大学物理电磁感应(PPT课件)

合集下载

大学普通物理学经典课件——电磁感应.ppt

大学普通物理学经典课件——电磁感应.ppt





B
R




E R
B r
E
E

E
r<R




B
R

B dS 0 S

H
L
dl

I
涡旋电场: E dl d B ds
L
dt S
一 位移电流
S2
S1
-+ -+
-+
L -+ I

-
dD dt

+ +
I
-
jc -
-
D
+
+ jc
+
B
AI
例 半经为R,相距 l(l R) 的圆形空气平板电容器,两端
L dI RI
dt
Idt LIdI RI2dt
2r R
l K
t Idt 1 LI 2 t RI 2dt
0
2
0
自感线圈磁能

电源反 回路电
源 作 功
抗自感 电动势 作的功
阻所放
出的焦 耳热
Wm

1 2
LI 2
自感线圈磁能
Wm

1 LI 2 2

I
L
L n2V , B nI
如图所示。设直导线中的电流强度为I,导线ab 长为L,a端到直导线的距离为d,求导线ab中的
动生电动势,并判断哪端电势较高。

a

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

电场性质
对放入其中的电荷有力的作用 ,且力的方向与电荷的正负有 关。
磁场性质
对放入其中的磁体或电流有力 的作用,且力的方向与磁极或
电流的方向有关。
库仑定律与高斯定理
库仑定律
描述真空中两个静止点电荷之间的相互作用 力,与电荷量的乘积成正比,与距离的平方 成反比。
高斯定理
通过任意闭合曲面的电通量等于该曲面内所包围的 所有电荷的代数和除以真空中的介电常数。
当导体回路在变化的磁场中或导体回路在恒定的磁场中运动时
,导体回路中就会产生感应电动势。
法拉第电磁感应定律公式
02
E = -n(dΦ)/(dt)。
法拉第电磁感应定律的应用
03
用于解释电磁感应现象,计算感应电动势的大小,判断感应电
动势的方向。
自感和互感现象分析
自感现象
当一个线圈中的电流发生变化时 ,它所产生的磁通量也会随之变 化,从而在线圈自身中产生感应 电动势的现象。
程称为磁化。随着外磁场强度的增大,铁磁物质的磁感应强度也增大。
03
铁磁物质的饱和现象
当铁磁物质被磁化到一定程度后,其内部磁畴的排列达到极限状态,此
时即使再增加外磁场强度,铁磁物质的磁感应强度也不会再增加,这种
现象称为饱和现象。
04
电磁感应与暂态过程
法拉第电磁感应定律及应用
法拉第电磁感应定律内容
01
06
现代电磁技术应用与发展趋势
超导材料在电磁领域应用前景
超导材料的基本特性:零电阻、完全抗磁性
超导磁体在MRI、NMR等医疗设备中的应用
超导电缆在电力传输中的优势及挑战
高温超导材料的研究进展及潜在应用
光纤通信技术发展现状及趋势

大学物理-第12章--电磁感应

大学物理-第12章--电磁感应
∴取以 r 为半径的圆周为绕行回路L ,绕行方向为逆时针,面元法线如图。
× × × ×
× ×××
r n ×L × × × ×
× × ××× × R
×××××
×
B
×× ×× ×× ××
当r < R
时: L E感 dl
S
B
dS
t
等式左边 L E感 dl L E感dl cos 00
× × × ×
导线内每个自由电子
受到的洛仑兹力为:
fm e(v B)
非静电力
?++ + ++
B
v
fm
在导线内部产生的静电场方向
ab
E
a
++ + ++
电子 受的静电力
fe
fe eE
平衡时: fe fm
此时电荷积累停止,
fm
ab 两端形成稳定的电势差。 b
★ 洛仑兹力是产生动生电动势的根本原因.
B
v
2、动生电动势的表达式
S 1 hL 2
磁通
m
1 hLB 2
B
t
0
o B h
C D
i
dm dt
1 hL dB 1 hL B 2 dt 2 t
L
讨论 只有CD导体存在时,
电动势的方向由C指向D
加圆弧连成闭合回路,
由楞次定理知:感生电流的
方向是逆时针方向……..
1 B hL
1 2 t
B SOCD t

铁芯
磁场 B
线圈
电 子束
环形 真空室
五、感生电场计算举例
例 12-5. 半径为R的长直螺线管内的磁场,以dB/dt 速

电磁感应原理.ppt

电磁感应原理.ppt

作用下,线圈中的电流也是交变的,称为交变电流或
交流。
i I
0
o
I0
t
交变电动势和交变电流
Nd
c lb
S
a
N cd
ω
BS
v a.b θ
例4 在匀强磁场 B 中,长 R 的铜棒绕其一端 O 在垂直于 B 的
平面内转动,角速度为
求 棒上的电动势
解 方法一 (A动生电 动势):
i
(v B) dl
❖感生电动势的计算
法拉第电磁感应定律
i
L
Eg
dl
dm
dt
因为回路固定不动,磁通量的变化仅来自磁场的变化
dt
S
dB
dt
在变化的磁场中,有旋电场强度对任意闭合路径 L的线积分
等于这一闭合路径所包围面积上磁通量的变化率的负值。
讨 论
共同点
不同点
(1)至此,我们知道,从起源上来区分有两种形式的电场:
电源电动势
电源迫使正电荷dq从负极经电源内部移动到正 极所做的功为dA,电源的电动势为
dA
dq
电源的电动势等于把单位正电荷从负极经内电 路移动到正极时所做的功,单位为伏特。
电源的电动势的方向规定:自负极经内电路指 向正极。
从电源内部:负极→正极
恒定电场也服从场强环流定律
Ek
Fk q
非静电力仅存在于电源内部,可以用非静电场强
① 由电荷激发的静电场 ② 由变化的磁场激发的感生电场
E静
F qE静
激发 的源 不同
q
E静
E感
F
dB dt
qE感
E感
场 的
s
E静

大学物理电磁学ppt课件

大学物理电磁学ppt课件

i
L Er d
B dS S t
--对导线所围面积积分
28
电磁学复习
自感系数 L I
互感系数 M 12 21
i2
i1
自感磁能
WL

1 2
LI 2
互感磁能 WM = M I1I2
L

L
dI dt
12


M
d i2 dt
普适式(L一定)
长直螺线管: B = nI L = n2V
U

q
40 ( x2
R2 )1 2
8
电磁学复习
第11章 导体和电介质的静电场
11-1 导体的静电平衡 11-2 电容器及其电容 11-3 静电场中的电介质 11-4 有电介质时的高斯定理 11-5 静电场中的能量
9
电磁学复习
知识点:
静电平衡状态下导体上电荷分布、电场强度和电势 电容器的电容及其储能 电介质的极化:求D、E、P 电场能量 典型例题: 例11.1; 例11.3; 例11.5 典型习题: P50 11-1, 6, 8, 10, 14, 17, 19, 20, 21, 22
平行板电容器 C 0S
d
充电介质:
圆柱形电容器 C 20L
ln(R2 R1 )
C rC0
球形电容器电容
C 40
RA RB RB - RA
电容器储能: We

1 CU 2 2

Q2 2C

1 QU 2
12
电磁学复习
3. 电介质极化: 在外场E0中
无极分子 --- 位移极化 有极分子 --- 取向极化
电电负内源源载阻充功功功放率率率电II时I22Rr的功率转充放换电电::充外电电电源路U输I输出入功电率I 源U功II 2率r UI 16

大学物理 电磁感应 课件 PPT

大学物理 电磁感应 课件 PPT
解:设DE中点为坐标原点,在DE上距原点为x处取线元dx,两长 直导线在dx处的磁场为
B
B1
B2
0I 2
[ r
1 l
x
r
1 l
] x
2
2
d i
vBdx
0 Iv [ 2 r
dx l
x
r
dx l
] x
l
2
2
i
2
d i
l
0 Iv ln
r l r
2
Example 1
设空间有磁场存在的圆柱形区域的半径为R=5cm,磁感应强度 对时间的变化率为dB/dt=0.2T/s,试计算离开轴线的距离r等于2cm、 5cm及10cm处的涡旋电场。
B dl 0 I
i
L
cP d
b
c
d
a
B dl a B dl b B dl c B dl d B dl
b
2a B dl 2BL
又:
0
I 0iL, 所以
B 0i
2
例题:一无限大平行板电容器极板间的电场强度为E,一 均匀磁场B与E垂直,现有一电子(-e,m)从负极出来,初 速度为零。求:电子刚好不能到达正极板的距离d。
求棒AC两端的电势差。
O
D
C
B A
复习
一、法拉第电磁感应定律 d
dt
二、动生电动势
闭合回路
i
v
B
dl
l
不闭合回路
b
i a v B dl
三、感生电动势
L
Ek
dl
d dt
四、感生电场与静电场
例行3放.置一一长矩直形导线线圈中,通线有圈正平弦面交与流长电直i导线I在m 同si一n w平,t面在内长,直求导任线一旁瞬平

大学物理-第九章 电磁感应 电磁场理论

大学物理-第九章 电磁感应 电磁场理论

2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1

r

R 2

域内且
wm
B2 2

8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr

大学物理电磁学PPT课件

大学物理电磁学PPT课件

磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍

大学物理课件-电磁感应定律

大学物理课件-电磁感应定律

× ××××
i
dm dt
12t 7
× ××××
× ×××× R
× ×××× × ××××
t =2s時, εi =31 V
由於磁通量隨時間的增加而增大,由楞次定律可知,電流 方向為逆時針方向,所以電流通過電阻時的方向為從下向上。
1
例2 無限長直導線電流I=I0sint,求如圖矩形線圈內的感應電
安培力 dF Idl B
若給一初速度,由受力分析 知,導體棒受安培力與速度 反向,速度越來越小,機械 能轉換成電能、熱能等其他 形式能量,符合能量守恆定 律!
1
×B
×
×
×××Fm×××
× × ×
× × ×
×
× ×v
× × × ×I i × ×
××××××
機械能
焦耳熱
要維持滑杆運動必須外加一力,此過程為外力克服安培 力做功轉化為焦耳熱.
1
三 法拉第電磁感應定律
不論何種原因,當穿過閉 合回路所圍面積的磁通量發 生變化時,回路中會產生感 應電動勢,且感應電動勢正 比於磁通量對時間變化率的 負值。
i
k
dΦm dt
負號表示方向
國際單位制 ε i
Φ
伏特
韋伯 k 1
1
說明:
(1) “-”表示εi的方向,是楞次定律的數學表述。
B实 n
ΦN
)
d dt
Φ Φi
ψ NΦ
εi
N
dΦ dt
Ψ Φ1 Φ2 ΦN 稱為線圈的磁鏈
1
例1 如圖,磁場方向與線圈平面垂直,且穿入紙面向內,設通
過線圈回路的磁通量隨時間的變化關係為Φ=6t2+7t+1。

大学物理电磁感应1

大学物理电磁感应1

构回路 oAA,t 0时, L在oA处, 0 , t 时刻, 通过回
路的磁通为
BS 1 B L2
2
回路的感应电动势大小
B
A
L
i
d dt
1 2
BL2
d
dt
1 BL2
2
o
A
因为 oA, AA上的 i 0
所以 oA棒上的动生电动势大小为
i
1 2
BL2
电动势方向 Ao
v
a B

v
B
dl
与 dl 同方向
b
i
di
(v B) dl
a
b
+
B
l-
-
fe fm
v
a
l
x
0vBdl Bvl
结结果论与:用长法度拉为第L电的磁一感段应导定线律,求在得磁的场结中果以一速致度。v 运动产生
的动生电动势
L
L
i
d
0
i
(v B) dl
0
例4、长度为 L 的导体棒在均匀磁场B中以角速度绕o端逆
A q
L Ek dl
Ek dl
3、法拉第电磁感应定律
当穿过回路所包围面积的磁通量发生变化时,回路中 产生感应电动势,感应电动势的大小与穿过回路的磁通量对 时间的变化率成正比。
i
d dt
法拉第电磁感应定律
式中的负号反映了感应电动势的方向与磁通量变化之 间的关系,是楞次定律的数学表示。
例5、一长直导线中通电流 I = 10 A ,有一长为L = 0.2 m 的
时针匀速转动,求棒上的感应电动势。
解1: 根据动生电动势定义求

大学物理电磁学第十章电磁感应PPT课件

大学物理电磁学第十章电磁感应PPT课件
d Idq n2Rd 2 R R dR
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I

v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件

大学物理《电磁学》PPT课件•电磁学基本概念与原理•静电场中的导体和电介质•恒定电流及其应用•磁场性质与描述方法•电磁感应原理及技术应用•电磁波传播特性及技术应用目录CONTENTS01电磁学基本概念与原理电场强度描述电场强弱的物理量,其大小与试探电荷所受电场力成正比,与试探电荷的电荷量成反比。

静电场由静止电荷产生的电场,其电场线不随时间变化。

电势与电势差电势是描述电场中某点电势能的物理量,电势差则是两点间电势的差值,反映了电场在这两点间的做功能力。

欧姆定律描述导体中电流、电压和电阻之间关系的定律。

恒定电流电流大小和方向均不随时间变化的电流。

静电场与恒定电流磁场磁感应强度磁性材料磁路与磁路定律磁场与磁性材料由运动电荷或电流产生的场,其对放入其中的磁体或电流有力的作用。

能够被磁场磁化并保留磁性的材料,分为永磁材料和软磁材料。

描述磁场强弱的物理量,其大小与试探电流所受磁场力成正比,与试探电流的电流强度和长度成反比。

磁路是磁性材料构成的磁通路径,磁路定律描述了磁路中磁通、磁阻和磁动势之间的关系。

描述变化的磁场产生感应电动势的定律。

法拉第电磁感应定律描述感应电流方向与原磁场变化关系的定律。

楞次定律描述磁场与变化电场之间关系的定律。

麦克斯韦-安培环路定律由变化的电场和磁场相互激发而产生的在空间中传播的电磁振荡。

电磁波电磁感应与电磁波麦克斯韦方程组及物理意义麦克斯韦方程组由四个基本方程构成的描述电磁场基本规律的方程组,包括高斯定理、高斯磁定理、法拉第电磁感应定律和麦克斯韦-安培环路定律。

物理意义麦克斯韦方程组揭示了电磁现象的统一性,预测了电磁波的存在,为电磁学的发展奠定了基础。

同时,该方程组在物理学、工程学等领域具有广泛的应用价值。

02静电场中的导体和电介质导体在静电场中的性质静电感应当导体置于外电场中时,导体内的自由电子受到电场力的作用,将重新分布,使得导体内部电场为零。

静电平衡当导体内部和表面的电荷分布不再随时间变化时,称导体达到了静电平衡状态。

大学物理 第九章 电磁感应 电磁场理论的基本概念

大学物理 第九章 电磁感应 电磁场理论的基本概念

选择绕行方向如右图所示:
b v
o 0 I x bdr 2r 0 Ib x a dr 0 Ib x a x r 2 ln x 2
x
0 Ivab d m d m dx 方向 动 dt dx dt 2x( x a )
v
19
V a I d a d ω b c b cV
三、法拉第电磁感应定律的使用方法 1、规定任一绕行方向为回路的正方向。由右手螺旋 法则确定回路的正法线方向 en 。 d 正法线方向 2、计算 SB dS 及 dt en 3、由 d 之值确定 i 的方向 dt S d L
i
d dt 0, i 0, i的方向与绕行方向相同 d 0, 0, 的方向与绕行方向相反 i i dt
L
解二: 构成扇形闭合回路
AOCA
B


L
A
1 2 m B dS BS AOCA B L 2
o

C
d m 1 1 2 d BL BL2 dt 2 dt 2
沿OACO
由楞次定律:
A
o
17
例2. 如图所示,一矩形导线框在无限长载流导线I 的场中向右运 动,t时刻如图所示,求其动生电动势。
E涡 dl 0
法拉第电磁感应定律推广为
d E涡 dl L 22 dt
静电荷激发电场 E dl 0 保守力场(无旋场) 电场 d 变化磁场激发电场 E涡 dl dt

d 产生的原因不同。 E涡 dl 涡旋电场 dt 静电场 的区别 电力线不同。 E dl 0 环流不同

大学物理电磁学ppt完整版

大学物理电磁学ppt完整版

05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。

大学物理电与磁的相互关系PPT课件

大学物理电与磁的相互关系PPT课件

• 由磁通量的变化所引起的回路电流称为感 应电流。在电路中有电流通过,说明这个 电路中存在电动势,由磁通量的变化所产 生的电动势称为感应电动势。
精选PPT课件
5
两类感应电动势: • 动生电动势: 磁场不变,导体运动 • 感生电动势: 导体不动,磁场变化
精选PPT课件
6
二.楞次定律
• 感应电动势的方向,总是使得感应电流的 磁场去阻碍引起感应电动势(或感应电流)的 磁通量变化.感应电流的效果总是反抗引起 感应电流的原因的。
代入

B
LEWdldt StdS
积分得 2rEWddt R2
r R
BO r
EW
1 2
R2 r
方向也沿逆时针方向。
可见,虽然磁场只局限于半径为R的柱形区域,
但所激发的涡旋电场却存在于整个空间。
精选PPT课件
n • 如果每匝 都相等于,则 n
精选PPT课件
n d
dt
9
例14-1 ,截面
如下图所示,环形螺线管n=5000匝/米 dI 20安培/秒
S2103米2
dt
。在环上再绕一线圈A,N=5匝,R=2.0欧姆
求:(1)A中 i
I i ;(2)2秒内通过A的电量 q ?
精选PPT课件
10
三、感应电动势(induction electromotive force) 1. 动生电动势 导体在磁场中运动所产生的感应电动势
精选PPT课件
3
• 磁场相对于线圈或导体回路改变大小或方向, 会在回路中产生电流,并且改变得越迅速, 产生的电流越大
• 导体回路相对于磁场改变面积和取向会在回 路中产生电流,并且改变得越迅速,产生的 电流越大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B


1 R
(Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
.
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
的磁通量为
× × × ×i × ×
Φ Bl x
×d × × × a × ×
εi


dΦ dt

Bl
dx dt

o
Bl v
bx
i
负号表示感应电动势的方向沿逆时针方向。 a
也可以用楞次定律来判断感应电动势的方向。
注意:一段导体在磁场中运动时,也可以用右手定则 来判断动生电动势的方向。
.
例17.2 如图所示,一长直导线通有电流I,在与它相距 d 处有一矩形线圈ABCD,此线圈以速度v 沿垂直长直 导线方向向右运动,求这时线圈中的感应电动势。
在解任:意设坐回标路xL处方取向一如面图元, 建d坐s 标系如图


Bbdx

0 I 2 x
bdx
I
3.10-23
L ds b
Φ la 0 I b dx 0 I b ln l a
l 2 x 2
l
v
da
ox x
i

dt
0I b ( 1 1 ) dl 2 l l a dt
-N d - d(N) - d
dt
dt . dt

磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
感应电流的磁通量的变化。 •感应电流总是阻止磁通量的变化
.
三、感应电动势方向的判断
1.由电磁感应定律判断电动势方向
⑴ n ⑵
规定回路绕行方向
dt
N
S
i 0
感应电动势的方向与绕行方向相同

n
i B
S
0 d 0
N
i 0 dt
感应电动势的方向与绕行方向相同

i
B
n
S
0 d 0
dt
N
i 0
感应电动势的方向与绕行方向相反 .
2. 用楞次定律判断感应电流方向
B
I
v
S
N
B
I
S
N
.
说 明
动生电动势对应的非静电场是什么? 感生电动势对应的非静电场是什么?
.
§2 动生电动势
一、动生电动势的非静电力
×d × × ×a × ×
矩形导体回路,可动边为导体
棒ab,长l,以 匀速运动。
× × × ×Ii
× v×
×× × × × ×
棒中自由电子随棒以 运动, ×c × × ×b × ×
所受洛仑兹力为
1)分析上述两类产生电磁感应现象的共同原因 是:回路中磁通Φ 随时间发生了变化
当穿过一个闭合导体回路的磁通量发生变化 时,回路中就产生电流,这种现象叫电磁感 应现象,所产生的电流叫感应电流。 2)电磁感应产生的电动势叫感应电动势。
3)第一类产生的感应电动势称感生电动势 第二类产生的感应电动势称动生电动势
第17章
电磁感应
(变化的磁场 和变化的电场)
.
§1 法拉第电磁感应定律 §2 动生电动势 §3 感生电动势 感生电场 §4 自感 互感现象 §5 磁场能量
.
•1820年奥斯特发现电流具有磁效应 法拉第以精湛的实验和敏锐的观察
当时物理学家就想:磁是否会 有电效应?
力,经十年努力于1831年首次观 察到电流变化时产生的感应现象。

0Ib (1 1 ) v 2 l l a
l d时
i

0Ib ( 1 1 )v 2 d d a.
(方向为顺时针)
由于磁通量 Φ Bd S
感应电动势 动生电动势 : 导体在磁场中运动而产生的 感生电动势 : 导体固定,磁场变化而产生的
即将介绍的内容是: 从场的角度来揭示电磁感应现象本质 研究的问题是:
产生
1831年法拉第
电流
磁场
实验
闭合回路 m 变化
电磁感应
产生
电磁感应现象从实验上回答了这个问题 感应电流
反映了物质世界对称的 美
.
.
§1 法拉第电磁感应定律
电磁感应现象 电磁感应规律
先看现象 然后归纳总结
.
一、电磁感应(electromagnetic induction)现象
.
当穿过一个闭合导体回路的磁通量发生变化时, 回路中就产生电流,这种现象叫电磁感应现象,所 产生的电流叫感应电流。
电磁感应产生的电动势叫. 感应电动势。
一、电磁感应现象 第一类
从产生的原因上分为两大类
第二类

R
G
左面三种情况均 可使电流计指针 摆动
.
××××××× × B
××××××××
××××××××
××××××××
××××××××
第一类

G
第二类
××××××××
××××××××
B
××××××××


a fm

(e)

B
电动势:—– 单位正电荷经电源内


B
部从负极移到正极的过程
中,非静电力所作的功。
B

+
e
fm
b
产生动生电动势的非静电力是洛仑兹力。
.
§2 动生电动势
二、动生电动势
由电动势的定义,此种情形引起动 生电动势的非静电力是洛伦兹力。



B
a
+ຫໍສະໝຸດ 1.只i与
dΦ dt







与Φ或dΦ成



2 .设回路中电阻为R,则
Ii

i
R


1 R
dΦ dt
Ii

dq dt
dq 1 dΦ R
设在t1和 t2 时刻,通过回路的磁通量分别为1和 2,
则在t1 t2时间内,通过回路任一截面的感应电量为:
q 1 R
Φ2 Φ1
.
二、 电磁感应规律
1. 法拉第电磁感应定律 当穿过闭合回路所围面积的磁通量发生变化时,回
路中都会建立起感应电动势,且此感应电动势正比于 磁通量对时间变化率的负值。
i

k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
确定的正负。B 与
右手螺旋 法线方向
n
夹角90o,0,否则0。
⑶ 确定 d 的正负。
dt

由 i
d dt
,确定 i 的正负。
εi 0 ,其方向与回路绕行
方向相同,否则相反。
n B
εi

B
n i
0 d 0
N
S
εi 0 dt
.
B
i

n
0 d 0
相关文档
最新文档