力冲击。

其步骤是在启动时先通过外接的电阻将电动机两端的电阻增加,然后再逐渐减小电阻的过程中逐渐加速电动机。

这种启动法可以有效保护电动机和减少启动冲击,但启动时间比较长,效率也比较低。

3. 自耦变压器启动法自耦变压器启动法是通过改变供电电压来实现电动机逐步加速的方式。

其步骤是在启动时,先将电动机连接到一个较低电压的电源上,逐渐加大电源电压,直到达到额定电压后,自耦变压器自动退出,电动机进入正常运行状态。

这种启动方式可以有效降低启动冲击和保护电动机,同时又可以缩短启动时间和提高启动效率。

4. 电子软启动器启动法电子软启动器启动法是一种较新的启动技术,它是通过控制电机电流的方式实现电动机的逐步加速。

其步骤是在启动时,先将电子软启动器控制电路内的电阻逐渐减小,同时逐渐增加输出电压,从而实现电动机的逐步加速。

这种方式具有启动平稳、启动时间短、机械冲击小、维护成本低等优点,已经逐渐普及应用于各种设备中。

二、各个环节详细描述1. 直接启动法的详细描述直接启动法是最简单的电动机启动方法之一,虽然简单,但缺点明显,首先启动冲击大,其次不能应对过大的负载启动。

因此在现实应用中,直接启动法很少用到,只有在特殊场合会用到。

在启动时,只需将直流电源的电极连接到电动机的正极和负极即可,电流通过电动机后,电动机自身的电刷与转子之间的电磁作用使得电动机旋转,从而实现启动。

2. 电阻启动法的详细描述电阻启动法是在直接启动法的基础上增加了电阻,通过改变电动机电阻的大小来控制电动机的加速度,以减小启动时的机械冲击和电力冲击。

电机启动方式及运行注意事项

电机启动方式及运行注意事项

• (1)电机一般设计在海拔不超过1000m,环境空气温度 不超过40℃的地点运行。 • (2)电机在额外电压变化±5%以内时,可以按额定定率 连续运行。如果电压变动超过±5%时,则应按制造厂的规 定或试验结果限制负载。 • (3)运行中电机的温升应遵照制造厂的规定,缺乏此相 资料时,可参照表1-1的规定。 • (4)对短时定额的电机,其各部分的温升限值允许较表12中规定的数值提高10K。 • (5)滑动轴承的容许温度为80℃(油温不高于65℃时)。 滚动轴承的容许温度为95℃(环境温度不超过40℃)。 • 7、电机的允许振动值(双振幅)见表1-2
二、电机在运行中的注意事项
• 起动前操作人员检查: • 1、电动机及所带设备上确认无人工作、电机机身 干净整洁、周围区域内无杂物(编织袋、塑料 袋等易堵住电机风道的物品)。 • 2、有条件的尽量盘动联轴器,确认电机与所带设 备转动无卡涩现象。 • 3、将现场控制电机的主令控制器(开关)置于 “运行”位置。 • 4、对于有DCS控制的泵机,现场需要开机时,开 机前要与DCS中控室联系,要求DCS解除锁停, 得到中控室确认后方可启动电机。
• 4、变频器 变频器是现代电动机控制领域技术含量最高,控 制功能最全、控制效果最好的电机控制装置,它 通过改变电网的频率来调节电动机的转速和转矩。 因为涉及到电力电子技术,微机技术,因此成本 高,对维护技术人员的要求也高,因此主要用在 需要调速并且对速度控制要求高的领域。
各种启动方式的比较
• 5、电动机原则上不允许带负荷起动,特别是风机、 水泵等重载设备,虽然有些电机带负载也能启动, 但是启动时间长、启动电流大,容易引起电机保 护器误动作,因此操作人员起动此类设备时一定 要将负载脱开。(如启动水泵要先将出口阀门关 闭,并打开进口阀门。将电机在轻载状态下启动 后,再平稳的打开出口阀门,同时观测运行电流 和转速声音,监视起动过程,发现异常立即停止 运行,并通知维修人员进行检查)。

5000kw电动机启动方法

5000kw电动机启动方法

5000kw电动机启动方法一、引言5000kw电动机作为一种大功率电动机,其启动过程需要经过一系列的步骤和控制手段来确保安全可靠。

本文将介绍5000kw电动机的启动方法,帮助读者了解如何正确使用和操作这种电动机。

二、直接启动法直接启动法是最简单、最常用的启动方法之一。

其原理是将电动机直接连接到电源,通过控制电源的开关来实现启动和停止。

具体步骤如下:1. 检查电动机和电源的连接是否正确,确保所有接线牢固可靠。

2. 打开电源开关,将电流导通至电动机,电动机开始运转。

3. 监测电动机的运行状态,确保其运行正常。

4. 当需要停止电动机时,关闭电源开关,切断电流供应。

直接启动法简单、方便,但对电动机和电源的冲击较大,容易造成电流瞬间过大,影响电网的稳定性。

因此,在实际应用中,一般只适用于功率较小的电动机。

三、自耦变压器启动法自耦变压器启动法是一种通过自耦变压器来限制电动机起动时的电流冲击的启动方法。

具体步骤如下:1. 将自耦变压器正确接入电源和电动机的电路中,确保接线正确。

2. 打开自耦变压器的输入开关,将电流逐渐导入电动机,从而实现电动机的启动。

3. 当电动机达到正常运行速度后,逐渐调整自耦变压器的输出电压,将电动机连接到额定电压上。

4. 监测电动机的运行状态,确保其运行正常。

5. 当需要停止电动机时,先调整自耦变压器的输出电压至最低,再关闭自耦变压器的输入开关。

自耦变压器启动法能有效降低电动机起动时的电流冲击,减轻对电网的影响,但由于使用了自耦变压器,增加了设备的复杂性和成本。

四、星-三角启动法星-三角启动法是一种通过改变电动机的绕组连接方式来降低起动电流的启动方法。

具体步骤如下:1. 将电动机的绕组接线方式从星形调整为三角形。

2. 打开电源开关,将电流导通至电动机,电动机开始以较低的电流启动。

3. 等电动机达到正常运行速度后,再将绕组接线方式从三角形调整回星形,将电动机连接到额定电压上。

4. 监测电动机的运行状态,确保其运行正常。

接触器星三角接法

接触器星三角接法

接触器星三角接法接触器星三角接法,又称为星形-三角形启动,是一种常见的电动机启动方式。

该接法主要用于降低电动机启动时的电流冲击,减少对电网的影响,并允许电动机在较低的电压下启动,随后平稳过渡到正常运行状态。

本文将详细探讨接触器星三角接法的原理、特点、应用以及在实际操作中需要注意的事项。

一、星三角接法的原理星三角接法的基本原理是通过改变电动机定子绕组的接线方式,来实现电动机启动时的降压启动和正常运行时的全压运行。

在启动阶段,电动机定子绕组接成星形(Y 接法),此时每相绕组承受的电压为正常电压的1/√3,即约为正常电压的57.7%。

由于电压降低,电动机启动时的电流也会相应减小,从而降低了对电网的冲击。

当电动机转速接近额定转速时,通过接触器切换,将定子绕组从星形接法改为三角形(Δ接法),使电动机在全压下运行,保证了电动机的正常工作效率。

二、星三角接法的特点1. 电流降低:星形启动时,电流仅为直接启动时的1/3左右,有效减轻了电网的负荷。

2. 启动平稳:通过降压启动,电动机的转矩逐渐增大,避免了直接启动时的大电流冲击和机械冲击。

3. 设备简单:与其他降压启动设备相比,星三角启动器结构简单,维护方便,成本低廉。

4. 适用广泛:适用于无特殊要求的笼型异步电动机的空载或轻载启动。

三、星三角接法的应用星三角接法广泛应用于各种需要降低启动电流的场合,如:水泵、风机、压缩机等设备的电动机启动。

在这些场合中,由于电动机启动时的电流较大,直接启动可能会对电网造成较大的冲击,甚至引起电网电压的波动。

采用星三角接法后,可以有效降低启动电流,减少对电网的影响,保证设备的正常运行。

四、操作注意事项在实际操作中,使用接触器星三角接法时需要注意以下几点:1. 接触器选择:应选用具有足够容量和适当开断能力的接触器,以保证在切换过程中不会产生电弧或烧毁接触器。

2. 切换时机:应在电动机转速达到一定值后(一般为额定转速的80%~90%),再进行星形到三角形的切换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气作业人员最熟悉的电动设备应该就是电动机了,电动机在启动的时候有很多种方式,包括直接启动,自耦减压起动,Y-Δ降压启动,软启动器启动,变频器启动等等方式。

那么他们之间有什么不同呢?
一,一般电动机启动的方式。

1,全压直接起动。

在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。

优点是操纵控制方便,维护简单,而且比较经济。

主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw 的电动机不宜用此方法。

2,自耦减压起动。

利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。

它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。

并且可以通过抽头调节起动转矩。

至今仍被广泛应用。

3,Y-Δ 起动。

对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,如果在起动时将定子绕组接成星形,待起动完毕后再接成三角形,就可以降低起动电流,减轻它对电网的冲击。

这样的起动方式称为星三角减压起动,或简称为星三角起动(Y-Δ 起动)。

采用星三角起动时,起动电流只是原来按三角形接法直接起动时的1/3。

如果直接起动时的起动电流以6~7Ie 计,则在星三角起动时,起动电流才2~2.3 倍。

这就是说采用星三角起动时,起动转矩也降为原来按三角形接法直接起动时的1/3。

适用于无载或者轻载起动的场合。

并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

4,软起动器。

这是利用了可控硅的移相调压原理来实现电动机的调压起动,主要用于电动机的起动控制,起动效果好但成本较高。

因使用了可控硅元件,可控硅工作时谐波干扰较大,对电网有一定的影响。

另外电网的波动也会影响可控硅元件的导通,特别是同一电网中有多台可控硅设备时。

因此可控硅元件的故障率较高,因为涉及到电力电子技术,因此对维护技术人员的要求也较高。

5,变频器。

变频器是现代电动机控制领域技术含量最高,控制功能最全、控制效果最好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。

因为涉及到电力电子技术,微机技术,因此成本高,对维护技术人员的要求也高,因此主要用在需要调速并且对速度控制要求高的领域。

二,减压启动,软启动,变频启动的优缺点对比。

减压启动,常见的是星-三角启动,缺点是启动力矩小,仅适用于无载或轻载启动。

优点是,价格便宜。

软启动,可以设置启动时间和起动初始力矩对设备实现软启动与软停止,并能限制起动电流,价格适中。

变频起动,能根据设定时间平滑启动,并让设备运行在设定频率,价格较高。

三,软启动,变频器,减压启动性能原理对比。

1、软启动器是晶闸管交流调压技术与功率因数控制技术的结合,是通过晶闸管调压实现电机软启动、软停车,不具备调速功能.
2、变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电机控制(调速)装置。

通过变频控制电机运行(电压也随频率变化,如v/f恒定),是真正的高效调速方式,效率很高。

变频器能够实现真正的软启动、软停止和高效调速。

3、减压启动一般常见的方式是自耦减压起动和Y-Δ 起动两种,自耦减压起动它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%。

并且可以通过抽头调节起动转矩。

至今仍被广泛应用。

Y-Δ适用于无载或者轻载起动的场合。

并且同任何别的减压起动器相比较,其结构最简单,价格也最便宜。

除此之外,星三角起动方式还有一个优点,即当负载较轻时,可以让电动机在星形接法下运行。

此时,额定转矩与负载可以匹配,这样能使电动机的效率有所提高,并因之节约了电力消耗。

四,软启动,变频器,减压启动综合分析。

1、价格问题。

自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。

对于投入较小的项目,经济性就会成为首选;
2、可控问题。

Y-Δ、自耦减压启动简单,但仅仅只是启动。

但在自动化程度高的场合,估计就会使用得较少,甚至软起也少。

而通过变频器调控电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。

所以变频器在大型或自动化程度高的生产线就是首选了。

3、组网通讯。

变频器本身可以通过自身集成的或扩展的通讯口实现网络监控。

软起还能做一些监控,但要实现电机的实时监控,也是减压启动、软启动所不能比拟的。

4、维护方面。

由于Y-Δ、自耦减压启动本身就比较简单,自然维护起来也最简单。

我其实很反对使用软起,如果不选择变频器,肯定会直接选择Y-Δ或自耦减压启动。

5、变频器能完成实现电机的软起软停,所以在相对负载较大的场合,Y-Δ、自耦减压启动或软启动都比不上变频器。

五,补充知识对比。

1:软启动器和变频器。

变频器和软启动设备都属于降压启动范畴. 变频器是通过改变频率达到降压启动的目的。

软启动是通过改变晶闸管的导通角来达到由电压0到全电压的启动过程
变频器是全程控制,而且可以由仪表信号来控制任何时段的电机转速,软启动器只能在电机启动和停止是起到降压的目的。

2:电机启动方式大类比。

电动机启动常用方法:全压直接启动、自耦减压启动、Y-Δ启动、软启动、变频启动等。

在电网和负载两方面都允许的情况下,电动机以直接启动为宜,因为操纵控制方便,而且比较经济。

自耦减压启动经常被用来启动较大容量鼠笼式异步电动机,虽然自耦减压启动是一种老式的起动设备,但利用自耦变压器的多抽头减压,既能适应多种负载起动的需要,又能得到更大的起动转矩,加之还因装设有热继电器和低电压脱扣器而具有完善的过载和失压保护而被广泛应用。

星三角起动方式电流特性很好,而转矩特性差,故只适应于无载或轻载起动的场合,但这种方式结构最简单,价格最便宜,在轻载运行中可以节约电力消耗。

以上这些起动方式都属于有级减压起动,存在明显缺点,即起动过程中出现二次冲击电流。

3:软起动与传统减压起动方式对比。

软起动与传统减压起动方式的不同之处是:
①无冲击电流。

软起动器在起动电机时,通过逐渐增大晶闸管导通角,使电机起动电流从零线性上升至设定值。

对电机无冲击,提高了供电可靠性,平稳起动,减少对负载机械的冲击转矩,延长机器使用寿命。

②有软停车功能,即平滑减速,逐渐停机,它可以克服瞬间断电停机的弊病,减轻对重载机械的冲击,避免高程供水系统的水锤效应,减少设备损坏。

③起动参数可调,根据负载情况及电网继电保护特性选择,可自由地无级调整至最佳的起动电流。

软起动器和变频器是两种完全不同用途的产品。

变频器是用于需要调速的地方,其输出不但改变电压而且同时改变频率;软起动器实际上是个调压器,用于电机起动时,输出只改变电压并没有改变频率。

变频器具备所有软起动器功能,但它的价格比软起动器贵得多,结构也复杂得多。

相关文档
最新文档