2020年12月23日四川省内江市高中2021届第一次模拟考试题理科数学试题及答案内江一模

合集下载

2020年四川省内江市高考数学一诊试卷(理科)

2020年四川省内江市高考数学一诊试卷(理科)
附: (其中 = )
已知函数 .
(1)求函数 的单调区间;
(2)证明:对一切 ,都有 成立.
已知数列 为等差数列,且 = , = .
(1)求数列 的通项公式;
(2)设 , 为数列 的前 项和,若对任意 ,总有 ,求 的取值范围.
已知函数 满足: = .
(1)求 的解析式;
(2)若 = ,且当 时, ,求整数 的最大值.
1.
【答案】
D
【考点】
并集及其运算
【解析】
由两集合的并集为 ,可得出 = 或 = ,即可求出 的值.
【解答】
∵ = , = , = ,
∴ = 或 = ,
2.
【答案】
A
【考点】
复数的代数表示法及其几何意义
【解析】
利用复数代数形式的乘除运算化简,求出 的坐标得答案.
【解答】
解:∵ ,
∴复数 在复平面内对应的点的坐标为 ,位于第一象限.
②若函数 = 在(一 , )上单调递增,则 的范围为 ;
③若 = ,则 = 在点( )处的切线方程为 = ;
④若 = , ,则 = 的最小值为一 ;
⑤若 = 则函数 的图象向右平移 个单位可以得到函数 = 的图象.
其中正确命题的序号有________(把你认为正确的序号都填上).
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题考生根据要求作答)(一)必考题:共60分.
故选 .
3.
【答案】
B
【考点】
几何概型计算(与长度、角度、面积、体积有关的几何概型)
【解析】
求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可.

2021届四川省内江市高三第一次模拟考试数学(理)试题Word版含解析

2021届四川省内江市高三第一次模拟考试数学(理)试题Word版含解析

2021届四川省内江市高三第一次模拟考试数学(理)试题一、单选题1.已知集合,,则()A. B. C. D.【答案】A【解析】先求出集合A,由此能求出A∩B.【详解】∵集合A={x|x≤1,x∈N}={0,1},又,∴A∩B={0,1}.故选A.【点睛】本题考查交集的求法,是基础题,解题时要认真审题,注意条件.2.设,则()A. B.2 C. D.1【答案】C【解析】利用复数的运算法则及其性质即可得出.【详解】z2i2i=﹣1﹣i2i=﹣1+i,则|z|.故选:C.【点睛】本题考查了复数的运算法则及其性质,考查了推理能力与计算能力,属于基础题.3.如图是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A.深圳的变化幅度最小,北京的平均价格最髙B.深圳和厦门的平均价格同去年相比有所下降C.平均价格从高到低居于前三位的城市为北京、深圳、广州D.平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门【答案】D【解析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可.【详解】由图可知,选项A、B、C都正确,对于D,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误.故选:D.【点睛】本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.4.记为等差数列的前项和,若,,则数列的公差为()A.1 B.-1 C.2 D.-2【答案】A【解析】利用等差数列{a n}的前n项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n}的公差.【详解】∵S n为等差数列{a n}的前n项和,a3=3,S6=21,∴,解得a1=1,d=1.∴数列{a n}的公差为1.故选:A.【点睛】本题考查数列的公差的求法,考查等差数列的前n项和公式等基础知识,考查运算求解能力,是基础题.5.若,,,则与的夹角为()A. B. C. D.【答案】D【解析】根据,对两边平方即可求出,从而可求出,这样即可求出与的夹角.【详解】∵;∴;∴;∴;又;∴的夹角为.故选:D.【点睛】考查向量数量积的运算,向量夹角的余弦公式,以及已知三角函数值求角,属于基础题.6.在长方体中,,,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】B【解析】由已知画出图形,连接BC1,由AB∥A1B1,可得∠C1AB为异面直线A1B1与AC1所成角,求解三角形得答案.【详解】如图,连接BC1,由AB∥A1B1,∴∠C1AB为异面直线A1B1与AC1所成角,由已知可得,则.∴cos∠C1AB.即异面直线A1B1与AC1所成角的余弦值为.故选:B.【点睛】本题考查异面直线所成角,考查数学转化思想方法,是基础题.7.函数的图象大致是()A. B.C. D.【答案】C【解析】分析四个图象的不同,从而判断函数的性质,利用排除法求解.【详解】当x→+∞时,f(x)→﹣∞,故排除D;易知f(x)在R上连续,故排除B;且f(0)=ln2﹣e﹣1>0,故排除A,故选:C.【点睛】本题考查了函数的性质的判断与数形结合的思想方法应用.8.设表示不小于实数的最小整数,执行如图所示的程序框图,则输出的结果是()A.7 B.11C.8 D.14【答案】B【解析】执行循环,直至,跳出循环,输出结果.【详解】执行循环,结束循环,输出结果.选B.【点睛】本题考查循环流程图,考查基本分析计算判断能力.9.若函数,则曲线在点处的切线的倾斜角是()A. B. C. D.【答案】B【解析】先求,再求导数得切线斜率,最后求倾斜角.【详解】因为,所以因此,倾斜角为,选B.【点睛】本题考查导数几何意义以及倾斜角,考查基本分析求解能力.10.已知函数,给出下列四个结论:①函数的最小正周期是;②函数在区间上是减函数;③函数的图像关于点对称;④函数的图像可由函数的图像向右平移个单位,再向下平移1个单位得到.其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】A【解析】先化简三角函数,再根据三角函数性质判断各结论正确是否.【详解】,,,所以函数在区间上不是减函数,所以函数的图像不关于点对称;函数的图像向右平移个单位得,再向下平移1个单位得到,不是.综上选A.【点睛】本题考查三角函数化简以及三角函数图象与性质,考查基本分析化简能力.11.在中,已知,,点D为BC的三等分点(靠近C),则的取值范围为()A. B. C. D.【答案】C【解析】利用向量加法法则把所求数量积转化为向量的数量积,再利用余弦函数求最值,得解.【详解】如图,=8﹣1=7﹣2cos∠BAC∵∠BAC∈(0,π),∴cos∠BAC∈(﹣1,1),∴7﹣2cos∠BAC∈(5,9),故选:C.【点睛】此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.12.设函数在R上存在导数,对任意的,有,且时,.若,则实数a的取值范围为A. B. C. D.【答案】A【解析】构造函数,由可得在上是增函数,在上单调递减,原不等式等价于,从而可得结果.【详解】设,则时,,为偶函数,在上是增函数,时单调递减.所以可得,,即,实数的取值范围为,故选A.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.二、填空题13.的展开式中的系数为______.【答案】【解析】根据二项式定理确定的系数.【详解】因此展开式中的系数为【点睛】本题考查二项式定理,考查基本分析求解能力.14.设,满足约束条件,则的最小值为______.【答案】【解析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.【详解】由约束条件作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(1,2)时直线在y轴上的截距最小,z最小z=2×1+2=4.故答案为4.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.已知、分别是椭圆的左、右焦点,过的直线与交于、两点,若,且,则椭圆的离心率为______.【答案】【解析】根据椭圆定义可用表示,,再根据余弦定理建立关系,解得离心率.【详解】设,则,因此从而,且,,【点睛】本题考查椭圆定义以及离心率,考查基本分析求解能力.16.设数列满足,,,,则______.【答案】【解析】数列{a n}满足a1=1,a2=4,a3=9,a n=a n﹣1+a n﹣2﹣a n﹣3(n∈N,n≥4),即a n+a n﹣3=a+a n﹣2(n∈N,n≥4),a4=a3+a2﹣a1=12,同理可得:a5=17.a6=20,a7=25,a8=28,a9 n﹣1=33,…….可得数列{a n}的奇数项与偶数项分别成等差数列,公差都为8,即可得出.【详解】∵数列{a n}满足a1=1,a2=4,a3=9,a n=a n﹣1+a n﹣2﹣a n﹣3(n∈N,n≥4),即a n+a n﹣3=a n﹣1+a n﹣2(n∈N,n≥4),a=a3+a2﹣a1=12,同理可得:a5=17.a6=20,a7=25,a8=28,a9=33,…….4∴数列{a n}的奇数项与偶数项分别成等差数列,公差都为8.则a2018=a2+(1009﹣1)×8=4+8064=8068.故答案为:8068.【点睛】本题考查了数列递推关系、等差数列的通项公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.三、解答题17.等比数列的各项均为正数,且求数列的通项公式.设求数列的前n项和.【答案】(1)(2)【解析】试题分析:(Ⅰ)设出等比数列的公比q ,由,利用等比数列的通项公式化简后得到关于q 的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简,把求出的q 的值代入即可求出等比数列的首项,根据首项和求出的公比q 写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设b n =log 3a 1+log 3a 2+…+log 3a n ,利用对数的运算性质及等差数列的前n 项和的公式化简后,即可得到bn 的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n 项和试题解析:(Ⅰ)设数列{a n }的公比为q,由=9a 2a 6得=9,所以q 2=.由条件可知q >0,故q =.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=.故数列{a n }的通项公式为a n =.(Ⅱ)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-.故.所以数列的前n 项和为【考点】等比数列的通项公式;数列的求和18.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阀值与检验》国家标准.新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车.经过反复试验,喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:该函数模型如下:根据上述条件,回答以下问题:(1)试计算喝1瓶啤酒多少小时血液中的酒精含量达到最大值?最大值是多少?(2)试计算喝一瓶啤酒多少小时后才可以驾车?(时间以整小时计算)(参考数据:)【答案】(1)喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值44.42毫克/百毫升;(2)喝1瓶啤酒后需6小时后才可以合法驾车.【解析】试题分析:(1)由图可知,当函数取得最大值时,,根据函数模型,即可求出最大值;(2))由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时,然后解不等式,即可求出.试题解析:(1)由图可知,当函数取得最大值时,,此时,当,即时,函数取得最大值为.故喝1瓶啤酒后1.5小时血液中的酒精含量达到最大值44.42毫克/百毫升.(2)由题意知,当车辆驾驶人员血液中的酒精小于20毫克/百毫升时可以驾车,此时. 由,得:,两边取自然对数得:即,∴,故喝1瓶啤酒后需6小时后才可以合法驾车.19.如图,是直角斜边上一点,.(1)若,求角的大小;(2)若,且,求的长.【答案】(1);(2).【解析】(1)根据正弦定理即可求出,(2)设,则,,,根据余弦定理即可求出.【详解】解:(1)在中,由正弦定理得.∵,,∴.又,∴.∴,即.(2)设,则,,.∴,,.在中,由余弦定理得,即,∴.故.【点睛】本题考查了正弦定理余弦定理的应用,以及解三角形的问题,属于中档题.20.交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表浮动因素浮动比率 1A 上一个年度未发生有责任道路交通事故 下浮10% 2A上两个年度未发生有责任道路交通事故 下浮20%3A上三个及以上年度未发生有责任道路交通事故下浮30%某机构为了某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950a ,记X 为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.【答案】(1)13(2)①815②5000【解析】试题分析:(1)根据题意,首先确定X的所有可能取值,然后利用统计表格,借助古典概型的公式计算对应的概率,进而利用期望公式求解;(2)利用独立重复实验的概率计算公式求解满足条件的概率,明确Y为该销售商购进并销售一辆二手车的利润的可能性,得到分布列和利润期望值.(Ⅰ)由题意可知X的可能取值为0.9,0.8,0.7,,1.1,1.3a a a a a a,由统计数据可知:()()()()11110.9,0.8,0.7,612123P X a P X a P X a P X a ========,()()111.1, 1.3412P X a P X a ====.所以X 的分布列为:X 0.9a0.8a0.7aa 1.1a1.3aP 161121121314112所以111111119113050.90.80.7 1.1 1.39426121234121212a EX a a a a a a =⨯+⨯+⨯+⨯+⨯+⨯==≈.(Ⅱ) ①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为13,三辆车中至多有一辆事故车的概率为321311220133327P C ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭. Y 为该销售商购进并销售一辆二手车的利润, Y 的可能取值为5000,10000-. 所以Y 的分布列为:Y 5000-10000P1323所以12500010000500033EY =-⨯+⨯=.所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望值为10050EY ⨯=万元.21.已知函数.(1)若时,恒成立,求实数的取值范围;(2)求证:.【答案】(1);(2)见解析【解析】(1)通过二次求导判断则在上单调递增,则,再通过分类讨论求求恒成立.(2)由(1)中结论利用函数的单调性证明.【详解】(1)若时, 则,在上单调递增,则则在上单调递增,①当,即时,,则在上单调递增,此时,满足题意②若,由在上单调递增,由于,.故,使得. 则当时,,∴函数在上单调递减. ∴,不恒成立.舍去.综上所述,实数的取值范围是(2)证明:由(1)知,当时,在上单调递增.则,即..,即【点睛】本题主要考查导数在研究函数单调性及最值中的应用,综合性较强.第一问通过二次求导判断的符号以及分类讨论思想运用是本题解题的难点.22.在直角坐标系中,曲线的参数方程为(为参数).以原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和的直角坐标方程;(2)已知曲线的极坐标方程为,点是曲线与的交点,点是曲线与的交点,且,均异于原点,,求的值.【答案】(1)的普通方程为.的直角坐标方程为;(2).【解析】(1)由曲线C1的参数方程消去参数能求出曲线C1的普通方程;曲线C2的极坐标方程化为ρ2=4ρsinθ,由此能求出C2的直角坐标方程.(2)曲线C1化为极坐标方程为ρ=4cosθ,设A(ρ1,α1),B(ρ2,α2),从而得到|AB|=|ρ1﹣ρ2|=|4sinα﹣4cosα|=4|sin()|=4,进而sin()=±1,由此能求出结果.【详解】解:(1)由消去参数,得的普通方程为.∵,又,∴的直角坐标方程为.(2)由(1)知曲线的普通方程为,∴其极坐标方程为,∴.∴又,∴.【点睛】本题考查曲线的普通方程、直角坐标方程的求法,考查角的求法,涉及到直角坐标方程、极坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.23.已知.(1)当时,求不等式的解集;(2)若不等式的解集为实数集,求实数的取值范围.【答案】(1);(2).【解析】(1)当a=﹣3时,f(x)=x2+|2x﹣4|﹣3,通过对x的取值范围分类讨论,去掉绝对值符号,即可求得不等式f(x)>x2+|x|的解集;(2)f(x)≥0的解集为实数集R⇔a≥﹣x2﹣|2x﹣4|,通过对x的取值范围分类讨论,去掉绝对值符号,可求得﹣x2﹣|2x﹣4|的最大值为﹣3,从而可得实数a的取值范围.【详解】解:(1)当时,.∴.或或或或或.∴当时,不等式的解集为.(2)∵的解集为实数集对恒成立.又,∴.∴.故的取值范围是.【点睛】本题考查绝对值不等式的解法,着重考查分类讨论思想的应用,去掉绝对值符号是解不等式的关键,属于中档题.。

四川省内江市高考数学一模试卷(理科)

四川省内江市高考数学一模试卷(理科)

四川省内江市高考数学一模试卷(理科)(含解析)一、选择题1.(5分)(2021•内江一模)已知是i虚数单位,复数的虚部是()A.i B.﹣i C.1D.﹣1考点:复数代数形式的乘除运算;复数的差不多概念.分析:将原式的分子分母都乘以分母的共轭复数即可得出.解答:解:∵复数===﹣i.故选B.点评:熟练把握复数的除法法则是解题的关键.2.(5分)(2021•内江一模)已知等差数列{an}的前n项和为Sn,若a4=18﹣a5,则S8=()A.54 B.68 C.72 D.90考点:等差数列的前n项和.专题:运算题;等差数列与等比数列.分析:依照等差数列的通项公式,将a4=18﹣a5化成2a1+7d=18.再由等差数列的求和公式,可得S8=4(2a1+7d)=72,从而得到本题答案.解答:解:设等差数列{a n}的公差为d,∵a4=18﹣a5,∴a1+3d=18﹣(a1+4d),可得2a1+7d=18.∴S8=8=4(2a1+7d)=4×18=72故选:C点评:本题给出等差数列第4、5两项和和,求它的前8项之和,着重考查了等差数列的通项公式与求和公式等知识,属于中档题.3.(5分)(2021•内江一模)已知a是f(x)=的零点,若0<x0<a,则f(x0)的值满足()A.f(x0)<0 B.f(x0)=0 C.f(x0)>0 D.f(x0)的符号不确定考点:函数的零点.专题:函数的性质及应用.分析:由题意可得f(a)=0,再由函数f(x)的解析式可得函数在区间(0,+∞)上是增函数,结合0<x0<a,可得f(x0)<0,从而得到答案.解答:解:∵已知a是f(x)=的零点,∴f(a)=0.再由函数f(x)的解析式可得函数在区间(0,+∞)上是增函数,且0<x0<a,可得f(x0)<0,故选A.点评:本题要紧考查函数的零点的定义,函数的单调性的应用,属于基础题.4.(5分)(2021•内江一模)已知函数y=f(x),x∈R,数列{an}的通项公式是an=f(n),n∈N,那么函数y=f(x)在[1,+∝)上递增”是“数列{an}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:数列的函数特性.专题:规律型;探究型.分析:本题可通过函数的单调性与相应数列的单调性的联系与区别来说明,能够看到,函数增时,数列一定增,而数列增时,函数不一定增,由变化关系说明即可解答:解:由题意数y=f(x),x∈R,数列{a n}的通项公式是a n=f(n),n∈N,若函数y=f(x)在[1,+∝)上递增”,则“数列{a n}是递增数列”一定成立若“数列{a n}是递增数列”,现举例说明,这种情形也符合数列是增数列的特点,如函数在[1,2]先减后增,且1处的函数值小,综上,函数y=f(x)在[1,+∝)上递增”是“数列{a n}是递增数列”的充分不必要条件故选A.点评:本题考查数列的函数特性,解题的关键是认识到数列与函数的不同,数列是离散的,而函数提连续的,由这些特点对两个命题的关系进行研究即可5.(5分)(2021•内江一模)设向量=(1,sinθ),=(3sinθ,1),且∥,则cos2θ等于()A.B.C.D.考点:二倍角的余弦.专题:运算题.分析:依照向量平行时满足的条件,列出关系式,化简后得到sin2θ的值,然后把所求的式子利用二倍角的余弦函数公式化简后,将sin2θ的值代入即可求出值.解答:解:∵∥,∴=,即sin2θ=,则cos2θ=1﹣2sin2θ=1﹣2×=.故选D点评:此题考查学生灵活运用二倍角的余弦函数公式化简求值,把握两向量平行所满足的条件,是一道基础题.6.(5分)(2021•内江一模)某单位有7个连在一起的车位,现有3辆不同型号的车需停放,假如要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16 B.18 C.24 D.32考点:排列、组合及简单计数问题.专题:运算题;分类讨论.分析:本题是一个分类计数问题,第一安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,当左边两辆,最右边一辆时,当左边一辆,最右边两辆时,当最右边三辆时,每一种情形都有车之间的一个排列A33,得到结果.解答:解:由题意知本题是一个分类计数问题,第一安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列A33,当左边两辆,最右边一辆时,有车之间的一个排列A33,当左边一辆,最右边两辆时,有车之间的一个排列A33,当最右边三辆时,有车之间的一个排列A33,总上可知共有不同的排列法4×A33=24种结果,故选C.点评:本题考查排列组合及简单的计数问题,在分类计数时,注意分类要做到不重不漏,在每一类中的方法数要分析清晰,本题还考查列举法,是一个基础题.7.(5分)(2021•内江一模)已知O是坐标原点,点A(1,2),若点M(x,y)为平面区域上的一个动点,则的最大值是()A.﹣1 B.C.0D.1考点:简单线性规划;平面向量数量积的坐标表示、模、夹角.专题:数形结合.分析:第一画出可行域,z=代入坐标变为z=x+2y,即y=﹣x+z,z表示斜率为﹣的直线在y轴上的截距,故求z的最大值,即平移直线y=﹣x与可行域有公共点时直线在y轴上的截距的最大值即可.解答:解:如图所示:z=•=x+2y,即y=﹣x+z,第一做出直线l0:y=﹣x,将l0平行移动,当通过A(0,)点时在y轴上的截距最大,从而z最大.因为B(0,),故z的最大值为z=0+2×=1.故选D.点评: 本题考查线性规划、向量的坐标表示、平面向量数量积的运算等基础知识,考查运算求解能力,考查数形结合思想,属于基础题.8.(5分)(2021•内江一模)在的展开式中X 的幂指数为整数的项共有( )A . 3项B . 4项C . 5项D . 6项考点:二项式系数的性质. 专题: 运算题. 分析:由题意的展开式的通项为T r+1==,要求展开式中x 的幂指数为整数,则使得17﹣为整数,从而有r 为6的倍数且0≤r ≤34可求解答:解:由题意的展开式的通项为T r+1==若使得17﹣为整数则r 为6的倍数且0≤r ≤34 ∴r=0,6,12,18,24,30 x 的幂指数为整数的项共6项 故选D点评:本题要紧考查了二项展开式的通项在求解指定项中的应用,属于基础试题9.(5分)(2021•内江一模)函数f (x )的图象如图,f ′(x )是的导函数,则下列数值排列正确的是( )A . 0<f ′(1)<f ′(2)<f (2)﹣f (1)B . 0<f ′(2)<f (2)﹣f (1)<f ′(1)C . 0<f ′(2)<f ′(1)<f (2)﹣f (1)D . 0<f (2)﹣f (1)<f ′(1)<f ′(2) 考点:导数的运算;函数的图象. 专题:函数的性质及应用. 分利用导数的几何意义及切线的斜率与割线的斜率的关系即可得出.析:解答:解:由函数的图象可知:函数f(x)单调递增,同时先快后慢,∴f′(x)>0,f′(x)是减函数,∴,故选B.点评:熟练把握导数的几何意义及切线的斜率与割线的斜率的关系是解题的关键.10.(5分)(2021•内江一模)定义区间(a,b),[a,b),(a,b][a,b]的长度均为d=b﹣a,多个区间并集的长度为各区间长度之和,例如(1,2)∪(3,5)的长度为d=(2﹣1)+(5﹣3)=3,用[x]表示不超过x的最大整数,记<x>=x﹣[x],其中x∈R.设f(x)=[x]•<x>,g(x)=2x ﹣[x]﹣2,若d1,d2,d3分别表示不等式f(x)>g(x)、方程f(x)=g (x)、不等式f(x)<g(x)解集的长度,则当0≤x≤2021时,有()A.d1=2,d2=0,d3=2021 B.d1=1,d2=1,d3=2021C.d1=2,d2=1,d3=2009 D.d1=2,d2=2,d3=2021考点:函数单调性的性质.专题:新定义.分析:先化简f(x)=[x]•<x>=[x]•(x﹣[x])=[x]x﹣[x]2,再化简f(x)>g(x),再分类讨论:①当x∈[0,1)时,②当x∈[1,2)时③当x∈[2,2021]时,从而得出f(x)>g(x)在0≤x≤2021时的解集的长度;关于f(x)=g(x)和f(x)<g(x)进行类似的讨论即可.解答:解:∵f(x)=[x]•<x>=[x]•(x﹣[x])=[x]x﹣[x]2,g(x)=2x﹣[x]﹣2,f(x)>g(x),等价于[x]x﹣[x]2>2x﹣[x]﹣2,即([x]﹣2)x>[x]2﹣[x]﹣2,即([x]﹣2)x>([x]﹣2)([x]+1).当x∈[0,1)时,[x]=0,上式可化为x<1,∴x∈[0,1);当x∈[1,2)时,[x]=1,上式可化为x<2,∴x∈[1,2);当x∈[2,3)时,[x]=2,上式可化为0>0,∴x∈∅;当x∈[3,2021]时,[x]﹣1>0,上式可化为x>[x]+1,∴x∈∅;∴f(x)>g(x)在0≤x≤2021时的解集为[0,2),故d1=2.f(x)=g(x)等价于[x]x﹣[x]2 =2x﹣[x]﹣2,即([x]﹣2)x=[x]2﹣[x]﹣2,当x∈[0,1)时,[x]=0,上式可化为x=1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为x=2,∴x∈∅;当x∈[2,3)时,[x]=2,上式可化为0=0,∴x∈[2,3);当x∈[3,2021]时,[x]﹣2>0,上式可化为x=[x]+1,∴x∈∅;∴f(x)=g(x)在0≤x≤2021时的解集为[2,3),故d2=1.f(x)<g(x)等价于[x]x﹣[x]2 <2x﹣[x]﹣2,即([x]﹣2)x<[x]2﹣[x]﹣2,当x∈[0,1)时,[x]=0,上式可化为x>1,∴x∈∅;当x∈[1,2)时,[x]=1,上式可化为x>2,∴x∈∅;当x∈[2,3)时,[x]=2,上式可化为0<0,∴x∈∅;当x∈[3,2021]时,[x]﹣2>0,上式可化为x<[x]+1,∴x∈[3,2021];∴f(x)<g(x)在0≤x≤2021时的解集为[3,2021],故d3=2009.故选C.点评:本题要紧考查了抽象函数及其应用,同时考查了创新能力,以及分类讨论的思想和转化思想,属于中档题.二、填空题11.(5分)(2021•内江一模)已知,且,则tanα=﹣.考点:同角三角函数间的差不多关系.专题:三角函数的求值.分析:第一依照sin2α+cos2α=1以及角的范畴求出sinα和cosα的值,然后依照tanα=求出结果.解答:解:∵sin2α+cos2α=1 ,①∴(sinα+cosα)2=1+2sinαcosα=∴sinαcosα=﹣∵,∴sinα>0 cosα<0sinα﹣cosα>0∴(sinα﹣cosα)2=1+=sinα﹣cosα=②联立①②得sinα=,cosα=﹣∴tanα=﹣故答案为:﹣.点评:此题考查了同角三角函数的差不多关系,巧用sin2α+cos2α=1是解题的关键,要注意角的范畴.12.(5分)(2021•内江一模)如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.考点:茎叶图;众数、中位数、平均数.专题:概率与统计.分析:由已知的茎叶图,求出甲乙两人的平均成绩,然后求出乙的平均成绩不小于甲的平均成绩的概率,得到答案.解答:解:由已知中的茎叶图可得甲的5次综合测评中的成绩分别为88,89,90,91,92,则甲的平均成绩:(88+89+90+91+92)=90设污损数字为x则乙的5次综合测评中的成绩分别为83,83,87,99,90+X则乙的平均成绩:(83+83+87+99+90+x)=88.4+,当x=9,甲的平均数<乙的平均数,即乙的平均成绩超过甲的平均成绩的概率为,当x=8,甲的平均数=乙的平均数,即乙的平均成绩不小于均甲的平均成绩的概率为,甲的平均成绩超过乙的平均成绩的概率为1﹣=故答案为:.点评:本题考查的知识点是平均数,茎叶图,古典概型概率运算公式,要求会读图,同时把握茎叶图的特点:个位数从主干向外越来越大.属简单题.13.(5分)(2021•内江一模)已知程序框图如图所示,则执行该程序后输出的结果是.考点:循环结构.专题:图表型.分析:分析程序中各变量、各语句的作用,再依照流程图所示的顺序,可知:该程序的作用是利用循环运算a的值,并输出.解答:解:程序运行过程中,各变量的值如下表示:是否连续循环 a i循环前 2 1第一圈是 2第二圈是﹣1 3第三圈是 2 4…第2021圈是 2 2021第2021圈是2021第2021圈否故最后输出的a值为.故答案为:.点评:本题要紧考查了循环结构,写程序的运行结果,是算法这一模块最重要的题型,属于基础题.14.(5分)(2021•内江一模)设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2)且当x∈[﹣2,0]时,f(x)=()x ﹣1,若在区间(﹣2,6]内关于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范畴是(,2).考点:根的存在性及根的个数判定.专题:运算题.分析:由已知中能够得到函数f(x)是一个周期函数,且周期为4,将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为函数f(x)的与函数y=﹣log a x+2的图象恰有3个不同的交点,数形结合即可得到实数a的取值范畴.解答:解:∵关于任意的x∈R,都有f(x﹣2)=f(2+x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[﹣2,0]时,f(x)=()x﹣1,且函数f(x)是定义在R上的偶函数,若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解,则函数y=f(x)与y=log a(x+2)在区间(﹣2,6]上有三个不同的交点,如下图所示:又f(﹣2)=f(2)=3,则有log a4<3,且log a8>3,解得:<a<2,故答案为(,2).点评:本题考查的知识点是根的存在性及根的个数判定,指数函数与对数函数的图象与性质,其中依照方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题,是解答本题的关键,表达了转化和数形结合的数学思想,属于中档题.15.(5分)(2021•内江一模)设函数f(x)=|x|x+bx+c,则下列命题中正确命题的序号有(2)(3)(4)(1)函数f(x)在R上有最小值;(2)当b>0时,函数在R上是单调增函数;(3)函数f(x)的图象关于点(0,c)对称;(4)当b<0时,方程f(x)=0有三个不同实数根的充要重要条件是b2>4|c|;(5)方程f(x)=0可能有四个不同实数根.考点:命题的真假判定与应用.专题:函数的性质及应用.分析:(1)当b<0时,能够依照函数的值域加以判定函数f(x)在R上是否有最小值;(2)当b>0时,把函数f(x)=|x|x+bx+c分x≥0和x<0两种情形讨论,转化为二次函数求单调性;(3)函数f(x)的图象关于点(0,c)对称,能够依照函数图象的平移解决;(4)当b<0时,方程f(x)=0有三个不同实数根,考虑函数f(x)与x轴有三个交点,如图,其充要重要条件是函数y=f(x)的极大值大于0且极小值小于0,即可得到结论;(5)依照f(x)=|x|x+bx+c=的每一段分段函数的图象差不多上一个二次函数的部分图象,且它们有一个公共点(0,c),结合二次函数的图象可得结果.解答:解:(1)当b<0时,f(x)=|x|x+bx+c=值域是R,故函数f(x)在R 上没有最小值;(2)当b>0时,f(x)=|x|x+bx+c=,知函数f(x)在R上是单调增函数;(3)若f(x)=|x|x+bx那么函数f(x)是奇函数(f(﹣x)=﹣f(x)),也确实是说函数f(x)的图象关于(0,0)对称.而函数f(x)=|x|x+bx+c的图象是由函数f(x)=|x|x+bx的图象沿Y轴移动,故图象一定是关于(0,c)对称的.(4)当b<0时,方程f(x)=0有三个不同实数根,考虑函数f(x)与x轴有三个交点,如图,其充要重要条件是函数y=f(x)的极大值大于0且极小值小于0,即b2﹣4c>0,b2>4|c|;故(4)正确;(5)f(x)=|x|x+bx+c=的每一段分段函数的图象差不多上一个二次函数的部分图象,且它们有一个公共点(0,c),由图角可得解得方程f(x)=0最多有三个不同的实根,不可能有四个不同实数根.因此(5)不正确.故答案为:(2)(3)(4).点评:本题考查了分段函数的单调性、对称性和最值等问题,关于含有绝对值的一类问题,通常采取去绝对值的方法解决,表达了分类讨论的数学思想;函数的对称性问题一样转化为函数的奇偶性加以分析,再依照函数图象的平移解决,表达了转化、运动的数学思想;关于存在性的命题研究,一样通过专门值法来解决.三、解答题16.(12分)(2021•内江一模)在△ABC中,角A、B、C所对的边分别为,.(I)求角B的大小;(Ⅱ)若f(x)=cos2x+csin2(x+B),求函数f(x)的最小正周期和单增区间.考点:正弦定理;三角函数的周期性及其求法;正弦函数的单调性.专题:综合题.分析:(Ⅰ)依照cosA的值小于0,得到A为钝角,利用同角三角函数间的差不多关系求出sinA 的值,然后由a,b及sinA的值,利用正弦定理即可求出sinB的值,依照B为锐角,利用专门角的三角函数值即可求出B的度数;(Ⅱ)由a,b及cosB的值,利用余弦定理即可求出c的值,把求出的c和求出的B的值代入到f(x)中,利用二倍角的余弦函数公式及两角和与差的正弦、余弦函数公式化为一个角的正弦函数,依照周期的公式即可求出函数的最小正周期,由正弦函数的单调递增区间即可求出f(x)的单调增区间.解答:解:(Ⅰ)由cosA=﹣<0,A∈(,π),得到sinA=,又a=2,b=2,(2分)由正弦定理得:=,则sinB=,因为A为钝角,因此;(5分)(Ⅱ)由a=2,b=2,cosB=,依照余弦定理得:22=c2+12﹣4c•,即(c﹣2)(c﹣4)=0,解得c=2或c=4,由A为三角形的最大角,得到a=2为最大边,因此c=4舍去,故c=2,(6分)把c=2代入得:===,(10分)则所求函数的最小正周期为π,由,得,则所求函数的单增区间为.(13分)点评:此题考查学生灵活运用正弦.余弦定理化简求值,灵活运用二倍角的余弦函数公式及两角和与差的正弦函数公式化简求值,把握正弦函数的单调性,是一道中档题.学生求B度数的时候注意A为钝角那个隐含条件.17.(12分)(2021•内江一模)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发觉,销售量y(件)与销售单价x(元)满足关系y=﹣x+120.(1)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(2)若该商场获得利润不低于500元,试确定销售单价x的范畴.考点:函数模型的选择与应用.专题:作图题;函数的性质及应用.分析:(1)确定销售利润,利用配方法求最值;(2)利用该商场获得利润不低于500元,建立不等式,即可确定销售单价x的范畴.解答:解:(1)由题意,销售利润为W=(﹣x+120)(x﹣60)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,∵试销期间销售单价不低于成本单价,且获利不得高于45%,有﹣(x﹣90)2+900≤1.45×60x,∴60<x≤87∴当x=87时,利润最大,最大利润是891;(2)∵该商场获得利润不低于500元,∴(x﹣60)(﹣x+120)≥500∴70≤x≤110∴70≤x≤110时,该商场获得利润不低于500元.答:(1)当x=87时,利润最大,最大利润是891;(2)该商场获得利润不低于500元,销售单价x的范畴为[70,110].点评:本题考查函数模型的构建,考查函数的最值,考查学生分析解决问题的能力,属于中档题.18.(12分)(2021•内江一模)已知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.(1)求数列{an}的通项公式;(2)设Tn为数列{}的前n项和,若Tn≤λan+1对∀n∈N*恒成立,求实数λ的最小值.考点:数列的求和;等比数列的性质.专题:运算题.分析:(1)由已知得,解方程可求d,进而可求通项(2)由=,利用裂项可求T n,由T n≤λa n+1对∀n∈N*恒成立可知T n最大值≤λ(n+2),可求解答:解:(1)设公差为d.由已知得解得d=1或d=0(舍去)因此a1=2,故a n=n+1(2)因为=因此+…+==因为T n≤λa n+1对∀n∈N*恒成立∴≤λ(n+2)对∀n∈N*恒成立即对∀n∈N*恒成立又因此点评:新课标下对数列的考查要求降低,只对等差、等比数列通项和求和要求把握.数列求和的方法具有专门强的模型(错位相减型、裂项相消型、倒序相加型),建议熟练把握,将恒成立问题转化为最值是常用的方法,需要注意.19.(12分)(2021•内江一模)某市为增强市民的环境爱护意识,面向全市征召义务宣传理想者.把符合条件的1000名理想者按年龄分组:第1组[20,25)、第2组[25,30)、第3组[30,35)、第4组[35,40)、第5组[40,45),得到的频率分布直方图如图所示:(1)若从第3、4、5组中用分层抽样的方法抽取12名理想者参加广场的宣传活动,应从第3、4、5组各抽取多少名理想者?(2)在(1)的条件下,该市决定在这12名理想者中随机抽取3名理想者介绍宣传体会求第4组至少有一名理想者被抽中的概率;(3)在(2)的条件下,若ξ表示抽出的3名理想者中第3组的人数,求ξ的分布列和数学期望.考点:离散型随机变量及其分布列;频率分布直方图;离散型随机变量的期望与方差.专题:运算题.分析:(1)由频率和频数的关系可得每组的人数,由分层抽样的特点可得要抽取的人数;(2)求出总的可能,再求出4组至少有一位理想者倍抽中的可能,由古典概型的概率公式可得;(3)可得ξ的可能取值为:0,1,2,3,分别求其概率可得其分布列,由期望的定义可得答案.解答:解:(1)由题意可知,第3组的人数为0.06×5×1000=300,第4组的人数为0.04×5×1000=200,第5组的人数为0.02×5×1000=100,第3、4、5组共600名理想者,故由分层抽样的特点可知每组抽取的人数为:第3组=6,第4组=4,第5组=2,因此第3、4、5组分别抽取6人,4人,2人;(2)从12名理想者中抽取3名共有=220种可能,第4组至少有一位理想者倍抽中有﹣=164种可能,因此第4组至少有一名理想者被抽中的概率为P==;(3)ξ的可能取值为:0,1,2,3,且P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,因此ξ的分布列为ξ0 1 2 3P∴ξ的期望Eξ==1.5点评:本题考查离散型随机变量及其分布列,涉及频率分布直方图和期望的求解,属中档题.20.(13分)(2021•内江一模)已知函数f(x)=ax2﹣3x+lnx(a>0)(1)若曲线y=f(x)在点P(1,f(1))处的切线平行于x轴,求函数f(x)在区间上的最值;(2)若函数f(x)在定义域内是单调函数,求a的取值范畴.考点:利用导数求闭区间上函数的最值;函数的单调性与导数的关系;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求导函数,利用曲线y=f(x)在点(1,f(1))处的切线平行于x轴,可求a的值,令f′(x)<0,可得函数f(x)的单调减区间;令f′(x)>0,可得单调增区间;然后确定函数的极值,最后比较极值与端点值的大小,从而确定函数的最大和最小值.(2)要保证原函数在定义内单调,需保证其导函数在定义域上不变号,分类讨论,从而求得参数的范畴.解答:解:(1)∵f(x)=ax2﹣3x+lnx(a>0),∴f′(x)=2ax﹣3+,x>0∵曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴k=2a﹣2=0,∴a=1,∴f(x)=x2﹣3x+lnx,f′(x)=2x﹣3+,x>0,令f′(x)=2x﹣3+<0,可得<x<1;令f′(x)>0,可得0<x<或x>1;∴函数f(x)的单调减区间为[,1),单调增区间为(1,+∞),当在区间时.∴f(x)在区间[,1]上为增函数,f(x)在区间[1,2]上为增函数.(4分)∴f max(x)=f(2)=﹣2+ln2,f min(x)=f(1)=﹣2.(6分)(2)原函数定义域为(0,+∞)∴f′(x)=2ax﹣3+=,∵函数f(x)在定义域(0,+∞)内为单调函数,∴f'(x)≤0或f'(x)≥0在(0,+∞)恒成立由于a>0,设g(x)=2ax2﹣3x+1(x∈(0,+∞))由题意知△=9﹣8a≤0∴a≥因此a的取值范畴为:a≥.(12分)点评:本小题要紧考查函数单调性的应用、导数在最大值、最小值问题中的应用、不等式的解法等基础知识,考查运算求解能力,导数中常见的恒成立问题,属中档题.21.(14分)(2021•内江一模)关于函数f(x),若存在x0∈R,使f (x0)=x0成立,则称x0为f(x)的不动点.假如函数f(x)=有且仅有两个不动点0、2.(1)求b、c满足的关系式;(2)若c=时,相邻两项和不为零的数列{an}满足=1(Sn是数列{an}的前n项和),求证:;(3)在(2)的条件下,设,Tn是数列{bn}的前n项和,求证:T2021﹣1<ln2021<T2021.考点:综合法与分析法(选修);函数的值;利用导数研究函数的单调性.专题:运算题;证明题;新定义;转化思想.分析:(1)设=x的不动点为0和2,由此知推出b、c满足的关系式.(2)由c=2,知b=2,f(x)=(x≠1),2S n=a n﹣a n2,且a n≠1.因此a n﹣a n﹣1=﹣1,a n=﹣n,要证待证不等式,只要证,利用分析法证明<ln(1+)<.考虑证不等式<ln(x+1)<x(x>0),由此入手利用函数的导数判定函数的单调性,然后导出.(3)由,利用(2)的结论,通过累加法证明所要证明的不等式T2021﹣1<ln2021<T2021即可.解答:解:(1)设=x的不动点为0和2∴即即b、c满足的关系式:b=1+且c≠0(2)∵c=2∴b=2∴f(x)=(x≠1),由已知可得2S n=a n﹣a n2①,且a n≠1.当n≥2时,2S n﹣1=a n﹣1﹣a n﹣12②,①﹣②得(a n+a n﹣1)(a n﹣a n﹣1+1)=0,∴a n=﹣a n﹣1或a n=﹣a n﹣1=﹣1,当n=1时,2a1=a1﹣a12⇒a1=﹣1,若a n=﹣a n﹣1,则a2=1与a n≠1矛盾.∴a n﹣a n﹣1=﹣1,∴a n=﹣n∴要证待证不等式,只要证,即证,只要证nln(1+)<1<(n+1)ln(1+),即证<ln(1+)<.考虑证不等式<ln(x+1)<x(x>0)**.令g(x)=x﹣ln(1+x),h(x)=ln(x+1)﹣(x>0).∴g'(x)=,h'(x)=,∵x>0,∴g'(x)>0,h'(x)>0,∴g(x)、h(x)在(0,+∞)上差不多上增函数,∴g(x)>g(0)=0,h(x)>h(0)=0,∴x>0时,<ln(x+1)<x.令x=则**式成立,∴,(3)由(2)知b n=,则T n=在<ln(1+)<中,令n=1,2,3,…,2021,并将各式相加,得<ln+ln+…+ln<1+.即T2021﹣1<ln2021<T2021.点评:本题考查不等式的性质和应用,函数的导数判定函数的单调性构造法的应用,分析法证明不等式的方法,解题时要认真审题,认真解答,注意公式的合理运用.。

2020年12月23日四川省内江市高中2021届第一次模拟考试题数学试题及答案内江一模

2020年12月23日四川省内江市高中2021届第一次模拟考试题数学试题及答案内江一模

答,字体工整,笔迹清楚;不能答在试题卷上。
3. 考试结束后,监考人将答题卡收回。8
第Ⅰ卷(选择题,共60 分)
一、选择题(本大题共12 小题,每小题5 分,共60 分. 在每个小题所给出的四个选项中,只
有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置. )
设集合 { ( )}, { },则 1.
二、填空题(本大题共4 小题,每小题5 分,满分20 分. )
{ 已知实数, 满足约束条件 13.
xy
3x - y - 3 ≤ 0 x - 2y + 4 ≥ 0
,则z = 2x - y 的最大值是
3x + 4y + 12 ≥ 0

14. 已知数列{an}是等差数列,Sn 是其前n 项和. 若a1 + a22 = , - 3 S5 = ,则 10 a9 的值是
5.
若向量A→B

(1 2
,槡23),B→C

(槡3,1),则△ABC
的面积为
A. 1 2
槡 B. 3
C. 1

槡 D. 3
内江一模 高三一模考试数学(理科)试卷第 1 页(共4 页)
6. 已知(1 + )x n 的展开式中第4 项与第8 项的二项式系数相等,则奇数项的二项式系数和为ຫໍສະໝຸດ A. 212+π 6
),现将y =
f(x)的图象向左平移1π2
个单位,再将所得图
象上各点的横坐标缩短为原来的1 2
倍,纵坐标不变,得到函数y

g(x)的图象,则g(x)在
[0,52π4 ]的值域为 [ ,] A. - 1 2
B. [0,1]
[ ] C. 0. 2
[ ] D. - 1. 0

四川省内江市2021届新高考第一次适应性考试数学试题含解析

四川省内江市2021届新高考第一次适应性考试数学试题含解析

四川省内江市2021届新高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数()2x f x e mx =-有且只有4个不同的零点,则实数m 的取值范围是( ) A .2,4e ⎡⎫+∞⎪⎢⎣⎭B .2,4e ⎛⎫+∞ ⎪⎝⎭C .2,4e ⎛⎫-∞ ⎪⎝⎭D .2,4e ⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】【分析】 由()2x f x e mx =-是偶函数,则只需()2x f x e mx =-在()0,x ∈+∞上有且只有两个零点即可. 【详解】解:显然()2x f x e mx =-是偶函数 所以只需()0,x ∈+∞时,()22x x f e x e mx mx ==--有且只有2个零点即可 令20x e mx -=,则2xe m x = 令()2xe g x x =,()()32x e x g x x-'= ()()()0,2,0,x g x g x '∈<递减,且()0,x g x +→→+∞()()()2,+,0,x g x g x '∈∞>递增,且(),x g x →+∞→+∞()()224e g x g ≥= ()0,x ∈+∞时,()22x xf e x e mx mx ==--有且只有2个零点, 只需24e m > 故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.2.某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A .8B .83C .822+D .842+【答案】D【解析】【分析】 根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以1122222222284222S =⨯+⨯⨯⨯+⨯⨯⨯=+, 故选:D【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题. 3.已知1F ,2F 是双曲线222:1x C y a -=()0a >的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若2AB =△2ABF 的内切圆的半径为( ) A .23 B .3C .23 D .33【答案】B【解析】【分析】设左焦点1F 的坐标, 由AB 的弦长可得a 的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF 2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点1(,0)F c -,由题意可得22b AB a==,由1b =,可得a =所以双曲线的方程为: 2212x y -=所以12(F F ,所以2121122ABF S AB F F =⋅⋅==V 三角形ABF 2的周长为()()22112242C AB AF BF AB a AF a BF a AB =++=++++=+==设内切圆的半径为r ,所以三角形的面积1122S C r r =⋅⋅=⋅=,所以=解得r =故选:B【点睛】 本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.4.在三棱锥D ABC -中,1AB BC CD DA ====,且,,,AB BC CD DA M N ⊥⊥分别是棱BC ,CD 的中点,下面四个结论:①AC BD ⊥;②//MN 平面ABD ;③三棱锥A CMN -; ④AD 与BC 一定不垂直.其中所有正确命题的序号是( )A .①②③B .②③④C .①④D .①②④ 【答案】D【解析】【分析】①通过证明AC ⊥平面OBD ,证得AC BD ⊥;②通过证明//MN BD ,证得//MN 平面ABD ;③求得三棱锥A CMN -体积的最大值,由此判断③的正确性;④利用反证法证得AD 与BC 一定不垂直.【详解】设AC 的中点为O ,连接,OB OD ,则AC OB ⊥,AC OD ⊥,又OB OD O =I ,所以AC ⊥平面OBD ,所以AC BD ⊥,故①正确;因为//MN BD ,所以//MN 平面ABD ,故②正确;当平面DAC 与平面ABC 垂直时,A CMN V -最大,最大值为112234448A CMN N ACM V V --=⨯⨯==,故③错误;若AD 与BC 垂直,又因为AB BC ⊥,所以BC ⊥平面ABD ,所以BC BD ⊥,又BD AC ⊥,所以BD ⊥平面ABC ,所以BD OB ⊥,因为OB OD =,所以显然BD 与OB 不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.5.若实数x 、y 满足21y x y y x ≤⎧⎪+≥⎨⎪≥⎩,则2z x y =+的最小值是( )A .6B .5C .2D .32【答案】D【解析】【分析】根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组21y x y y x ≤⎧⎪+≥⎨⎪≥⎩所表示的可行域如下图所示:联立1y x x y =⎧⎨+=⎩,得12x y ==,可得点11,22A ⎛⎫ ⎪⎝⎭, 由2z x y =+得12y x z =-+,平移直线12y x z =-+, 当该直线经过可行域的顶点A 时,该直线在y 轴上的截距最小, 此时z 取最小值,即min 1132222z =+⨯=. 故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.6.在空间直角坐标系O xyz -中,四面体OABC 各顶点坐标分别为:22(0,0,0),(0,0,2),3,0,0,3,033O A B C ⎫⎛⎫⎪ ⎪⎭⎝⎭.假设蚂蚁窝在O 点,一只蚂蚁从O 点出发,需要在AB ,AC 上分别任意选择一点留下信息,然后再返回O 点.那么完成这个工作所需要走的最短路径长度是( )A .2B .1121-C 521+D .23【答案】C【解析】【分析】将四面体OABC 沿着OA 劈开,展开后最短路径就是AOO '△的边OO ',在AOO '△中,利用余弦定理即可求解.【详解】将四面体OABC 沿着OA 劈开,展开后如下图所示:最短路径就是AOO '△的边OO '.易求得30OAB O AC '∠=∠=︒,由2AO =,233OB =433AB = 433AC =,22263BC OB OC =+=222cos 2AB AC BC BAC AB AC+-⇒∠=⋅ 161683333444233+-== 由余弦定理知2222cos OO AO AO AO AO OAO ''''=+-⋅⋅∠其中2AO AO '==,()321cos cos 608OAO BAC -'∠=︒+∠=∴2521,521OO OO ''=⇒=+故选:C【点睛】本题考查了余弦定理解三角形,需熟记定理的内容,考查了学生的空间想象能力,属于中档题. 7.1x <是12x x+<-的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】B【解析】【分析】利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。

2021届四川省内江市高中高三上学期第一次模拟数学(理)试题Word版含解析

2021届四川省内江市高中高三上学期第一次模拟数学(理)试题Word版含解析

2021届四川省内江市高中高三上学期第一次模拟数学(理)试题一、单选题1.已知集合{}1,2,A m =,{}3,4B =,若{}1,2,3,4A B =,则实数m 为( )A .1或2B .2或3C .1或3D .3或4【答案】D【解析】根据并集的运算结果可得出实数m 的值. 【详解】集合{}1,2,A m =,{}3,4B =,且{}1,2,3,4A B =,3m ∴=或4.故选:D. 【点睛】本题考查利用交并集的运算求参数,在处理有限集的计算时,要注意元素互异性这个特征,考查计算能力,属于基础题. 2.已知复数21iz i =+(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】利用复数的除法运算将复数z 表示为一般形式,即可得出复数z 在复平面内对应的点所在的象限. 【详解】()()()12221211212555i i i i z i i i i -+====+++-, 因此,复数z 在复平面内对应的点位于第一象限. 故选:A. 【点睛】本题考查复数的除法运算,同时也考查了复数的几何意义,解题的关键就是利用复数的四则运算法则将复数化为一般形式,考查计算能力,属于基础题.3.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为3.1416,在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为( )A .1πB .3πC D 【答案】B【解析】计算出圆内接正十二边形的面积和圆的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】圆内接正十二边形的每条边在圆内所对的圆心角为2126ππ=, 所以,半径为1的圆的内接正十二边形的面积为21121sin 326π⨯⨯⨯=,因此,在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为3π. 故选:B. 【点睛】本题考查利用几何概型的概率公式计算概率,解题的关键就是求出相应平面区域的面积,考查计算能力,属于中等题.4.在二项式521x x ⎛⎫- ⎪⎝⎭的展开式中,含4x 的项的系数是( ). A .10- B .5-C .10D .5【答案】C【解析】分析:先求出二项式521x x ⎛⎫- ⎪⎝⎭的展开式的通项公式,令x 的指数等于4,求出k 的值,即可求得展开式中4x 的项的系数.详解:521x x ⎛⎫- ⎪⎝⎭的展开项()()()552135155C 1C k k k k k k k T x x x ----+=-=-, 、令354k -=,可得3k =, ∴()()5533551C 1C 10kk---=-=.故选C .点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.5.函数()y f x =在()()1,1P f 处的切线如图所示,则()()11f f '+=( )A .0B .12C .32D .12-【答案】A【解析】由切线经过坐标轴上的两点求出切线的斜率()1f '和切线方程,然后求出(1)f ,即可得到()()11f f '+的值.【详解】解:因为切线过(2,0)和(0,1)-,所以011(1)202f +=-'=, 所以切线方程为112y x =-,取1x =,则12y ,所以1(1)2f =-, 所以()()1111022f f '+=-+=.故选:A . 【点睛】本题考查了导数的几何意义,考查了数形结合思想,属基础题. 6.已知等比数列{}n a 是递增数列,22a =,37S =,则数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为( ) A .31 B .31或314C .3116D .3116或314【答案】C【解析】设等比数列{}n a 的公比为q ,根据题意求出1a 和q 的值,并确定出等比数列1n a ⎧⎫⎨⎬⎩⎭的首项和公比,然后利用等比数列的求和公式可计算出数列1n a ⎧⎫⎨⎬⎩⎭的前5项和的值.【详解】设等比数列{}n a 的公比为q ,由题意得()21231217a a q S a q q ==⎧⎪⎨=++=⎪⎩,解得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩, 由于等比数列{}n a 是递增数列,则11a =,2q,1111112n n n na a a q a ++∴===,且111a ,所以,数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,以12为公比的等比数列, 因此,数列1n a ⎧⎫⎨⎬⎩⎭的前5项和为511131211612⎛⎫⨯- ⎪⎝⎭=-.故选:C. 【点睛】本题考查等比数列的求和,根据题意求出等比数列的首项和公比是解题的关键,考查方程思想的应用,考查计算能力,属于中等题.7.函数()2221xf x x x =--+的图象大致为( )A .B .C .D .【答案】B【解析】根据()f x ,求出(0)f ,即可排除错误选项. 【详解】解:因为()2221xf x x x =--+,所以(0)0f =,排除ACD .故选:B . 【点睛】本题考查了根据函数解析式选择函数的图象,解题关键是特殊值的选取,属基础题.8.已知向量()2cos ,2sin a θθ=, ,2πθπ⎛⎫∈ ⎪⎝⎭,()0,1b =,则向量a 与b 的夹角为( )A .32πθ- B .2πθ+ C .2πθ-D .θ【答案】C【解析】直接用向量的夹角公式求出两向量的夹角即可. 【详解】 解:因为()2cos ,2sin a θθ=,()0,1b =,所以2sin cos ,sin ||||2a b a b a b θ⋅<>===,因为,2πθπ⎛⎫∈ ⎪⎝⎭,所以,2a b πθ<>=-,所以向量a 与b 的夹角为2πθ-.故选:C . 【点睛】本题考查了向量夹角的求法和诱导公式,属基础题.9.宋元时期数学名著《算数启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等. 如图是源于其思想的一个程序框图,若输入的,a b 分别为5,2,则输出的n =( )A .2B .3C .4D .5 【答案】C【解析】由程序框图可得, 1n =时, 4462242a b =+=>⨯==,继续循环; 2n =时,6692482a b =+=>⨯==,继续循环; 3n =时, 9279281622a b =+=<⨯==, 继续循环;结束输出3n =.点睛:循环结构的考查是高考热点,有时会问输出结果,或是判断框的条件是什么,这类问题容易错在审题不清,计数变量加错了,没有理解计数变量是在计算结果之前还是计算结果之后,最后循环进来的数是什么等问题,防止出错的最好的办法是按顺序结构写出每一个循环,这样就会很好的防止出错. 10.定义在R 上的偶函数()f x 满足:任意1x ,()212x x x ∈[0,+∞)≠,有()()21210f x f x x x -<-,则( )A .()32log 31212log log 29f f f ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭B .()32log 1321log 2log 29f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭C .()332log log 1212log 229f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭D .()32log 13212log 2log 9f f f ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭【答案】A【解析】根据条件可知()f x 在[0,)+∞上单调递减,然后结合()f x 的奇偶性比较函数值的大小即可. 【详解】解:由任意1x ,()212[,+)x x x ∈0∞≠,有()()21210f x f x x x -<-,知()f x 在[0,)+∞上单调递减,又()f x 为R 上的偶函数,所以32log (2()3)f f =<31(log )(2)(2)9f f f =-=<12(log 2)(1)f f -=,即()32log 31212log log 29f f f ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了函数单调性的定义,函数的奇偶性和利用单调性比较函数值的大小,属基础题.11.函数()()()()128f x x x S x S x S =---,其中n S 为数列{}n a 的前n 项和,若()11n a n n =+,则()0f '=( )A .112B .14C .18D .19【答案】D【解析】先利用裂项相消法求出n S ,再求出()f x ',进一步求出(0)f '的值.【详解】 解:因为()11n a n n =+,所以111n a n n =-+,所以11111[(1)()()]2231n S n n =-+-++-+=1111nn n -=++. 由()()()()128f x x x S x S x S =---,得()()()()()()128128()+x [ ] f x x S x S x S x S x S x S ''=------,所以1281281(0)2399S S f S =='⨯⨯⨯=. 故选:D . 【点睛】本题考查了导数的运算和利用裂项相消法求数列的前n 项和,属中档题.12.已知函数222,0()|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且1234()()()()f x f x f x f x ===,则下列结论:①121x x +=-,②341x x =,③1234102x x x x <+++<,④123401x x x x <<,其中正确的个数是( )A .1B .2C .3D .4【答案】C【解析】根据二次函数的性质以及对数函数的性质可得122x x +=-,341x x =,数形结合求出12210x x -<<-<<,341122x x <<<<,进而可得结果. 【详解】画出函数()f x 的大致图象如下图,得出122x x +=-,341x x =,①错、②正确;且12210x x -<<-<<,341122x x <<<<, 344415(2,)2x x x x +=+∈, 则123444112(0,)2x x x x x x +++=-++∈,③正确; 因为221211111(2)2(1)1(0,1)x x x x x x x =--=--=-++∈, 所以123412(0,1)x x x x x x =∈④正确.故选C. 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.二、填空题13.已知随机变量ζ服从正态分布()22,N δ,则()2P ζ<=___________.【答案】12【解析】根据正态曲线的对称性,直接求解即可. 【详解】解:因为随机变量ζ服从正态分布()22,N δ,所以正态曲线关于2ζ=对称,所以()122P ζ<=.故答案为:12. 【点睛】本题考查了由正态曲线的对称性求概率,属基础题. 14.设函数()()lg 1f x x =-,则函数()()f f x 的定义域为___________.【答案】(-9,1)【解析】先求出(())f f x ,然后根据对数函数的真数大于0,求出其值域. 【详解】解:因为()()lg 1f x x =-,所以()()lg(1())lg[1lg(1)]ff x f x x =-=--.由1lg(1)010x x -->⎧⎨->⎩,得1101x x -<⎧⎨<⎩,所以91x -<<,所以函数()()ff x 的定义域为(9,1)-.故答案为:(9,1)-. 【点睛】本题考查了函数定义域的求法和解对数不等式,属基础题.15.已知函数()y f x =是定义域为(),-∞+∞的奇函数满足()()310f x f x --+-=.若()11f =,则()()()()1232020f f f f +++⋅⋅⋅⋅⋅⋅+=___________.【答案】0【解析】根据()y f x =是定义域为(),-∞+∞的奇函数满足()()310f x f x --+-=,得到(0)0f =和()f x 的周期,再结合(1)1f =,求出(1)f ,(1)f ,(3)f 和(4)f 的值,进一步得到答案.【详解】解:因为()y f x =是定义域为(),-∞+∞的奇函数满足()()310f x f x --+-=, 所以(0)0f =,(1)(3)(3)f x f x f x -=---=+, 则()(4)f x f x =+,所以()f x 的周期4T=,又()11f =,所以(3)(1)(1)1f f f =-=-=-,(4)(0)0f f ==,令1x =-,则(31)(2)2(2)0f f f -++-=-=,所以(2)0f -=,所以(2)(2)0f f =--=, 所以(1)(2)(3)(4)0f f f f +++=,所以()()()()1232020f f f f +++⋅⋅⋅⋅⋅⋅+=504[(1)(2)(3)(4)]0f f f f ⨯+++=. 故答案为:0. 【点睛】本题考查了函数奇偶性和周期性的应用,考查了转化思想和计算能力,属中档题. 16.对于函数()13f x x πω⎛⎫=-+ ⎪⎝⎭(其中0>ω):①若函数()y f x =的一个对称中心到与它最近一条对称轴的距离为4π,则2ω=;②若函数()y f x =在,34ππ⎛⎫- ⎪⎝⎭上单调递增,则ω的范围为110,23⎡⎤⎢⎥⎣⎦;③若2ω=,则()y f x =在点()()0,0f 处的切线方程为210y --=;④若2ω=,0,2x π⎡⎤∈⎢⎥⎣⎦,则()y f x =的最小值为12-;⑤若2ω=,则函数1y x =+的图象向右平移3π个单位可以得到函数()y f x =的图象.其中正确命题的序号有_______.(把你认为正确的序号都填上)【答案】①④【解析】①根据条件,可得44T π=,然后利用周期公式求出ω;②根据()f x 在,34ππ⎛⎫- ⎪⎝⎭上单调递增,可得332432ωπππωπππ⎧--≥-⎪⎪⎨⎪-≤⎪⎩,然后求出ω的范围;③当2ω=时,求出f (0)和f (x )的导函数,然后求出()()0,0f 处的切线方程的斜率()k f x '=,再求出切线方程即可;④根据0,2x π⎡⎤∈⎢⎥⎣⎦,直接利用整体法求出f (x )的值域,从而得到f (x )的最小值;⑤直接求出函数1y x =+的图象向右平移3π个单位的解析式即可. 【详解】解:①若函数()y f x =的一个对称中心到与它最近一条对称轴的距离为4π,则 44T π=,所以T π=,所以22T πω==,故①正确;②当(,)34x ππ∈-,则(,)33343x πωππωππω-∈---, 因为0>ω,所以若函数()y f x =在,34ππ⎛⎫- ⎪⎝⎭上单调递增,则332432ωπππωπππ⎧--≥-⎪⎪⎨⎪-≤⎪⎩,所以12ω≤,又0>ω,所以102ω<≤,故②错误; ③当2ω=时,())13f x x π=-+,则1(0)2f =-, ())3x x f π'=- ,所以切线的斜率(0)f k ='=,所以()y f x =在点()()0,0f处的切线方程为210y --=,故③错误; ④当2ω=时,())13f x x π=-+,当0,2x π⎡⎤∈⎢⎥⎣⎦时,ππ2π2[,]333x -∈-,所以当(2)[32sin x π-∈-,所以1()(122min f x =-+=-,故④正确; ⑤当2ω=时,())13f x x π=-+,若1y x =+的图象向右平移3π个单位,则2)]1)1()33y x x f x ππ=-+=-+≠,故⑤错误. 故答案为:①④. 【点睛】本题考查了三角函数图象与性质,曲线切线方程的求法和三角函数的平移变换,考查了数学结合思想和转化思想,属中档题.三、解答题17.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,设()22sin sin sin sin sin B C A B C -=-. (1)求A ;(2)当6a =时,求其面积的最大值,并判断此时ABC ∆的形状.【答案】(1)60;(2)ABC ∆面积的最大值为,此时ABC ∆为等边三角形. 【解析】(1)利用角化边的思想,由余弦定理可求出1cos 2A =,再结合角A 的取值范围可得出角A 的值; (2)对a 利用余弦定理,利用基本不等式求出bc 的最大值,即可计算出该三角形面积的最大值,利用等号成立得出b c =,可判断出此时ABC ∆的形状.【详解】 (1)()22sin sin sin sin sin B C A B C -=-,()22b c a bc ∴-=-,222b c a bc ∴+-=,由余弦定理得2221cos 222b c a bc A bc bc +-===,0180A <<,60A ∴=;(2)由余弦定理和基本不等式得222222cos 2a b c bc A b c bc bc bc bc =+-=+-≥-=,236bc a ∴≤=,当且仅当6b c a ===时,等号成立,ABC ∆∴的面积113sin 369322ABC S bc A ∆=≤⨯⨯=.此时,由于6b c ==,60A =,则ABC ∆是等边三角形. 【点睛】本题考查利用余弦定理求角,同时也考查了三角形面积最值的计算,一般利用基本不等式来求解,考查运算求解能力,属于中等题.18.某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.(1)由以上统计数据填写下面22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”? 甲班 乙班 总计 成绩优良 成绩不优良 总计(2)从甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,记来自甲班的人数为X ,求X 的分布列与数学期望.附:()()()()()22n da bc K a c b d a b c d -=++++(其中n a b c d =+++)【答案】(1)列联表见解析,能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”;(2)分布列见解析,43. 【解析】(1)根据茎叶图中的数据填写列联表,然后计算2K ,再对照表得出结论;(2)先确定甲班人数X 的所有可能取值,然后分别求其概率,再得到X 的分布列和数学期望. 【详解】解:(1)根据茎叶图中的数据作出22⨯列联表如表所示,根据22⨯列联表中的数据,得()22401041610 3.956 3.84126142020K ⨯⨯-⨯=≈>⨯⨯⨯, 所以能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”. (2)甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生人数为6. 由题意可知X 的取值分别为X 0=,1X =,2X =,则()22261015C P X C ===;()1124268115C C P X C ⋅===;()24266215C P X C ===. ∴X 的分布列为其数学期望EX =18640121515153⨯+⨯+⨯=. 【点睛】本题考查了独立性检验,离散随机变量的分布列和数学期望,考查了计算能力,属中档题. 19.已知函数()ln xf x x=. (1)求函数()f x 的单调区间;(2)证明对一切()0,x ∈+∞,都有22ln x x x x e e<-成立.【答案】(1)()f x 的递增区间是()0,e ,递减区间是(),e +∞;(2)证明见解析.【解析】(1)求出函数()y f x =的定义域和导数,然后分别解不等式()0f x '>和()0f x '<,可得出函数()y f x =的递增区间和递减区间;(2)要证22ln x x x x e e<-,即证ln 2x x x x e e <-,构造函数()2x x g x e e =-,证明出()()max min f x g x ≤,并说明两个函数的最值不在同一处取得即可. 【详解】 (1)函数()ln x f x x =的定义域为()0,∞+,且()21ln xf x x-'=. 令()0f x '>,即ln 1x <,解得0x e <<;令()0f x '<,即ln 1x >,解得x e >. 因此,函数()y f x =的递增区间是()0,e ,递减区间是(),e +∞;(2)要证22ln x x x x e e<-,即证ln 2x x x x e e <-,构造函数()2x x g x e e =-,其中0x >.由(1)知,函数()ln x f x x =在x e =处取得极大值,亦即最大值,即()()max 1f x f e e==. ()2x x g x e e =-,()1x x g x e-'∴=.令()0g x '<,得01x <<;令()0g x '>,得1x >.所以,函数()y g x =的单调递减区间为()0,1,单调递增区间为()1,+∞. 则函数()y g x =在1x =处取得极小值,亦即最小值,即()()min 11g x g e==. ()()maxmin f x g x ∴≤,所以,ln 2x x x x e e <-,因此,22ln x x x x e e<-.【点睛】本题考查利用导数求函数的单调区间,同时也考查了利用导数证明函数不等等式,一般转化为函数的最值来处理,考查分析问题和解决问题的能力,属于中等题. 20.已知数列(){}()*2log 1n a n N -∈为等差数列,且13a=,39a =.(1)求数列{}n a 的通项公式; (2)设21n n b a =-,n S 为数列{}n b 的前n 项和,若对任意*n N ∈,总有43n m S -<,求m 的取值范围. 【答案】(1)21nn a =+;(2)[)10,+∞. 【解析】(1)设等差数列(){}2log 1n a -的公差为d ,利用1a 、3a 求出d 的值,可求出数列(){}2log 1n a -的通项公式,再利用对数式化指数式可求出n a ;(2)求出数列{}n b 的通项公式,利用定义判断数列{}n b 为等比数列,确定该数列的首项和公比,利用等比数列的求和公式求出n S ,可求出n S 的取值范围,即可得出关于m 的不等式,解出即可. 【详解】(1)设等差数列(){}2log 1n a -的公差为d ,则()()2321222log 1log 1log 8log 22d a a =---=-=,解得1d =,()212log 1log 21a -==,()()2log 1111n a n n ∴-=+-⨯=,12n n a ∴-=,21n n a ∴=+;(2)1221122n n n n b a -===-,11112121222n n n n n n b b -+-∴===,且11b =, 所以,数列{}n b 是以1为首项,以12为公比的等比数列,则11112211212n n n S ⎛⎫⨯- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-, 由于数列{}n S 单调递增,11S =,12n S ∴≤<, 对任意*n N ∈,总有43n m S -<,423m -∴≥,解得10m ≥. 因此,实数m 的取值范围是[)10,+∞. 【点睛】本题考查数列通项的求解,同时也考查了等比数列前n 项和的计算,涉及对数的运算以及数列不等式的求解,考查运算求解能力,属于中等题.21.已知函数()f x 满足:()()()12102x f f x x x e f x -'=-+. (1)求()f x 的解析式;(2)若()()212g x f x x =-,且当0x >时,()()10x k g x x '-++>,求整数k 的最大值. 【答案】(1)()212xe xf x x =-+;(2)2.【解析】(1)直接对f (x )求导,然后令x =1,求出(0)f ',再令x =0,求出(1)f ',从而得到f (x )的解析式; (2)先求出g (x )的解析式,然后利用分离参数法求出k 的范围,进一步得到整数k 的最大值. 【详解】解:(1)∵()()()12102x f f x x x e f x -'=-+, ∴()()()10x x f x x f ef -''=-+,令1x =得,()01f =,即()()12112x f e f x x x -'=-+, 令0x =得,(1)e f ,∴函数()f x 的解析式为()212xe xf x x =-+. (2)由(1)有()xg x e x =-,则()1xg x e '=-,∴()()()()111xx k g x x x k e x '-++=--++,故当0x >时,()()10x k g x x '-++>等价于()101xx k x x e +<+>-①, 令()1(0)1x h x x x x e +=+>-,则()()()()2221111x x x x xh x e e x xe e e ----=+=-'-, 令函数()2xe x H x =--,易()H x 在()0,∞+上单调递增,而()01H <,()02H >,所以()H x 在()0,∞+内存在唯一的零点, 故()h x '在()0,∞+内存在唯一的零点,设此零点为0x ,则()01,2x ∈. 当()00,x x ∈时,()0h x '<;当()0,x x ∈+∞时,()0h x '>.∴()h x 在()0,∞+内的最小值为()0h x .又由()00h x '=可得002xe x =+∴()()00000112,31x x x x h x e +=+=+∈-,∴k 2≤, ∴()101xx k x x e +<+>-恒成立,则整数k 的最大值为2. 【点睛】本题考查了利用导数研究函数的单调性和最值,不等式恒成立问题,考查了转化思想和函数思想,属难题. 22.在平面直角坐标系xOy 中,圆C 的参数方程13cos ,23sin x t y t =+⎧⎨=-+⎩(t 为参数),在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴的非负半轴为极轴)中,直线l的方程为()sin 4m m R πθ⎛⎫-=∈ ⎪⎝⎭.(1)求圆C 的普通方程及直线l 的直角坐标方程; (2)若圆心C 到直线l 的距离等于2,求m 的值. 【答案】(1)圆的普通方程为()()22129x y -++=;0x y m ;(2)2m=-32.【解析】试题分析:(Ⅰ)消去参数可得圆C 的普通方程及直线l 的直角坐标方程分别为()()22129x y -++=,0x y m -+= ;(Ⅱ)由题意结合点到直线距离公式得到关于实数m的方程,解方程可得3m =-±试题解析:(Ⅰ)消去参数t ,得到圆C 的普通方程为()()22129x y -++=.πsin 4m θ⎛⎫-= ⎪⎝⎭,得 sin cos 0m ρθρθ--=.所以直线l 的直角坐标方程为0x y m -+=. (Ⅱ)依题意,圆心C 到直线l 的距离等于2,2=,解得3m =-±.23.函数()2f x x a x =++-.(1)当1a =时,求不等式()5f x ≤的解集; (2)若()4f x ≥,求a 的取值范围. 【答案】(1)[]2,3-;(2)(][),62,-∞-+∞.【解析】(1)将1a =代入函数()y f x =的解析式,然后分1x ≤-、12x -<<、2x ≥三种情况讨论,去绝对值,分别解出不等式()5f x ≤,即可得出该不等式的解集;(2)利用绝对值三角不等式求出函数()2f x x a x =++-的最小值为2a +,由题意可得出24a +≥,解出该不等式即可得出实数a 的取值范围. 【详解】(1)当1a =时,()12f x x x =++-.当1x ≤-时,()()()12215f x x x x =-++-=-+≤,解得2x ≥-,此时21x -≤≤-; 当12x -<<时,()1215f x x x =-+-=≤成立,此时12x -<<; 当2x ≥时,()12215f x x x x =++-=-≤,解得3x ≤,此时23x ≤≤. 综上所述,不等式()5f x ≤的解集为[]2,3-;(2)由于不等式()4f x ≥在R 上恒成立,则()min 4f x ≥.由绝对值三角不等式可得()()()222f x x a x x a x a =++-≥+--=+,24a ∴+≥,即24a +≤-或24a +≥,解得6a ≤-或2a ≥.因此,实数a 的取值范围是(][),62,-∞-+∞.【点睛】本题考查绝对值不等式的解法,同时也考查了绝对值不等式恒成立问题的求解,一般转化为函数的最值来处理,涉及了绝对值三角不等式的应用,考查化归与转化思想以及分类讨论思想的应用,属于中等题.。

内江市高中2020届第一次模拟考试题理科数学参考答案及评分意见

内江市高中2020届第一次模拟考试题理科数学参考答案及评分意见

() ( ) 分 2
bn

2 an - 1
= 2n
2 +1 -1

1 2 n -1

1 2
n-1 8
( ) … ( ) ( ) ( ) 分 ∴ Sn
=1+
1 2

1 2+ 2
1- 1 n
+ 1 n-1 = 2
2 1- 1
=2-
1 2
n-1 < 2
10

任意 ,总有 , ,即 ∵

(2)由(1)有g(x)= ex - x
( ) () ( )( ) 分 ∴ x - k g′ x + x + 1 = x - k ex - 1 + x + 1 6
故当 时,( ) () 等价于 ( ) 分 x > 0 x - k g′ x + x + 1 > 0
所以能在犯错误的概率不超过0. 05 的前提下认为“成绩优良与教学方式有关” 6 分
(2)由题意可知X 的取值分别为X = ,0 X = ,1 X = 2,则
( ) ;( ) · ;( ) 分 P X = 0 的分布列为 ∴ X

C22 C26

1 15


=1

C12 C14 C26

8 15
12
解:()设等差数列{ ( )}的公差为,由题意有 20. 1
log2 an - 1

( ) ( ) ,即 分 log2 9 - 1 = log2 3 - 1 + 2d d = 1 3
( ) ( ) ,即 分 ∴ log2 an - 1 = 1 + n - 1 × 1 = n an = 2n + 1 6

内江市高中2020届第一次模拟考试题理科综合能力测试参考答案及评分意见

内江市高中2020届第一次模拟考试题理科综合能力测试参考答案及评分意见

() ( 分) 在催化剂作用下分解产生 ( 分) 澄清石灰水( 分) 3 ① O2 1 H2O2
O2 1 ②

() ( 分) 4 Fe2 + + 2 HCO3- FeCO3 ↓ + CO2 ↑ + H2 O 2
() ( 分) 5 Fe5O7 2
高温
() ( 分) 6 5 FeCO3 + O2 Fe5O7 + 5 CO2 2
(1)3d5(1 分) > (1 分) Mn 原子核外失去2 个电子后其价电子排布式为3d5,处于半充
满状态,更稳定(1 分)
(2 (3
))①③氧s化Dp3镁((11晶分分体)) 中 ②所sp含2(1离分子)的 (半1N径分>更O)>小C,电> H荷(数2 分更)大 ,7晶N格A(能2 分更)大(2
( 分) 27. 15
(1 (2
))P调b节SO溶4(液1 分的)p H
酸雨(1 使Fe3 +
分) 沉淀完全(2
分)
(3)酒精(或饱和硫酸锌溶液)(2 分)
()4 Zn + Cd2 + Zn2 + + Cd (2 分) 在氧化除杂工序中加ZnO 是为了调节溶液pH,若要完
全除去Cd2 + ,溶液的pH 至少需要调节为9. 4,此时Zn2 + 也会完全沉淀(2 分)

1 2
a1 t20


对: ( 分) M
x2

1 2
at20


又有 ( 分) L = x2 - x1 1 由以上各式解得 ( 分) t0 = 2s 1
由以上各式解得 ( 分) T1 = 400K 1
气体做等容变化,由查理定律得: ( 分) ② (最活由初 塞 以分要上,)对动 各活时式塞,解对得:活塞, ((( 分 分 分))) 34. 15

四川省2021版高考数学一模试卷(理科)(I)卷

四川省2021版高考数学一模试卷(理科)(I)卷

四川省2021版高考数学一模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设全集,则()A .B .C .D .2. (2分)(2020·江西模拟) 已知复数,则在复平面上对应的点所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)命题p:“或”是命题q:“”的()条件A . 充分不必要B . 必要不充分C . 充要D . 既不充分也不必要4. (2分) (2020高一下·徐州期中) 若tanα=2,则2cos2α+sin2α=()A .B .C .D .5. (2分)阅读如图所示的程序框图,若输入的a , b , c分别为32,75,21,则输出的a , b , c分别是()A . 75,21,32B . 21,32,75C . 32,21,75D . 75,32,216. (2分)在△ABC中,b=4,c=3,BC边上的中线,则a=()A .B .C .D .7. (2分)(2018·佛山模拟) 如图是一种螺栓的简易三视图,其螺帽俯视图是一个正六边形,则由三视图尺寸,该螺栓的表面积为()A .B .C .D .8. (2分) (2019高三上·富平月考) 已知直线是函数的一条对称轴,则()A .B . 在上单调递增C . 由的图象向左平移个单位可得到的图象D . 由的图象向左平移个单位可得到的图象9. (2分)(2019·桂林模拟) 的展开式中的一次项系数是()A . -20B . 14C . 20D . 3510. (2分)(2016·海口模拟) 若x,y满足,且当z=y﹣x的最小值为﹣12,则k的值为()A .B . ﹣C .D . ﹣11. (2分) (2015高三上·潮州期末) 已知双曲线的一个焦点恰为抛物线y2=8x的焦点,且离心率为2,则该双曲线的标准方程为()A .B .C .D .12. (2分) (2017高二上·南昌月考) 已知函数有极大值和极小值,则实数的取值范围是()A .B .C . 或D . 或二、填空题 (共4题;共4分)13. (1分) (2017高三上·太原期末) 数据0.7,1,0.8,0.9,1.1的方差是________.14. (1分) (2020高一下·辽宁期中) 已知,且,则 ________.15. (1分) (2019高二下·上海月考) 平面外的直线与平面所成的角是,则的取值范围是________.16. (1分) (2016高一下·溧水期中) 已知向量 =(1,2), =(a,﹣1),若,则实数a的值为________.三、解答题 (共7题;共55分)17. (5分)(2020·聊城模拟) 这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列的前项和为,数列的前项和为,_______,,若对于任意都有,且 ( 为常数),求正整数的值.18. (10分) (2016高二上·红桥期中) 如图,长方体ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E为BC 的中点,点M为棱AA1的中点.(1)证明:DE⊥平面A1AE;(2)证明:BM∥平面A1ED.19. (15分)(2017·黑龙江模拟) 某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.20. (5分) (2018高二上·江苏月考) 若椭圆的中心在原点,焦点在轴上,点是椭圆上的一点,在轴上的射影恰为椭圆的左焦点,与中心的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于,试求椭圆的离心率及其方程.21. (5分)已知函数y=3x3+2x2﹣1在区间(m,0)上为减函数,求m的取值范围.22. (5分)在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos ()=1,M,N分别为C与x轴,y轴的交点.(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程.23. (10分) (2019高三上·珠海期末) 已知(1)求的值域;(2)若不等式恒成立,求的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共55分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、22-1、23-1、23-2、。

2020年四川省内江市高考数学一诊试卷(理科)

2020年四川省内江市高考数学一诊试卷(理科)

2020年四川省内江市高考数学一诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的把正确选项的代号填在答题卡的指定位置.)1. 已知集合A={1, 2, m},B={3, 4},A∪B={1, 2, 3, 4},则m=()A.0B.3C.4D.3或4【答案】D【考点】并集及其运算【解析】由两集合的并集为{1, 2, 3, 4},可得出m=3或m=4,即可求出m的值.【解答】∵A={1, 2, m},B={3, 4},A∪B={1, 2, 3, 4},∴m=3或m=4,2. 已知复数z=i2i+1(i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【考点】复数的代数表示法及其几何意义【解析】利用复数代数形式的乘除运算化简,求出z的坐标得答案.【解答】∵z=i2i+1=i(1−2i)(1+2i)(1−2i)=25+15i,∴复数z在复平面内对应的点的坐标为(25,15),位于第一象限.3. 割圆术是估算圆周率的科学方法由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为3.1416.在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为()A.1πB.3πC.√3πD.3√32π【答案】B【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可.【解答】半径为1的圆内接正十二边形,可分割为12个顶角为2π÷12=π6,腰为1的等腰三角形,∴该正十二边形的面积为S=12×12×1×1×sinπ6=3,根据几何概型公式,该点取自其内接正十二边形的概率为3π,4. 在二项式(x2−1x)5的展开式中,含x4的项的系数是()A.−10B.10C.−5D.5【答案】B【考点】二项式定理的应用【解析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得.【解答】解:对于T r+1=C5r(x2)5−r(−1x)r=(−1)r C5r x10−3r,对于10−3r=4,∴r=2,则x4的项的系数是C52(−1)2=10.故选B.5. 函数y=f(x)在P(1, f(1))处的切线如图所示,则f(1)+f′(1)=()A.0B.12C.32D.−12【答案】A【考点】利用导数研究曲线上某点切线方程导数的几何意义【解析】由切线经过的两点求得切线的斜率与切线方程,得到f′(1),进一步求得f(1),则答案可求.【解答】∵切线过点(2, 0)与(0, −1),∴f′(1)=−1−00−2=12,则切线方程为y=12x−1,取x=1,得f(1)=−12,∴f(1)+f′(1)=−12+12=0.故选:A.6. 已知等比数列{a n}是递增数列,a2=2,S3=7,则数列{1a n}的前5项和为()A.31B.31或314C.3116D.3116或314【答案】C【考点】数列的求和【解析】等比数列{a n}是递增数列,且公比设为q,运用等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,计算可得所求和.【解答】等比数列{a n}是递增数列,且公比设为q,a2=2,S3=7,可得a1q=2,a1+a1q+a1q2=7,解得a1=1.q=2,或a1=4,q=12(舍去),则1a n=12n−1,数列{1an}的前5项和为1+12+⋯+116=1−1251−12=3116.7. 函数f(x)=x2−2x−2|x−1|+1的图象大致为()A.B.C.D.【答案】B【考点】函数的图象与图象的变换【解析】根据条件先判断函数关于x=1对称,然后利用f(0)的对应性进行排除即可.【解答】f(x)=x2−2x−2|x−1|+1=(x−1)2−2|x−1|,则函数关于x=1对称,排除A,C,f(0)=−2+1=−1<0,排除D,8. 已知向量a→=(√2cosθ, √2sinθ),θ∈(π2, π),b→=(0, 1),则向量a→与b→的夹角为()A.3π2−θ B.π2+θ C.θ−π2D.θ【答案】 C【考点】数量积表示两个向量的夹角 【解析】由题意利用两个向量的夹角公式,两个向量的数量积公式,诱导公式,求得向量a →与b →的夹角. 【解答】∵ 向量a →=(√2cosθ, √2sinθ),θ∈(π2, π),b →=(0, 1), 设向量a →与b →的夹角为α,α∈[0, π), ∴ cosα=a →⋅b→|a →|⋅|b →|=√2sinθ√2⋅1=sinθ=cos(θ−π2),故α=θ−π2,9. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A.5B.4C.3D.2 【答案】 B【考点】 程序框图 【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】 当n =1时,a =152,b =4,满足进行循环的条件,当n =2时,a =454,b =8满足进行循环的条件, 当n =3时,a =1358,b =16满足进行循环的条件, 当n =4时,a =40516,b =32不满足进行循环的条件,故输出的n 值为4,10. 定义在R 上的偶函数f(x)满足:任意x 1,x 2∈[0, +∞)(x 1≠x 2),有f(x 2)−f(x 1)x 2−x 1<0,则( )A.f(2log 23)<f(log 319)<f(−log 122)B.f(−log 122)<f(log 319)<f(2log 23)C.f(log 319)<f(−log 122)<f(2log 23)D.f(2log 23)<f(−log 122)<f(log 319)【答案】 A【考点】奇偶性与单调性的综合 【解析】根据函数奇偶性和单调性之间的关系,即可得到结论. 【解答】任意x 1,x 2∈[0, +∞)(x 1≠x 2),有f(x 2)−f(x 1)x 2−x 1<0,∴ 函数在[0, +∞)上单调递减,根据偶函数的对称性可知,函数在(−∞, 0)上单调递增,距离对称轴越远,函数值越小,∵ f(2log 23)=f(3),f(log 319)=f(−2)=f(2),f(−log 122)=f(1),则f(2log 23)<f(log 319)<f(−log 122).故选:A .11. 函数f(x)=x(x −S 1)(x −S 2)…(x −S 8),其中S n 为数列{a n }的前n 项和,若a n =1n(n+1),则f′(0)=( )A.112B.19C.18D.14【答案】 B【考点】 导数的运算 【解析】求出函数的导数,结合数列求和即可得到结论. 【解答】∵ f(x)=x(x −S 1)(x −S 2)…(x −S 8),∴ f′(x)=[(x −S 1)(x −S 2)...(x −S 8)]+x[(x −S 1)(x −S 2)...(x −S 8)]′, 则f′(0)=S 1S 2...S 8, ∵ a n =1n(n+1)=1n −1n+1,∴ S n =1−12+12−13+⋯+1n −1n+1=1−1n+1=nn+1, 则S 1S 2...S 8=12×23×⋯×89=19,12. 已知函数f(x)={−x 2−2x,x ≤0|log 2x|,x >0 ,若x 1<x 2<x 3<x 4,且f(x 1)=f(x 2)=f(x 3)=f(x 4),则下列结论:①x 1+x 2=−1,②x 3x 4=1,③0<x 1+x 2+x 3+x 4<12,④0<x 1x 2x 3x 4<1,其中正确的个数是( ) A.1 B.2 C.3 D.4 【答案】 C【考点】命题的真假判断与应用 【解析】由已知画出图形,求得x 1+x 2=−2,x 3x 4=1,再把x 1+x 2+x 3+x 4与x 1x 2x 3x 4分别转化为x 3与x 1的函数求解,则答案可求. 【解答】作出函数f(x)={−x 2−2x,x ≤0|log 2x|,x >0的图象如图, 则x 1+x 2=−2,故①错误;由f(x 3)=f(x 4),得|log 2x 3|=|log 2x 4|,∴ −log 2x 3=log 2x 4, 则log 2(x 3x 4)=0,即x 3x 4=1,故②正确; x 1+x 2+x 3+x 4=−2+x 3+x 4=x 3+1x 3−2,由log 2x =−1,得x =12,则12<x 3<1,∴ x 3+1x 3−2∈(0, 12),即0<x 1+x 2+x 3+x 4<12,故③正确;x 1x 2x 3x 4=x 1x 2=x 1(−2−x 1)=−x 12−2x 1, ∵ −2<x 1<1,∴ −x 12−2x 1∈(0, 1), 即0<x 1x 2x 3x 4<1,故④正确. ∴ 正确命题的个数是3个.二、填空题(本大题共4小题,每小题5分,满分20分.)已知随机变量ξ服从正态分布N(2, δ2),则P(ξ<2)=________. 【答案】 0.5【考点】正态分布的密度曲线 【解析】根据随机变量ξ服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(ξ<2).【解答】∵随机变量ξ服从正态分布N(2, δ2),∴正态曲线的对称轴是x=2∴P(ξ<2)=0.5设函数f(x)=lg(1−x),则函数f(f(x))的定义域为________.【答案】(−9, 1)【考点】函数的定义域及其求法【解析】先求出函数f(x)的定义域,结合复合函数定义域之间的关系进行求解即可.【解答】要使函数有意义,则1−x>0,得x<1,即函数f(x)的定义域为(−∞, 1),要使函数f(f(x))有意义,则f(x)<1,即lg(1−x)<1,得0<1−x<10,得−9<x<1,即函数f(f(x))的定义域为(−9, 1),已知函数y=f(x)是定义域为(−∞, +∞)的奇函数满足f(−3−x)+f(x−1)=0.若f(1)=1,则f(1)+f(2)+f(3)+……+f(2020)=________.【答案】【考点】函数的周期性函数奇偶性的性质与判断【解析】根据f(x)是R上的奇函数,以及f(−3−x)+f(x−1)=0即可得出f(x+4)=f(x),从而得出f(x)的周期为4,并根据f(1)=1及f(x+4)=f(x)可求出f(1)+f(2)+f(3)+ f(4)=0,从而可得出答案.【解答】∵y=f(x)是定义域为(−∞, +∞)的奇函数满足f(−3−x)+f(x−1)=0,∴f(x−1)=f(x+3),∴f(x)=f(x+4),即f(x)的周期为4,∵f(1)=1,且f(0)=0,∴由f(x)=f(x+4)得,f(3)=f(−1)=−f(1)=−1,f(2)=f(−2)=−f(2),f(4)=f(0)=0,∴f(1)=1,f(2)=0,f(3)=−1,f(4)=0,∴f(1)+f(2)+f(3)+f(4)=0,且2020=4×504,∴f(1)+f(2)+f(3)+……+f(2020)=0.故答案为:0.)+1(其中ω>0):对于函数f(x)=√3sin(ωx−π3①若函数y=f(x)的一个对称中心到与它最近一条对称轴的距离为π,则ω=2;4②若函数y =f(x)在(一π3,π4)上单调递增,则ω的范围为[12, 103]; ③若ω=2,则y =f(x)在点(0, f (0))处的切线方程为√3x −2y −1=0; ④若ω=2,x ∈[0, π2],则y =f(x)的最小值为一12;⑤若ω=2则函数y =√3sin2x +1的图象向右平移π3个单位可以得到函数y =f(x)的图象.其中正确命题的序号有________(把你认为正确的序号都填上). 【答案】 ①④ 【考点】命题的真假判断与应用 【解析】由函数y =f(x)的一个对称中心到与它最近一条对称轴的距离为π4求得周期,再由周期公式求ω判断①;求出函数的单调增区间,取k =0,再由集合之间的关系列式求解ω的范围判断②;求出原函数的导函数,得到f′(0),进一步求得f(0),写出直线方程的点斜式判断③;由x 的范围直接求函数的最小值判断④;由函数的图象平移判断⑤. 【解答】对于①,∵ 函数y =f(x)的一个对称中心到与它最近一条对称轴的距离为π4,即T4=π4,得T =π,∴ 2πω=π,则ω=2,故①正确;对于②,由−π2+2kπ≤ωx −π3≤π2+2kπ,得−π6ω+2kπω≤x ≤5π6ω+2kπω,k ∈Z .取k =0,可得−π6ω≤x ≤5π6ω,由函数y =f(x)在(一π3,π4)上单调递增, 得{−π3≥−π6ωπ4≤5π6ω ,解得0<ω≤12,故②错误; 对于③,由ω=2,得f(x)=√3sin(2x −π3)+1,得f′(x)=2√3⋅cos(2x −π3), 则f′(0)=√3,又f (0))=−12,∴ y =f(x)在点(0, f (0))处的切线方程为y +12=√3x ,即2√3x −2y −1=0,故③错误;对于④,ω=2,则f(x)=√3sin(2x −π3)+1,∵ x ∈[0, π2],∴ 2x −π3∈[−π3, 2π3],则当2x −π3=−π3时,y =f(x)的最小值为−12,故④正确;对于⑤,ω=2,则f(x)=√3sin(2x −π3)+1,而函数y =√3sin2x +1的图象向右平移π3个单位,得到y =√3sin2(x −π3)+1=√3sin(2x−2π3)+1,故⑤错误.∴正确命题的序号是①④.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题考生根据要求作答)(一)必考题:共60分.△ABC的内角A、B、C的对边分别为a、b、c,设(sinB−sinC)2=sin2A−sinBsinC.(1)求A;(2)当a=6时,求其面积的最大值,并判断此时△ABC的形状.【答案】根据题意,(sinB−sinC)2=sin2A−sinBsinC,由正弦定理可得:(b−c)2=a2−bc,变形可得:b2+c2−a2=bc,则cosA=b2+c2−a22bc =12,又由0<A<π,则A=π3;根据题意,若a=6,则a2=b2+c2−2bccosA=b2+c2−bc=36,变形可得:bc≤36,则有S=12bcsinA=√34bc≤9√3,当且仅当b=c时等号成立,此时△ABC为等边三角形.【考点】解三角形正弦定理余弦定理【解析】(1)根据题意,由正弦定理可得(b−c)2=a2−bc,变形可得b2+c2−a2=bc,由余弦定理可得cosA=b2+c2−a22bc =12,据此分析可得答案;(2)根据题意,由余弦定理可得a2=b2+c2−2bccosA=b2+c2−bc=36,结合基本不等式的性质分析可得bc≤36,进而由三角形面积公式分析可得答案.【解答】根据题意,(sinB−sinC)2=sin2A−sinBsinC,由正弦定理可得:(b−c)2=a2−bc,变形可得:b2+c2−a2=bc,则cosA=b2+c2−a22bc =12,又由0<A<π,则A=π3;根据题意,若a=6,则a2=b2+c2−2bccosA=b2+c2−bc=36,变形可得:bc≤36,则有S=12bcsinA=√34bc≤9√3,当且仅当b=c时等号成立,此时△ABC为等边三角形.某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?(2)从甲、乙两班40个样本中,成绩在60分以下(不含6的学生中任意选取2人,记来自甲班的人数为X ,求X 的分布列与数学期望. 附:K 2=n(da−bc)2(a+c)(b+d)(a+b)(c+d)(其中n =a +b +c +d )【答案】列出二维联表:得K 2=40×(10×4−10×16)226×14×20×20≈3.956>3.841所以能在犯错误的概率不超过0.05的前期下认为成绩优良与教学方式有关; 由题意可知X 的取值为0,1,2, 则P(X =0)=C 22C 62=115;P(X =1)=C 21C41C 62=815;P(X =2)=C 42C 62=25.E(X)=0×115+1×815+2×25=43.【考点】离散型随机变量的期望与方差 离散型随机变量及其分布列 独立性检验 【解析】(1)列出二维联表,利用卡方公式求出;(2)利用超几何分布公式求出概率,列出分布列,求出数学期望. 【解答】列出二维联表:得K 2=40×(10×4−10×16)226×14×20×20≈3.956>3.841所以能在犯错误的概率不超过0.05的前期下认为成绩优良与教学方式有关; 由题意可知X 的取值为0,1,2, 则P(X =0)=C 22C 62=115;P(X =1)=C 21C41C 62=815;P(X =2)=C 42C 62=25.E(X)=0×115+1×815+2×25=43.已知函数f(x)=lnx x.(1)求函数f(x)的单调区间;(2)证明:对一切x ∈(0, +∞),都有lnx <2x e−x 2e x 成立.【答案】函数的定义域为(0, +∞),f ′(x)=1−lnx x 2,令f′(x)>0,解得0<x <e ,令f′(x)<0,解x >e , ∴ 函数f(x)的增区间为(0, e),减区间为(e, +∞);证明:lnx <2x e−x 2e x 等价于lnx x <2e −x e x ,即证f(x)<2e −xe x ,由(1)知,f(x)≤f(e)=1e ,当x =e 时取等号, 令m(x)=2e −xe x ,则m ′(x)=x−1e x,易知函数m(x)在(0, 1)递减,在(1, +∞)递增,∴ m(x)≥m(1)=1e ,当x =1时取等号,∴ f(x)<m(x)对一切x ∈(0, +∞)都成立,则对一切x ∈(0, +∞),都有lnx <2x e−x 2e x成立. 【考点】利用导数研究函数的单调性 利用导数研究函数的最值 【解析】(1)求导,令导大于0的解集即为增区间,令导小于0的解集即为减区间; (2)原问题即证f(x)<2e −xe x ,而f(x)≤f(e)=1e ,令m(x)=2e −xe x ,求导可得m(x)≥m(1)=1e ,从而得证.【解答】函数的定义域为(0, +∞),f ′(x)=1−lnx x 2,令f′(x)>0,解得0<x <e ,令f′(x)<0,解x >e , ∴ 函数f(x)的增区间为(0, e),减区间为(e, +∞); 证明:lnx <2x e−x 2e x 等价于lnx x <2e−x e x,即证f(x)<2e −xe x ,由(1)知,f(x)≤f(e)=1e ,当x =e 时取等号, 令m(x)=2e −xe x ,则m ′(x)=x−1e x,易知函数m(x)在(0, 1)递减,在(1, +∞)递增,∴ m(x)≥m(1)=1e ,当x =1时取等号,∴ f(x)<m(x)对一切x ∈(0, +∞)都成立,则对一切x ∈(0, +∞),都有lnx <2x e−x 2e x成立.已知数列{log 2(a n −1)}(n ∈N ∗)为等差数列,且a 1=3,a 3=9. (1)求数列{a n }的通项公式;(2)设b n =2an−1,S n 为数列{b n }的前n 项和,若对任意n ∈N ∗,总有S n <m−43,求m的取值范围.【答案】数列{log 2(a n −1)}(n ∈N ∗)为等差数列,设公差为d ,a 1=3,a 3=9,可得log 2(9−1)=log 2(3−1)+2d ,即3=1+2d ,解得d =1, 则log 2(a n −1)=1+n −1=n ,即a n =1+2n ;b n=2a n−1=22+1−1=(12)n−1,S n=1−1 2n1−12=2(1−12n)<2,对任意n∈N∗,总有S n<m−43,可得m−43≥2,解得m≥10,可得m的取值范围是[10, +∞).【考点】数列的求和【解析】(1)设数列{log2(a n−1)}(n∈N∗)的公差为d,运用等差数列的通项公式,可得d=1,进而得到所求通项公式;(2)求得b n,运用等比数列的求和公式可得S n,再由不等式的性质和恒成立思想,解不等式可得m的范围.【解答】数列{log2(a n−1)}(n∈N∗)为等差数列,设公差为d,a1=3,a3=9,可得log2(9−1)=log2(3−1)+2d,即3=1+2d,解得d=1,则log2(a n−1)=1+n−1=n,即a n=1+2n;b n=2a n−1=22n+1−1=(12)n−1,S n=1−1 2n1−12=2(1−12n)<2,对任意n∈N∗,总有S n<m−43,可得m−43≥2,解得m≥10,可得m的取值范围是[10, +∞).已知函数f(x)满足:f(x)=f′(1)e x−1−f(0)x+12x2.(1)求f(x)的解析式;(2)若g(x)=f(x)−12x2,且当x>0时,(x−k)g′(x)+x+1>0,求整数k的最大值.【答案】∵f(x)=f′(1)e x−1−f(0)x+12x2,∴f′(x)=f′(1)e x−1−f(0)+x,令x=1可得f(0)=1,即f(x)=f′(1)e x−1−x+12x2,令x=0可得,f′(1)=e,∴f(x)=e x−x+12x2,由(1)可得g(x)=e x−x,g′(x)=e x−1,∴(x−k)g′(x)+x+1=(x−k)(e x−1)+x+1,当x>0时,由(x−k)g′(x)+x+1>0可得,k<x+1e x−1+x(x>0),①令ℎ(x)=x+1e x−1+x,则ℎ′(x)=−(xe x+1)(e x−1)2+1=e x(e x−x−2)(e x−1)2,令H(x)=e x−x−2,易得H(x)在(0, +∞)上单调递增,而H(1)<0,H(2)>0,\故H(x)在(0, +∞)内存在唯一的零点,设为x0,在x0∈(1, 2),当x∈(0, x0)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(x0, +∞)时,ℎ′(x)>0,ℎ(x)单调递增,故ℎ(x)在(0, +∞)上的最小值ℎ(x0)=1+x0e x0−1+x0=1+x0∈(2, 3),∵k<x+1e x−1+x恒成立,故整数k的最大值为2.【考点】函数解析式的求解及常用方法利用导数研究函数的单调性【解析】(1)先对函数求导,然后分别进行赋值令x=1,令x=0即可求解,(2)结合(1)可求g(x),进而可求g′(x),代入已知不等式,结合恒成立与最值的相互转化关系,结合零点判定定理可求.【解答】∵f(x)=f′(1)e x−1−f(0)x+12x2,∴f′(x)=f′(1)e x−1−f(0)+x,令x=1可得f(0)=1,即f(x)=f′(1)e x−1−x+12x2,令x=0可得,f′(1)=e,∴f(x)=e x−x+12x2,由(1)可得g(x)=e x−x,g′(x)=e x−1,∴(x−k)g′(x)+x+1=(x−k)(e x−1)+x+1,当x>0时,由(x−k)g′(x)+x+1>0可得,k<x+1e−1+x(x>0),①令ℎ(x)=x+1e x−1+x,则ℎ′(x)=−(xe x+1)(e x−1)2+1=e x(e x−x−2)(e x−1)2,令H(x)=e x−x−2,易得H(x)在(0, +∞)上单调递增,而H(1)<0,H(2)>0,\故H(x)在(0, +∞)内存在唯一的零点,设为x0,在x0∈(1, 2),当x∈(0, x0)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(x0, +∞)时,ℎ′(x)>0,ℎ(x)单调递增,故ℎ(x)在(0, +∞)上的最小值ℎ(x0)=1+x0e x0−1+x0=1+x0∈(2, 3),∵k<x+1e x−1+x恒成立,故整数k的最大值为2.(二)选考题:共10分,请考生在第22、23题中任选一题作答如果多做则按所做的第一题计分.在平面直角坐标系xOy 中,圆C 的参数方程为{x =1+3costy =−2+3sint (t 为参数).在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴),直线l 的方程为√2ρsin(θ−π4)=m ,(m ∈R) (1)求圆C 的普通方程及直线l 的直角坐标方程;(2)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】消去参数t ,得到圆的普通方程为(x −1)2+(y +2)2=9, 由√2ρsin(θ−π4)=m ,得ρsinθ−ρcosθ−m =0, 所以直线l 的直角坐标方程为:x −y +m =0.依题意,圆心C(1, −2)到直线l:x −y +m =0的距离等于2,即√2=2,解得m=−3±2√2. 【考点】 圆的参数方程圆的极坐标方程 【解析】(1)直接利用极坐标与直角坐标的互化以及参数方程与普通方程的互化求解即可. (2)直接利用点到直线的距离个数求解即可. 【解答】消去参数t ,得到圆的普通方程为(x −1)2+(y +2)2=9, 由√2ρsin(θ−π4)=m ,得ρsinθ−ρcosθ−m =0, 所以直线l 的直角坐标方程为:x −y +m =0.依题意,圆心C(1, −2)到直线l:x −y +m =0的距离等于2,即√2=2,解得m=−3±2√2.设函数f(x)=|x +a|+|x −2|.(Ⅰ)当a =1时,求不等式f(x)≤5的解集; (Ⅱ)若f(x)≥4恒成立,求a 的取值范围. 【答案】(1)a =1时,f(x)=|x +1|+|x −2|≤5,故{x ≥2x +1+x −2≤5 或{−1<x <2x +1+2−x ≤5 或{−x −1+2−x ≤5x <−1 , 解得:−2≤x ≤3,故不等式的解集是[−2, 3];(2)|x +a|+|x −2|≥|x +a −x +2|=|a +2|≥4, 故a +2≥4或a +2≤−4, 解得:a ≥2或a ≤−6, 故a ∈(−∞, −6]∪[2, +∞).【考点】绝对值不等式的解法与证明 函数恒成立问题 【解析】(Ⅰ)代入a 的值,通过讨论x 的范围求出不等式的解集即可; (Ⅱ)根据绝对值不等式的性质得到关于a 的不等式,解出即可. 【解答】(1)a =1时,f(x)=|x +1|+|x −2|≤5,故{x ≥2x +1+x −2≤5 或{−1<x <2x +1+2−x ≤5 或{−x −1+2−x ≤5x <−1 , 解得:−2≤x ≤3,故不等式的解集是[−2, 3];(2)|x +a|+|x −2|≥|x +a −x +2|=|a +2|≥4, 故a +2≥4或a +2≤−4, 解得:a ≥2或a ≤−6, 故a ∈(−∞, −6]∪[2, +∞).。

2021-2022学年四川省内江市高三(上)零模数学试卷(理科)-附答案详解

2021-2022学年四川省内江市高三(上)零模数学试卷(理科)-附答案详解

2021-2022学年四川省内江市高三(上)零模数学试卷(理科)一、单选题(本大题共12小题,共60.0分)1.已知复数z满足(1−i)z=i(i为虚数单位),则z的虚部为()A. −12B. 12C. −12i D. 12i2.设f(x)=xcosx,则f′(π2)=()A. π2B. −π2C. 1D. −13.若双曲线mx2−y2=1(m>0)的离心率为2,则m=()A. 13B. √3 C. 13或3 D. 34.已知命题p:若a⃗=(1,−2,3),b⃗ =(−2,4,−6),则a⃗//b⃗ ;命题q:若a⃗=(1,−2,1),b⃗ =(1,0,1),则a⃗⊥b⃗ .下列命题为真命题的是()A. p∧qB. (¬p)∧(¬q)C. (¬p)∨qD. p∧(¬q)5.曲线y=f(x)在x=1处的切线如图所示,则f′(1)−f(1)=()A. 0B. 2C. −2D. −16.以椭圆C:x2a2+y2b2=1(a>b>0)的短轴的一个端点和两焦点为顶点的三角形为等边三角形,且椭圆C上的点到左焦点的最大距离为6,则椭圆C的标准方程为()A. x24+y23=1 B. x28+y24=1 C. x216+y212=1 D. x264+y248=17.若(l+ax)(l+x)5的展开式中x2,y3的系数之和为−10,则实数a的值为()A. −3B. −2C. −lD. 18.已知函数f(x)=e x−ax,则“a<0”是“函数f(x)为增函数”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9. 在空间直角坐标系中,已知点O(0,0,0),A(−1,1,0),B(0,1,1),若在直线OA 上有一点H 满足BH ⊥OA ,则点H 的坐标为( )A. (12,−12,0)B. (2,−2,0)C. (−2,2,0)D. (−12,12,0)10. “二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“--”,其中“─”在二进制中记作“1”,“--”在二进制中记作“0”.如符号“☱”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为( )A. 12B. 13C. 23D. 1411. 已知直线l :y =x −1与抛物线C :y 2=2px(p >0)相交于A 、B 两点,若AB 的中点为N ,且抛物线C 上存在点M ,使得OM ⃗⃗⃗⃗⃗⃗⃗ =3ON ⃗⃗⃗⃗⃗⃗ (O 为坐标原点),则抛物线C 的方程为( )A. y 2=8xB. y 2=4xC. y 2=2xD. y 2=x12. 对于函数y =f(x),若存在区间[a,b],当x ∈[a,b]时,f(x)的值域为[ka,kb],则称y =f(x)为k 倍值函数.若f(x)=x +lnx 是k 倍值函数,则k 的取值范围为( )A. (0,−1e )B. (1e ,+∞)C. (1,1e +1)D. (1e +1,+∞)二、单空题(本大题共4小题,共20.0分)13. 设随机变量X 的分布列为P(X =k)=Ck(k+1),k =1、2、3,C 为常数,则P(X <3)=______.14. 为弘扬学生志愿服务精神,某学校开展了形式多样的志愿者活动.现需安排5名学生,分别到3个地点(敬老院、幼儿园和交警大队)进行服务,要求每个地点至少安排1名学生,则有______种不同的安排方案(用数字作答). 15. 设椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,A 是椭圆上一点,AF 2⊥F 1F 2,若原点O 到直线AF 1的距离为13|OF 1|,则该椭圆的离心率为 . 16. 若对任意的x 1,x 2∈(m,+∞),且x 1<x 2,都有x 1lnx 2−x 2lnx 1x 2−x 1<2,则m 的最小值是______.三、解答题(本大题共6小题,共70.0分)17.已知抛物线C:y2=4x,坐标原点为O,焦点为F,直线l:y=kx+1.(1)若l与C只有一个公共点,求k的值;(2)过点F作斜率为1的直线交抛物线C于A、B两点,求△OAB的面积.18.已知函数f(x)=ax3+bx在x=1处有极值2.(1)求a,b的值;],函数g(x)=m−f(x)有零点,求实数m的取值范围.(2)若x∈[−2,1219.为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,教育部开展了招生改革工作--强基计划,现对某高中学校学生对强基课程学习的情况进行调查,在参加数学和物理的强基计划课程学习的学生中随机抽取了10名学生.(1)在某次数学强基课程的测试中超过90分的成绩为优秀,否则为合格.这10名学生成绩的统计数据如茎叶图所示,现随机从这10名学生中抽取两名,记抽到成绩优秀的学生人数为X,求随机变量X的分布列及期望;(2)已知学生的物理成绩y与数学成绩x是线性相关的,现统计了小明同学连续5次在强基课程测试中的数学和物理成绩(如表).若第6次测试该生的数学成绩达到132,请你估计第6次测试他的物理成绩大约是多少?数学成绩x 120 118 116 122 124 物理成绩y7979778283附:b ̂=∑(ni=1x i −x −)(y i −y −)∑(n i=1x i −x −)2,a ̂=y −−b ̂x −.20. 如图,四棱柱ABCD −A 1B 1C 1D 1中,面ABB 1A 1⊥面ABCD ,面ADD 1A 1⊥面ABCD ,点E 、M 、N 分别是棱AA 1、BC 、CD 的中点. (1)证明:AA 1⊥面ABCD .(2)若四边形ABCD 是边长为2的正方形,且AA 1=AD ,面EMN ∩面ADD 1A 1=直线l ,求直线l 与B 1C 所成角的余弦值.21.已知A,B是椭圆C:x2+y2=1上的两点.3(1)若直线AB的斜率为1,求|AB|的最大值;(2)线段AB的垂直平分线与x轴交于点N(t,0),求t的取值范围.x3+tx+t.22.已知函数f(x)=13(1)讨论函数f(x)的单调区间;(2)若函数f(x)有三个不同的零点x1、x2、x3,求t的取值范围,并证明:x1+x2+x3<√−t.答案和解析1.【答案】B【解析】解:由(1−i)z=i,得z=i1−i =i(1+i)(1−i)(1+i)=−12+12i,∴z的虚部为12.故选:B.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2.【答案】B【解析】解:因为f(x)=xcosx,所以f′(x)=cosx−xsinx,所以f′(π2)=cosπ2−π2sinπ2=−π2.故选:B.对f(x)求导得,f′(x)=cosx−xsinx,然后计算f′(π2)即可.本题考查了函数的求导运算,属基础题.3.【答案】D【解析】解:∵双曲线mx2−y2=1,∴x21m −y2=1,即a2=1m,b2=1,∴c2=a2+b2=1m+1,∵双曲线的离心率为2,∴e2=c2a2=1m+11m=4,解得m=3.故选:D.根据已知条件,结合双曲线的性质,以及离心率公式,即可求解.本题主要考查了双曲线的性质,以及离心率公式,属于基础题.4.【答案】D【解析】解:命题p:若a⃗=(1,−2,3),b⃗ =(−2,4,−6),即b⃗ =−2a⃗,则a⃗//b⃗ ;p为真命题;¬p为假命题;命题q:若a⃗=(1,−2,1),b⃗ =(1,0,1),即a⃗⋅b⃗ =1+1≠0,则a⃗⊥b⃗ 不成立,q为假命题;¬q为真命题;由复合命题的真假对每一选项判断可得p∧(¬q)为真命题,故选:D.由复合命题的真假对每一选项判断可得答案.本题主要考查复合命题之间的关系,根据不等式的性质分别判定命题p,q的真假是解决本题的关键,比较基础.5.【答案】C【解析】解:由图可知,切线方程为x−2+y2=1,即y=x+2,∴f′(1)=1,f(1)=1+2=3,则f′(1)−f(1)=1−3=−2.故选:C.写出切线方程的截距式,化为斜截式,可得f′(1),再求出f(1),则答案可求.本题考查利用导数研究过曲线上某点处的切线方程,考查导数的几何意义及应用,考查数形结合思想,是基础题.6.【答案】C【解析】解:由椭圆短轴的一个端点和两焦点为顶点的三角形为等边三角形可得b=√3c,再由椭圆C上的点到左焦点的最大距离为6,则可得a+c=6,又因为a2=b2+c2,可得c2+4c−12=0,解得c=2,解得:a2=16,b2=12,所以椭圆的方程为:x216+y212=1,由椭圆短轴的一个端点和两焦点为顶点的三角形为等边三角形可得b=√3c,再由椭圆C上的点到左焦点的最大距离为6,得a+c=6,又a2=b2+c2,解得a,b,c,进而可得答案.本题考查椭圆的方程,解题中需要理清思路,属于中档题.7.【答案】B【解析】解:因为(l+x)5的展开式的通项公式为:T r+1=∁5r⋅x r;可得展开式中x,x2,x3的系数分别为:∁51,∁52,∁53;故(l+ax)(l+x)5的展开式中x2的系数为:∁52+a⋅∁51=10+5a;故(l+ax)(l+x)5的展开式中x3的系数为:a⋅∁52+∁53=10+10a;∴10+5a+10+10a=20+15a=−10;∴a=−2.故选:B.先求(l+x)5的展开式的通项公式,进而求得结论.本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.8.【答案】A【解析】解:因为f(x)=e x−ax,所以f′(x)=e x−a,所以当a≤0时,f′(x)=e x−a>0,函数在定义域上单调递增,因为(−∞,0)⫋(−∞,0],所以“a<0”是“函数f(x)为增函数”的充分不必要条件,故选:A.首先求出函数的导函数,求出函数f(x)为增函数时参数a的取值范围,再根据充分条件、必要条件的定义进行判断即可.本题考查了导函数与函数单调性之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.【解析】解:由O(0,0,0),A(−1,1,0),B(0,1,1), ∴OA ⃗⃗⃗⃗⃗ =(−1,1,0),且点H 在直线OA 上,可设H(−λ,λ,0), 则BH⃗⃗⃗⃗⃗⃗ =(−λ,λ−1,−1), 又BH ⊥OA , ∴BH ⃗⃗⃗⃗⃗⃗ ⋅OA ⃗⃗⃗⃗⃗ =0,即(−λ,λ−1,−1)⋅(−1,1,0)=0, 即λ+λ−1=0, 解得λ=12, ∴点H(−12,12,0). 故选:D .根据空间向量的坐标表示与线性运算和数量积运算,求解即可. 本题考查了空间向量的坐标表示与运算问题,是基础题.10.【答案】D【解析】解:根据题意,不同符号可分为三类:第一类:由两个“─”组成,其二进制为:11(2)=3(10); 第二类:由两个“--“组成,其二进制为:00(2)=0(10);第三类:由一个“─”和一个“--”组成,其二进制为:10(2)=2(10),01(2)=1(10), 所以从两类符号中任取2个符号排列,则组成不同的十进制数为0,1,2,3, 则得到的二进制数所对应的十进制数大于2的概率P =14. 故选:D .分类计算得到从两类符合中任取2个符号排列,则组成不同的十进制数为0,1,2,3,即可计算得到概率.本题主要考查了古典概型及进制转化的应用,意在考查学生的计算能力和应用能力,属于中档题.【解析】解:设A(x 1,y 1),B(x 2,y 2),联立直线与抛物线方程{y =x −1y 2=2px ,整理可得x 2−2(1+p)x +1=0,由韦达定理可得,x 1+x 2=2(1+p),y 1+y 2=x 1+x 2−2=2p , ∵N 为AB 的中点, ∴N(1+p,p), 设M(x 0,y 0), ∵OM ⃗⃗⃗⃗⃗⃗⃗ =3ON ⃗⃗⃗⃗⃗⃗ , ∴M(3+3p,3p), 又∵点M 在抛物线C 上,∴(3p)2=2p ⋅3(1+p),即p 2−2p =0,解得p =2或p =0, ∴抛物线的标准方程为y 2=4x . 故选:B .联立直线与抛物线方程,结合韦达定理,可推得N(1+p,p),再根据条件OM ⃗⃗⃗⃗⃗⃗⃗ =3ON ⃗⃗⃗⃗⃗⃗ ,可得M(3+3p,3p),将M 点代入到抛物线方程中,即可求解.本题主要考了直线与抛物线方程的综合应用,以及向量之间的坐标关系,属于基础题.12.【答案】C【解析】解:∵f(x)=lnx +x ,定义域为{x|x >0},f(x)在定义域为单调增函数, 因此有:f(a)=ka ,f(b)=kb ,即:lna +a =ka ,lnb +b =kb , 即a ,b 为方程lnx +x =kx 的两个不同根. ∴k =1+lnx x,令1+lnx x=g(x),令g′(x)=1−lnx x 2=0,可得极大值点x =e ,故g(x)的极大值为:g(e)=1+1e , 当x 趋于0时,g(x)趋于−∞,当x 趋于∞时,g(x)趋于1,因此当1<k <1+1e 时,直线y =k 与曲线y =g(x)的图象有两个交点,方程k =1+lnx x有两个解.故所求的k 的取值范围为(1,1+1e ), 故选:C .由于f(x)在定义域{x|x >0}内为单调增函数,利用导数求得g(x)的极大值为:g(e)=1+1e ,当x 趋于0时,g(x)趋于−∞,当x 趋于∞时,g(x)趋于1,因此当1<k <1+1e 时,直线y =k 与曲线y =g(x)的图象有两个交点,满足条件,从而求得k 的取值范围. 本题主要考查利用导数求函数的值的方法,体现了转化的数学思想,属于中档题.13.【答案】89【解析】解:∵随机变量X 的分布列为P(X =k)=Ck(k+1),k =1,2,3,C 为常数, ∴c2+c6+c 12=1,解得c =43,∴P(X <3)=1−P(X =3)=1−19=89. 故答案为:89.根据已知条件,结合离散型分布列的性质,分布列中概率和为1,即可求解. 本题考查离散型分布列的性质,分布列中概率和为1,属于基础题.14.【答案】150【解析】解:根据题意,分2步进行分析:①将5名学生分为3组,有C 53+C 52C 32A 22=25种分组方法,②将分好的三组安排到三个地点,有A 33=6种安排方法, 则有25×6=150种安排方法; 故答案为:150.根据题意,分2步进行分析:①将5名学生分为3组,②将分好的三组安排到三个地点,由分步计数原理计算可得答案.本题考查排列组合的应用,涉及分步分类计数原理的应用,属于基础题.15.【答案】√22【解析】 【分析】由题设AF2⊥F1F2,及F1(−c,0),F2(c,0),求得A(c,b2a),由此利用点到直线的距离公式结合已知条件得离心率.本题考查椭圆离心率的求法,点到直线的距离公式的应用,考查数形结合以及计算能力.【解答】解:由题设AF2⊥F1F2,及F1(−c,0),F2(c,0),不妨设点A(c,y),其中y>0.由于点A在椭圆上,则有c2a2+y2b2=1,解得y2=b4a2,故A(c,b2a).直线AF1的方程为y=b22ac(x+c),整理得b2x−2acy+b2c=0.由题设,原点O到直线AF1的距离为13|OF1|,即c3=2√b4+(2ac)2,将b2=a2−c2代入到上式并化简,得a2=2c2,进而求得e=√22.故答案为:√22.16.【答案】1e【解析】解:由题意x1<x2,得x2−x1>0,∵x1lnx2−x2lnx1x2−x1<2,∴x1lnx2−x2lnx1<2(x2−x1),∴x1(lnx2+2)<x2(lnx1+2),∴lnx2+2x2<lnx1+2x1,令f(x)=lnx+2x,则f(x2)<f(x1),又x2>x1>m,则f(x)在(m,+∞)递减,∴f′(x)=−lnx−1x2<0,解得:x>1e,则m ≥1e ,m 的最小值是1e , 故答案为:1e . 令f(x)=lnx+2x ,根据f(x)在(m,+∞)递减,求出函数的递减区间,求出m 的最小值即可.本题考查了函数的单调性问题,考查导数的应用以及转化思想,是中档题.17.【答案】解:(1)依题意{y =kx +1y 2=4x,消去x 得y =14ky 2+1,即ky 2−4y +4=0, ①当k =0时,显然方程只有一个解,满足条件, ②当k ≠0时,Δ=(−4)2−4×4k =0,解得k =1, 综上可得:当k =1或k =0时直线与抛物线只有一个交点.(2)拋物线C :y 2=4x ,所以其焦点为F(1,0),设A(x 1,y 1),B(x 2,y 2),所以直线方程为y =x −1,则{y =x −1y 2=4x ,消去x 得y 2−4y −4=0,则y 1+y 2=4,y 1y 2=−4,所以|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√42−4×(−4)=4√2, 所以S △OAB =12|OF|⋅|y 1−y 2|=12×1×4√2=2√2.【解析】(1)联立直线方程与抛物线方程,然后分类讨论即可确定实数k 的值; (2)联立直线方程与抛物线方程,结合韦达定理和弦长公式即可确定三角形的面积. 本题主要考查直线与抛物线的位置关系,抛物线中的三角形问题,分类讨论的数学思想等知识,属于中等题.18.【答案】解:(1)∵f(x)=ax 3+bx ,∴f′(x)=3ax 2+b ,又∵f(x)=ax 3+bx 在x =1处有极值2, ∴{f′(1)=3a +b =0f(1)=a +b =2,解得{a =−1b =3, (2)由(1)可得f(x)=−x 3+3x f′(x)=−3x 2+3=−3(x +1)(x −1),令f′(x)>0,解得−1<x <1,令f′(x)<0,解得x >1或x <−1, 故f(x)在[−2,−1)上单调递减,在(−1,12]上单调递增,∴f(x)的极小值为f(−1)=1−3=−2,也为最小值,f(x)的最大值为f(−2)或f(12),∵f(−2)=2>f(12)=118,∴函数f(x)的最大值是2, ∵函数g(x)=m −f(x)有零点, ∴m =f(x)在x ∈[−2,12]有解, ∴f(x)min ≤m ≤f(x)max ,即−2≤m ≤118,故实数m 的取值范围为[−2,118].【解析】(1)根据极值的定义得到关于a ,b 的方程组,求出a ,b 的值,即可求解. (2)将函数g(x)=m −f(x)有零点,转化为m =f(x)在x ∈[−2,12]有解,f(x)min ≤m ≤f(x)max ,求出函数的导数,结合函数的单调性,求出函数的最值,即可求解. 本题主要考查了导数的综合应用,需要学生掌握转化的思想,属于中档题.19.【答案】解:(1)由茎叶图可知,10名学生中乘积优秀的有5名,合格的有5名,现随机从这10名学生中抽取两名,记抽到成绩优秀的学生人数为X ,则X =0,1,2.则P(X =0)=C 52C 102=29,P(X =1)=C 51C 54C 102=59,P(X =2)=C 52C 102=29,则随机变量X 的分布列为:期望E(X)=0×29+1×59+2×29=1;(2)x −=15(120+118+116+122+124)=120,y −=15(79+79+77+82+83)=80,b ̂=∑(5i=1x i −x −)(y i −y −)∑(5i=1x i −x −)2=34,a ̂=y −−b ̂x −=80−34×120=−10.∴y ̂=34x −10.取x =132,得y ̂=34×132−10=89.估计第6次测试他的物理成绩大约是89分.【解析】(1)由茎叶图可得10名学生中乘积优秀的有5名,合格的有5名,求出X 值,由古典概型概率公式求概率,可得分布列,再由期望公式求期望;(2)由已知表格中的数据求b ̂与a ̂的值,可得线性回归方程,取x =132求得y ̂值即可得答案.本题考查离散型随机变量的分布列与期望,考查线性回归方程的求法,考查运算求解能力,是中档题.20.【答案】(1)证明:在面ABCD 内,过点C 作CP ⊥AB 于P ,作CQ ⊥AD 于Q ,∵面ABB 1A 1⊥面ABCD ,面ABB 1A 1∩面ABCD =AB , ∴CP ⊥面ABB 1A 1,∴CP ⊥AA 1, 同理可得,CQ ⊥AA 1,∵CP ∩CQ =C ,CP 、CQ ⊂平面ABCD , ∴AA 1⊥面ABCD .(2)解:设MN ∩AD =F ,连接EF , ∵F ∈MN ,MN ⊂平面EMN , ∴F ∈平面EMN ,即EF ⊂平面EMN , 同理EF ⊂平面ADD 1A 1, ∴直线EF 即为直线l ,∵AD//BC ,∴△MNC∽△FND , ∴DF =1,以A 为原点,AB ,AD ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系, 则B 1(2,0,2),C(2,2,0),E(0,0,1),F(0,3,0), ∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,2,−2),EF⃗⃗⃗⃗⃗ =(0,3,−1), ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗|B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|EF ⃗⃗⃗⃗⃗ |=2√2×√10=2√55, ∴直线l 与B 1C 所成角的余弦值为2√55.【解析】(1)在面ABCD 内,过点C 作CP ⊥AB 于P ,作CQ ⊥AD 于Q ,再结合面面垂直的性质定理,线面垂直的性质定理和判定定理,得证;(2)设MN ∩AD =F ,连接EF ,可证直线EF 即为直线l ,再以A 为原点建立空间直角坐标系,由cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗|B1C ⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|EF ⃗⃗⃗⃗⃗ |,得解. 本题考查空间中线与面的垂直关系,异面直线夹角的求法,熟练掌握线面垂直的判定定理或性质定理,以及利用空间向量求异面直线夹角的方法是解题的关键,考查空间立体感、推理论证能力和运算能力,属于中档题.21.【答案】解:(1)设直线AB 的方程为y =x +m ,A(x 1,y 1),B(x 2,y 2),联立方程{y =x +mx 2+3y 2=3,得4x 2+6mx +3m 2−3=0, 所以x 1+x 2=−3m 2,x 1x 2=3m 2−34,△=48−12m 2>0,所以|AB|=√2[(x 1+x 2)2−4x 1x 2]=√2[(−3m 2)2−(3m 2−3)]=√12−3m 22,当m =0(满足△>0)时,|AB|取得最大值√6. (2)设A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),第一种情况,若直线AB 平行于x 轴,则线段AB 的垂直平分线为y 轴,即t =0, 第二种情况,若直线AB 不平行于x 轴,又因为线段AB 的垂直平分线与x 轴相交,所以直线AB 不平行于y 轴,即x 1≠x 2,由{x 12+3y 12=3x 22+3y 22=3,两式相减整理得y 1−y 2x 1−x 2⋅y 1+y 2x 1+x 2=−13①, 因为M(x 0,y 0)是AB 的中点,所以2x 0=x 1+x 2,2y 0=y 1+y 2,因为MN ⊥AB ,所以k AB =y 1−y 2x 1−x 2=−1kMN=t−x 0y 0,所以①变形为t−x 0y 0⋅2y 02x 0=−13,化简得t =23x 0,其中−√3<x 0<0或0<x 0<√3,所以−2√33<t <0或0<t <2√33, 综上两种情况,t 的取值范围(−2√33,2√33).【解析】(1)设直线AB 的方程为y =x +m ,A(x 1,y 1),B(x 2,y 2),联立直线与椭圆方程,利用韦达定理,弦长公式,结合二次函数的性质求解最大值即可. (2)设A(x 1,y 1),B(x 2,y 2),AB 的中点M(x 0,y 0),第一种情况,分析判断即可.第二种情况,若直线AB 不平行于x 轴,直线AB 不平行于y轴,即x 1≠x 2,利用平方差法,结合MN ⊥AB ,推出k AB =y 1−y 2x 1−x 2=−1kMN=t−x 0y 0,然后求解范围即可.本题考查直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.22.【答案】解:(1)∵f(x)=13x3+tx+t,∴f′(x)=x2+t,①t≥0时,f′(x)≥0,f(x)在R递增,无递减区间,②t<0时,令f′(x)>0,解得:x>√−t或x<−√−t,令f′(x)<0,解得:−√−t<x<√−t,故f(x)在(−∞,−√−t)递增,在(−√−t,√−t)递减,在(√−t,+∞)递增,综上,t≥0时,f(x)在R递增,无递减区间,t<0时,f(x)在(−∞,−√−t)递增,在(−√−t,√−t)递减,在(√−t,+∞)递增;(2)由(1)知函数f(x)有3个零点,则t<0,∵f(x)在(−∞,−√−t)递增,在(−√−t,√−t)递减,在(√−t,+∞)递增;∴f(x)的极大值是f(−√−t)=t−23t√−t,且极大值大于0,极小值是f(√−t)=t+23t√−t,∵f(x)有3个不同的零点x1、x2、x3,∴f(√−t)=t+23t√−t<0,解得:t<−94,故t的取值范围是(−∞,−94),证明:又∵f(0)=t<0,当x→+∞时,f(x)→+∞,x→−∞时,f(x)→−∞,∴设x1<x2<x3,由零点存在性定理知x1<−√−t<x2<0<√−t<x3,∴x1+x2<−√−t,又f(2√−t)=13(2√−t)3+t(2√−t)+t=t−23t√−t=f(−√−t)>0,∴√−t<x3<2√−t,故x1+x2+x3<√−t.【解析】(1)求出函数的导数,通过讨论t的范围,求出函数的单调区间即可;(2)根据函数的单调性以及零点存在性定理求出x1、x2、x3的范围,证明结论成立即可.本题考查了函数的单调性问题,考查导数的应用以及零点存在性定理,考查转化思想,分类讨论思想,是难题.。

2021届四川省内江市普通高中高三上学期12月一模考试理科综合试卷及答案

2021届四川省内江市普通高中高三上学期12月一模考试理科综合试卷及答案

2021届四川省内江市普通高中高三上学期12月一模考试理科综合试卷★祝考试顺利★(含答案)注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考号填写在答题卡.上。

2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3.回答第II卷时,将答案写在答题卡上,写在试卷上无效。

4.考试结束,将本答题卡交回。

可能用到的相对原子质量:H-1 C-12 N--14 O-16 Cl--35.5 Cr-52 Ag-108第I卷(选择题共126分)一、选择题(本大题共 13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于细胞结构与功能的相关性叙述,错误的是A.原核细胞的表面积与体积之比较大,物质运输的效率较低B.载体蛋白的空间结构决定其在进行物质转运时具有特异性C.DNA分子规则的双螺旋结构是其能成为遗传物质的重要原因之一D.染色质螺旋化形成染色体有利于细胞核遗传物质在细胞分裂时平均分配2.下图表示某哺乳动物进行有性生殖的三个生理过程,下列相关叙述错误的是A.①、②、③过程只能发生在真核生物中B.①过程的实质是精子细胞核与卵细胞核相融合C.②过程中染色体数目的减半发生在减数第二次分裂D.③过程保证了细胞在亲代和子代之间遗传性状的稳定性3.下列情况中,使用普通光学显微镜观察时需要染色的是A.观察哺乳动物成熟红细胞的吸水和失水B.高倍镜下观察菠菜细胞叶绿体的形态和分布C.洋葱根尖细胞有丝分裂中期染色体的形态和分布D.紫色洋葱鳞片叶外表皮细胞的质壁分离及其复原4:野生型金黄色葡萄球菌对青霉素敏感,在青霉素浓度为0.1单位/cm3的普通培养基中,只有个别突变型金黄色葡萄球菌能存活,将其扩大培养后,再转移到青霉素浓度为0.2单位/cm3的普通培养基中,又只有个别细菌存活;逐渐提高培养基中青霉素含量,最后得到能在青霉素浓度为250单位/cm3的培养基中生活的金黄色葡萄球菌。

四川省内江市高中2020届高三数学上学期第一次模拟考试试题理

四川省内江市高中2020届高三数学上学期第一次模拟考试试题理

四川省内江市高中2020届高三数学上学期第一次模拟考试试题 理1.本试卷包括第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。

全卷满分150分,考试时间120分钟。

2.答第I 卷时,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号;答第II 卷时,用0.5毫米的黑色签字笔在答题卡规定的区域内作答,字体工整,笔迹清楚;不能答在试题卷上。

3.考试结束后,监考人将答题卡收回。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每个小题所给出的四个选项中,只有一项是符合题目要求的把正确选项的代号填在答题卡的指定位置。

) 1.已知集合A ={1,2,m},B ={3,4},若A ∪B ={1,2,3,4},则实数m 为 A.1或2 B.2或3 C.1或3 D.3或4 2.已知复数21iz i =+(i 为虚数单位),则复数z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.割圆术是估算圆周率的科学方法由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为3.1416。

在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为 A.1π B.3πC.3πD.332π4.在二项式(x 2-1x)5的展开式中,含x 4的项的系数是 A.-10 B.10 C.-5 D.55.函数y =f(x)在P(1,f(1))处的切线如图所示,则f(1)+f′(1)=A.0B.12 C.32 D.-126.已知等比数列{a n }是递增数列,a 2=2,S 3=7,则数列{1na }的前5项和为 A.31 B.31或314 C.3116 D.3116或3147.函数f(x)=x 2-2x -2|x -1|+1的图像大致为8.已知向量(2cos ,2sin ),(,),(0,1)2a b πθθθπ=∈=r r ,则向量a r 与b r 的夹角为A.32πθ-B.2πθ+C.2πθ- D.θ9.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等。

四川省内江市2021届高三第一次模拟数学(理)试题

四川省内江市2021届高三第一次模拟数学(理)试题
③ 的图象关于直线 对称;
④ 的最大值为 ;
⑤ 的最小值为 ;
三、解答题
17.网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.
21.已知函数 , ,其中 是自然对数的底数.
(1)若函数 有两个不同的极值点 、 ,求实数 的取值范围;
(2)当 时,求使不等式 对一切实数 恒成立的最大正整数 .
22.已知曲线 的参数方程为 为参数 ,以原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线 关于 对称.
(1)求 的极坐标方程, 的直角坐标方程;
由 ,解得 ;
故 .
故选:A.
【点睛】
本题考查对数函数定义域的求解,二次不等式的求解,集合的补运算,属综合基础题.
2.D
【分析】
先化简复数z,再确定复数z的实部和虚部.
【详解】
由题得 ,所以复数z的实部和虚部分别为7和-3.
故答案为D
【点睛】
(1)本题主要考查复数的除法运算和复数的实部虚部的概念,意在考查学生对这些知识的掌握水平和计算推理能力.(2)注意复数 的实部是a,虚部是“i”的系数b,不包含“i”,不能写成bi.
A. B. C. D.
11.已知函数 ,其中 为函数 的导数,则 ()
A.0B.2C.2020D.2021
12.已知函数 , , ,若 与 的图象上分别存在点 、 ,使得 、 关于直线 对称,则实数 的取值范围是()
A. B. C. D.
二、填空题

四川省内江市2021届新高考第一次模拟数学试题含解析

四川省内江市2021届新高考第一次模拟数学试题含解析

四川省内江市2021届新高考第一次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调.如图的程序是与“三分损益”结合的计算过程,若输入的x的值为1,输出的x的值为()A.6481B.3227C.89D.1627【答案】B【解析】【分析】根据循环语句,输入1x=,执行循环语句即可计算出结果. 【详解】输入1x=,由题意执行循环结构程序框图,可得:第1次循环:23x=,24i=<,不满足判断条件;第2次循环:89x=,34i=<,不满足判断条件;第4次循环:3227x=,44i=≥,满足判断条件;输出结果3227x=.故选:B【点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.2.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥【答案】A 【解析】 【分析】根据程序框图输出的S 的值即可得到空白框中应填入的内容. 【详解】由程序框图的运行,可得:S =0,i =0满足判断框内的条件,执行循环体,a =1,S =1,i =1满足判断框内的条件,执行循环体,a =2×(﹣2),S =1+2×(﹣2),i =2满足判断框内的条件,执行循环体,a =3×(﹣2)2,S =1+2×(﹣2)+3×(﹣2)2,i =3 …观察规律可知:满足判断框内的条件,执行循环体,a =99×(﹣2)99,S =1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i =1,此时,应该不满足判断框内的条件,退出循环,输出S 的值,所以判断框中的条件应是i <1. 故选:A . 【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题. 3.在101()2x x-的展开式中,4x 的系数为( ) A .-120 B .120C .-15D .15【答案】C 【解析】【分析】 写出101()2x x -展开式的通项公式1021101()2r r r r T C x -+=-,令1024r -=,即3r =,则可求系数. 【详解】101()2x x -的展开式的通项公式为101021101011()()22r r r r r r r T C x C x x --+=-=-,令1024r -=,即3r =时,系数为33101()152C -=-.故选C【点睛】本题考查二项式展开的通项公式,属基础题. 4.若i 为虚数单位,则复数112iz i+=+在复平面上对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】根据复数的运算,化简得到3155z i =-,再结合复数的表示,即可求解,得到答案. 【详解】由题意,根据复数的运算,可得()()()()1121331121212555i i i i z i i i i +-+-====-++-, 所对应的点为31,55⎛⎫- ⎪⎝⎭位于第四象限. 故选D. 【点睛】本题主要考查了复数的运算,以及复数的几何意义,其中解答中熟记复数的运算法则,准确化简复数为代数形式是解答的关键,着重考查了推理与运算能力,属于基础题.5.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( )A .01a <<或a =B .1a <<C .01a <<或1e a e = D .01a <<【答案】C 【解析】 【分析】根据不动点的定义,利用换底公式分离参数可得ln ln xa x =;构造函数()ln x g x x=,并讨论()g x 的单调性与最值,画出函数图象,即可确定a 的取值范围. 【详解】由log a x x =得,ln ln xa x=. 令()ln xg x x =, 则()21ln xg x x -'=, 令()0g x '=,解得x e =,所以当()0,x e ∈时,()0g x '>,则()g x 在()0,e 内单调递增; 当(),x e ∈+∞时,()0g x '<,则()g x 在(),e +∞内单调递减; 所以()g x 在x e =处取得极大值,即最大值为()ln 1e g e e e==, 则()ln xg x x=的图象如下图所示:由()f x 有且仅有一个不动点,可得得ln 0a <或1ln a e=, 解得01a <<或1e a e =. 故选:C 【点睛】本题考查了函数新定义的应用,由导数确定函数的单调性与最值,分离参数法与构造函数方法的应用,属于中档题.6.已知函数()1xf x xe-=,若对于任意的0(0,]x e ∈,函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]e B .2(,]e e e-C .22(,]e e e e-+ D .2(1,]e e-【答案】D 【解析】 【分析】将原题等价转化为方程()20ln 1x x ax f x -++=在(0,]e 内都有两个不同的根,先求导()'f x ,可判断()0,1x ∈时,()0f x '>,()f x 是增函数;当()1,x e ∈时,()0f x '<,()f x 是减函数.因此()01f x <≤,再令2()ln 1F x x x ax =-++,求导得221()x ax F x x'--=-,结合韦达定理可知,要满足题意,只能是存在零点1x ,使得()0F x '=在()0,e 有解,通过导数可判断当()10,x x ∈时()0F x '>,()F x 在()10,x 上是增函数;当()1,x x e ∈时()0F x '<,()F x 在()1,x e 上是减函数;则应满足()()1max 1F x F x =>,再结合211210x ax --=,构造函数()2ln 1m x x x =+-,求导即可求解;【详解】函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,等价于方程()20ln 1x x ax f x -++=在(0,]e 内都有两个不同的根.111()(1)x x x f x e xe x e '---=-=-,所以当()0,1x ∈时,()0f x '>,()f x 是增函数;当()1,x e ∈时,()0f x '<,()f x 是减函数.因此()01f x <≤.设2()ln 1F x x x ax =-++,2121()2x ax F x x a x x'--=-+=-,若()0F x '=在()0,e 无解,则()F x 在(0,]e 上是单调函数,不合题意;所以()0F x '=在()0,e 有解,且易知只能有一个解.设其解为1x ,当()10,x x ∈时()0F x '>,()F x 在()10,x 上是增函数; 当()1,x x e ∈时()0F x '<,()F x 在()1,x e 上是减函数.因为0(0,]x e ∀∈,方程()20ln 1x x ax f x -++=在(0,]e 内有两个不同的根,所以()()1max 1F x F x =>,且()0F e ≤.由()0F e ≤,即2ln 10e e ae -++≤,解得2a e e≤-. 由()()1max 1F x F x =>,即2111ln 11x x ax -++>,所以2111ln 0x x ax -+>.因为211210x ax --=,所以1112a x x =-,代入2111ln 0x x ax -+>,得211ln 10x x +->. 设()2ln 1m x x x =+-,()120m x x x'=+>,所以()m x 在()0,e 上是增函数, 而()1ln1110m =+-=,由211ln 10x x +->可得()()11m x m >,得11x e <<.由1112a xx =-在()1,e 上是增函数,得112a e e<<-. 综上所述21a e e<≤-, 故选:D. 【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题7.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )A 43B .3C 23D .23【答案】B 【解析】 【分析】由三视图确定原几何体是正三棱柱,由此可求得体积. 【详解】由题意原几何体是正三棱柱,1234432V =⨯=. 故选:B . 【点睛】本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.8.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞- ⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭【答案】B 【解析】 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x -==-,可得21()1f x x '=+, 0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,, 故不等式121(())xx f ef e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题. 9.已知33a b ==,且(2)(4)a b a b -⊥+,则2a b -在a 方向上的投影为( ) A .73B .14C .203D .7【答案】C 【解析】 【分析】由向量垂直的向量表示求出a b ⋅,再由投影的定义计算. 【详解】由(2)(4)a b a b -⊥+可得22(2)(4)2740a b a b a a b b -⋅+=+⋅-=,因为||3||3a b ==,所以2a b ⋅=-.故2a b -在a 方向上的投影为2(2)218220||||33a b a a a b a a -⋅-⋅+===.故选:C . 【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键. 10.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π; ②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增;③函数()f x 的值域为.其中所有正确结论的编号是( ) A .①② B .②C .②③D .③【答案】C 【解析】 【分析】①用周期函数的定义验证.②当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,1()212π⎛⎫=+ ⎪⎝⎭f x x ,再利用单调性判断.③根据平移变换,函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,而()()g x g x π+=,当[0,]x π∈时,1()23π⎛⎫=+ ⎪⎝⎭g x x 再求值域. 【详解】 因为1717114sin 4cos 4cos 4sin ()2212212212212f x x x x x f x πππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+++=+++≠ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故①错误;当3,42x ππ⎡⎤∈⎢⎥⎣⎦时,1717,231224x πππ⎡⎤+∈⎢⎥⎣⎦,所以111()4sin 4cos 2323212f x x x x πππ⎛⎫⎛⎫⎛⎫=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,111,212324πππ⎡⎤+∈⎢⎥⎣⎦x 所以()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增,故②正确; 函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭的值域等价于函数11()4sin 4cos 22g x x x =+的值域,易知()()g x g x π+=,故当[0,]x π∈时,1()23g x x π⎛⎫=+∈ ⎪⎝⎭,故③正确.故选:C. 【点睛】本题考查三角函数的性质,还考查推理论证能力以及分类讨论思想,属于中档题.11.甲、乙、丙、丁四人通过抓阄的方式选出一人周末值班(抓到“值”字的人值班).抓完阄后,甲说:“我没抓到.”乙说:“丙抓到了.”丙说:“丁抓到了”丁说:“我没抓到."已知他们四人中只有一人说了真话,根据他们的说法,可以断定值班的人是( )A .甲B .乙C .丙D .丁【答案】A 【解析】 【分析】可采用假设法进行讨论推理,即可得到结论. 【详解】由题意,假设甲:我没有抓到是真的,乙:丙抓到了,则丙:丁抓到了是假的, 丁:我没有抓到就是真的,与他们四人中只有一个人抓到是矛盾的; 假设甲:我没有抓到是假的,那么丁:我没有抓到就是真的, 乙:丙抓到了,丙:丁抓到了是假的,成立, 所以可以断定值班人是甲. 故选:A. 【点睛】本题主要考查了合情推理及其应用,其中解答中合理采用假设法进行讨论推理是解答的关键,着重考查了推理与分析判断能力,属于基础题.12.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b ++,则该双曲线的渐近线斜率的取值范围是 ( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(2,0)(0,2)-D .(,2)(2,)-∞-+∞【答案】A 【解析】 【分析】 【详解】 由题意,根据双曲线的对称性知D 在x 轴上,设,0)Dx (,则由BD AB ⊥得:,因为D 到直线BC 的距离小于22a a b ++,所以,即01b a<<,所以双曲线渐近线斜率1,0)(0,1)bk a =±∈-⋃(,故选A . 二、填空题:本题共4小题,每小题5分,共20分。

2020年四川省内江市高考数学一诊试卷(理科)(含解析)

2020年四川省内江市高考数学一诊试卷(理科)(含解析)

2020年四川省内江市高考数学一诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的把正确选项的代号填在答题卡的指定位置.)1.已知集合A={1, 2, m},B={3, 4},A∪B={1, 2, 3, 4},则m=()A.0B.3C.4D.3或42.已知复数z=i2i+1(i为虚数单位),则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.割圆术是估算圆周率的科学方法由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为3.1416.在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为()A.1πB.3πC.√3πD.3√32π4.在二项式(x2−1x)5的展开式中,含x4的项的系数是()A.−10B.10C.−5D.55.函数y=f(x)在P(1, f(1))处的切线如图所示,则f(1)+f′(1)=()A.0B.12C.32D.−126.已知等比数列{a n}是递增数列,a2=2,S3=7,则数列{1a n}的前5项和为()A.31B.31或314C.3116D.3116或3147.函数f(x)=x2−2x−2|x−1|+1的图象大致为()A. B.C. D.8.已知向量a →=(√2cosθ, √2sinθ),θ∈(π2, π),b →=(0, 1),则向量a →与b →的夹角为( ) A.3π2−θ B.π2+θ C.θ−π2D.θ9.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A.5B.4C.3D.210.定义在R 上的偶函数f(x)满足:任意x 1,x 2∈[0, +∞)(x 1≠x 2),有f(x 2)−f(x 1)x 2−x 1<0,则( )A.f(2log 23)<f(log 319)<f(−log 122)B.f(−log 122)<f(log 319)<f(2log 23)C.f(log 319)<f(−log 122)<f(2log 23)D.f(2log 23)<f(−log 122)<f(log 319)11.函数f(x)=x(x −S 1)(x −S 2)…(x −S 8),其中S n 为数列{a n }的前n 项和,若a n=1n(n+1),则f′(0)=()A.112B.19C.18D.1412.已知函数f(x)={−x2−2x,x≤0|log2x|,x>0,若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则下列结论:①x1+x2=−1,②x3x4=1,③0< x1+x2+x3+x4<12,④0<x1x2x3x4<1,其中正确的个数是()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,满分20分.)13.已知随机变量ξ服从正态分布N(2, δ2),则P(ξ<2)=________.14.设函数f(x)=lg(1−x),则函数f(f(x))的定义域为________.15.已知函数y=f(x)是定义域为(−∞, +∞)的奇函数满足f(−3−x)+f(x−1)=0.若f(1)=1,则f(1)+f(2)+f(3)+……+f(2020)=________.16.对于函数f(x)=√3sin(ωx−π3)+1(其中ω>0):①若函数y=f(x)的一个对称中心到与它最近一条对称轴的距离为π4,则ω=2;②若函数y=f(x)在(一π3,π4)上单调递增,则ω的范围为[12, 103];③若ω=2,则y=f(x)在点(0, f (0))处的切线方程为√3x−2y−1=0;④若ω=2,x∈[0, π2],则y=f(x)的最小值为一12;⑤若ω=2则函数y=√3sin2x+1的图象向右平移π3个单位可以得到函数y=f(x)的图象.其中正确命题的序号有________(把你认为正确的序号都填上).三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题考生根据要求作答)(一)必考题:共60分.17.△ABC的内角A、B、C的对边分别为a、b、c,设(sinB−sinC)2=sin2A−sinBsinC.(1)求A;(2)当a=6时,求其面积的最大值,并判断此时△ABC的形状.18.某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?(2)从甲、乙两班40个样本中,成绩在60分以下(不含6的学生中任意选取2人,记来自甲班的人数为X,求X的分布列与数学期望.附:K2=n(da−bc)2(其中n=a+b+c+d)(a+c)(b+d)(a+b)(c+d)19.已知函数f(x)=lnxx.(1)求函数f(x)的单调区间;(2)证明:对一切x∈(0, +∞),都有lnx<2xe −x2e x成立.20.已知数列{log2(a n−1)}(n∈N∗)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)设b n=2a n−1,S n为数列{b n}的前n项和,若对任意n∈N∗,总有S n<m−43,求m的取值范围.21.已知函数f(x)满足:f(x)=f′(1)e x−1−f(0)x+12x2.(1)求f(x)的解析式;(2)若g(x)=f(x)−12x2,且当x>0时,(x−k)g′(x)+x+1>0,求整数k的最大值.(二)选考题:共10分,请考生在第22、23题中任选一题作答如果多做则按所做的第一题计分.22.(15年福建)在平面直角坐标系xOy中,圆C的参数方程为{x=1+3costy=−2+3sint(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为√2ρsin(θ−π4)=m,(m∈R).(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.23.设函数f(x)=|x+a|+|x−2|.(Ⅰ)当a=1时,求不等式f(x)≤5的解集;(Ⅱ)若f(x)≥4恒成立,求a的取值范围.2020年四川省内江市高考数学一诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只有一项是符合题目要求的把正确选项的代号填在答题卡的指定位置.)1.已知集合A={1, 2, m},B={3, 4},A∪B={1, 2, 3, 4},则m=()A.0B.3C.4D.3或4【解答】∵A={1, 2, m},B={3, 4},A∪B={1, 2, 3, 4},∴m=3或m=4,2.已知复数z=i2i+1(i为虚数单位),则复数z在复平面内对应的点位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:∵z=i2i+1=i(1−2i)(1+2i)(1−2i)=25+15i,∴复数z在复平面内对应的点的坐标为(25,15),位于第一象限.故选A.3.割圆术是估算圆周率的科学方法由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率为3.1416.在半径为1的圆内任取一点,则该点取自其内接正十二边形的概率为()A.1πB.3πC.√3πD.3√32π【解答】半径为1的圆内接正十二边形,可分割为12个顶角为2π÷12=π6,腰为1的等腰三角形,∴该正十二边形的面积为S=12×12×1×1×sinπ6=3,根据几何概型公式,该点取自其内接正十二边形的概率为3π,4.在二项式(x2−1x)5的展开式中,含x4的项的系数是()A.−10 B.10 C.−5 D.5【解答】解:对于T r+1=C5r(x2)5−r(−1x)r=(−1)r C5r x10−3r,对于10−3r=4,∴r=2,则x4的项的系数是C52(−1)2=10.故选B.5.函数y=f(x)在P(1, f(1))处的切线如图所示,则f(1)+f′(1)=()A.0B.12C.32D.−12【解答】∵切线过点(2, 0)与(0, −1),∴f′(1)=−1−00−2=12,则切线方程为y=12x−1,取x=1,得f(1)=−12,∴f(1)+f′(1)=−12+12=0.故选:A.6.已知等比数列{a n}是递增数列,a2=2,S3=7,则数列{1a n}的前5项和为()A.31B.31或314C.3116D.3116或314【解答】等比数列{a n}是递增数列,且公比设为q,a2=2,S3=7,可得a1q=2,a1+a1q+a1q2=7,解得a1=1.q=2,或a1=4,q=12(舍去),则1a n =12,数列{1a n}的前5项和为1+12+⋯+116=1−1251−12=3116.7.函数f(x)=x2−2x−2|x−1|+1的图象大致为()A. B.C. D.【解答】f(x)=x 2−2x −2|x−1|+1=(x −1)2−2|x−1|, 则函数关于x =1对称,排除A ,C , f(0)=−2+1=−1<0,排除D ,8.已知向量a →=(√2cosθ, √2sinθ),θ∈(π2, π),b →=(0, 1),则向量a →与b →的夹角为( ) A.3π2−θ B.π2+θC.θ−π2D.θ【解答】∵向量a →=(√2cosθ, √2sinθ),θ∈(π2, π),b →=(0, 1), 设向量a →与b →的夹角为α,α∈[0, π),∴cosα=a →⋅b→|a →|⋅|b →|=√2sinθ√2⋅1=sinθ=cos(θ−π2),故α=θ−π2,9.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n =( )A.5B.4C.3D.2【解答】 当n =1时,a =152,b =4,满足进行循环的条件, 当n =2时,a =454,b =8满足进行循环的条件,当n =3时,a =1358,b =16满足进行循环的条件, 当n =4时,a =40516,b =32不满足进行循环的条件,故输出的n 值为4,10.定义在R 上的偶函数f(x)满足:任意x 1,x 2∈[0, +∞)(x 1≠x 2),有f(x 2)−f(x 1)x 2−x 1<0,则( )A.f(2log 23)<f(log 319)<f(−log 122)B.f(−log 122)<f(log 319)<f(2log 23)C.f(log 319)<f(−log 122)<f(2log 23)D.f(2log 23)<f(−log 122)<f(log 319) 【解答】任意x 1,x 2∈[0, +∞)(x 1≠x 2),有f(x 2)−f(x 1)x 2−x 1<0,∴函数在[0, +∞)上单调递减,根据偶函数的对称性可知,函数在(−∞, 0)上单调递增,距离对称轴越远,函数值越小,∵f(2log 23)=f(3),f(log 319)=f(−2)=f(2),f(−log 122)=f(1),则f(2log 23)<f(log 319)<f(−log 122).故选:A .11.函数f(x)=x(x −S 1)(x −S 2)…(x −S 8),其中S n 为数列{a n }的前n 项和,若a n =1n(n+1),则f′(0)=( ) A.112 B.19C.18D.14【解答】∵f(x)=x(x −S 1)(x −S 2)…(x −S 8),∴f′(x)=[(x −S 1)(x −S 2)...(x −S 8)]+x[(x −S 1)(x −S 2)...(x −S 8)]′, 则f′(0)=S 1S 2...S 8, ∵a n =1n(n+1)=1n −1n+1,∴S n =1−12+12−13+⋯+1n −1n+1=1−1n+1=nn+1,则S 1S 2...S 8=12×23×⋯×89=19,12.已知函数f(x)={−x 2−2x,x ≤0|log 2x|,x >0 ,若x 1<x 2<x 3<x 4,且f(x 1)=f(x 2)=f(x 3)=f(x 4),则下列结论:①x 1+x 2=−1,②x 3x 4=1,③0<x 1+x 2+x 3+x 4<12,④0<x 1x 2x 3x 4<1,其中正确的个数是( ) A.1 B.2 C.3 D.4【解答】作出函数f(x)={−x 2−2x,x ≤0|log 2x|,x >0 的图象如图,则x 1+x 2=−2,故①错误;由f(x 3)=f(x 4),得|log 2x 3|=|log 2x 4|,∴−log 2x 3=log 2x 4, 则log 2(x 3x 4)=0,即x 3x 4=1,故②正确; x 1+x 2+x 3+x 4=−2+x 3+x 4=x 3+1x 3−2,由log 2x =−1,得x =12,则12<x 3<1,∴x 3+1x 3−2∈(0, 12),即0<x 1+x 2+x 3+x 4<12,故③正确;x 1x 2x 3x 4=x 1x 2=x 1(−2−x 1)=−x 12−2x 1, ∵−2<x 1<1,∴−x 12−2x 1∈(0, 1), 即0<x 1x 2x 3x 4<1,故④正确. ∴正确命题的个数是3个.二、填空题(本大题共4小题,每小题5分,满分20分.) 已知随机变量ξ服从正态分布N(2, δ2),则P(ξ<2)=________. 【解答】∵随机变量ξ服从正态分布N(2, δ2), ∴正态曲线的对称轴是x =2 ∴P(ξ<2)=0.5设函数f(x)=lg(1−x),则函数f (f(x))的定义域为________. 【解答】要使函数有意义,则1−x >0,得x <1,即函数f(x)的定义域为(−∞, 1), 要使函数f (f(x))有意义,则f(x)<1, 即lg(1−x)<1,得0<1−x <10, 得−9<x <1,即函数f(f(x))的定义域为(−9, 1),已知函数y=f(x)是定义域为(−∞, +∞)的奇函数满足f(−3−x)+f(x−1)=0.若f(1)=1,则f(1)+f(2)+f(3)+……+f(2020)=________.【解答】∵y=f(x)是定义域为(−∞, +∞)的奇函数满足f(−3−x)+f(x−1)=0,∴f(x−1)=f(x+3),∴f(x)=f(x+4),即f(x)的周期为4,∵f(1)=1,且f(0)=0,∴由f(x)=f(x+4)得,f(3)=f(−1)=−f(1)=−1,f(2)=f(−2)=−f(2),f(4)=f(0)=0,∴f(1)=1,f(2)=0,f(3)=−1,f(4)=0,∴f(1)+f(2)+f(3)+f(4)=0,且2020=4×504,∴f(1)+f(2)+f(3)+……+f(2020)=0.故答案为:0.对于函数f(x)=√3sin(ωx−π3)+1(其中ω>0):①若函数y=f(x)的一个对称中心到与它最近一条对称轴的距离为π4,则ω=2;②若函数y=f(x)在(一π3,π4)上单调递增,则ω的范围为[12, 103];③若ω=2,则y=f(x)在点(0, f (0))处的切线方程为√3x−2y−1=0;④若ω=2,x∈[0, π2],则y=f(x)的最小值为一12;⑤若ω=2则函数y=√3sin2x+1的图象向右平移π3个单位可以得到函数y=f(x)的图象.其中正确命题的序号有________(把你认为正确的序号都填上).【解答】对于①,∵函数y=f(x)的一个对称中心到与它最近一条对称轴的距离为π4,即T4=π4,得T=π,∴2πω=π,则ω=2,故①正确;对于②,由−π2+2kπ≤ωx−π3≤π2+2kπ,得−π6ω+2kπω≤x≤5π6ω+2kπω,k∈Z.取k=0,可得−π6ω≤x≤5π6ω,由函数y=f(x)在(一π3,π4)上单调递增,得{−π3≥−π6ωπ4≤5π6ω,解得0<ω≤12,故②错误;对于③,由ω=2,得f(x)=√3sin(2x−π3)+1,得f′(x)=2√3⋅cos(2x−π3),则f′(0)=√3,又f (0))=−12,∴y=f(x)在点(0, f (0))处的切线方程为y+12=√3x,即2√3x−2y−1=0,故③错误;对于④,ω=2,则f(x)=√3sin(2x−π3)+1,∵x∈[0, π2],∴2x−π3∈[−π3, 2π3],则当2x−π3=−π3时,y=f(x)的最小值为−12,故④正确;对于⑤,ω=2,则f(x)=√3sin(2x−π3)+1,而函数y=√3sin2x+1的图象向右平移π3个单位,得到y=√3sin2(x−π3)+1=√3sin(2x−2π3)+1,故⑤错误.∴正确命题的序号是①④.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题考生根据要求作答)(一)必考题:共60分.△ABC的内角A、B、C的对边分别为a、b、c,设(sinB−sinC)2=sin2A−sinBsinC.(1)求A;(2)当a=6时,求其面积的最大值,并判断此时△ABC的形状.【解答】根据题意,(sinB−sinC)2=sin2A−sinBsinC,由正弦定理可得:(b−c)2=a2−bc,变形可得:b2+c2−a2=bc,则cosA=b 2+c2−a22bc=12,又由0<A<π,则A=π3;根据题意,若a=6,则a2=b2+c2−2bccosA=b2+c2−bc=36,变形可得:bc≤36,则有S=12bcsinA=√34bc≤9√3,当且仅当b=c时等号成立,此时△ABC为等边三角形.某校为提高课堂教学效果,最近立项了市级课题《高效课堂教学模式及其运用》,其中王老师是该课题的主研人之一,为获得第一手数据,她分别在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出如图所示的茎叶图,成绩大于70分为“成绩优良”.(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?(2)从甲、乙两班40个样本中,成绩在60分以下(不含6的学生中任意选取2人,记来自甲班的人数为X,求X的分布列与数学期望.附:K2=n(da−bc)2(a+c)(b+d)(a+b)(c+d)(其中n=a+b+c+d)【解答】列出二维联表:得K 2=40×(10×4−10×16)226×14×20×20≈3.956>3.841所以能在犯错误的概率不超过0.05的前期下认为成绩优良与教学方式有关; 由题意可知X 的取值为0,1,2, 则P(X =0)=C 22C 62=115;P(X =1)=C 21C41C 62=815;P(X =2)=C 42C 62=25.E(X)=0×115+1×815+2×25=43. 已知函数f(x)=lnx x.(1)求函数f(x)的单调区间;(2)证明:对一切x ∈(0, +∞),都有lnx <2x e−x 2e x 成立.【解答】函数的定义域为(0, +∞),f ′(x)=1−lnx x 2,令f′(x)>0,解得0<x <e ,令f′(x)<0,解x >e , ∴函数f(x)的增区间为(0, e),减区间为(e, +∞); 证明:lnx <2x e−x 2e x 等价于lnx x <2e −x e x ,即证f(x)<2e −xe x ,由(1)知,f(x)≤f(e)=1e ,当x =e 时取等号, 令m(x)=2e −xe ,则m ′(x)=x−1e ,易知函数m(x)在(0, 1)递减,在(1, +∞)递增,∴m(x)≥m(1)=1e,当x=1时取等号,∴f(x)<m(x)对一切x∈(0, +∞)都成立,则对一切x∈(0, +∞),都有lnx<2xe −x2e x成立.已知数列{log2(a n−1)}(n∈N∗)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)设b n=2a n−1,S n为数列{b n}的前n项和,若对任意n∈N∗,总有S n<m−43,求m的取值范围.【解答】数列{log2(a n−1)}(n∈N∗)为等差数列,设公差为d,a1=3,a3=9,可得log2(9−1)=log2(3−1)+2d,即3=1+2d,解得d =1,则log2(a n−1)=1+n−1=n,即a n=1+2n;b n=2a n−1=22+1−1=(12)n−1,S n=1−1 2n1−12=2(1−12n)<2,对任意n∈N∗,总有S n<m−43,可得m−43≥2,解得m≥10,可得m的取值范围是[10, +∞).已知函数f(x)满足:f(x)=f′(1)e x−1−f(0)x+12x2.(1)求f(x)的解析式;(2)若g(x)=f(x)−12x2,且当x>0时,(x−k)g′(x)+x+1>0,求整数k的最大值.【解答】∵f(x)=f′(1)e x−1−f(0)x+12x2,∴f′(x)=f′(1)e x−1−f(0)+x,令x=1可得f(0)=1,即f(x)=f′(1)e x−1−x+12x2,令x=0可得,f′(1)=e,∴f(x)=e x−x+12x2,由(1)可得g(x)=e x−x,g′(x)=e x−1,∴(x−k)g′(x)+x+1=(x−k)(e x−1)+x+1,当x>0时,由(x−k)g′(x)+x+1>0可得,k<x+1e x−1+x(x>0),①令ℎ(x)=x+1e x−1+x,则ℎ′(x)=−(xe x+1)(e x−1)2+1=e x(e x−x−2)(e x−1)2,令H(x)=e x−x−2,易得H(x)在(0, +∞)上单调递增,而H(1)<0,H(2)>0,\故H(x)在(0, +∞)内存在唯一的零点,设为x0,在x0∈(1, 2),当x∈(0, x0)时,ℎ′(x)<0,ℎ(x)单调递减,当x∈(x0, +∞)时,ℎ′(x)>0,ℎ(x)单调递增,故ℎ(x)在(0, +∞)上的最小值ℎ(x0)=1+x0e x0−1+x0=1+x0∈(2, 3),∵k<x+1e x−1+x恒成立,故整数k的最大值为2.(二)选考题:共10分,请考生在第22、23题中任选一题作答如果多做则按所做的第一题计分.(15年福建)在平面直角坐标系xOy中,圆C的参数方程为{x=1+3cost y=−2+3sint(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴),直线l的方程为√2ρsin(θ−π4)=m,(m∈R).求圆C的普通方程及直线l的直角坐标方程;设圆心C到直线l的距离等于2,求m的值.【解答】略略设函数f(x)=|x+a|+|x−2|.(Ⅰ)当a=1时,求不等式f(x)≤5的解集;(Ⅱ)若f(x)≥4恒成立,求a的取值范围.【解答】(1)a=1时,f(x)=|x+1|+|x−2|≤5,故{x≥2x+1+x−2≤5或{−1<x<2x+1+2−x≤5或{−x−1+2−x≤5x<−1,解得:−2≤x≤3,故不等式的解集是[−2, 3];(2)|x+a|+|x−2|≥|x+a−x+2|=|a+2|≥4,故a+2≥4或a+2≤−4,解得:a≥2或a≤−6,故a∈(−∞, −6]∪[2, +∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8. 已知偶函数f(x)在区间(0,+ ∞ )上单调递增,且a = log52,
b = , ln2 c = - 20.1,则f(a),f(b),f(c)满足
() () () A. f b < f a < f c
B. f(c)< f(a)< f(b)
() () () C. f c < f b < f a
D. f(a)< f(b)< f(c)
9. 若数列{an 列”,且b1 + b2 +
}满足1 - ,则 an+1
b3 = 1 b6
2 an +
= b7
0,则称{an
+ b8 =
}为“梦想数列”,已知正项数列{1 bn
}为“梦想数
A. 4
B. 8
C. 16
D. 32
10

已知函数f(x)=
( 2sin 2x
答,字体工整,笔迹清楚;不能答在试题卷上。
3. 考试结束后,监考人将答题卡收回。8
第Ⅰ卷(选择题,共60 分)
一、选择题(本大题共12 小题,每小题5 分,共60 分. 在每个小题所给出的四个选项中,只
有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置. )
设集合 { ( )}, { },则 1.
, C. - 7 3
, D. - 7 3i
3. 已知随机变量X 服从正态分布N(a,4),且P(X > )1 = ,( 0. 5 P X > )2 = 0. 3,则
( ) P X < 0 =
A. 0. 2
B. 0. 3
C. 0. 7
D. 0. 8
4. 为了解户籍性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为
A = x | y = log2 2 - x
( ,) ( ,] (, ) [, ) A. - ∞ 1
B. - ∞ 1
B = x | x2 - 3x + 2 < 0
B=

C. 2 + ∞
D. 2 + ∞
2.
已知i 是虚数单位,则复数z =

+ i
7i
的实部和虚部分别是
, A. 7 - 3
, B. 7 - 3i

π 6
),现将y =
f(x)的图象向左平移1π2
个单位,再将所得图
象上各点的横坐标缩短为原来的1 2
倍,纵坐标不变,得到函数y

g(x)的图象,则g(x)在
[0,52π4 ]的值域为 [ ,] A. - 1 2
B. [0,1]
[ ] C. 0. 2
[ ] D. - 1. 0
11.
已知函数f(x) =
内江市高中 2021 届第一次模拟考试题
数 学(理科)
1. 本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4 页。全卷满分150 分,
考试时间120 分钟。
2. 答第Ⅰ卷时,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干
净后,再选涂其它答案标号;答第Ⅱ卷时,用0. 5 毫米的黑色签字笔在答题卡规定的区域内作
100 的调查样本,其中城镇户籍与农村户籍各50 人;男性60 人,女性40 人,绘制不同群体中倾
向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选
择生育二胎的对应比例,则下列叙述中错误的是
A. 是否倾向选择生育二胎与户籍有关 B. 是否倾向选择生育二胎与性别无关 C. 倾向选择生育二胎的人员中,男性人数与女性人数相同 D. 倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数
内江一模 高三一模考试数学(理科)试卷第 2 页(共4 页)
(填写你认为正确的序号).
① 不等式f(x)> 0 的解集为{x |

<x

或 π 3π
44



π};
②f(x)在区间[0,2π]上有四个零点;
③f(x)的图象关于直线x = π 对称;
④f(x)的最大值为49槡3;
5.
若向量A→B

(1 2
,槡23),B→C

(槡3,1),则△ABC
的面积为
A. 1 2
槡 B. 3
C. 1

槡 D. 3
内江一模 高三一模考试数学(理科)试卷第 1 页(共4 页)
6. 已知(1 + )x n 的展开式中第4 项与第8 项的二项式系数相等,则奇数项的二项式系数和为
A. 212
2 2020 x



sinx,其中f′(x)为函数f(x)的导数,则f(2020)+
( ) ( ) ( ) f - 2020 + f′ 2021 - f′ - 2021 =
A. 0
B. 2
C. 2020
D. 2021
12. 已知函数f(x)=
,( kx
1 e
),() ≤ x ≤ e2 g x =
B. 211
C. 210
D. 29
7.
函数f(x)=
( ) ax + b x +c 2
的图像如图所示,则下列结论成立的是
, , , , A. a > 0 b > 0 c < 0 B. a < 0 b > 0 c > 0
, , , , C. a < 0 b > 0 c < 0 D. a < 0 b < 0 c < 0

在 中,角、、 的对边分别为、、,且 , , 15. △ABC
ABC
a b c btanB + btanA = - 2ctanB a = 8 △ABC
的面1积6.为已4知槡3函,则数bf(+xc)的=值s为inx · s in2 x, x
. ∈
[0
,2π].
下列有关f(x)的说法中,正确的是
e-

+1 2
+ 1,若f(x)与g(x)的图象上分别
存在点M、N,使得M、N 关于直线y = x + 1 对称,则实数k 的取值范围是
[ ,] A. - 1 e e
[ , ] [ , ] B.源自-4 e22e
C. - 2 2e e
[ , ] D. - 3 3e e
第Ⅱ 卷(非选择题,共90 分)
⑤f(x)的最小值为-
槡3;

三、解答题(共70 分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21 题为必考题,
二、填空题(本大题共4 小题,每小题5 分,满分20 分. )
{ 已知实数, 满足约束条件 13.
xy
3x - y - 3 ≤ 0 x - 2y + 4 ≥ 0
,则z = 2x - y 的最大值是
3x + 4y + 12 ≥ 0

14. 已知数列{an}是等差数列,Sn 是其前n 项和. 若a1 + a22 = , - 3 S5 = ,则 10 a9 的值是
相关文档
最新文档