高三基础知识天天练 数学11-3人教版
高三基础知识天天练 数学7-4人教版
第7模块第4节[知能演练]一、选择题1.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是() A.异面B.相交C.平行D.不确定解析:由线面平行的性质定理容易推出,该直线应该与交线平行.答案:C2.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题是真命题的是()①若m⊂α,n∥α,则m∥n;②m⊥n,m⊥β,则n∥β;③α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.A.①③B.②③C.③④D.④解析:①中m、n可能异面,②中n可能在平面β内,③中m可能在平面α或β内.答案:D3.下列命题正确的是() A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线与平面α所成的角相等,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直解析:当直线a在平面α内时,它与平面α不平行,但a可以与平面α内的一些直线平行,故选项A错误;两条直线与平面α所成的角相等时,这两条直线可以平行,但也可能相交或异面,故选项B错误;直线a与平面α不垂直,但直线a可以与平面α内的一些直线垂直,故选项D错误,只有选项C正确.答案:C4.给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β. 其中为假命题的是( )A .①B .②C .③D .④解析:①为真,依据的是异面直线的判定法则;②为真,l ,m 在α内的射影为两相交直线l ′,m ′,可知l ′∥l ,m ′∥m ,又n ⊥l ,n ⊥m ,所以n ⊥l ′,n ⊥m ′,所以n ⊥α;③中l 、m 可能平行,也可能相交或异面,为假命题;④由两平面平行的判定定理可知为真命题,故假命题为③.答案:C 二、填空题5.在△ABC 中,AB =5,AC =7,∠A =60°,G 为重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN =________.解析:如下图,在△ABC 中,由余弦定理知BC =39,∵BC ∥α,∴MN ∥BC ,又G 是△ABC 的重心,∴MN =23BC =2393.答案:23936.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.解析:如图所示,连接AC ,易知MN ∥平面ABCD , ∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC , 又∵AP =a3,∴PD AD =DQ CD =PQ AC =23,∴PQ =23AC =223a . 答案:223a三、解答题7.如下图,E 、F 、G 、H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.(1)求证:EG ∥平面BB 1D 1D ; (2)求证:平面BDF ∥平面B 1D 1H .解:(1)取B 1D 1的中点O ,连结GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥GE ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由正方体得BD ∥B 1D 1.如图,连结HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D ,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .8.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解:∵BE ⊥PC ,∴EC =BC 2-BE 2=a 2-2a 23=33a .在Rt △PBC 中,BE 2=EP ·EC ,∴EP =BE 2EC =23a 233a =233a ,∴PE EC =2.当AFFB =2时,可以使EF ∥平面P AD .证明:如下图.在PD 上取一点G ,使PG GD =2,连结EG ,AG ,则有EG 綊23AB綊23CD ,∴EG 綊AF ,∴四边形AFEG 为平行四边形.∴EF ∥AG ,又∵AG ⊂平面P AD ,EF ⊄平面P AD ,∴EF ∥平面P AD .[高考·模拟·预测]1.下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行; ⑤若l 与平面α平行,则l 与α内任何一条直线都没有公共点; ⑥平行于同一平面的两直线可以相交. A .1 B .2 C .3D .4解析:①②中a 可与α相交,③中l ∥α,只能说明有一系列的平行线与l 平行,④中另一条线可能在面内,⑤正确,⑥正确.答案:B2.设m ,n 是平面α内的两条不同直线;l 1、l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析:因m⊂α,l1⊂β,若α∥β,则有m∥β且l1∥α,故α∥β的一个必要条件是m∥β且l1∥α,排除A.因m,n⊂α,l1,l2⊂β且l1与l2相交,若m∥l1且n∥l2,因l1与l2相交,故m与n也相交,故α∥β;若α∥β,则直线m与直线l1可能为异面直线,故α∥β的一个充分而不必要条件是m∥l1且n∥l2,故选B.答案:B3.设α、β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β解析:对于选项A、B、D均可能出现l∥β,而对于选项C是正确的.答案:C4.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误..的为()A.O-ABC是正三棱锥B.直线OB∥平面ACDC.直线AD与OB所成的角为45°D.二面角D-OB-A为45°解析:将原图补为正方体不难得出B为错误,故选B.答案:B5.如下图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q 分别为AE,AB的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值. 解:(1)因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 由于PQ ⊄平面ACD ,DC ⊂平面ACD 从而PQ ∥平面ACD . (2)如下图,连接CQ ,DP .因为Q 为AB 的中点,且AC =BC , 所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC . 因此CQ ⊥EB , 故CQ ⊥平面ABE .由(Ⅰ)知PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形, 故DP ∥CQ ,因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角. 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55. 因此AD 和平面ABE 所成角的正弦值为55. [备选精题]6.如图平面内两正方形ABCD 与ABEF ,点M 、N 分别在对角线AC 、FB 上,且AM ∶MC=FN ∶NB ,沿AB 折成直二面角.(1)证明:折叠后MN ∥平面CBE ;(2)若AM ∶MC =2∶3,在线段AB 上是否存在一点G ,使平面MGN ∥平面CBE ?若存在,试确定点G 的位置.解:(1)如图,设直线AN 与BE 交于点H ,连接CH ,∵△ANF ∽△HNB , ∴FN NB =AN NH ,又AM MC =FN NB , ∴AN NH =AMMC,∴MN ∥CH . 又MN ⊄平面CBE ,CH ⊂平面CBE , ∴MN ∥平面CBE .(2)存在,过M 作MG ⊥AB ,垂足为G ,连接NG , 则MG ∥BC , ∴MG ∥平面CBE .又MN ∥平面CBE ,MG ∩MN =M , ∴平面MGN ∥平面CBE ,即G 在AB 线上,且AG ∶GB =AM ∶MC =2∶3.。
高三基础知识天天练 数学11-6人教版
第11模块 第6节[知能演练]一、选择题1.如右图,向圆内投镖,如果每次都投入圆内,那么投中正方形区域的概率为( )A.2π B.1π C.23D.13解析:投中正方形区域的概率为正方形的面积与圆的面积之比,设正方形的边长为1,则其面积为1,圆的半径为22,面积为π(22)2=π2,故投中正方形区域的概率为1π2=2π,故选A.答案:A2.在500 mL 的水中有一个细菌,现从中随机取出2 mL 水样放到显微镜下观察,则发现这个细菌的概率是( )A .0.004B .0.002C .0.04D .0.02解析:由于取水样的随机性,所求事件A “在取出的2 mL 水样中有细菌”的概率等于水样的体积与总体积之比,即P =2500=0.004.故选A.答案:A3.已知Ω={(x ,y )|x ≥0,y ≥0,x +y ≤6},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω内随机投一点P ,则点P 落在区域A 内的概率为( )A.13B.23C.19D.29解析:由于点P 落在区域Ω内的位置的随机性,所求事件A 的概率等于区域A 的面积与区域Ω的面积之比,即P =12×4×212×6×6=29.故选D.答案:D4.如下图所示,ABCD 是正方形,E 、F 、G 、H 分别是AD 、BC 、AB 、CD 的中点,三只麻雀分别落在这三个正方形木板上休息,它们落在所在木板的任何地方是等可能的,麻雀落在甲、乙、丙三块木板中阴影部分的概率分别是P 1、P 2、P 3,则()A .P 1<P 2=P 3B .P 1<P 2<P 3C .P 1=P 2=P 3D .P 1>P 2=P 3解析:因为每一个图形中阴影部分的面积均是正方形面积的一半,所以麻雀落在甲、乙、丙三块木板中阴影部分的概率都是12.故选C.答案:C 二、填空题5.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是________、________、________.(1)红灯;(2)黄灯;(3)不是红灯.解析:在75秒内,每一时刻到达路口是等可能的,属于几何概型. (1)P =亮红灯的时间全部时间=3030+40+5=25;(2)P =亮黄灯的时间全部时间=575=115;(3)P =不是亮红灯的时间全部时间=亮黄灯或绿灯的时间全部时间=4575=35.故填25、115、35.答案:25 115 356.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]内任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如右图,A (1,0),B (4,0),C (4,3),S ΔABC =92,P =S ΔABC S 矩=924×4=932.故填932.答案:932三、解答题7.在1万平方千米的大陆架海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?解:石油在1万平方千米的大陆架海域中的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型的概率公式可以求得概率.记“钻到油层面”为事件A ,则P (A )=储藏石油的大陆架面积大陆架海域的面积=4010000=0.004.答:钻到油层面的概率是0.004.8.已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}. (1)若a ,b ∈N ,求A ∩B ≠Ø的概率; (2)若a ,b ∈R ,求A ∩B =Ø的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0],则f ′(x )=a +b ln2·2x . 因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b 2-1.要使A ∩B ≠Ø,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共7组. 所以A ∩B ≠Ø的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如右图),面积为4.由(1)可知,要使A ∩B =Ø,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =Ø的(a ,b )对应的区域是图中的阴影部分,所以S 阴影=12×1×12=14,所以A ∩B =Ø的概率为P =144=116.[高考·模拟·预测]1.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A的距离小于等于a 的概率为( )A.22B.22π C.16D.16π 解析:P =18×43πa 3a 3=π6. 答案:D2.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意投掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( )A.14 B.13 C.12D.23解析:如下图所示,当硬币中心落在阴影区域时,硬币不与任何一条平行线相碰,故所求概率为13.答案:133.已知如右图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.答案:364.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.解析:如右图所示,可设=1,=1,根据题意只要点B在优弧上,劣弧的长度就小于1,由于点B 在圆周上的任意性,故这个概率是优弧的长度与圆的周长之比,即这个概率是23.故填23. 答案:235.设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ) 若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.(Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },所以所求的概率为P (A )=3×2-12×223×2=23.[备选精题]6.一条直线型街道的A ,B 两盏路灯之间的距离为120 m ,由于光线较暗,想在中间再随意安装两盏路灯C ,D ,路灯次序依次为A ,C ,D ,B ,求A 与C ,B 与D 之间的距离都不小于40 m 的概率.解:设AC 长为x ,DB 长为y ,则CD 长为120-(x +y )且满足⎩⎪⎨⎪⎧0≤x ≤1200≤y ≤120120-(x +y )≥0设AC ,BD 之间都不小于40的事件为M , 则⎩⎪⎨⎪⎧40≤x ≤12040≤y ≤120x +y ≤120满足条件的点P (x ,y )构成如右图所示的阴影区域,∴P (M )=S △阴影S △OEF =19.。
高三基础知识天天练2-11.数学数学doc人教版
⾼三基础知识天天练2-11.数学数学doc⼈教版第2模块第11节[知能演练]⼀、选择题1.设f ′(x )是函数f (x )的导数,y =f ′(x )的图象如右图所⽰,则y =f (x )的图象最有可能是( )解析:由y =f ′(x )的图象可知,当x <0时,f ′(x )>0,∴f (x )在(-∞,0)上单调递增;当0答案:C2.函数f (x )=1+x -sin x 在(0,2π)上是( )A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增解析:f ′(x )=1-cos x >0,∴f (x )在(0,2π)上递增.故选A. 答案:A 3.若a >3,则⽅程x 3-ax 2+1=0在(0,2)上恰有( )A .0个根B .1个根C .2个根D .3个根解析:令f (x )=x 3-ax 2+1,则f ′(x )=3x 2-2ax =3x (x -23a ).由f ′(x )=0,得x =0或x =23a (∵a >3,∴23a >2).∴当04.设a ∈R ,若函数y =e ax +3x ,x ∈R 有⼤于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13解析:y ′=a ·e ax +3=0,当a =0时,显然不合题意,∴a ≠0. ∴e ax =-3a .∴x =1a ln(-3a ).由题意,得1a ln(-3a )>0,∴a <0,0<-3a <1.∴a <-3. 故应选B. 答案:B ⼆、填空题5.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最⼤值与最⼩值分别为M ,m ,则M -m =________.解析:f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )=0,得x =±2.∵f (-3)=17,f (3)=-1,f (-2)=24,f (2)=-8,∴M -m =f (-2)-f (2)=32. 答案:32 6.若函数f (x )=4x x 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围是________.解析:f ′(x )=4(x 2+1)-8x 2(x 2+1)2=4(1-x 2)(x 2+1)2,令f ′(x )>0,∴-1m ≥-1,2m +1≤1,2m +1>m ,∴-1答案:(-1,0] 三、解答题7.设函数f (x )=ln(2x +3)+x 2. (1)讨论f (x )的单调性;(2)求f (x )在区间[-34,14]上的最⼤值和最⼩值.解:(1)函数f (x )的定义域为(-32,+∞),f ′(x )=22x +3+2x =2(2x +1)(x +1)2x +3,令f ′(x )>0,∴x >-12或-32令f ′(x )<0,∴-12.∴f (x )在区间(-32,-1)和(-12,+∞)上为增函数,在区间(-1,-12)上为减函数.(2)当x 在区间[-34,14]上变化时,f ′(x )与f (x )变化情况如下表:f (-34)=916+ln 32,f (-12)=14+ln2,f (14)=116+ln 72,由表知函数f (x )在x =-12处取最⼩值14+ln2.f (-34)-f (14)=12+ln 37=12(1-ln 499)<0.故函数f (x )在x =14处取最⼤值116+ln 72.8.已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.(1)解:f ′(x )=x -a x =x 2-ax(x >0),若a ≤0时,f ′(x )≥0恒成⽴,∴函数f (x )的单调增区间为(0,+∞).若a >0时,令f ′(x )>0,得x >a ,∴函数f (x )的单调增区间为(a ,+∞),减区间为(0,a ). (2)证明:设F (x )=23x 3-(12x 2+ln x ),x .∴F ′(x )=(x -1)(2x 2+x +1)x .∵x >1,∴F ′(x )>0.∴F (x )在(1,+∞)上为增函数.⼜F (x )在[1,+∞)上连续,F (1)=16>0,∴F (x )>16在(1,+∞)上恒成⽴.∴F (x )>0.∴当x >1时,12x 2+ln x <23x 3.[⾼考·模拟·预测]1.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)e x ]′=1·e x +(x -3)·e x =(x -2)·e x ,由函数导数与函数单调性关系得:当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)·e x >0解得:x >2.答案:D2.若函数f (x )=x 3-6bx +3b 在(0,1)内有极⼩值,则实数b 的取值范围是( )A .(0,1)B .(-∞,1)C .(0,+∞)D .(0,12)解析:∵f ′(x )=3x 2-6b ,由题意,函数f ′(x )图象如右图.∴ f ′(0)<0,f ′(1)>0,即-6b <0,3-6b >0,得0答案:D3.函数f (x )=x 3-15x 2-33x +6的单调减区间为________.解析:由f (x )=x 3-15x 2-33x +6得,f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,求得-1x +1在x =1处取极值,则a =________.解析:由于f ′(x )=(x 2+a )′·(x +1)-(x 2+a )·(x +1)′(x +1)2=2x ·(x +1)-(x 2+a )·1(x +1)2=x 2+2x -a (x +1)2,⽽函数f (x )在x =1处取极值,则f ′(1)=12+2×1-a (1+1)2=0,解得a =3,故填3.答案:35.已知函数f (x )=(x 2+ax -2a 2+3a )e x (x ∈R ),其中a ∈R . (Ⅰ)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线的斜率;(Ⅱ)当a ≠23时,求函数f (x )的单调区间与极值.解:(Ⅰ)当a =0时,f (x )=x 2e x ,f ′(x )=(x 2+2x )e x ,故f ′(1)=3e.所以曲线y =f (x )在点(1,f (1))处的切线的斜率为3e.(Ⅱ)f ′(x )=[x 2+(a +2)x -2a 2+4a ]e x . 令f ′(x )=0,解得x =-2a 或x =a -2. 由a ≠23知,-2a ≠a -2.以下分两种情况讨论.(1)若a >23,则-2a内是增函数,在函数f (x )在x =-2a 处取得极⼤值f (-2a ),且f (-2a )=3a e -2a.函数f (x )在x =a -2处取得极⼩值f (a -2),且f (a -2)=(4-3a )e a -2.(2)若a <23,则-2a >a -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:函数f (x )在x =a -2处取得极⼤值f (a -2),且f (a -2)=(4-3a )e a -2.函数f (x )在x =-2a 处取得极⼩值f (-2a ),且f (-2a )=3a e-2a.[备选精题]6.若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满⾜:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为函数f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为⾃然对数的底数).(1)求F (x )=h (x )-φ(x )的极值;(2)函数h (x )和φ(x )是否存在隔离直线?若存在,求出此隔离直线的⽅程;若不存在,请说明理由.解:(1)∵F (x )=h (x )-φ(x )=x 2-2eln x (x >0),∴F ′(x )=2x -2e x =2(x -e)(x +e)x .当x =e 时,F ′(x )=0.∵当0e 时,F ′(x )>0,此时函数F (x )递增,∴当x =e 时,F (x )取极⼩值,其极⼩值为0.(2)由(1)可知函数h (x )和φ(x )的图象在x =e 处有公共点,因此若存在h (x )和φ(x )的隔离直线,则该直线过这个公共点,设隔离直线的斜率为k ,则直线⽅程为y -e =k (x -e),即y =kx +e -k e.由h (x )≥kx +e -k e(x ∈R ),可得x 2-kx -e +k e ≥0,当x ∈R 时恒成⽴.∴Δ=(k -2e)2,∴由Δ≤0,得k =2 e.下⾯证明φ(x )≤2e x -e ,当x >0时恒成⽴.令G (x )=φ(x )-2e x +e =2eln x -2e x +e ,则G ′(x )=2ex -2e =2e(e -x )x ,当x =e 时,G ′(x )=0. ∵当00,此时函数G (x )递增;当x >e 时,G ′(x )<0,此时函数G (x )递减,∴当x =e 时,G (x )取极⼤值,其极⼤值为0. 从⽽G (x )=2eln x -2e x +e ≤0,即φ(x )≤2e x -e(x >0)恒成⽴,∴函数h (x )和φ(x )存在唯⼀的隔离直线y =2e x -e.。
高三基础知识天天练 数学检测11人教版
单元质量检测(11)一、选择题1.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁不能排在一起,则不同的排法共有( )A .12种B .20种C .24种D .48种解析:甲、乙捆绑后与第5种商品排列有A 22种,产生的三个空排丙、丁,有A 23种,再排甲、乙有A 22种,共有A 22A 23A 22=24种.答案:C2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个解析:从构成矩形的四条边入手,可以从6条竖着的直线中任取两条,共有C 26种选法;再从6条横着的直线中任取两条直线,共有C 26种选法,所以可构成矩形C 26·C 26=225(个). 答案:D3.(1+3x )6⎝⎛⎭⎪⎫1+14x 10的展开式中的常数项为( )A .1B .46C .4245D .4246 解析:(1+3x )6的通项公式为C r 6x r3,⎝⎛⎭⎪⎫1+14x 10的通项公式为C k10x -k 4,由r 3+(-k 4)=0,得⎩⎪⎨⎪⎧ r =0k =0,⎩⎪⎨⎪⎧ r =3k =4,⎩⎪⎨⎪⎧r =6k =8共三项,所以常数项为C 06C 010+C 36C 410+C 66C 810=4246. 答案:D4.在一底面半径和高都是2 cm 的圆柱形容器中盛满小麦种子,但有一粒带麦锈病的种子混入了其中.现从中随机取出2 cm 3的种子,则取出带麦锈病的种子的概率是( )A.14B.18πC.14πD .1-14π解析:可用体积作为几何度量,易知取出带有麦锈病的种子的概率为P =2π ·22·2=14π.答案:C5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12 C.34D.23解析:如右图,在AB 边取点P ′,使AP ′AB =34,则P 只能在AP ′内运动,则概率为AP ′AB =34.答案:C6.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列{a n }:a n =⎩⎪⎨⎪⎧-1 第n 次摸取红球1 第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( )A .C 57(13)2(23)5B .C 27(23)2(13)5C .C 57(13)2(13)5D .C 37(13)2(23)5 解析:由题意得,在7次摸球中,摸得红球的次数恰为2次,则有S 7=3. 又因为每次摸球,摸得红球的概率为23,设X 为摸得红球的次数,则X ~B (7,23),在7次摸球中,恰有2次摸得红球的概率 P (X =2)=C 27(23)2(13)5. 答案:B7.集合A ={(x ,y )|y ≥|x -1|,x ∈N *},集合B ={(x ,y )|y ≤-x +5,x ∈N *}. 先后掷两颗骰子,设掷第一颗骰子得点数记作a ,掷第二颗骰子得点数记作b ,则(a ,b )∈A ∩B 的概率等于( )A.14B.29C.736 D.536解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B对应如下图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B 的概率为836=29,故选B.答案:B8.设随机变量的概率分布为:则X ( )A.12B .0C .2D .随p 的变化而变化 解析:EX =0×p 3+1×p 3+2×(1-2p3)=2-p ,又∵p 3≥0,1-23p ≥0,∴0≤p ≤32,∴当p =32时,EX 的值最小,最小值为2-32=12.答案:A9.利用计算机在区间(0,1)上产生两个随机数a 和b ,则方程x =-2a -bx 有实根的概率为( )A.12B.13C.16D.23解析:方程x =-2a -bx ,即x 2+2ax +b =0,若方程有实根,则有Δ=4a 2-4b ≥0即b ≤a 2,其所求概率可转化为几何概型,如右图,其概率等于阴影面积与正方形面积之比,S 阴影=⎠⎛01a 2d a =13a 3| 10=13,所以所求概率P =13.答案:B10.在区间[0,1]上任意两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为( )A.18B.14C.34D.78解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(12+a -b )(-12-a -b )<0,则(12+a -b )(12+a +b )>0,可化为:⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤10≤b ≤112+a -b <012+a +b <0,由线性规划知识在直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为:可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:D11.若k 为实数,且k ∈[-2,2],则k 的值使得过点A (1,1)的两条直线与圆x 2+y 2+kx -2y -54k =0相切的概率为( )A.14B.12C.34D .不确定解析:由题意知点A (1,1)在圆x 2+y 2+kx -2y -54k =0,即(x +k 2)2+(y -1)2=k 24+1+54k的外部,所以⎩⎨⎧k 24+1+54k >012+12+k -2-54k >0,即⎩⎪⎨⎪⎧k >-1或k <-4k <0.又k ∈[-2,2],所以-1<k <0.故由几何概型概率公式得所求概率为P =14.答案:A12.已知0≤a <2,0≤b <4,为估计在a >1的条件下,函数f (x )=x 2+2ax +b 有两相异零点的概率为P ,用计算机产生了[0,1)内的两组随机数a 1,b 1各2400个,并组成了2400个有序数对(a 1,b 1),统计这2400个有序数对后得到2×2列联表的部分数据如下表:( )A.1348B.1124C.1324D.712解析:本题先对产生的随机数对(a 1,b 1)进行a =2a 1,b =4b 1的变换后可转化为满足题中条件的数对(a ,b ),而当4a 2-4b >0时,原函数f (x )有两个相异零点.所以先将表格补全,知当a >1即a 1>12时,满足a 21-b 1>0时,有两个相异零点,于是P =6501200=1324. 答案:C 二、填空题13.已知(1+kx 2)6(k 是正整数)的展开式中x 8的系数小于120,则k =________.解析:(1+kx 2)6按二项式定理展开的通项为T r +1=C r 6(kx 2)r =C r 6k r ·x 2r. 令2r =8,得r =4,∴x 8的系数为C 46·k 4,即15k 4<120,∴k 4<8.而k 是正整数,故k 只能取1. 答案:114.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有________种.(有数字作答)解析:由题意可知有一个工厂安排2个班,另外三个工厂每厂安排1个班,共有C 14·C 25·A 33=240种安排方法.答案:24015.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得 P (ξ>2)=12[1-2P (0<ξ<1)]=12(1-0.8)=0.1. 答案:0.116.罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设ξ为取得红球的次数,则ξ的期望Eξ=________.解析:因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为35,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξ~B (4,35),从而有Eξ=np =4×35=125.答案:125三、解答题17.在一个盒中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,求 (1)从中任取1支,得到一等品或二等品的概率; (2)从中任取2支,没有三等品的概率.解:(1)从6支笔中任取1支得一等品或二等品共有3+2=5种, 不同的取法,任取一支笔共有6种取法, ∴任取1支,得到一等品或二等品的概率为56.(2)从中任取2支,有三等品的取法,有5种,而任取2支共有C 26=15种取法. ∴任取2支,有三等品的概率为515=13,∴任取2支,没有三等品的概率为1-13=23.18.为了调查某野生动物保护区内某种野生动物的数量,调查员某天逮住这种动物600只做好标记后放回,经过一星期后,又逮到这种动物500只,其中做过标记的有50只,根据上述数据,估算保护区内有多少只动物?解:设保护区内这种野生动物有x 只,每只动物被逮到的可能性是相同的,那么第一次逮到的600只占所有这种动物的概率为600x ,第二次逮到的500只中,有50只是第一次逮到的,即事件发生的频数为50,说明第一次逮到的在总的动物中的频率为110,由概率的定义知600x =110,解得x =6000,即按此方法计算,估计保护区内有6000只这种野生动物.19.一个口袋中装有大小相同的2个白球和3个黑球. (1)从中摸出两个球,求两球颜色不同的概率;(2)从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率.解:(1)记“摸出两个球,两球恰好颜色不同”为A ,摸出两个球共有方法C 25=10种,其中,两球一白一黑有C 12·C 13=6种.∴P (A )=C 12C 13C 25=35.(2)解法一:记“摸出一球,放回后再摸出一个球两球恰好颜色不同”为B ,摸出一球得白球的概率为25=0.4,摸出一球得黑球的概率为35=0.6,“有放回摸两次,颜色不同”指“先白再黑”或“先黑后白”,∴P (B )=2×3+3×25×5=0.4×0.6+0.6×0.4=0.48.解法二:有放回地摸两次,互相独立,摸一次得白球的概率为25,∴“有放回摸两次,颜色不同”的概率为 P (B )=C 12·25·(1-25)=0.48. 20.已知关于x 的二次函数f (x )=ax 2-4bx +1.(1)设集合P ={-1,1,2,3,4,5}和Q ={-2,-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0x >0y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解:(1)∵函数f (x )=ax 2-4bx +1的图象的对称轴为x =2ba ,要使函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,当且仅当a >0且2ba≤1,即2b ≤a .若a =1,则b =-2,-1; 若a =2,则b =-2,-1,1; 若a =3,则b =-2,-1,1;若a =4,则b =-2,-1,1,2; 若a =5,则b =-2,-1,1,2; ∴所求事件包含基本事件的个数是 2+3+3+4+4=16. ∴所求事件的概率为1636=49.(2)由(1)知当且仅当2b ≤a 且a >0时,函数f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为⎩⎪⎨⎪⎧(a ,b )|⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a +b -8≤0a >0b >0,构成所求事件的区域为如右图阴影部分. 由⎩⎪⎨⎪⎧a +b -8=0b =a 2得交点坐标为(163,83),∴所求事件的概率为 P =12×8×8312×8×8=13.21.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门课的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(1)记“函数f (x )=x 2+ξ·x 在R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z . 依题意得⎩⎪⎨⎪⎧x (1-y )(1-z )=0.08xy (1-z )=0.12.1-(1-x )(1-y )(1-z )=0.88,解得⎩⎪⎨⎪⎧x =0.4y =0.6z =0.5.(1)若函数f (x )=x 2+ξ·x 为R 上的偶函数,则ξ=0. 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P (A )=P (ξ=0)=xyz +(1-x )(1-y )(1-z ) =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24. ∴事件A 的概率为0.24.(2)依题意知ξ的取值为0和2,由(1)所求可知P(ξ=0)=0.24,P(ξ=2)=1-P(ξ=0)=0.76.则ξ的分布列为∴ξ的数学期望为Eξ=022.在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A处的命中率q1为0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)由题设可知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知p(ξ=0)=(1-q1)(1-q2)2=0.03,解得q2=0.8(2)根据题意p1=P(ξ=2)=(1-q1)C12(1-q2)q2=0.75×2×0.2×0.8=0.24,p2=P(ξ=3)=q1(1-q2)2=0.25×(1-0.8)2=0.01,p3=P(ξ=4)=(1-q1)q22=0.75×0.82=0.48,p4=P(ξ=5)=q1q2+q1(1-q2)=0.25×0.8+0.25×0.2×0.8=0.24,因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=p3+p4=0.48+0.24=0.72,P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处以后都在B处投得分超过3分的概率.。
高三基础知识天天练 数学5-3人教版
第5模块 第3节[知能演练]一、选择题1.若数列{a n }的前n 项和S n =3n -a ,数列{a n }为等比数列,则实数a 的值是( )A .3B .1C .0D .-1解析:可用特殊值法,由S n 得a 1=3-a ,a 2=6,a 3=18,由等比数列的性质可知a =1.答案:B2.设a 1,a 2,a 3,a 4 成等比数列,其公比为2,则2a 1+a 22a 3+a 4的值为( )A.14B.12C.18D .1解析:由题意得a 2=2a 1,a 3=4a 1,a 4=8a 1. ∴2a 1+a 22a 3+a 4=2a 1+2a 18a 1+8a 1=14.答案:A3.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25解析:a 3a 6a 18=a 31q 2+5+17=(a 1q 8)3=a 39,即a 9为定值,所以下标和为9的倍数的两项积为定值,可知T 17为定值.答案:C4.已知等比数列{a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6等于( )A .240B .±240C .480D .±480解析:∵{a n }为等比数列,∴数列a 1+a 2,a 3+a 4,a 5+a 6也成等比数列,∴(a 3+a 4)2=(a 1+a 2)(a 5+a 6),∴a 5+a 6=120230=480.答案:C 二、填空题5.等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则数列{a n }的通项公式为________.解析:由a 4=a 1q 3,a 6=a 3q 3得 a 4+a 6a 1+a 3=q 3=54×110=18,∴q =12,又a 1(1+q 2)=10,∴a 1=8.∴a n =a 1q n -1=8×(12)n -1=24-n .答案:a n =24-n6.在等差数列{a n }中,a 1=1,a 7=4,数列{b n }是等比数列,已知b 2=a 3,b 3=1a 2,则满足b n <1a 80的最小自然数n 是________.解析:{a n }为等差数列a 1=1,a 7=4,6d =3,d =12.∴a n =n +12,{b n }为等比数列,b 2=2,b 3=23,q =13.∴b n =6×(13)n -1,b n <1a 80=281,∴81<26×⎝⎛⎭⎫13n -1,即3n -2>81=34.∴n >6,从而可得n min =7. 答案:7 三、解答题7.设数列{a n }的前n 项和S n =2a n -2n . (1)求a 3,a 4;(2)证明:{a n +1-2a n }是等比数列; (3)求{a n }的通项公式. (1)解:因为a 1=S 1,2a 1=S 1+2, 所以a 1=2,S 1=2. 由2a n =S n +2n 知2a n +1=S n +1+2n +1=a n +1+S n +2n +1,得a n +1=S n +2n +1,①所以a 2=S 1+22=2+22=6,S 2=8, a 3=S 2+23=8+23=16,S 3=24. a 4=S 3+24=40.(2)证明:由题设和①式知a n +1-2a n =(S n +2n +1)-(S n +2n )=2n +1-2n =2n .所以{a n +1-2a n }是首项为2,公比为2的等比数列.(3)a n =(a n -2a n -1)+2(a n -1-2a n -2)+…+2n -2(a 2-2a 1)+2n -1a 1=(n +1)·2n -1.8.设各项均为正数的数列{a n }和{b n }满足5a n ,5b n ,5a n +1成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .解:∵5a n ,5b n ,5a n +1成等比数列, ∴(5b n )2=5a n ·5a n +1,即2b n =a n +a n +1.① 又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a 2n +1=b n ·b n +1.② 由②及a i >0,b j >0(i 、j ∈N *)可得 a n +1=b n b n +1.③ ∴a n =b n -1b n (n ≥2).④将③④代入①可得2b n =b n -1b n +b n b n +1(n ≥2), ∴2b n =b n -1+b n +1(n ≥2). ∴数列{b n }为等差数列.∵b 1=2,a 2=3,a 22=b 1b 2,∴b 2=92. ∴b n =2+(n -1)( 92-2) =12(n +1)(n =1也成立). ∴b n =(n +1)22.∴a n =b n -1·b n =n 22·(n +1)22=n (n +1)2(n ≥2). 又当n =1时,a 1=1也成立.∴a n =n (n +1)2.[高考·模拟·预测]1.已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C. 2 D .2解析:因为a 3·a 9=2a 25,则由等比数列的性质有:a 3·a 9=a 26=2a 25,所以a 26a 25=2,即(a 6a 5)2=q 2=2,因为公比为正数,故q = 2.又因为a 2=1,所以a 1=a 2q =12=22.答案:B2.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1=( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设等比数列{a n }的首项为a 1公比为q ,∵a 5·a 2n -5=a 1q 4·a 1q 2n -6=22n ,即a 21·q 2n -2=22n ⇒(a 1·q n -1)2=22n ⇒(a n )2=(2n )2,∵a n >0,∴a n =2n ,∴a 2n -1=22n -1,∴log 2a 1+log 2a 3+…+log 2a 2n -1=log 22+log 223+…+log 222n -1=1+3+…+(2n -1)=1+(2n -1)2·n =n 2,故选C.答案:C3.已知数列{a n }共有m 项,定义{a n }的所有项和为S (1),第二项及以后所有项和为S (2),第三项及以后所有项和为S (3),…,第n 项及以后所有项和为S (n ).若S (n )是首项为2,公比为12的等比数列的前n 项和,则当n <m 时,a n 等于( )A .-12n -2B.12n -2 C .-12n -1D.12n -1 解析:∵n <m ,∴m ≥n +1.又S (n )=2(1-12n )1-12=4-12n -2,∴S (n +1)=4-12n -1,故a n =S (n )-S (n +1)=12n -1-12n -2=-12n -1.答案:C4.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.解析:由a n =b n -1,且数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则{a n }有连续四项在集合{-54,-24,18,36,81}中.经分析判断知{a n }的四项应为-24,36,-54,81.又|q |>1,所以数列{a n }的公比为q =-32,则6q =-9.答案:-95.等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N *,点(n ,S n )均在函数y =b x +r (b >0且b ≠1,b ,r 均为常数)的图象上.(Ⅰ)求r 的值;(Ⅱ)当b =2时,记b n =n +14a n (n ∈N *),求数列{b n }的前n 项和T n .解:(Ⅰ)由题意,S n =b n +r , 当n ≥2时,S n -1=b n -1+r ,所以a n =S n -S n -1=b n -1(b -1),由于b >0且b ≠1,所以当n ≥2时,{a n }是以b 为公比的等比数列, 又a 1=b +r ,a 2=b (b -1), a 2a 1=b ,即b (b -1)b +r=b ,解得r =-1. (Ⅱ)由(Ⅰ)知,n ∈N *,a n =(b -1)b n -1,当b =2时,a n =2n -1,所以b n =n +14×2n -1=n +12n +1. T n =222+323+424+…+n +12n +1.12T n =223+324+…+n2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2=12+123×(1-12n -1)1-12-n +12n +2 =34-12n +1-n +12n +2, 故T n =32-12n -n +12n +1=32-n +32n +1. [备选精题]6.已知数列{a n }满足a 1=a (a ≠0且a ≠1),前n 项和为S n ,且S n =a1-a (1-a n ).(1)求证:{a n }是等比数列;(2)记b n =a n lg|a n |(n ∈N *),当a =-73时,是否存在正整数m ,使得对于任意正整数n ,都有b n ≥b m ?如果存在,求出m 的值;如果不存在,说明理由.解:(1)当n ≥2时,S n =a 1-a (1-a n ),S n -1=a 1-a(1-a n -1), a n =S n -S n -1=a 1-a [(1-a n )-(1-a n -1)]=a1-a (a n -1-a n ),即a n =aa n -1.又a 1=a ≠0,所以a na n -1=a ,所以{a n }是首项和公比都为a 的等比数列. (2)由(1)知,a n =a n ,则b n =a n lg|a n |=na n lg|a |. 又a =-73∈(-1,0),则lg|a |<0. 所以当n 为偶数时,b n =na n lg|a |<0;当n 为奇数时,b n >0. 可见,若存在满足条件的正整数m ,则m 为偶数. b 2k +2-b 2k =[(2k +2)a 2k+2-2ka 2k ]lg|a |=2a 2k [(k +1)a 2-k ]lg|a |=2a 2k [k (a 2-1)+a 2·a 2-1a 2-1]lg|a |=2a 2k (a 2-1)(k -a 21-a2)lg|a |(k ∈N *). 当a =-73时,a 2-1=-29,∴2a 2k (a 2-1)lg|a |>0.又a 21-a 2=72, 当k >72时,b 2k +2>b 2k ,即b 8<b 10<b 12<…;当k <72时,b 2k +2<b 2k ,即b 8<b 6<b 4<b 2.故存在正整数m =8使得对于任意正整数n ,都有b n ≥b m .。
高三基础知识天天练2-3. 数学 数学doc人教版
第2模块第3节[知能演练]一、选择题1.函数y=-x2(x∈R)是() A.左减右增的偶函数B.左增右减的偶函数C.减函数、奇函数D.增函数、奇函数解析:∵y=-x2是开口向下的一条抛物线,∴y=-x2在(-∞,0)上为增函数,(0,+∞)上为减函数,不妨设y=f(x)=-x2,则f(-x)=-(-x)2=-x2=f(x),∴f(x)为偶函数.答案:B2.已知函数f(x)在R上是奇函数,且当x>0时,f(x)=x2-2x,则f(x)在R上的解析式是() A.f(x)=x·(x-2)B.f(x)=|x|(x-2)C.f(x)=|x|(|x|-2)D.f(x)=x(|x|-2)答案:D3.f(x)、g(x)都是定义在R上的奇函数,且F(x)=3f(x)+5g(x)+2,若F(a)=b,则F(-a)等于() A.-b+4 B.-b+2C.b-2 D.b+2解析:依题设F(-x)=3f(-x)+5g(-x)+2=-3f(x)-5g(x)+2,∴F(x)+F(-x)=4,则F(a)+F(-a)=4,F(-a)=4-F(a)=4-b.答案:A4.定义在R上的函数f(x)既是奇函数又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为() A.0 B.1C.3 D.5解析:定义在R上的函数f(x)是奇函数,则f(0)=0,又f(x)是周期函数,T是它的一个正周期,∴f (T )=f (-T )=0,f (-T 2)=-f (T 2)=f (-T 2+T )=f (T2).∴f (-T 2)=f (T2)=0,则n 可能为5,选D.答案:D 二、填空题5.设函数f (x )=(x +1)(x +a )x 为奇函数,则a =________.解析:∵f (1)+f (-1)=0⇒2(1+a )+0=0, ∴a =-1. 答案:-16.已知函数f (x )=x 2-cos x ,对于[-π2,π2]上的任意x 1,x 2,有如下条件:①x 1>x 2;②x 21>x 22;③|x 1|>x 2.其中能使f (x 1)>f (x 2)恒成立的条件序号是________.解析:函数f (x )=x 2-cos x 显然是偶函数,其导数y ′=2x +sin x 在0<x <π2时,显然也大于0,是增函数,想象其图象,不难发现,x 的取值离对称轴越远,函数值就越大,②满足这一点.当x 1=π2,x 2=-π2时,①③均不成立.答案:② 三、解答题7.已知f (x )=px 2+23x +q 是奇函数,且f (2)=53.(1)求实数p ,q 的值;(2)判断函数f (x )在(-∞,-1)上的单调性,并加以证明. 解:(1)∵f (x )是奇函数,∴f (-x )=-f (x ),即px 2+2-3x +q =-px 2+23x +q .从而q =0,因此f (x )=px 2+23x .又∵f (2)=53,∴4p +26=53.∴p =2.(2)f (x )=2x 2+23x,任取x 1<x 2<-1,则f (x 1)-f (x 2)=2x 21+23x 1-2x 22+23x 2=2(x 2-x 1)(1-x 1x 2)3x 1x 2.∵x 1<x 2<-1,∴x 2-x 1>0,1-x 1x 2<0,x 1x 2>0. ∴f (x 1)-f (x 2)<0.∴f (x )在(-∞,-1)上是单调增函数.8.已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明f (x )在(0,1)上是减函数.(1)解:只需求出f (x )在x ∈(-1,0)和x =±1,x =0时的解析式即可,因此,要注意应用奇偶性和周期性,当x ∈(-1,0)时,-x ∈(0,1).∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,由f (0)=f (-0)=-f (0),且f (1)=f (-2+1)=f (-1)=-f (1), 得f (0)=f (1)=f (-1)=0. ∴在区间[-1,1]上有f (x )=⎩⎨⎧2x4x +1x ∈(0,1),-2x 4x+1x ∈(-1,0),0 x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1.设0<x 1<x 2<1, f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=(2x 2-2x 1)(2x 1+x 2-1)(4x 1+1)(4x 2+1).∵0<x 1<x 2<1.∴2x 2-2x 1>0,2x 1+x 2-1>0. ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),故f (x )在(0,1)上单调递减.[高考·模拟·预测]1.已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2008)+f (2009)的值为( )A .-2B .-1C .1D .2解析:f (-2008)+f (2009)=f (0)+f (1)=log 21+log 22=1.答案:C2.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )·f (x ),则f (52)的值是( )A .0 B.12 C .1D.52解析:令g (x )=f (x )x ,则g (-x )=f (-x )-x =-f (x )x =-g (x ),∴g (x )为奇函数.又g (x +1)=f (x +1)x +1=f (x )x =g (x ).∴g (52)=f (52)52=g (12)=g (-12)=-g (12),∴g (12)=0,∴f (52)=0.故选A. 答案:A3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:∵f (x -4)=-f (x ),∴f (x +4)=-f (x ),∴f (x +8)=f (x ).∴f (-25)=f (-1)=-f (1),f (11)=f (3)=-f (-1)=f (1),f (80)=f (0)=0.而f (x )在[0,2]上是增函数,∴f (1)≥f (0)=0.∴f (-25)<f (80)<f (11).故选D.答案:D4.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( ) A .f (x )是偶函数 B .f (x )是奇函数 C .f (x )=f (x +2) D .f (x +3)是奇函数解析:由题意f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),即f (x )=-f (2-x )且f (x )=-f (-2-x ).∴f (x )=-f (2-x )=f [-2-(2-x )]=f (x -4),∴f (-x +3)=f (-x -1)=-f [2-(-x -1)]=-f (x +3),故选D. 答案:D5.定义在R 上的增函数y =f (x )对任意x ,y ∈R 都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 解:(1)令x =y =0,得f (0+0)=f (0)+f (0),即f (0)=0. (2)令y =-x ,得f (x -x )=f (x )+f (-x ),又f (0)=0,则有 0=f (x )+f (-x ).即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)证法一:因为f (x )在R 上是增函数,又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k 2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2. 综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立. 解法二:由k ·3x <-3x +9x +2, 得k <3x +23x -1.u =3x +23x -1≥22-1,即u 的最小值为22-1,要使对x ∈R 不等式k <3x +23x -1恒成立,只要使k <22-1.所以满足题意的k 的取值范围是(-∞,22-1)[备选精题]6.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在x ∈[2,+∞)上为增函数,求a 的取值范围. 解:(1)当a =0时,f (x )=x 2,对任意x ∈(-∞,0)∪(0,+∞), f (-x )=(-x )2=x 2=f (x ),∴f (x )为偶函数. 当a ≠0时,f (x )=x 2+ax (a ≠0,x ≠0),取x =±1,得f (-1)+f (1)=2≠0,f (-1)-f (1)= -2a ≠0.∴f (-1)≠-f (1),f (-1)≠f (1).∴函数f (x )既不是奇函数,也不是偶函数.(2)解法一:要使函数f (x )在x ∈[2,+∞)上为增函数, 等价于f ′(x )≥0在x ∈[2,+∞)上恒成立,即f ′(x )=2x -ax 2≥0在x ∈[2,+∞)上恒成立,故a ≤2x 3在x ∈[2,+∞)上恒成立.∴a ≤(2x 3)min =16.∴a 的取值范围是(-∞,16]. 解法二:设2≤x 1<x 2,f(x1)-f(x2)=x21+ax1-x22-ax2=(x1-x2)x1x2[x1x2(x1+x2)-a],要使函数f(x)在x∈[2,+∞)上为增函数,必须f(x1)-f(x2)<0恒成立,∵x1-x2<0,即a<x1x2(x1+x2)恒成立,又∵x1+x2>4,x1x2>4,∴x1x2(x1+x2)>16.∴a的取值范围是(-∞,16].。
高三基础知识天天练3-3. 数学 数学doc人教版
第3模块 第3节[知能演练]一、选择题1.函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的()解析:∵y =xsin x 是偶函数,排除A ,当x =2时,y =2sin2>2,排除D. 当x =π6时,y =π6sin π6=π3>1,排除B.答案:C2.函数f (x )=tan ωx (ω>0)图象的相邻的两支截直线y =π4所得线段长为π4,则f (π4)的值是( )A .0B .1C .-1D.π4解析:由题意知T =π4,由πω=π4得ω=4,∴f (x )=tan4x ,∴f (π4)=tan π=0.答案:A3.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]解析:f (x )=sin x -3cos x =2sin(x -π3)∵-π≤x ≤0,∴-4π3≤x -π3≤-π3当-π2≤x -π3≤-π3时,即-π6≤x ≤0时,f (x )递增.答案:D4.对于函数f (x )=sin x +1sin x(0<x <π),下列结论中正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解析:f (x )=sin x +1sin x =1+1sin x ,∵0<x <π,∴0<sin x ≤1,∴1sin x ≥1,∴1+1sin x≥2.∴f (x )有最小值而无最大值. 答案:B 二、填空题 5.函数y =lgsin x + cos x -12的定义域为____________,函数y =12sin(π4-23x )的单调递增区间为________.解析:(1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0cos x ≥12,解得⎩⎪⎨⎪⎧2kπ<x <π+2kπ-π3+2kπ≤x ≤π3+2kπ(k ∈Z ), ∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z }.(2)由y =12sin(π4-23x )得y =-12sin(23x -π4),由π2+2kπ≤23x -π4≤32π+2kπ,得 98π+3kπ≤x ≤21π8+3kπ,k ∈Z ,故函数的单调递增区间为 [98π+3kπ,21π8+3kπ](k ∈Z ). 答案:{x |2kπ<x ≤π3+2kπ,k ∈Z }[98π+3kπ,21π8+3kπ](k ∈Z ) 6.对于函数f (x )=⎩⎪⎨⎪⎧sin x ,sin x ≤cos x cos x ,sin x >cos x ,给出下列四个命题:①该函数是以π为最小正周期的周期函数;②当且仅当x =π+kπ(k ∈Z )时,该函数取得最小值-1; ③该函数的图象关于x =5π4+2kπ(k ∈Z )对称;④当且仅当2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.其中正确命题的序号是________.(请将所有正确命题的序号都填上) 解析:画出f (x )在一个周期[0,2π]上的图象.由图象知,函数f (x )的最小正周期为2π,在x =π+2kπ(k ∈Z )和x =32π+2kπ(x ∈Z )时,该函数都取得最小值-1,故①②错误,由图象知,函数图象关于直线x =54π+2kπ(k ∈Z )对称,在2kπ<x <π2+2kπ(k ∈Z )时,0<f (x )≤22.故③④正确.答案:③④ 三、解答题7.已知函数y =f (x )=2sin x1+cos 2x -sin 2x.(1)求函数定义域;(2)用定义判断f (x )的奇偶性; (3)在[-π,π]上作出f (x )的图象; (4)写出f (x )的最小正周期及单调区间. 解:(1)∵f (x )=2sin x 2cos 2x=sin x|cos x |, ∴函数的定义域是{x |x ≠kπ+π2,k ∈Z }.(2)由(1)知f (-x )=sin(-x )|cos(-x )|=-sin x|cos x |=-f (x ),∴f (x )是奇函数. (3)f (x )=⎩⎨⎧tan x (-π2<x <π2)-tan x (-π≤x <-π2或π2<x ≤π),y =f (x )(x ∈[-π,π])的图象如图所示.(4)f (x )的最小正周期为2π,单调递增区间是(-π2+2kπ,π2+2kπ)(k ∈Z ),单调递减区间是(π2+2kπ,3π2+2kπ)(k ∈Z ).8.已知a >0,函数f (x )=-2a sin(2x +π6)+2a +b ,当x ∈[0,π2]时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f (x +π2)且lg[g (x )]>0,求g (x )的单调区间.解:(1)∵x ∈[0,π2],∴2x +π6∈[π6,7π6],∴sin(2x +π6)∈[-12,1],∴-2a sin(2x +π6)∈[-2a ,a ],∴f (x )∈[b,3a +b ],又-5≤f (x )≤1.∴⎩⎪⎨⎪⎧ b =-53a +b =1,解得⎩⎪⎨⎪⎧a =2b =-5. (2)f (x )=-4sin(2x +π6)-1,g (x )=f (x +π2)=-4sin(2x +7π6)-1=4sin(2x +π6)-1,又由lg[g (x )]>0,得g (x )>1, ∴4sin(2x +π6)-1>1,∴sin(2x +π6)>12,∴π6+2kπ<2x +π6<56π+2kπ,k ∈Z ,由π6+2kπ<2x +π6≤2kπ+π2,得 kπ<x ≤kπ+π6,k ∈Z .由π2+2kπ≤2x +π6<56π+2kπ得 π6+kπ≤x <π3+kπ,k ∈Z . ∴函数g (x )的单调递增区间为(kπ,π6+kπ](k ∈Z ),单调递减区间为[π6+kπ,π3+kπ)(k ∈Z ).[高考·模拟·预测]1.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1D.3+2解析:因为f (x )=(1+3tan x )cos x =cos x +3sin x =2cos(x -π3),当x =π3时,函数取得最大值为2.故选B.答案:B2.若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为( )A.16 B.14 C.13D.12解析:将函数y =tan(ωx +π4)的图象向右平移π6个单位后,得到的函数为y =tan[ω(x -π6)+π4]=tan(ωx -πω6+π4),这个函数的图象与函数y =tan(ωx +π6)的图象重合,根据正切函数的周期是kπ,故其充要条件是-πω6+π4=kπ+π6(k ∈Z ),即ω=-6k +12(k ∈Z ),当k =0时,ω的最小值为12,故选D.答案:D3.已知函数f (x )=sin(x -π2)(x ∈R ),下面结论中错误的是( )A .函数f (x )的最小正周期为2πB .函数f (x )在区间[0,π2]上是增函数C .函数f (x )在图象关于直线x =0对称D .函数f (x )是奇函数解析:∵f (x )=-cos x ,∴f (x )为偶函数,故选D. 答案:D4.已知α∈(0,π4),a =(sin α)cos α,b =(sin α)sin α,c =(cos α)sin α,则a 、b 、c 的大小关系是________.解析:α∈(0,π4),1>cos α>sin α>0,y =(sin α)x 为减函数,∴a <b .而y =x sin α在(0,+∞)上为增函数,∴c >b .故c >b >a .答案:a <b <c5.已知函数f (x )=3(sin 2x -cos 2x )-2sin x cos x . (1)求f (x )的最小正周期;(2)设x ∈[-π3,π3],求f (x )的值域和单调递增区间.解:(1)∵f (x )=-3(cos 2x -sin 2x )-2sin x cos x =-3cos2x -sin2x =-2sin(2x +π3)∴f (x )的最小正周期为π.(2)∵x ∈[-π3,π3],∴-π3≤2x +π3≤π,∴-32≤sin(2x +π3)≤1. ∴f (x )的值域为[-2,3].∵当y =sin(2x +π3)递减时,f (x )递增,令2kπ+π2≤2x +π3≤2kπ+3π2,则kπ+π12≤x ≤kπ+7π12,k ∈Z ,又x ∈[-π3,π3],∴π12≤x ≤π3.故f (x )的递增区间为[π12,π3].[备选精题]6.设函数f (x )=sin(π4x -π6)-2cos 2π8x +1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈[0,43]时y =g (x )的最大值.解:(1)f (x )=sin π4x cos π6-cos π4x sin π6-cos π4x =32sin π4x -32cos π4x =3sin(π4x -π3),故f (x )的最小正周期为T =2ππ4=8.(2)解法一:在y =g (x )的图象上任取一点(x ,g (x )),它关于x =1的对称点为(2-x ,g (x )).由题设条件,点(2-x ,g (x ))在y =f (x )的图象上,可知g (x )=f (2-x )=3sin[π4(2-x )-π3]=3sin(π2-π4x -π3)=3cos(π4x +π3).当0≤x ≤43时,π3≤π4x +π3≤2π3,因此y =g (x )在区间[0,43]上的最大值为g (x )max =3cos π3=32.解法二:因区间[0,43]关于x =1的对称区间为[23,2],且y =g (x )与y =f (x )的图象关于x=1对称,故y =g (x )在[0,43]上的最大值即为y =f (x )在[23,2]上的最大值.由(1)知f (x )=3sin(π4x -π3),当23≤x ≤2时,-π6≤π4x -π3≤π6. 因此y =g (x )在[0,43]上的最大值为g (x )max =3sin π6=32.。
宿豫中学09届高三数学二轮复习天天练11
09届高三数学天天练11一、填空题1.命题“2,0x R x x ∃∈+≤”的否定是 . 2.(1)(12)i i -+= .3.函数()sin 23cos 2f x x x =+的最小正周期是 .4.长方体1111ABCD A B C D -中,12,1AB BC AA ===,则1BD 与平面1111A B C D 所成的角的大小为 .5.已知实数x y ,满足2203x y x y y +≥⎧⎪-≤⎨⎪≤≤⎩,,,则2z x y =+的最小值是 .6.已知抛物线22y px =的准线与双曲线222x y -=的左准线重合,则抛物线的焦点坐标为 .7. 执行右边的程序框图,若4p =,则S = .8.将圆锥的侧面展开恰为一个半径为2的半圆,则圆锥的体积是 . 9.若直线1ax by +=过点(),A b a ,则以坐标原点O 为圆心,半径的圆的面积的最小值是 . 10.已知集合{}21503x A x |x ,B x |x -⎧⎫=-<<=>⎨⎬-⎩⎭,在集合A 任取一个元素x ,则事件“x A B ∈⋂”的概率是 .11.已知1F 、2F 是椭圆22x k ++21y k +=1的左右焦点,弦AB 过F 1,若2ABF ∆的周长为8,则椭圆的离心率为 .12.等边三角形ABC 中,P 在线段AB 上,且AP AB λ=,若CP AB PA PB ⋅=⋅,则实数λ的值是 .13.数列{}n a 的前n 项和是n S ,若数列{}n a 的各项按如下规则排列:11212312341, , , , , , , , , , , 23344455556,若存在整数k ,使10k S <,110k S +≥,则k a = . 14.若函数()3213f x x a x =-满足:对于任意的[]12,0,1x x ∈都有()()12||1f x f x -≤恒成立,则a 的取值范围是 .AB CD A 1B 1C 1D 1二、解答题:(文科班只做15题,30分,理科班两题都做,每题15分)15、 已知圆22:8O x y +=交x 轴于,A B 两点,曲线C 是以AB 为长轴,直线:l 4x =-为准线的椭圆.(Ⅰ)求椭圆的标准方程;(Ⅱ)若M 是直线l 上的任意一点,以OM 为直径的圆K 与圆O 相交于,P Q 两点,求证:直线PQ 必过定点E ,并求出点E 的坐标;(Ⅲ)如图所示,若直线PQ 与椭圆C 交于,G H 两点,且3EG HE =,试求此时弦PQ 的长.16、如图矩形OABC 在变换T 的作用下变成了平行四边形OA B C ''',求变换T 所对应的矩阵M .09届高三数学天天练11答案1.2,0x R x x ∀∈+>2.3i + 3.π4.6π5.16.()1,07.1516 8.33π 9.π 10.16 11.1212.222-13.5714.223,333⎡⎢⎣ 15.解:(Ⅰ)设椭圆的标准方程为()222210x y a b a b+=>>,则:2224a ac⎧=⎪⎨=⎪⎩,从而:222a c ⎧=⎪⎨=⎪⎩,故2b =,所以椭圆的标准方程为22184x y +=。
高三基础知识天天练 数学11-3人教版
第11模块 第3节[知能演练]一、选择题1.若二项式(x -2x)n 的展开式中第5项是常数项,则自然数n 的值可能为( )A .6B .10C .12D .15解析:T r +1=C r n (x )n -r(-2x )r =(-2)r C rn x n -3r2,当r =4时,n -3r 2=0,又n ∈N *,∴n =12. 答案:C2.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )A .74B .121C .-74D .-121解析:展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121.答案:D3.在(x 2+3x +2)5展开式中x 的系数为( )A .160B .240C .360D .800解析:∵(x 2+3x +2)5=(x +1)5·(x +2)5=(x 5+C 15x 4+…+1)(x 5+2C 15x 4+…+25), ∴其展开式中x 项的系数为C 4525+C 4524=240.答案:B4.在(1-x )5(1+x )4的展开式中x 3项的系数为( )A .-6B .-4C .4D .6解析:(1-x )5(1+x )4=(1-C 15x +C 25x 2-C 35x 3+…)(1+C 14x +C 24x 2+C 34x 3+C 44x 4), ∴x 3项的系数为1×C 34-C 15C 24+C 25C 14-C 35×1=4.答案:C 二、填空题5.已知二项式(1-3x )n 的展开式中所有项系数之和等于64,那么这个展开式中含x 2项的系数是________.解析:令x =1,则(1-3x )n =(-2)n , 即(-2)n =64,∴n =6.又T r +1=C r 6(-3x )r ,则T 3=C 26(-3x )2=135x 2,∴(1-3x )n 展开式中含x 2项的系数为135. 答案:1356.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364 三、解答题7.已知(4 41x +3x 2)n展开式中的倒数第三项的二项式系数为45.(1)求含有x 3的项; (2)求二项式系数最大的项.解:(1)由已知得C n -2n =45,即C 2n =45,∴n 2-n -90=0,解得n =-9(舍)或n =10, 由通项公式得T r +1=C r10(4·x -14)10-r (x 23)r . =C r 10·410-r·x -10-r 4+23r .令-10-r 4+23r =3,得r =6,∴含有x 3的项是T 7=C 610·44·x 3=53760x 3. (2)∵此展开式共有11项, ∴二项式系数最大项是第6项,∴T 6=C 510(4x -14)5(x 23)5=258048x 2512.8.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,求: (1)a 8+a 7+…+a 1; (2)a 8+a 6+a 4+a 2+a 0.解:令x =0得a 0=1. (1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0, ① ∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0. ② 由①+②得28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=12(28+48)=32896.[高考·模拟·预测]1.在二项式⎝⎛⎭⎫x 2-1x 5的展开式中,含x 4的项的系数是 ( )A .-10B .10C .-5D .5解析:T r +1=C r 5x 2(5-r )(-x -1)r =(-1)r C r 5x10-3r(r =0,1,…,5),由10-3r =4得r =2.含x 4的项为T 3,其系数为C 25=10,故选B.答案:B2.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( )A .45B .55C .70D .80解析:由二项式定理得:(1+2)5=1+C 15·2+C 25·(2)2+C 35·(2)3+C 45·(2)4+C 55·(2)5 =1+52+20+202+20+42=41+292, ∴a =41,b =29,a +b =70.故选C. 答案:C3. (1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为( )A .a =2,b =-1,n =5B .a =-2,b =-1,n =6C .a =-1,b =2,n =6D .a =1,b =2,n =5解析:不含x 的项的系数的绝对值为(1+|b |)n =243=35,不含y 的项的系数的绝对值为(1+|a |)n=32=25,∴n =5,⎩⎪⎨⎪⎧1+|b |=3,1+|a |=2,故选D.答案:D4. (x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________解析:T 4=-C 310x 7y 3,T 8=-C 710x 3y 7,则x 7y 3与x 3y 7的系数之和为-2C 310=-240. 答案:-2405.在(1+x )3+(1+x )3+(1+3x )3的展开式中,x 的系数为________(用数字作答).解析:C 13+C 23+C 33=23-1=7.答案:7 6.已知(x x +23x)n 展开式的前3项系数的和为129,这个展开式中是否含有常数项、一次项?如没有,请说明理由;如有,请求出来.解:∵T r +1=C r n (x x )n -r ·(23x)r =C r n 2r x 9n -11r 6(r =0,1,2,…,n ), ∴由题意得C 0n 20+C 1n ·2+C 2n ·22=129, ∴1+2n +2(n -1)n =129,∴n 2=64,∴n =8.故T r +1=C r 82r x 72-11r 6(r =0,1,2,…,8). 若展开式存在常数项,则72-11r 6=0,∴72-11r =0,∴r =7211∉N ,∴展开式中没有常数项.若展开式存在一次项,则72-11r6=1,∴72-11r =6. ∴r =6,∴展开式中存在一次项,它是第7项,T 7=C 6826x =1792x .。
高三基础知识天天练 数学11-9人教版
高三基础知识天天练数学11-9人教版第11模块第9节[知能演练]一、选择题1.某一离散型随机变量ξ的概率分布列如下表,且Eξ=1.5,则a-b的值ξ 0 1 2 3 P 0.1 a b 0.1 A.-0.1 B.0 C.0.1D.0.2解析:???0.1+a+b+0.1=1??a=0.4??0×0.1+a+2b+3×0.1=1.5 ???,?b=0.4故a-b=0. 答案:B2.随机变量X的分布列为X 1 2 4 P 0.4 0.3 0.3 则E(5X+4)等于A.15 B.11 C.2.2D.2.3 解析:∵EX=1×0.4+2×0.3+4×0.3=2.2,∴E(5X+4)=5EX+4=11+4=15. 答案:A3.在正态分布N(0,19)中,数值落在(-∞,-1)∪(1,+∞)内的概率为A.0.097 B.0.046 C.0.03D.0.0026解析:∵μ=0,σ=13,∴P(x1)=1-P(-1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.9974=0.0026. 答案:D( )( )( )4.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如下图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由如下图曲线可得下列说法中正确的一个是( )A.甲科总体的标准差最小 B.丙科总体平均数最小C.乙科总体的标准差及平均数都居中 D.甲、乙、丙的总体的平均数不相同解析:由正态曲线性质可得.答案:A 二、填空题5.设离散型随机变量X可能取的值为1,2,3,4.P(X=k)=ak+b(k=1,2,3,4).又X的均值EX=3,则a+b=________.解析:设离散型随机变量X可能取的值为1,2,3,4. P(X=k)=ak+b(k=1,2,3,4),所以 (a+b)+(2a+b)+(3a+b)+(4a+b)=1,即10a+4b=1,又X的均值EX=3,则(a+b)+2(2a+b)+3(3a+b)+4(4a+b)=3,即30a+10b=3,a1=,b=0, 101∴a+b=.101答案: 106.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.解析:∵ξ服从正态分布(1,σ2),∴ξ在(0,1)与(1,2)内取值的概率相同均为0.4. ∴ξ在(0,2)内取值概率为0.4+0.4=0.8. 答案:0.8 三、解答题7.某地区的一个季节下雨天的概率是0.3,气象台预报天气的准确率为0.8.某厂生产的产品当天怕雨,若下雨而不做处理,每天会损失3000元,若对当天产品作防雨处理,可使产品不受损失,费用是每天500元.(1)若该厂任其自然不作防雨处理,写出每天损失ξ的分布列,并求其平均值; (2)若该厂完全按气象预报作防雨处理,以η表示每天的损失,写出η的分布列.计算η的平均值,并说明按气象预报作防雨处理是否是正确的选择?解:(1)设ξ为损失数,分布列为:ξP ∴Eξ=3000×0.3=900(元) (2)设η为损失数,则 P(η=0)=0.7×0.8=0.56.P(η=500)=0.3×0.8+0.7×0.2=0.38. P(η=3000)=0.3×0.2=0.06. 分布列为:ηP 0 0.56 500 0.38 3000 0.06 0 0.7 3000 0.3 ∴Eη=0+500×0.38+3000×0.06=370 平均每天损失为370元.∵370<900,∴按天气预报作防雨处理是正确的选择.8.设在12个同类型的零件中有2个次品,抽取3次进行检验,每次抽取一个,并且取出不再放回,若以ξ和η分别表示取出次品和正品的个数.(1)求ξ的分布列、期望值及方差; (2)求η的分布列、期望值及方差.解:(1)ξ的可能值为0,1,2.若ξ=0,表示没有取出次品,其概率为:3C062C10P(ξ=0)=3=;C12112C192C10同理,有P(ξ=1)=3=;C12221C212C10P(ξ=2)=3=.C1222∴ξ的分布列为ξ P 0 6 111 9 222 1 226911∴Eξ=0×+1×+2×=.112222216191139915Dξ=(0-)2×+(1-)2×+(2-)2×=++=.21122222222888844(2)η的可能值为1,2,3,显然ξ+η=3. 1P(η=1)=P(ξ=2)=,229P(η=2)=P(ξ=1)=,226P(η=3)=P(ξ=0)=.11∴η的分布列为:η P 15Eη=E(3-ξ)=3-Eξ=3-=. 2215∵η=-ξ+3,∴Dη=(-1)2Dξ=.441 1 222 9 223 6 11[高考・模拟・预测]1.已知离散型随机变量X的分布列如下表.若EX=0,DX=1,则a=________,b=________.解析:由题意得,a+b+c+1=1,① 1211∵EX=0,∴-1×a+0×b+1×c+2×=0,即-a+c+=0,②12612∵DX=1,∴(-1-0)2×a+(0-0)2×b+(1-0)2×c+(2-0)2×=1,即a+c=,③12351联立①②③解得a=,b=. 12451答案: 1242.若随机变量X~N(μ,σ2),则P(X≤μ)=________. 解析:由正态分布曲线的性质知,P(X≤μ)=0.5. 答案:0.53.已知随机变量x~N(2,σ2),若P(x解析:由正态分布图象的对称性可得:P(a≤x<4-a)=1-2P(x4.袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数ξ的数学期望Eξ=________.解析:由题得ξ所取得的值为0或2,其中ξ=0表示取得的球为两个黑球,ξ=2表示C21C111133取得的球为一黑一红,所以P(ξ=0)=2=,P(ξ=2)=2=,故Eξ=0×+2×=1.C42C4222答案:15.一个盒子中装有分别标有数字1,2,3,4的4个大小、形状完全相同的球,现从中有放回地先后抽取2个球,抽取的球的标号分别为x1,x2,记ξ=|x1-1|+|x2-2|.(1)求ξ取得最大值时的概率; (2)求ξ的分布列及数学期望.解:(1)抽取的球的标号x可能为1,2,3,4,则x1-1分别为0,1,2,3;x2-2分别为-1,0,1,2. 因此ξ的所有取值为0,1,2,3,4,5.1当x1=x2=4时,ξ取得最大值5,此时P(ξ=5)=.161(2)当ξ=0时,(x1,x2)的所有取值为(1,2),此时P(ξ=0)=;163当ξ=1时,(x1,x2)的所有取值为(1,1),(1,3),(2,2),此时P(ξ=1)=;161当ξ=2时,(x1,x2)的所有取值为(1,4),(2,1),(2,3),(3,2),此时P(ξ=2)=; 41当ξ=3时,(x1,x2)的所有取值为(2,4),(3,1),(3,3),(4,2),此时P(ξ=3)=; 43当ξ=4时,(x1,x2)的所有取值为(3,4),(4,1),(4,3),此时P(ξ=4)=.16故ξ的分布列为:ξ P 0 1 161 3 162 1 43 1 44 3 165 1 161311315Eξ=0×+1×+2×+3×+4×+5×=.16164416162[备选精题]6.甲乙两人进行围棋比赛,约定每局胜者得1分,负者得0分(无平局),比赛进行到感谢您的阅读,祝您生活愉快。
高三数学上学期天天练11文 试题
汉学2021届高三数学〔文〕天天练〔11〕〔满分是100分,时间是60分钟〕一、选择题:〔8个小题一共40分〕1.过点)3,2(A 且垂直于直线052=-+y x 的直线方程为〔 〕 (A)042=+-y x (B)072=-+y x (C)032=+-y x (D)052=+-y x2.{}n a 是等差数列,154=a ,555=S ,那么过点34(3,(4,),)P a Q a 的直线的斜率〔 〕 A .4B .41C .-4D .-143.直线1:60l x ay ++=和2l :()2320a x y a -++=,那么1l ∥2l 的充要条件是a=〔 〕 A .3 B .1 C .-1 D .3或者-14.过点()1,4A ,且横、纵截距的绝对值相等的直线的条数为 〔 〕 A. 1 B. 2 C. 3 D. 45.圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,那么圆2C 的方程为〔 〕A.2(2)x ++2(2)y -=1B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=16.假设方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围为〔 〕A .〔0,+∞〕B .〔0,2〕C .〔1,+∞〕D .〔0,1〕7.椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点在椭圆上,假如线段1PF 的中点在y 轴上,那么12:PF PF 的值是〔 〕A .35B .12C .56D .538.椭圆的两个焦点为)0,5(1-F ,)0,5(2F ,M 是椭圆上一点,假设021=⋅MF MF ,128MF MF ⋅=,那么该椭圆的方程是〔 〕A .12722=+y xB .17222=+y xC .14922=+y xD .19422=+y x第二卷 非选择题二、填空题〔5个小题一共20分〕9.过抛物线24y x =的焦点,且被圆22420x y x y +-+=截得弦最长的直线的方程是_________ ____;10.假设圆224x y +=与圆22260x y ay ++-=〔a>0〕的公一共弦的长为23,那么=a ___________;11.动圆222(42)24410x y m x my m m +-+-+++=的圆心的轨迹方程是 .12.如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左顶点为A ,左焦点为F ,上顶点为B ,假设090BAO BFO ∠+∠=,那么椭圆的离心率是 .汉学2021届高三数学〔文〕天天练〔11〕答题卡班级 姓名 成绩一、选择题:二、填空题:9. ;10. ;11. ;12. 三、解答题:〔3个小题一共40分〕 13.〔此题满分是13分〕直线l 过点P 〔3,2〕且与x 轴正半轴,y 轴正半轴分别交于A 、B 两点 〔Ⅰ〕求△AOB 面积的最小值及此时直线l 方程〔O 为原点〕; 〔Ⅱ〕求直线l 在两坐标轴上截距之和的最小值。
高三基础知识天天练 数学11-4人教版
第11模块 第4节[知能演练]一、选择题1.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上.因此,出现正面向上的概率是37;③随机事件发生的频率就是这个随机事件发生的概率. A .0 B .1 C .2D .3解析:要明确在试验中,虽然随机事件发生的频率mn 不是常数,但它具有稳定性,且总是接近于某个常数,在其附近波动,这个常数叫做概率,所以随机事件发生的频率和它的概率是不一样的.由此可知①②③都是不正确的.答案:A2.对某电视机厂生产的电视机进行抽样检测,数据如下:( )A .0.92B .0.94C .0.95D .0.96解析:由概率的定义可知,检测次数越多越接近概率值. 答案:C3.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X 、Y ,则log 2X Y =1的概率为( )A.16B.536C.112D.12解析:由log 2X Y =1得Y =2X ,满足条件的X 、Y 有3对,而骰子朝上的点数X 、Y 共有6×6=36对.∴概率为336=112.答案:C4.在10支铅笔中,有8支正品和2支次品,从中不放回地任取2支,至少取到1支次品的概率是( )A.29B.1645C.1745D.25解析一:(直接法).“至少取到1支次品”包括:A =“第一次取到次品,第二次取到正品”;B =“第一次取到正品,第二次取到次品”;C =“第一、二次均取到次品”三种互斥事件,所以所求事件的概率为P (A )+P (B )+P (C )=2×8+8×2+2×110×9=1745. 解析二:(间接法)“至少取到1支次品”的对立事件为“取到的2支铅笔均为正品”,所以所求事件的概率为1-8×710×9=1745. 答案:C 二、填空题5.设有关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为________.解析:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件a ≥b .基本事件共有12个:(0,0),(0,1)(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34.答案:346.定义集合A 与B 的差集A -B ={x |x ∈A 且x ∉B },记“从集合A 中任取一个元素x ,x ∈A -B ”为事件E ,“从集合A 中任取一个元素x ,x ∈A ∩B ”为事件F .P (E )为事件E 发生的概率,P (F )为事件F 发生的概率,当a ,b ∈Z ,且a <-1,b ≥1时,设集合A ={x ∈Z |a <x <0},集合B ={x ∈Z |-b <x <b },给出以下判断:①当a =-4,b =2时,P (E )=23,P (F )=13;②总有P (E )+P (F )=1成立; ③若P (E )=1,则a =-2,b =1;④P (F )不可能等于1.其中所有判断正确的序号为________.解析:对于①,当a =-4,b =2时,A ={x ∈Z |-4<x <0}={-3,-2,-1},B ={x ∈Z |-2<x <2}={-1,0,1},A -B ={-3,-2},A ∩B ={-1},P (E )=23,P (F )=13,因此①正确;对于②,依题意知,对于集合A 中的任一元素x ,要么x 属于A -B ,要么x 属于A ∩B ,二者必居其一,因此P (E )+P (F )=1,②正确;对于③,由P (E )=1得A ∩B =Ø,结合题意分析可知此时b =1,a 可以取-2、-3、-4等,因此③不正确;对于④,当a =-3,且b =4时,A ={-2,-1},B ={-3,-2,-1,0,2,3},此时A ∩B =A ,P (F )=1,因此④不正确.综上所述,其中所有正确命题的序号是①②.答案:①② 三、解答题7.同时掷两颗骰子一次,(1)“点数之和是13”是什么事件?其概率是多少?(2)“点数之和在2~13范围之内”是什么事件?其概率是多少? (3)“点数之和是7”是什么事件?其概率是多少?解:(1)由于点数最大是6,和最大是12,不可能得13,因此此事件是不可能事件,其概率为0.(2)由于点数之和最小是2,最大是12,在2~13范围之内,它是必然事件,其概率为1.(3)由(2)知,和是7是有可能的,此事件是随机事件,事件“点数和为7”包含的基本事件有{1,6},{2,5},{3,4},{4,3},{5,2},{6,1}共6个,因此P =66×6=16.8.口袋里装有不同的红色球和白色球共36个,且红色球多于白色球.从袋子中取出2个球,若是同色的概率为12,求:(1)袋中红色、白色球各是多少?(2)从袋中任取3个小球,至少有一个红色球的概率为多少? 解:(1)令红色球为x 个,则依题意得C 2xC 236+C 236-x C 236=12,所以2x 2-72x +18×35=0,得x =15或x =21, 又红色球多于白色球,所以x =21, 所以红色球为21个,白色球为15个.(2)设从袋中任取3个小球,至少有一个红色球的事件为A ,均为白色球的事件为B , 则P (A )=1-P (B )=1-C 315C 336=191204.[高考·模拟·预测]1.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是( )A.112 B.110 C.325D.12125解析:每条棱上有8块,共8×12=96块. ∴概率为8×121000=12125.答案:D2.福娃是北京2008年第29届奥运会吉祥物,每组福娃都由“贝贝”、“晶晶”、“欢欢”、“迎迎”和“妮妮”这五个福娃组成.甲、乙两位好友分别从同一组福娃中各随机选择一个福娃留作纪念,按先甲选再乙选的顺序不放回地选择,则在这两位好友所选择的福娃中,“贝贝”和“晶晶”恰好只有一个被选中的概率为( )A.110 B.15 C.35D.45解析:本题分甲选中吉祥物和乙选中吉祥物两种情况,先甲选后乙选的方法有5×4=20,甲选中乙没有选中的方法有2×3=6,概率为620=310,乙选中甲没有选中的方法有2×3=6,概率为620=310,∴恰有一个被选中的概率为310+310=35. 答案:C3.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________.解析:依题意知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5. 答案:0.54.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为________. 解析:基本事件有6×6×6=216个,点数依次成等差数列的有: (1)当公差d =0时,1,1,1及2,2,2,…,共6个.(2)当公差d =±1时,1,2,3及2,3,4;3,4,5;4,5,6,共4×2个. (3)当公差d =±2时,1,3,5;2,4,6,共2×2个.∴P =6+4×2+2×26×6×6=112.答案:1125.某学校篮球队、羽毛球队、乒乓球队的某些队员不止参加了一支球队,具体情况如右图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率;(2)该队员最多属于两支球队的概率.解:(1)设“该队员只属于一支球队”为事件A ,则事件A 的概率P (A )=1220=35.(2)设“该队员最多属于两支球队”为事件B ,则事件B 的概率为P (B )=1-220=910.[备选精题]6.班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张相同的卡片上,并放入一个箱子中充分混合,每次从中随机地取出一张卡片,取出谁的编号谁就参与表演节目.(1)为了选出2人来表演双人舞,连续抽取2张卡片,求取出的2人不全是男生的概率; (2)为了选出2人分别表演独唱和朗诵,抽取并观察第一张卡片后,又放回箱子中,充分混合后再从中抽取第二张卡片,求:独唱和朗诵由同一个人表演的概率.解:(1)利用树形图我们可以列出连续抽取2张卡片的所有可能结果(如下图所示).由上图可以看出,试验的所有可能结果数为20,因此每次都随机抽取,因此这20种结果出现的可能性是相同的,试验属于古典概型.用A 1表示事件“连续抽取2人一男一女”,A 2表示事件“连续抽取2人都是女生”,则A 1与A 2互斥,并且A 1∪A 2表示事件“连续抽取2张卡片,取出的2人不全是男生”,由列出的所有可能结果可以看出,A 1的结果有12种,A 2的结果有2种,由互斥事件的概率加法公式,可得P (A 1∪A 2)=P (A 1)+P (A 2)=1220+220=710=0.7,即连续抽取2张卡片,取出的2人不全是男生的概率为0.7.(2)有放回地连续抽取2张卡片,需注意同一张卡片可再次被取出,并且它被取出的可能性和其他卡片相等,我们用一个有序实数对表示抽取的结果,例如“第一次取出2号,第二次取出4号”就用(2,4)来表示,所有的可能结果可以用下表列出.概型.用A表示事件“独唱和朗诵由同一个人表演”,由上表可以看出,A的结果共有5种,因此独唱和朗诵由同一个人表演的概率P(A)=525=15=0.2.。
高三基础知识天天练 数学9-3人教版
第9模块 第3节[知能演练]一、选择题1.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数超过50人C .由平面三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳出{a n }的通项公式解析:两条直线平行,同旁内角互补大前提 ∠A 与∠B 是两条平行直线的同旁内角小前提 ∠A +∠B =180°结论 答案:A2.“所有9的倍数(M )都是3的倍数(P ),某奇数(S )是9的倍数(M ),故此奇数(S )是3的倍数(P )”,上述推理是( )A .小前提错B .结论错C .正确的D .大前提错解析:大前提正确,小前提正确,故命题正确. 答案:C3.已知a i ,b i ∈R (i =1,2,3,…,n ),a 21+a 22+…+a 2n =1,b 21+b 22+…+b 2n =1,则a 1b 1+a 2b 2+…+a n b n 的最大值为( )A .1B .2C .n 2D .2n解析:此结论为“若a ,b ,c ,d ∈R ,a 2+b 2=1,c 2+d 2=1,则ac +bd ≤a 2+c 22+b 2+d 22=1”的推广,类比可得a 1b 1+a 2b 2+…+a n b n ≤a 21+b 212+a 22+b 222+…+a 2n +b 2n2=1.答案:A4.如右图,圆周上按顺时针方向标有1,2,3,4,5五个点.一只青蛙按顺时针方向绕圆从一个点跳到另一点.若它停在奇数点上,则下一次只能跳一个点;若停在偶数点上,则下一次跳两个点.该青蛙从5这点跳起,经2008次跳后它将停在的点是( )A .1B .2C .3D .4解析:记a n 表示青蛙第n 次跳后所在的点数,则a 1=1,a 2=2,a 3=4,a 4=1,a 5=2,a 6=4,…,显然{a n }是一个周期为3的数列,故a 2008=a 1=1,答案为A.答案:A 二、填空题5.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … … … … … …根据以上排列规律,数阵中第n (n ≥3)行的从左至右的第3个数是________.解析:本小题考查归纳推理和等差数列求和公式.前n -1行共有正整数1+2+…+(n-1)个,即n 2-n 2个.因此第n 行第3个数是全体正整数中的第n 2-n 2+3个,即为n 2-n +62.答案:n 2-n +626.有一种“数独”推理游戏,游戏规则如下:(1)在9×9的九宫格子中,分成9个3×3的小九宫格,用1到9这9个数填满整个格子;(2)每一行与每一列都有1到9的数字,每个小九宫格里也要有1到9的数字,并且一个数字在每行每列及每个小九宫格里只能出现一次,即不能重复也不能少,那么A 处应填入的数字为__________;B 处应填入的数字为__________.解析:依题意从第二行看,A 处可填入1,2,4,6,8,从第三列看,A 处可填入1,3,5,7,9,所以A 处填入1;同理可推出B 处可填入1,3,而B 的左边应填入1,进而可知B 处应填3.答案:1 3 三、解答题7.已知:sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32.通过观察上述两等式的规律,请你写出一般性的命题,并给出证明. 解:一般性的命题为sin 2(α-60°)+sin 2α+sin 2(α+60°)=32.证明如下:左边=1-cos(2α-120°)2+1-cos2α2+1-cos(2α+120°)2=32-12[cos(2α-120°)+cos2α+cos(2α+120°)] =32=右边. ∴结论正确.8.在△ABC 中,射影定理可以表示为a =b cos C +c cos B ,其中a 、b 、c 依次为角A 、B 、C 的对边,类比以上定理,给出空间四面体性质的猜想.解:如右图,在四面体P -ABC 中,S 1、S 2、S 3、S 分别表示△P AB 、△PBC 、△PCA 、△ABC 的面积,α、β、γ依次表示面P AB 、面PBC 、面PCA 与底面ABC 所成角的大小,我们猜想将射影定理类比推理到三维空间,其表现形式应为S=S1cosα+S2cosβ+S3cosγ.[高考·模拟·预测]1.把正整数按一定的规则排成了如右图所示的三角形数表.设a ij是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若a ij=2009,则i与j的和为() A.105B.106C.107D.108解析:由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,2009=2×1005-1,所以2009为第1005个奇数,又前31个奇数行内数的个数的和为961,前32个奇数行内数的个数的和为1024,故2009在第32个奇数行内,所以i=63,因为第63行的第一个数为2×962-1=1923,2009=1923+2(m-1),所以m=44,即j=44,所以i+j=107.答案:C2.广州2010年亚运会火炬传递在A,B,C,D,E五个城市之间进行,各城市之间的路线距离(单位:百公里)见下表.若以A为起点,E为终点,每个城市经过且只经过一次,那么火炬传递的最短路线距离是()A.20.6C.22 D.23解析:由于“以A为起点,E为终点,每个城市经过且只经过一次”,并且求“最短路线的距离”,由选项判断,A中20.6在表中只有C和E之间的距离8.6是出现小数部分的,故CE必定是经过的路线,又因为A为起点,E为终点,故如果A正确,那么路线必然是:1.A-B-D-C-E或2.A-D-B-C-E,进行验证:线路1的距离之和为5+6+9+8.6=28.6,故线路1不符合;线路2的距离之和为5+6+7+8.6=26.6,线路2也不符合,故排除A;再验证选项B,发现线路A-C-D-B-E的距离之和为4+9+6+2=21符合,故选B.答案:B3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为__________.解析:由类比推理得,若两个正四面体的棱长的比为1∶2,则它们的体积比为1∶8.下面计算验证.假设两个正四面体的棱长分别为1和2,如右图,正四面体ABCD 的棱长为1,取BC的中点E ,作AO ⊥ED 于O ,则OD =23ED =23×32=33,又在Rt △AOD 中,AO =1-OD 2=1-(33)2=63, 则V 正四面体ABCD =13S △BCD ·AO =13×34×1×63=212;同理可算得棱长为2的正四面体的体积V 正四面体A ′B ′C ′D ′=223.∴V 正四面体ABCD ∶V 正四面体A ′B ′C ′D ′=212223=18.答案:1∶84.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,__________,__________,T 16T 12成等比数列.解析:对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n ,则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12,T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.答案:T 8T 4 T 12T 85.(南通第一次调研)根据下面一组等式:可得S 1+S 3+S 5+…+S 2n -1=__________.解析:从已知数表得S 1=1,S 1+S 3=16=24,S 1+S 3+S 5=81=34, 从而猜想S 1+S 3+…+S 2n -1=n 4. 答案:n 46.已知数列{a k }的前k 项和为S k ,且S k =12ka k +1,其中a 1=1.(1)求证a k ≠0(k ∈N ); (2)求数列{a k }的通项公式;(3)对任意给定的正整数n (n ≥2),数列{b n }满足b k +1b k =k -na k +1(k =1,2,…,n -1),b 1=1,求b 1+b 2+…+b n .解:(1)当k >1时,由a k =S k -S k -1=12ka k +1-12(k -1)a k ,得(k +1)a k =ka k +1.若存在a m =0(m >1),由ma m -1=(m -1)a m ,m >1,得a m -1=0, 从而有a m -2=0,…,a 2=0,a 1=0,与a 1=1矛盾,所以a k ≠0.(2)由(1)知,a k +1a k =k +1k ,得a k =a k a k -1·a k -1a k -2·…·a 2a 1·a 1=k .(3)因为a k =k ,所以b k +1b k =-n -k a k +1=-n -kk +1.所以b k =b k b k -1·b k -1b k -2·…·b 2b 1·b 1=(-1)k -1·(n -k +1)(n -k +2)…(n -1)k ·(k -1)·…·2·1·1=(-1)k -1·1n C k n (k =1,2,…,n ),故b 1+b 2+b 3+…+b n =1n [C 1n -C 2n +C 3n -…+(-1)n -1·C n n ]=1n{1-[C 0n -C 1n +C 2n -…+(-1)n ·C n n ]}=1n.。
高考理科数学基础知识巩固强化练习试题11版含解析
0
0
=π2+kπ(k∈N),于是 p 是 q 的充分不必要条件.故选 A.
2.[2019 ·广东七校联考 ]由曲线 xy=1,直线 y=x,y=3 所围成
的平面图形的面积为 ( )
32 A. 9
B.2- ln3
C.4+ln3 D.4-ln3
答案: D
解析:
= 4-ln3,故选 D. 3. [2019 ·福建连城二中模拟 ]若 a= 2x2dx, b= 2x3dx, c= 2
2x2-
x4 4
0
2 0
= 8.
故选 B.
7.如图,阴影部分的面积是 ( )
A.32 B.16
32
8
C. 3
D.3
答案: C
解析: 由题意得,阴影部分的面积
1
-13x3- x2+ 3x
-3
32 = 3.
1
S=
(3 - x2-2x)dx =
-3
8.[2019 ·河南商丘一中模拟 ]若 f(x) =x2+2 1 f(x) dx,则 1 f(x) dx
答案: C
解析: 根据定积分的几何意义, 2 4-x2dx 表示以原点为圆心,
0
以 2 为半径的四分之一圆的面积,所以 2 4-x2dx= π.所以 a2 013+a2
0
015=π.因为数列 {an} 为等差数列,所以 a2 013 +a2 015= 2a2 014= a2 012+ a2 016=π,所以 a2 014(a2 012+ 2a2 014+ a2 016)= π2×2π= π2.故选 C.
8 ∴ 1-cos2<3<4,故 c<a<b.故选 D.
4. [2019 ·湖北鄂南高中月考 ]已知数列 {an} 为等差数列,且 a2 013
高三基础知识天天练3-1. 数学 数学doc人教版
第3模块 第1节[知能演练]一、选择题1.已知角α的终边过点(-1,2),则cos α的值为( )A .-55 B.255 C .-255 D .-12答案:A2.点P (tan2007°,cos2007°)位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限 解析:∵2007°=360°×6-153°, ∴2007°与-153°的终边相同, ∴2007°是第三象限角, ∴tan2007°>0,cos2007°<0. ∴P 点在第四象限,故选D. 答案:D3.已知角α的余弦线是单位长度的有向线段,那么角α的终边在( )A .x 轴上B .y 轴上C .直线y =x 上D .直线y =-x 上解析:由角α的余弦线长度为1分析可知,角α的终边与x 轴重合,故选A. 答案:A4.设a =sin(-1),b =cos(-1),c =tan(-1),则有( )A .a <b <cB .b <a <cC .c <a <bD .a <c <b解析:∵a =-sin1,b =cos1,c =-tan1,∴a <0,b >0,c <0.又∵sin1<tan1,∴-sin1>-tan1,∴c <a <b .故选C.答案:C 二、填空题5.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.解析:由弧长公式l =|α|r ,l =2π3,r =1得,P 点按逆时针方向转过的角度为α=2π3,所以Q 点的坐标为(cos 2π3,sin 2π3),即(-12,32).答案:(-12,32)6.若角β的终边与60°角的终边相同,在[0°,360°)内,终边与角β3的终边相同的角为________________________.解析:∵β=k ·360°+60°,k ∈Z ,∴β3=k ·120°+20°,k ∈Z .又β3∈[0°,360°),∴0°≤k ·120°+20°<360°,k ∈Z ,∴-16≤k <176,∴k =0,1,2.此时得β3分别为20°,140°,260°.故在[0°,360°)内,与角β3终边相同的角为20°,140°,260°.答案:20°,140°,260° 三、解答题7.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈(π2,π),求sin α,cos α,tan α的值.解:∵θ∈(π2,π),∴-1<cos θ<0,∴r =9cos 2θ+16cos 2θ=-5cos θ,故sin α=-45,cos α=35,tan α=-43.8.(1)确定tan(-3)cos8·tan5的符号;(2)确定lg(cos6-sin6)的符号.解:(1)∵-3,5,8分别是第三、第四、第二象限角, ∴tan(-3)>0,tan5<0,cos8<0,∴原式>0.(2)∵6为第四象限角,∴cos6>0,sin6<0,故cos6-sin6>0.∵(cos6-sin6)2=1-2sin6cos6=1-sin12>1(12是第四象限的角),∴cos6-sin6>1,∴lg(cos6-sin6)>0.[高考·模拟·预测]1.已知点P (sin 3π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4解析:由sin 3π4>0,cos 3π4<0知角θ在第四象限,∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.答案:D2.已知sin α=45,cos α=35,则角2α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解法一:由sin α=45,cos α=35知2kπ+π4<α<2kπ+π2,∴4kπ+π2<2α<4kπ+π(k ∈Z ),角2α所在的象限是第二象限,选择B.解法二:由sin α=45,cos α=35易得sin2α=2425,cos2α=-725,∴角2α所在的象限是第二象限,选择B.答案:B3.若点A (x ,y )是300°角终边上异于原点的一点,则yx的值为________.解析:yx=tan300°=-tan60°=- 3.答案:- 34.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2α+1-cos 2αcos α=________.解析:由定义知,sin α=-22,cos α=22,则原式=0.答案:05.借助单位圆解不等式组⎩⎪⎨⎪⎧sin x ≥02cos x -1>0.解:由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,即⎩⎪⎨⎪⎧sin x ≥0,cos x >12,分析正弦函数线和余弦函数线,如右图所示,由三角函数线可得x 满足的条件为 ⎩⎪⎨⎪⎧2kπ≤x ≤2kπ+π,2kπ-π3<x <2kπ+π3(k ∈Z ).此交集恰好为图形中的阴影交错部分,由数形结合可得2kπ≤x <2kπ+π3(k ∈Z ).[备选精题]6.在直角坐标系xOy 中,若角α的始边为x 轴的非负半轴,终边为射线l :y =22x (x ≥0).(1)求sin(α+π6)的值;(2)若点P 、Q 分别是角α始边、终边上的动点,且PQ =4,求△POQ 面积最大时,点P 、Q 的坐标.解:(1)由射线l 的方程为y =22x ,可得sin α=223,cos α=13,故sin(α+π6)=223×32+13×12=1+266. (2)设P (a,0),Q (b,22b )(a >0,b >0).在△POQ 中,因为PQ 2=(a -b )2+8b 2=16, 即16=a 2+9b 2-2ab ≥6ab -2ab =4ab , 所以ab ≤4.所以S △POQ =2ab ≤4 2.(当且仅当a =3b ,即a =23,b =233时取得等号).所以△POQ 面积最大时,点P ,Q 的坐标分别为P (23,0),Q (233,463).。
2014届高三数学每日一练11(含答案)
富顺一中高2014届1班王和远 高三数学天天练111、函数()x x x f 422+=在[]2,0∈x 的最小值为________02、ABC ∆中,2:1:3::=c b a ,则角______=B 303、不等式0>-b ax 的解集为()∞+,1,则不等式02>+-bax x 的解集为___________()()∞+∞,,21-- 4、不等式1)1(log log 22<++x x 的解集是_______________()1,05、函数()()2cos sin x x x f +=的最小正周期是__________π 6、函数a x y +=2的反函数是1+=bx y ,则_______=+b a 25 7、已知函数()()[]a a x x b ax x f --∈+-+=4,32,332是偶函数,则______=+b a 8、ABC ∆中,若B A C sin sin cos ⋅=,则ABC ∆是_____________三角形直角9、若R a ∈,且对于一切实数x 都有032>+++a ax ax ,则a 的取值范围是________[)∞+,010、若函数()x f 是定义在R 上的偶函数,在(]0-,∞上是单调递减的,且()01=f ,则使()0<x f 得x 的取值范围是________________()1,1-11、函数()x f 的定义域为R ,且()1+x f 为奇函数,当1<x 时,()122+-=x x x f ,则当1>x 时,()x f 的表达式为__________________()7722-+-=x x x f12、设函数()x f y =是偶函数,其图像与x 轴有五个交点,则方程()x f =0的所有实根之和为_______013、已知函数()()x g x f 和的图像关于原点对称,且()x x x f 22+=(1)求()x g 的解析式(2)解不等式()()1--≥x x f x g 答案:(1)()x x x g 22+-= (2)⎥⎦⎤⎢⎣⎡211-, 14、已知a 为实数,()()R x a x f x ∈+-=122,求证:对任意实数a ,()x f y =在()∞+∞,-上时增函数 15、已知集合{}R x a x a x x B R x x x x A ∈≤++-=⎭⎬⎫⎩⎨⎧∈≤--=,0)1(,,11322 (1)若21=a ,求B A ⎥⎦⎤⎢⎣⎡221, (2)若B A ≠⊂,求实数a 的取值范围 2≥a 16、已知是实数。
高考数学全程训练计划:天天练3 函数的概念及表示
天天练3 函数的概念及表示小题狂练③一、选择题1.[2019·惠州二调]已知函数f(x)=x +1x -1,f(a)=2,则f(-a)=( )A .2B .-2C .4D .-4 答案:D解析:解法一 由已知得f(a)=a +1a -1=2,即a +1a =3,所以f(-a)=-a -1a -1=-⎝ ⎛⎭⎪⎫a +1a -1=-3-1=-4.解法二 因为f(x)+1=x +1x ,设g(x)=f(x)+1=x +1x ,易判断g(x)=x +1x 为奇函数,故g(x)+g(-x)=x +1x -x -1x =0,即f(x)+1+f(-x)+1=0,故f(x)+f(-x)=-2,所以f(a)+f(-a)=-2,故f(-a)=-4.2.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4 答案:B解析:①中当x>0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.3.[2019·河南豫东、豫北十所名校段测]设函数f(x)=⎩⎪⎨⎪⎧log 3x ,0<x≤9,f x -4,x >9,则f(13)+2f ⎝ ⎛⎭⎪⎫13的值为( )A .1B .0C .-2D .2 答案:B解析:因为f(13)=f(13-4)=f(9)=log 39=2,2f ⎝ ⎛⎭⎪⎫13=2log 313=-2,所以f(13)+2f ⎝ ⎛⎭⎪⎫13=2-2=0.故选B.4.[2019·山东潍坊青州段测]函数f(x)=ln(x -1)+12-x的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2] 答案:A解析:函数f(x)=ln(x -1)+12-x 的定义域为⎩⎪⎨⎪⎧x -1>0,2-x >0的解集,解得1<x <2,所以函数f(x)的定义域为(1,2).故选A.5.[2019·福建省六校联考]下列函数中,满足f(x 2)=[f(x)]2的是( ) A .f(x)=lnx B .f(x)=|x +1| C .f(x)=x 3D .f(x)=e x答案:C解析:解法一 对于函数f(x)=x 3,有f(x 2)=(x 2)3=x 6,[f(x)]2=(x 3)2=x 6,所以f(x 2)=[f(x)]2,故选C.解法二 因为f(x 2)=[f(x)]2,对选项A,f(22)=ln4,[f(2)]2=(ln2)2,排除A ;对选项B,则有f(12)=|12+1|=2,[f(1)]2=|1+1|2=4,排除B ;对选项D,则有f(12)=e,[f(1)]2=e 2,排除D.故选C.6.[2019·重庆二诊]如图所示,对应关系f 是从A 到B 的映射的是( )答案:D解析:A 到B 的映射为对于A 中的每一个元素在B 中都有唯一的元素与之对应,所以不能出现一对多的情况,因此D 表示A 到B 的映射.7.已知函数y =f(x +2)的定义域是[-2,5),则y =f(3x -1)的定义域为( ) A .[-7,14) B .(-7,14] C.⎝ ⎛⎦⎥⎤13,83 D.⎣⎢⎡⎭⎪⎫13,83答案:D解析:因为函数y =f(x +2)的定义域是[-2,5),所以-2≤x<5,所以0≤x+2<7,所以函数f(x)的定义域为[0,7),对于函数y =f(3x -1),0≤3x-1<7,解得13≤x<83,故y =f(3x -1)的定义域是⎣⎢⎡⎭⎪⎫13,83,故选D.8.[2019·山东德州模拟]设函数y =9-x 2的定义域为A,函数y =ln(3-x)的定义域为B,则A∩∁R B =( )A .(-∞,3)B .(-∞,-3)C .{3}D .[-3,3) 答案:C解析:由9-x 2≥0解得-3≤x≤3,可得A =[-3,3],由3-x>0解得x<3,可得B =(-∞,3),因此∁R B =[3,+∞).∴A∩(∁R B)=[-3,3]∩[3,+∞)={3}.故选C.二、非选择题9.[2018·全国卷Ⅰ]已知函数f(x)=log2(x 2+a).若f(3)=1,则a =________. 答案:-7解析:∵ f(x)=log2(x 2+a)且f(3)=1,∴ 1=log2(9+a),∴ 9+a =2,∴ a=-7.10.[2019·南阳模拟]已知函数y =f(x)满足f(x)=2f ⎝ ⎛⎭⎪⎫1x +3x,则f(x)的解析式为________. 答案:f(x)=-x -2x(x≠0)解析:由题意知函数y =f(x)满足f(x)=2f ⎝ ⎛⎭⎪⎫1x +3x,即f(x)-2f ⎝ ⎛⎭⎪⎫1x =3x,用1x 代换上式中的x,可得f ⎝ ⎛⎭⎪⎫1x -2f(x)=3x,联立得,⎩⎪⎨⎪⎧fx -2f ⎝ ⎛⎭⎪⎫1x =3x ,f ⎝ ⎛⎭⎪⎫1x -2f x =3x,解得f(x)=-x -2x(x≠0).11.[2019·河南开封模拟]f(x)=⎩⎪⎨⎪⎧2e x -1,x<2,log 3x 2-1,x≥2,则f(f(2))的值为________.答案:2解析:∵当x≥2时,f(x)=log 3(x 2-1),∴f(2)=log 3(22-1)=1<2,∴f(f(2))=f(1)=2e1-1=2.12.[2019·湖北黄冈浠水县实验高中模拟]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12解析:∵函数f(x)的定义域为(-1,0), ∴由-1<2x +1<0,解得-1<x<-12.∴函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.课时测评③一、选择题1.下列各组函数中表示同一函数的是( ) A .f(x)=x 2,g(x)=(x)2B .f(x)=1,g(x)=x 2C .f(x)=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0,g(t)=|t|D .f(x)=x +1,g(x)=x 2-1x -1答案:C解析:选项A 中,f(x)=x 2的定义域是R,g(x)=(x)2的定义域是{x|x≥0},故f(x)与g(x)不表示同一函数,排除A ;选项B 中,f(x)与g(x)定义域相同,但对应关系和值域不同,故f(x)与g(x)不表示同一函数,排除B ;选项D 中,f(x)=x +1的定义域为R,g(x)=x 2-1x -1的定义域为{x|x≠1},故f(x)与g(x)不表示同一函数,排除D ;选项C 中,f(x)=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0可化为f(x)=|x|,所以其与g(t)=|t|表示同一函数.故选C.2.已知函数f(x)=⎩⎪⎨⎪⎧2x-2,x>0,x ,x≤0,若f(a)+f(3)=5,则实数a =( )A .2B .-1C .-1或0D .0 答案:B解析:解法一 因为f(a)+f(3)=5,又f(3)=23-2=6,所以f(a)=-1,所以⎩⎪⎨⎪⎧2a-2=-1,a>0或⎩⎪⎨⎪⎧a =-1,a≤0,解得a =-1,故选B.解法二 因为f(3)=23-2=6,f(2)=22-2=2,所以f(2)+f(3)=2+6=8≠5,所以a≠2,排除A ;因为f(0)=0,所以f(0)+f(3)=0+6=6≠5,所以a≠0,排除C,D.故选B.3.函数f(x)=(x -2)0+23x +1的定义域是( ) A.⎝ ⎛⎭⎪⎫-13,+∞ B.⎝⎛⎭⎪⎫-∞,-13 C .R D.⎝ ⎛⎭⎪⎫-13,2∪(2,+∞)答案:D解析:要使函数f(x)有意义,只需⎩⎪⎨⎪⎧x≠2,3x +1>0,所以x>-13且x≠2,所以函数f(x)的定义域是⎝ ⎛⎭⎪⎫-13,2∪(2,+∞),故选D.4.[2019·湖南邵阳模拟]设函数f(x)=log 2(x -1)+2-x,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .[1,2]B .(2,4]C .[1,2)D .[2,4) 答案:B解析:∵函数f(x)=log 2(x -1)+2-x 有意义,∴⎩⎪⎨⎪⎧x -1>0,2-x≥0,解得1<x≤2,∴函数的f(x)定义域为(1,2],∴1<x 2≤2,解得x∈(2,4],则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为(2,4].故选B.5.[2019·陕西西安长安区质量检测大联考]已知函数f(x)=-x 2+4x,x∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5] 答案:C解析:∵f(x)=-x 2+4x =-(x -2)2+4,∴当x =2时,f(2)=4,由f(x)=-x 2+4x =-5,解得x =5或x =-1,∴结合图象可知,要使函数在[m,5]上的值域是[-5,4],则-1≤m≤2.故选C.6.[2019·新疆乌鲁木齐一诊]函数f(x)=⎩⎪⎨⎪⎧e x -1,x<2,-log 3x -1,x≥2,则不等式f(x)>1的解集为( )A .(1,2) B.⎝⎛⎭⎪⎫-∞,43 C.⎝ ⎛⎭⎪⎫1,43 D .[2,+∞)答案:A解析:当x<2时,不等式f(x)>1即e x -1>1,∴x-1>0,∴x>1,则1<x<2;当x≥2时,不等式f(x)>1即-log 3(x -1)>1, ∴0<x-1<13,∴1<x<43,此时不等式无解.综上可得,不等式的解集为(1,2).故选A.7.[2019·定州模拟]设函数f(x)=⎩⎪⎨⎪⎧log 2x 2,x<0,-e x,x≥0,若f(f(t))≤2,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,-12∪[0,ln2]B .[ln2,+∞) C.⎝⎛⎦⎥⎤-∞,-12 D .[-2,+∞) 答案:A解析:令m =f(t),则f(m)≤2,则⎩⎪⎨⎪⎧m<0,log 2m 2≤2或⎩⎪⎨⎪⎧m≥0,-e m≤2,即-2≤m<0或m≥0,所以m≥-2,则f(t)≥-2,即⎩⎪⎨⎪⎧t<0,log 2t 2≥-2或⎩⎪⎨⎪⎧t≥0,-e t≥-2,即t≤-12或0≤t≤ln2,所以实数t 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[0,ln2].故选A. 8.[2019·福建福清校际联盟模拟]定义函数f(x),g(x)如下表:则满足f(g(x))>g(f(x))的x A .0或1 B .0或2 C .1或7 D .2或7 答案:D解析:由表格可以看出,当x =0时,g(0)=2,f(g(0))=f(2)=0,同理g(f(0))=g(1)=1,不满足f(g(x))>g(f(x)),排除A,B.当x =1时,f(g(1))=f(1)=2,g(f(1))=g(2)=7,不满足f(g(x))>g(f(x)),排除C.当x =2时,f(2)=0,g(2)=7,f(g(2))=f(7)=7,同理g(f(2))=g(0)=2,满足f(g(x))>g(f(x)). 当x =7时,f(g(7))=f(0)=1,g(f(7))=g(7)=0,满足f(g(x))>g(f(x)).故选D. 二、非选择题9.[2019·唐山五校联考]函数y =110x-2的定义域为________.答案:(lg2,+∞)解析:依题意,10x>2,解得x>lg2,所以函数的定义域为(lg2,+∞). 10.已知函数f(3x +2)=x 2-3x +1,则函数f(x)的解析式为________. 答案:f(x)=19x 2-13x 9+319解析:设t =3x +2,则x =t -23,所以f(t)=⎝ ⎛⎭⎪⎫t -232-3·t -23+1=19t 2-13t 9+319,所以函数f(x)的解析式为f(x)=19x 2-13x 9+319.11.对于每个实数x,设f(x)取y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,用分段函数写出f(x)的解析式,并求f(x)的最大值.解析:由直线y =4x +1与y =x +2求得交点A ⎝ ⎛⎭⎪⎫13,73;由直线y =x +2与y =-2x +4,求出交点B ⎝ ⎛⎭⎪⎫23,83. 由图象可看出:f(x)=⎩⎪⎨⎪⎧-2x +4 ⎝ ⎛⎭⎪⎫x ≥23x +2 ⎝ ⎛⎭⎪⎫13<x<234x +1 ⎝ ⎛⎭⎪⎫x ≤13f(x)的最大值为f ⎝ ⎛⎭⎪⎫23=83.。
高三数学天天练11 导数的应用(二)
天天练11 导数的应用(二)一、解答题1.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为( )A .(1,+∞)B .(-∞,-1)C .(-1,1)D .(-∞,-1)∪(1,+∞)2.设动直线x =m 与函数f (x )=x 3,g (x )=ln x 的图象分别交于点M ,N ,则|MN |的最小值为( )A.13(1+ln3)B.13ln3C.13(1-ln3) D .ln3-13.函数f (x )的导函数f ′(x )的图象如图所示,那么f (x )的图象最有可能的是( )4.(·昆明检测)设函数f (x )=e 2x+ax 在(0,+∞)上单调递增,则实数a 的取值范围为( )A .[-1,+∞)B .(-1,+∞)C .[-2,+∞)D .(-2,+∞)5.(·重庆调研)若函数f (x )=(x +a )e x 在(0,+∞)上不单调,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,+∞)6.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)7.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1, 即⎩⎪⎨⎪⎧e m -m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增.又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1.综上,m 的取值范围是[-1,1].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11模块 第3节
[知能演练]
一、选择题
1.若二项式(x -2
x
)n 的展开式中第5项是常数项,则自然数n 的值可能为
( )
A .6
B .10
C .12
D .15
解析:T r +1=C r n (x )
n -r
(-2x )r =(-2)r C r
n x n -3r
2,当r =4时,n -3r 2
=0,又n ∈N *,∴n =12. 答案:C
2.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是
( )
A .74
B .121
C .-74
D .-121
解析:展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3
=-121.
答案:D
3.在(x 2+3x +2)5展开式中x 的系数为
( )
A .160
B .240
C .360
D .800
解析:∵(x 2+3x +2)5=(x +1)5·(x +2)5=(x 5+C 15x 4+…+1)(x 5+2C 15x 4+…+25), ∴其展开式中x 项的系数为C 4525+C 4524=240.
答案:B
4.在(1-x )5(1+x )4的展开式中x 3项的系数为
( )
A .-6
B .-4
C .4
D .6
解析:(1-x )5(1+x )4=(1-C 15x +C 25x 2-C 35x 3+…)(1+C 14x +C 24x 2+C 34x 3+C 44x 4), ∴x 3项的系数为1×C 34-C 15C 24+C 25C 14-C 35×1=4.
答案:C 二、填空题
5.已知二项式(1-3x )n 的展开式中所有项系数之和等于64,那么这个展开式中含x 2项的系数是________.
解析:令x =1,则(1-3x )n =(-2)n , 即(-2)n =64,∴n =6.
又T r +1=C r 6(-3x )r ,则T 3=C 26(-3x )2=135x 2
,
∴(1-3x )n 展开式中含x 2项的系数为135. 答案:135
6.若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.
令x =0,则a 0=1,
∴a 2+a 4+…+a 12=36+1
2-1=364.
答案:364 三、解答题
7.已知(4 41x +3x 2)n
展开式中的倒数第三项的二项式系数为45.
(1)求含有x 3的项; (2)求二项式系数最大的项.
解:(1)由已知得C n -
2n =45,即C 2
n =45,
∴n 2-n -90=0,解得n =-9(舍)或n =10, 由通项公式得
T r +1=C r
10(4·x -14)10-r (x 2
3)r . =C r 10·410-r
·x -10-r 4+2
3r .
令-10-r 4+23
r =3,得r =6,
∴含有x 3的项是T 7=C 610·44·x 3=53760x 3. (2)∵此展开式共有11项, ∴二项式系数最大项是第6项,
∴T 6=C 510(4x -14)5(x 23)5
=258048x 25
12.
8.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,求: (1)a 8+a 7+…+a 1; (2)a 8+a 6+a 4+a 2+a 0.
解:令x =0得a 0=1. (1)令x =1得
(3-1)8=a 8+a 7+…+a 1+a 0, ① ∴a 8+a 7+…+a 2+a 1=28-a 0=256-1=255. (2)令x =-1得
(-3-1)8=a 8-a 7+a 6-…-a 1+a 0. ② 由①+②得
28+48=2(a 8+a 6+a 4+a 2+a 0), ∴a 8+a 6+a 4+a 2+a 0=1
2
(28+48)=32896.
[高考·模拟·预测]
1.在二项式⎝
⎛⎭⎫x 2-1
x 5的展开式中,含x 4的项的系数是 ( )
A .-10
B .10
C .-5
D .5
解析:T r +1=C r 5x 2(5-
r )(-x -
1)r =(-1)r C r 5x
10
-3r
(r =0,1,…,5),由10-3r =4得r =2.含
x 4的项为T 3,其系数为C 25=10,故选B.
答案:B
2.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =
( )
A .45
B .55
C .70
D .80
解析:由二项式定理得:
(1+2)5=1+C 15·2+C 25·(2)2+C 35·(2)3+C 45·(2)4+C 55·
(2)5 =1+52+20+202+20+42=41+292, ∴a =41,b =29,a +b =70.故选C. 答案:C
3. (1+ax +by )n 展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则a ,b ,n 的值可能为
( )
A .a =2,b =-1,n =5
B .a =-2,b =-1,n =6
C .a =-1,b =2,n =6
D .a =1,b =2,n =5
解析:不含x 的项的系数的绝对值为(1+|b |)n =243=35,不含y 的项的系数的绝对值为
(1+|a |)n
=32=25
,∴n =5,⎩
⎪⎨⎪⎧
1+|b |=3,
1+|a |=2,故选D.
答案:D
4. (x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________
解析:T 4=-C 310x 7y 3,T 8=-C 710x 3y 7
,
则x 7y 3与x 3y 7的系数之和为-2C 310=-240. 答案:-240
5.在(1+x )3+(1+x )3+(1+3
x )3的展开式中,x 的系数为________(用数字作答).
解析:C 13+C 23+C 33=23
-1=7.
答案:7 6.已知(x x +
23
x
)n 展开式的前3项系数的和为129,这个展开式中是否含有常数项、
一次项?如没有,请说明理由;如有,请求出来.
解:∵T r +1=C r n (x x )
n -r ·(23x
)r =C r n 2r x 9n -11r 6(r =0,1,2,…,n ), ∴由题意得C 0n 20+C 1n ·
2+C 2n ·22
=129, ∴1+2n +2(n -1)n =129,∴n 2=64,
∴n =8.故T r +1=C r 82r x 72-11r 6
(r =0,1,2,…,8). 若展开式存在常数项,则72-11r 6=0,
∴72-11r =0,∴r =72
11∉N ,
∴展开式中没有常数项.
若展开式存在一次项,则72-11r
6=1,
∴72-11r =6. ∴r =6,
∴展开式中存在一次项,它是第7项,
T 7=C 6826
x =1792x .。