TEC控制专用ADN8830
基于ADN8830与MSP430的TEC温度控制电路的设计说明
毕业设计:基于ADN8830的半导体温度控制系统摘要本设计提出一种基于AD 公司的热电制冷控制器ADN8830的高性能、高稳定性的TEC 控制电路。
该电路通过简单的电容、电阻构成的外部PID( 比例积分微分) 补偿网络,能够使目标温度在30s稳定在最佳工作点,温度控制精度可0.1℃。
控制核心采用MSP430单片机,单片机通过数字温度传感器DS18B20读取当前温度,通过DAC输出电压控制信号给ADN8830来调节流过TEC的电流。
实验结果表明该方案具有效率高、功耗低、体积小等优点。
关键词:ADN8830; TEC; 温度控制; MSP430; PIDApplication of ADN8830 in Automatic TemperatureControlofTECAbstractA Thermo- Electric Cooler (TEC) control circuit of high performance and stability is presented, which is developed by a thermoelectric cooler controller, named ADN8830, produced by Analog Devices Inc. An outside Proportion Integral Differential (PID) compensation network constructed by simple capacitances and resistors, which can make the temperature of detector reach the optimum operating point in 30s and the precision of this control circuit is 0.1℃. The MSP430 microcontroller implements a controller using a digital temperature sensor DS18B20 to read the current temperature, a digital - to- analog converter DAC8571 to output a control signal to ADN8830 which adjusts the current through the TEC. The experimental results show that this scheme of temperature control has the advantage of high effectiveness, low power and compact size.Keywords: ADN8830;TEC;temperature control;MSP430;PID目录第一章绪论III1.1课题研究背景与意义III1.2半导体制冷原理IV1.3 半导体制冷技术的国外发展V1.4论文主要研究容与章节分布VII第二章系统方案设计82.1 系统设计要求82.2系统方案设计82.2.1设计方案一82.2.2 设计方案二102.2.3 方案对比与选择112.3 系统方案设计12第三章系统硬件设计153.1 引言153.2 系统电源设计153.3 单片机与其外围电路设计163.3.1单片机MSP430F149与其最小系统的设计163.3.2液晶显示器LCD12864的设计173.3.3独立式按键的设计193.3.4测温电路的设计193.4ADN8830与其外围电路设计203.4.1ADN8830芯片介绍213.4.2温度采集与温度设定电路设计223.4.3选频网络设计253.4.4PID补偿网络设计263.4.5其他外围电路设计283.5功率驱动H桥模块的设计28第四章软件设计304.1引言314.2设计调试环境与工具314.3 主程序的设计314.4 LCD12864显示子程序的设计394.5时间显示子程序的设计414.6按键子程序的设计434.7 DS18B20子程序的设计444.8 DAC8571子程序的设计47第五章实验与验证505.1引言505.2硬件调试515.2.1电源电压稳定性纹波特性测试515.2.2DAC输出精度测试515.2.3H桥输出纹波测试515.2.4满功率工作时通过TEC的平均电流,与TEC两端的电压。
ADN8830中文资料
The ADN8830 is a monolithic controller that drives a thermoelectric cooler (TEC) to stabilize the temperature of a laser diode or a passive component used in telecommunications equipment. This device relies re coefficient (NTC) thermistor to sense the temperature of the object attached to the TEC. The target temperature is set with an analog input voltage either from a DAC or an external resistor divider. The loop is stabilized by a PID compensation amplifier with high stability and low noise. The compensation network can be adjusted by the user to optimize temperature settling time. The component values for this network can be calculated based on the thermal transfer function of the laser diode or obtained from the lookup table given in the Application Notes section. Voltage outputs are provided to monitor both the temperature of the object and the voltage across the TEC. A voltage reference of 2.5 V is also provided.
采用ADN8831芯片的激光器温控电路的设计
采用ADN8831芯片的激光器温控电路的设计引言通过对半导体激光器特性的研究,可知温度对激光器的正常工作有着重要的影响。
温度会直接影响到半导体激光器的工作参数包括:阈值电流、V-I 关系、输出波长、P-I 关系等。
同时高温也会对激光器产生极大的影响,严重影响其使用寿命和效率。
本文采用ADN8831 温度控制芯片为激光器提供恒定且可调的工作温度来保证激光器高效率工作。
1 温度控制芯片介绍根据半导体激光器对温度的要求,选定ADN8831作为激光器的温度控制主芯片。
ADN8831芯片是目前最优秀的单芯片高集成度、高输出效率和高性能的TEC驱动模块之一。
ADN8831 的最大温漂电压低于250 mV,能够使设定温度误差控制在±0.01 ℃左右。
在工作过程中,ADN8831 输入端的电压值对应一个设定好的目标温度。
适当大小的电流流过TEC,使TEC加热或制冷,在这个过程中使激光器表面温度向设定温度值靠近。
此芯片还有过流保护功能,可编程开关频率最高可达1 MHz.2 TEC控制原理TEC(Thermo Electric Cooler)实际上是用两种材料不同半导体(P型和N型)组成PN结,当PN结中有直流电流通过时,由于两种材料中的电子和空穴在跨越PN结移动过程中产生吸热或放热效应(帕尔帖效应),就会使PN结表现出制冷或制热的效果,改变电流方向即可实现TEC加热或制冷,调节电流大小即可控制加热或制冷量的输出。
利用TEC稳定激光器温度方法的系统框图如图1所示。
图1中贴着激光器右侧的是温度传感器,这里使用具有负温度系数的热敏电阻。
这个热敏电阻是用来测量安放在TEC表面上的激光器的温度。
期望的激光器温度用一个固定的电压值来表示,与热敏电阻产生的电压值通过高精度运算放大器进行比较,比较后产生的误差电压通过高增益的放大器放大,同时补偿网络对因为激光器的冷热端引起的相位延迟进行补偿,补偿后驱动H桥输出,H桥不仅控制TEC电流的大小还能控制TEC电流的方向。
3ad35c参数
3ad35c参数
3ad35c参数是一种十六进制颜色代码,表示一种绿色的色调。
在RGB颜色模型中,3ad35c由22.75%的红色,82.75%的绿色和36.08%的蓝色组成。
在HSL颜色空间中,3ad35c有133°的色相,63%的饱和度和53%的亮度。
这种颜色的近似波长为544.64 nm。
3ad35c参数也可以用于表示一款集成TEC控制器的单芯片TEC 控制器的型号,即ADN8835。
ADN8835是由亚德诺半导体公司生产的一款超紧凑3 A热电冷却器 (TEC)控制器,适用于激光二极管或无源组件的温度控制。
ADN8835包括线性功率级、脉冲宽度调制 (PWM)功率级和两个零漂移、轨到轨斩波放大器。
ADN8835的主要特点有:高效率单电感架构
用于TEC控制器的集成式低R DSON MOSFET
TEC电压和电流工作监控
无需外部检测电阻
独立的TEC加热和冷却限流设置
可编程最大TEC电压
PWM驱动器开关频率:2.0 MHz(典型值)
外部同步
集成两个零偏移、轨到轨斩波放大器
兼容NTC 或RTD热传感器
2.50 V、1%精度基准电压输出
温度锁定指示器
- 采用36引脚、6 mm x 6 mm LFCSP封装。
采用ADN8831芯片的激光器温控电路的设计
采用ADN8831芯片的激光器温控电路的设计激光器温控电路通常用于控制激光器的工作温度,保证其在理想的温度范围内工作,从而提高激光器的性能和稳定性。
本文将介绍一种基于ADN8831芯片的激光器温控电路设计。
首先,我们需要了解ADN8831芯片的特性和功能。
ADN8831是一种高性能温控芯片,主要用于直流电源的开关电源应用。
其主要特性包括高精度的温度测量和控制功能、多种保护特性以及可编程的温度控制功能。
接下来,我们开始设计激光器温控电路。
首先,我们需要采集激光器的温度。
可以使用ADN8831芯片的内置温度传感器,也可以外接一个热敏电阻或热电偶来测量激光器的温度。
然后,将温度信号输入ADN8831芯片的温度输入引脚。
接下来,我们需要设置ADN8831芯片的温度控制参数。
这包括设定激光器的工作温度范围和设定温度控制的精度。
这些参数可以通过连接电脑或其他控制设备来进行设置,也可以通过ADN8831芯片上的输入引脚来进行设置。
在温度控制参数设置完毕后,ADN8831芯片将开始自动调节激光器的温度。
当激光器的温度超过设定的工作温度范围时,ADN8831芯片将自动调节激光器的工作电压或电流,以降低温度。
当激光器的温度低于工作温度范围时,ADN8831芯片将自动增加工作电压或电流,以提高温度。
此外,ADN8831芯片还具有多种保护特性,用于保护激光器不受过热、过电流或其他故障的影响。
这些保护特性包括过热保护、过电流保护、电源电流限制和电源电压限制等。
当激光器温度超过设定的临界值或电流或电压超过设定的限制范围时,ADN8831芯片将自动切断激光器的电源,以保护激光器的安全性和稳定性。
总结来说,采用ADN8831芯片的激光器温控电路的设计可以实现激光器的高精度温度控制和多种保护特性,从而提高激光器的性能和稳定性。
设计过程包括采集温度信号、设置温度控制参数以及实现温度调节和保护。
通过合理设计和调节,激光器可以在理想的温度范围内工作,从而提高其性能和稳定性。
adi 超紧凑1.5 a 热电冷却器 (tec) 控制器 数据手册 - adn8834说明书
Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks andregistered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781.329.4700 ©2019 Analog Devices, Inc. All rights reserved. Technical Support /cnADI 中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI 不对翻译中存在的差异或由此产生的错误负责。
如需确认任何词语的准确性,请参考ADI 提供的最超紧凑1.5 A 热电冷却器(TEC)控制器数据手册ADN8834产品特性获得专利的高效率单电感架构用于TEC 控制器的集成式低R DSON MOSFET TEC 电压和电流工作监控 无需外部检测电阻独立的TEC 加热和冷却限流设置 可编程最大TEC 电压2.0 MHz PWM 驱动器开关频率 外部同步集成两个零点漂移、轨到轨斩波放大器 支持NTC 或RTD 热传感器2.50 V 、1%精度基准电压输出 温度锁定指示器 采用25引脚、2.5 mm x 2.5 mm WLCSP 或24引脚、4 mm x 4 mm LFCSP 封装应用TEC 温度控制 光学模块 光纤放大器 光纤网络系统需要TEC 温度控制的仪器仪表功能框图图1.概述ADN88341是一款集成TEC 控制器的单芯片TEC 控制器。
泵浦激光器的驱动技术
模块化掺饵光纤宽带光源驱动电路设计李栋李流超黎志刚中国电子科技集团公司第三十四研究所,广西桂林541004摘要:为了提高模块化宽带光源的稳定性,采用自动温度控制ATC电路和自动功率控制APC 电路驱动泵浦激光器。
实验结果表明,光源驱动电路可靠,输出光谱和光功率稳定,达到了预定的技术指标要求。
该电路集成度高、体积小,能够满足宽带光源模块化需求。
关键词:掺饵光纤;宽带光源模块;泵浦激光器;驱动;功率控制;1、引言掺饵光纤宽带光源是一种相干性低的光源,具有输出功率高、光谱宽、温度稳定性高、使用寿命长等特点。
由于这些特点,掺饵光纤宽带光源广泛应用在光通信、光纤传感、光器件测试及光谱分析等领域。
随着超高速、大容量光纤通信系统和光传感系统的发展,对宽带光源在功率、带宽、稳定性及体积方面提出了更高的要求。
泵浦激光器的驱动电路作为宽带光源的一个组成部分,电路的稳定性将直接影响掺饵光纤宽带光源的光谱输出质量。
近年来,高稳定的模块化掺饵光纤宽带光源是一个研究热点。
本文将针对高稳定的模块化掺饵光纤宽带光源中的泵浦激光器的驱动电路展开设计,通过采用高集成度的自动温度控制ATC电路和自动功率控制APC电路,对泵浦激光器进行驱动,实现了光源光谱宽度和功率的高稳定输出。
该设计电路具有体积小,稳定性高等特点,对研制模块化宽带光源具有一定指导和参考意义。
2、模块化掺饵光纤宽带光源驱动电路设计2.1驱动电路总体设计掺饵光纤宽带光源中,除了激光器的泵浦需要电光转化外,其余均为无源光路,所以泵浦激光器的可靠驱动是整个光路设计稳定的一个不可或缺的保证。
模块化掺饵光纤宽带光源驱动电路设计包括:电源电路、泵浦激光器及其保护电路、APC电路、ATC电路。
整个驱动电路采用外置输入+5V(2A)电源供电,内部对输入电压进行滤波和稳压处理,保证电源的稳定性。
由于内部驱动电路单元均采用+5V电压系统,所以内部不再需要电压变化处理。
2.2泵浦激光器及其保护电路掺饵光纤宽带光源中的泵浦激光器采用980nm泵浦激光器,型号为LC96A74P-20R。
基于ADN8830的非制冷红外焦平面温度控制电路设计
基于ADN8830的非制冷红外焦平面温度控制电路设计红外技术作为一种发现、探测和识别目标的重要手段在军民两用技术中有着广泛的应用,非制冷红外焦平面阵列技术的发展极大地提高了系统的性能。
非制冷红外热像仪采用的是不需要制冷的热探测器焦平面阵列,利用红外辐射使焦平面上敏感像元的温度改变,从而使电阻随之改变,来探测目标的温度特性。
所以,只有尽可能地保证焦平面阵列中各敏感像元自身基准温度稳定且一致,才能够提高热像仪的探测灵敏度,减小系统后期非均匀性校正的难度,最终从根本上提高热像仪的探测灵敏度,改善热像仪的成像性能。
目前,在实际的非制冷红外焦平面阵列探测器中采用半导体热电制冷器(TEC)来稳定基准温度。
在此着重介绍一种基于ADN8830的高性能TEC温度控制电路及其PID补偿网络的调节方法。
1 温度控制电路设计TEC(Thermo Electric Cooler)是用两种不同半导体材料(P型和N型)组成PN结,当PN结中有直流电通过时,由于两种材料中的电子和空穴在跨越PN结移动过程中的吸热或放热效应(帕尔帖效应),就会使PN结表现出制冷或制热效果,改变电流方向即可实现TEC的制冷或制热,调节电流大小即可控制制热制冷量输出。
利用TEC稳定目标温度的方法如图1所示。
图1中第一部分是温度传感器。
这个传感器是用来测量安放在TEC端的目标物体的温度。
期望的目标物体温度是用一个设定点电压来表示,与温度传感器产生的代表实际目标物体温度的电压通过高精度运算放大器进行比较,然后产生误差电压。
这个电压通过高增益的放大器放大,同时也对因为目标物体的冷热端引起的相位延迟进行补偿,然后再驱动H桥输出,H桥同时控制TEC电流的方向和大小。
当目标物体的温度低于设定点温度时,H桥朝TEC致热的方向按一定的幅值驱动电流;当目标物体的温度高于设定点温度时,H桥会减少TEC的电流甚至反转TEC的电流方向来降低目标物体温度。
当控制环路达到平衡时,TEC的电流方向和幅值就调整好了,目标物体温度也等于设定的温度。
一种便携式的多功能SLD数字测控系统设计
一种便携式的多功能SLD数字测控系统设计作者:汪磊杨明伟杨远洪索鑫鑫吴长莘来源:《现代电子技术》2012年第22期摘要:以嵌入式微控制器C8051F为控制核心实现了便携式的多功能超辐射发光二极管(SLD)测控系统。
该系统具有多种工作模式,包括恒流控制工作模式、恒光功率工作模式、恒温控制工作模式和连续LIV测试工作模式;可为SLD提供高稳定性的电流控制、光功率控制和温度控制,实验结果表明其长期驱动电流稳定度0.023%、光功率控制稳定度0.026%、温度控制偏差0.03℃。
同时利用该系统可实现器件LIV特性的自动测试,其结果可用于SLD 性能的表征与评价。
关键词:SLD;微控制器C8051F;参数检测;特征测试中图分类号:TN91934 文献标识码:A 文章编号:1004373X(2012)22014304SLD作为光纤陀螺系统的核心器件,其工作特性会影响整个系统的性能及可靠性,因此研究如何对SLD特性参数进行快速准确地测量以完成对器件性能的评价与筛选就具有重要的实际意义。
现有的特性测试系统多由分立设备组成,并且体积较大造价昂贵,也不具备现场测试所需的便携性,而且工作模式单一[1]。
针对以上问题,本文提出了一种可实现便携式的SLD测控系统设计方案,简述了其总体设计,重点讨论了系统实现中的关键技术,然后对实际系统进行了性能测试,分别测试了注入电流、光功率和温度的稳定性,最后给出了对实际SLD器件的特性测试结果。
1系统工作原理及设计方案系统的总体设计如图1所示。
该系统主要以嵌入式微控制器C8051F060为控制核心,利用其内部集成的2个16位的ADC模块、2个12位DAC模块和1个8位的ADC模块便构成了一个基本片上数据控制采集系统[2],这使得设计体积小、低功耗、高可靠性的便携式SLD测控系统成为可能,同时也大大降低了成本。
整个系统主要由驱动模块、温度控制模块、参数检测模块和人机接口模块组成。
其中驱动模块为器件提供3种驱动方式:恒电流驱动、恒功率驱动和LIV测试;温度控制模块通过调节热电制冷器的电流大小和方向来保持器件工作温度稳定;参数采集模块检测出器件的驱动电流、管压降、光功率、温度控制电压等数据,并送至微控制器的ADC模块进行预处理,由LCD实时显示;同时,通过键盘可以设定系统的工作方式和参数大小,如为LIV测试则上述数据可通过串口与计算机通信实现远程控制。
基于980nm泵浦激光器的恒温驱动设计
www�ele169�com | 15电子电路设计与方案0 引言半导体激光器是光纤通信、光纤传感等领域中不可或缺的重要器件。
一方面,其可以作为直接调制光源,用于主干网以及接入网的信号源;另一方面,半导体激光器常常被用作光纤激光器、掺铒光纤放大器等器件的泵浦源,为信号的产生和放大提供能量来源[1]。
而伴随着掺铒光纤放大器、光纤激光器等器件研究的不断深入,对半导体泵浦激光器的工作性能也提出了更高的要求。
发现其对温度特别敏感,温度稳定性能高的不仅能带来各光学器件相关参数的稳定输出,同时也会提高整个光通信系统的整体性能和安全可靠性[2]。
半导体光源大多最理想的工作温度是25℃,在此温度下光源寿命最长。
随着半导体光源连续工作,特别是大功率LD 工作时,光源放出的热量会使自身的温度上升,导致光功率下降,对半导体激光器而言,波长会向长波方向漂移。
为避免上述问题,需要设计一个能够实时监控激光器实时温度并且精确控制的系统。
1 温度控制原理半导体致冷器(Thermoelectric Cooler)是利用半导体材料的珀尔帖效应制成的。
所谓珀尔帖效应指的是当直流电流通过两种半导体材料组成的电偶时,其一端吸热,另一端放热的一种现象,一对电偶产生的热电效应很小,故在实际中都将上百对热电偶串联在一起,所有的冷端集中在一边,热端集中在另一边,这样生产出用于实际的致冷器。
980nm 激光器的内部集成了半导体热电制冷器(TEC)和负温度系数的热敏电阻。
温度控制的原理是通过测量温敏电阻的阻值来获得当前激光器的工作温度再反馈控制流过TEC 的电流大小和方向使其加热或制冷,使热敏电阻的温度保持在设定的温度上,从而使激光器的工作温度稳定。
980nm 光纤光源示意图如图1所示。
图1中,±TEC 为制冷器的电流输入端,电流由正端输入,负端输出时为加热状态,而电流反向则为制冷状态。
在控制温度时,需要设计制冷器控制电路,通过A/D 传回的温度数据经微处理器软件控制制冷器工作。
基于ADN8830及MSP430的TEC温度控制电路的设计设计
基于ADN8830及MSP430的TEC 温度控制电路的设计设计毕业设计:基于ADN8830的半导体温度控制系统摘要本设计提出一种基于AD 公司的热电制冷控制器ADN8830的高性能、高稳定性的TEC 控制电路。
该电路通过简单的电容、电阻构成的外部PID( 比例积分微分) 补偿网络,能够使目标温度在30s内稳定在最佳工作点,温度控制精度可0.1℃。
控制核心采用MSP430单片机,单片机通过数字温度传感器DS18B20读取当前温度,通过DAC 输出电压控制信号给ADN8830来调节流过TEC的电流。
实验结果表明该方案具有效率高、功耗低、体积小等优点。
关键词:ADN8830; TEC; 温度控制; MSP430; PIDApplication of ADN8830 in Automatic Temperature Control ofTECAbstractA Thermo- Electric Cooler (TEC) control circuit of high performance and stability is presented, which is developed by a thermoelectric cooler controller, named ADN8830, produced by Analog Devices Inc. An outside Proportion Integral Differential (PID) compensation network constructed by simple capacitances and resistors, which can make the temperature of detector reach the optimum operating point in 30s and the precision of this control circuit is 0.1℃. The MSP430 microcontroller implements a controller using a digital temperature sensor DS18B20 to read the current temperature, a digital - to- analog converter DAC8571 to output a control signal to ADN8830 which adjusts the current through the TEC. The experimental results show that this scheme of temperature control has the advantage of high effectiveness, low power and compact size.Keywords: ADN8830;TEC;temperature control;MSP430;PID目录第一章绪论 (V)1.1课题研究背景及意义 (V)1.2半导体制冷原理 (V)1.3 半导体制冷技术的国内外发展 (VII)1.4论文主要研究内容及章节分布................................................................... V III 第二章系统方案设计 (9)2.1 系统设计要求 (9)2.2系统方案设计 (9)2.2.1设计方案一 (9)2.2.2 设计方案二 (11)2.2.3 方案对比与选择 (12)2.3 系统方案设计 (13)第三章系统硬件设计 (16)3.1 引言 (16)3.2 系统电源设计 (16)3.3 单片机及其外围电路设计 (17)3.3.1单片机MSP430F149及其最小系统的设计 (17)3.3.2液晶显示器LCD12864的设计 (18)3.3.3独立式按键的设计 (20)3.3.4测温电路的设计 (20)3.4ADN8830及其外围电路设计 (21)3.4.1ADN8830芯片介绍 (22)3.4.2温度采集与温度设定电路设计 (23)3.4.3选频网络设计 (26)3.4.4PID补偿网络设计 (27)3.4.5其他外围电路设计 (29)3.5功率驱动H桥模块的设计 (30)第四章软件设计 (33)4.1引言 (33)4.2设计调试环境及工具 (33)4.3 主程序的设计 (34)4.4 LCD12864显示子程序的设计 (41)4.5时间显示子程序的设计 (43)4.6按键子程序的设计 (45)4.7 DS18B20子程序的设计 (46)4.8 DAC8571子程序的设计 (49)第五章实验与验证 (52)5.1引言 (52)5.2硬件调试 (53)5.2.1电源电压稳定性纹波特性测试 (53)5.2.2DAC输出精度测试 (53)5.2.3H桥输出纹波测试 (53)5.2.4满功率工作时通过TEC的平均电流,及TEC两端的电压。
一种ASE光源的性能优化方法
一种ASE光源的性能优化方法牛雨迪;沈庆云;汤枭雄;吉世涛;魏志武【摘要】为了提高光源的各项性能,设计了一系列实验,用以验证掺铒光纤长度及泵浦源功率对光源性能的影响。
采用实验的方法,分析了常温情况下,由不同长度掺铒光纤的变化所导致的ASE光源输出光的光功率、中心波长及谱宽变化,得到了在不同泵浦源功率时,掺铒光纤长度的变化对整机性能的影响,以及出光光功率和谱宽变化的实验曲线,从中发现在光纤长度为22 m时,光源工作性能最佳。
这对ASE光源的器件选择及系统优化具有参考价值。
实验结果表明,掺铒光纤长度对1550 nm单通后向出光ASE光源的光源输出功率和谱宽性能均有影响。
%It has been proved that the length of fiber has great contribution to the performance of the 1 550 nm ASE ( Amplified Spontaneous Emission) source, both on the output power and spectral width.To improve the per-formance of the source, a series of experiments is designed, and the result shows that a proper length of fiber can improve the performance of the source.Under normal temperature, we analyze the connection between the length of EDF and output power, center wavelength and spectral width of the ASE source.Finally we derive curve of the ASE source output power and center wavelength under the different EDF length, due to the change of pumping source. The results show that when the fiber is 22 m, the performance of the ASE source is the best.【期刊名称】《电子科技》【年(卷),期】2015(000)009【总页数】4页(P168-171)【关键词】光纤陀螺;ASE光源;出光功率;谱宽【作者】牛雨迪;沈庆云;汤枭雄;吉世涛;魏志武【作者单位】中国航天科技集团公司第9研究院第16研究所光纤传感事业部,陕西西安 710100;中国航天科技集团公司第9研究院第16研究所光纤传感事业部,陕西西安710100;中国航天科技集团公司第9研究院第16研究所光纤传感事业部,陕西西安710100;中国航天科技集团公司第9研究院第16研究所光纤传感事业部,陕西西安710100;中国航天科技集团公司第9研究院第16研究所光纤传感事业部,陕西西安 710100【正文语种】中文【中图分类】TN249ASE(Amplified Spontaneous Emission)光源是基于掺铒增益光纤放大自发辐射的一种宽谱光源,因其输出具有平均波长高稳定、宽光谱、高输出功率等特性,在光纤陀螺、光纤传感器、通讯 WDM 系统及 DWDM 系统、光谱测量、低相干光学成像等领域内得到了广泛应用。
TEC恒温控制系统
RTH RTH
ADN8831-EVALZ
04592-009
AGND
POWER SUPPLY
在设计中,对应于热敏电阻的三种不同电阻值, VTEMPOUT 的值也各不相同: RTH = RHIGH(THIGH条件下):VTEMPOUT = VREF RTH = RMID(TMID条件下):VTEMPOUT = 0.5 × VREF RTH = RLOW(TLOW条件下):VTEMPOUT = 0 V 此例中,VREF约等于2.5 V,是ADN8831的引脚8上的基准电压。 电阻值 为了在三种不同的设定点温度条件下实现所需的 VTEMPOUT 输出,请使用以下公式
R1 = R MID + R MID (RLOW + RHIGH ) − 2RHIGH RLOW RHIGH + RLOW − 2R MID
图5. ADN8831-EVALZ快速入门框图
1. 检查片上开关是否已设置为默认状态。 2. 将热敏电阻连接在标有RTH和AGND的电路板焊盘之间。 3. 将热电冷却器的正端连接至 TECP电路板焊盘,将负端 连接至TECN。 4. 检查片上电位计是否已设置为默认状态。 5. 确保电源已切断,然后将其连接至电路板焊盘 VDD和 PGND将电源电压维持在3.0 V和5.5 V之间,以确保正常 工作。 6. 接通电源。 与温度相关的热敏电阻电压TEMPOUT锁定至编程设置的 设定点电压TEMPSET。在数秒内会亮起一个绿色LED,表 示已成功锁定温度。
简介
ADN8831是一款热电冷却器(TEC)控制器,能够以出色的 温度控制分辨率、稳定性和较高的功效驱动中等功率的 TEC(电流<4 A)。ADN8831集成了两个高性能放大器,专用 于温度检测和热环路补偿,允许直接连接至热敏电阻、电 阻式温度检测器(RTD)或其他温度传感器。 本应用笔记可配合ADN8831数据手册一起使用,说明如何 配 置 ADN8831-EVALZ 评 估 板 (4.0 版 ) , 以 及 如 何 利 用 ADN8831开发真正的TEC控制电路。ADN8831数据手册提 供了详细的技术规格、内部功能框图及应用设计准则。 本应用笔记的 “ 评估板布局 ” 部分提供了重要的布局设计 准则。
一种用于连续光输出激光器驱动电路中的自动温度控制电路[实用新型专利]
专利名称:一种用于连续光输出激光器驱动电路中的自动温度控制电路
专利类型:实用新型专利
发明人:杨晓波,王卫龙,张睿,陈伟峰,孙静,张晓峰,钱瑞杰,杨纯璞,王东锋,王文博,李洋,王尧
申请号:CN201420695582.5
申请日:20141119
公开号:CN204190163U
公开日:
20150304
专利内容由知识产权出版社提供
摘要:本实用新型涉及一种用于连续光输出激光器驱动电路中的自动温度控制电路,由自动温度控制芯片ADN8830及其外围电路构成,包括制冷电流输出信号放大部分电路,制冷电流输出信号放大部分电路由2个MOS管FDW2520C和阻容元件组成;第一MOS管FDW2520C的1脚、8脚接电阻R22,经电阻R22连接自动温度控制芯片ADN8830芯片的9脚,其4脚连接自动温度控制芯片
ADN8830芯片的10脚,第二MOS管FDW2520C的1脚、8脚接电感L4,经电感L4连接自动温度控制芯片ADN8830芯片的19脚,其4脚、5脚分别连接自动温度控制芯片ADN8830芯片的22脚、21脚,电路选用MOS管FDW2520C完成自动温度控制集成电路中制冷电流输出信号放大部分电路的设计,达到体积小,工作稳定可靠的目的,适合整机的需要。
申请人:天津光电通信技术有限公司
地址:300211 天津市河西区泰山路6号
国籍:CN
代理机构:天津中环专利商标代理有限公司
代理人:莫琪
更多信息请下载全文后查看。
NF8830温控器使用说明书
NF8830使用说明(V6.00)一、主要功能温度显示、温度控制(可设定制冷/制热模式)、压缩机开机延时保护、温度探头故障时可以按设定的开停比定期运行、两种化霜模式(电热、热气)、三种化霜启动模式(时间间隔、累计压缩机运转时间、实时钟)、两种化霜结束模式(定时、温度时间双重控制)、化霜滴水、手动化霜、七种风机运行模式(风机提前/延时启动、延时停止、温控启停、时控启停、常开、常停、化霜时启动或停止)、传感器异常告警、一路外部告警信号输入、密码口令、实时钟、华氏摄氏转换。
二、技术指标1、 温度范围 : -50~150C (分辨率0.1C) -58~302F (分辨率0.1F)2、 电源电压 : 220V±10%或380V±10%, 参见产品后贴3、 使用环境 : 温度-30℃~80℃,湿度≤85%,无凝露4、 输出触点容量: 8A/250VAC (纯阻性负载)5、 温度传感器 : NTC R25=5kΩ,B(25/50)=3470K三、操作指南1、面板上的指示灯含义指示灯指示灯名称 亮 闪烁 温度设定 正在温度设置状态-制 冷 正在制冷 准备制冷,在压缩机延时保护状态 制 热 正在制热 准备制热,在压缩机延时保护状态 化 霜 正在化霜 化霜滴水或压缩机延时保护状态风 机 风机运转-告 警-告警状态2、数码管显示含义 表示温度传感器断线。
告警时交替显示温度和告警代码(Axx )。
显示代码如下表:告警代码 含义 说明A11 外部告警 来自外部告警信号的告警,请参见内部参数代码“F50” A21温度传感器故障温度传感器断线或短路(当前温度显示 “OPE ”或“SHr ”)A22蒸发器传感器故障蒸发器传感器断线或短路(按“ ”键时显示 “SHr ”或 “OPE ”)。
如果不使用蒸发器传感器,可以用参数 F59 关闭这个告警A99 试用期结束如果设置了试用时间F87,则当控制器累计工作时间超过试用时间时,产生本告警,控制器不能工作、蒸发器传感器的温度显示在显示当前温度时按住“ ”键,就会显示蒸发器传感器的温度。
基于MAX1978的热电偶传感器冷端恒温控制
基于MAX1978的热电偶传感器冷端恒温控制王建华【摘要】热电偶冷端温度恒定性是影响热电偶测温准确性的重要因素之一,设计了一种基于MAX1978的恒温控制系统.采用TEC开关模式,通过PID补偿网络实现TEC控制.【期刊名称】《机械管理开发》【年(卷),期】2012(000)005【总页数】2页(P133,135)【关键词】热电偶;冷端温度;MAX1978【作者】王建华【作者单位】太原理工大学计算机科学与技术学院,山西太原030024【正文语种】中文【中图分类】TH8110 引言热电偶传感器的冷端(参考端)的温度恒定直接影响热电偶的测量精度。
使用半导体致冷器ETC实现热电偶传感器的冷端温度恒定控制,控制精度高,且不受气压等环境因素影响,方便应用于工业现场环境。
1 热电偶测温原理两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T 0不同时,则在该回路中就会产生电动势,这种现象称为热电效应,该电动势称为热电势。
这两种不同材料的导体或半导体的组合称为热电偶,导体A、B称为热电极。
两个接点,一个称热端,又称测量端或工作端,测温时将它置于被测介质中;另一个称冷端[1],又称参考端或自由端。
热电偶回路中产生的总热电势为:e AB(T,T 0)=e AB(T)+e B(T,T 0)-e AB(T 0)-e A(T,T 0)式中:e AB(T)和e AB(T 0)是接触电势;e A(T,T 0)和e B(T,T 0)是温差电势。
在总热电势中,温差电势比接触电势小很多,可忽略不计,则热电偶的热电势可表示为:e AB(T,T 0)=e AB(T)-e AB(T 0)当参考端温度T 0恒定时,e AB(T 0)=c为常数,则总的热电动势就只与温度T成单值函数关系,即e AB(T,T 0)=e AB(T)-c=f(T)这个关系通常用分度表的形式,由热电偶厂家提供,因此,只要测出e AB(T,T 0)的大小,就能得到被测温度T,此即热电偶测温原理。
基于单片机的激光发生器的驱动电路设计
基于单片机的激光发生器的驱动电路设计陈晓;贾华宇;郭燕【摘要】为了更有效地控制和调节激光器的温度与功率,设计了一种基于STC11F08XE单片机控制的具有温控和功率控制功能的激光发生器驱动电路。
通过使用ADN8830芯片的温度控制功能和ADN2830芯片的功率控制功能实现激光器的温度控制,同时能够手动改变激光器的输出功率。
实验结果表明,该系统温度控制模块能够稳定控制激光器温度,使目标温度误差低于±0.01℃,波长可以在1535.17nm~1563.24nm之间变动。
功率控制模块可实现手动控制,激光器功率在0~10dBm间变化,误差在0~0.05mW之间。
%In order to more effectively control and adjust the temperature and the power of thelaser ,we designed a kind of laser driven circuit based on STC11F08XE micro controller unit (MCU) ,which had the ability of temperature control and power control .The chip ADN8830 and ADN2830 were used to realized the control of temperature and power ,respectively .At the same time ,the laser output power could be manually changed .The experimental results show that the temperature control module of this system can stably control the laser's temperature , and make sure the target temperature error less than ± 0 .01 ℃ .And the wavelength can be adjusted between 1 535 .17 nm~1 563 .24 nm .The power control module can implement manu‐al control and make the laser power change between 0 dBm~10 dBm with the error of 0 mW~0.05mW.【期刊名称】《应用光学》【年(卷),期】2015(000)001【总页数】6页(P134-139)【关键词】激光器;驱动电路;温度控制;功率控制【作者】陈晓;贾华宇;郭燕【作者单位】太原理工大学新型传感器与智能控制教育部重点实验室,山西太原030024;太原理工大学新型传感器与智能控制教育部重点实验室,山西太原030024;太原理工大学新型传感器与智能控制教育部重点实验室,山西太原030024【正文语种】中文【中图分类】TN365引言由于DFB激光器使用的增益介质一般是砷化镓、磷化铟、硫化锌等半导体材料,所以其受温度影响非常大,另外激光器的使用范围很多时候在室外,比如在发电站中用于监控各气体的成分比率[1],天然气管道中的成分及泄露浓度检测和钢铁熔炼过程控制,甚至用于太空探测等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
REV.CInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700 Fax: 781/326-8703© 2003 Analog Devices, Inc. All rights reserved.ADN8830Thermoelectric Cooler ControllerFEATURES High EfficiencySmall Size: 5 mm ؋ 5 mm LFCSPLow Noise: <0.5% TEC Current RippleLong-Term Temperature Stability: ؎0.01؇C Temperature Lock Indication Temperature Monitoring OutputOscillator Synchronization with an External Signal Clock Phase Adjustment for Multiple Controllers Programmable Switching Frequency up to 1 MHz Thermistor Failure AlarmMaximum TEC Voltage ProgrammabilityAPPLICATIONSThermoelectric Cooler (TEC) Temperature Control Resistive Heating Element ControlTemperature Stabilization Substrate (TSS) ControlFUNCTIONAL BLOCK DIAGRAMFROMTHERMISTOR TEMPERA TURESET INPUTV REFFREQUENCY/PHASECONTROLGENERAL DESCRIPTIONThe ADN8830 is a monolithic controller that drives a thermo-electric cooler (TEC) to stabilize the temperature of a laser diode or a passive component used in telecommunications equipment.This device relies on a negative temperature coefficient (NTC)thermistor to sense the temperature of the object attached to the TEC. The target temperature is set with an analog input voltage either from a DAC or an external resistor divider.The loop is stabilized by a PID compensation amplifier with high stability and low noise. The compensation network can be adjusted by the user to optimize temperature settling time. The component values for this network can be calculated based on the thermal transfer function of the laser diode or obtained from the lookup table given in the Application Notes section.Voltage outputs are provided to monitor both the temperature of the object and the voltage across the TEC. A voltage reference of 2.5V is also provided.ADN8830–SPECIFICATIONS(@ V DD = 3.3 V to 5.0 V, V GND = 0 V, T A = 25؇C, T SET = 25؇C, using typical applicationconfiguration as shown in Figure 1, unless otherwise noted.)Parameter Symbol Conditions Min Typ Max Unit TEMPERATURE STABILITYLong-Term Stability Using 10 kΩ thermistor with␣ = –4.4% at 25°C0.01°C PWM OUTPUT DRIVERSOutput Transition Time t R, t F C L = 3,300 pF20ns Nonoverlapping Clock Delay5065ns Output Resistance R O (N1, P1)I L = 50 mA6ΩOutput Voltage Swing OUT A V LIM = 0 V0V DD V Output Voltage Ripple⌬OUT A f CLK = 1 MHz0.2% Output Current Ripple⌬I TEC f CLK = 1 MHz0.2% LINEAR OUTPUT AMPLIFIEROutput Resistance R O, P2I OUT = 2 mA85ΩR O, N2I OUT = 2 mA178ΩOutput Voltage Swing OUT B0V DD V POWER SUPPLYPower Supply Voltage V DD 3.0 5.5V Power Supply Rejection Ratio PSRR V DD = 3.3 V to 5 V, V TEC = 0 V8092dB–40°C ≤ T A≤ +85°C60dB Supply Current I SY PWM not switching812mA–40°C ≤ T A≤ +85°C15mA Shutdown Current I SD Pin 10 = 0 V5µA Soft-Start Charging Current I SS15µA Undervoltage Lockout V OLOCK Low-to-high threshold 2.0 2.7V ERROR AMPLIFIERInput Offset Voltage V OS V CM = 1.5 V50250µV Gain A V, IN20V/V Input Voltage Range V CM0.2 2.0V Common-Mode Rejection Ratio CMRR0.2 V < V CM < 2.0 V5868dB–40°C ≤ T A≤ +85°C55dB Open-Loop Input Impedance R IN1GΩGain-Bandwidth Product GBW2MHz REFERENCE VOLTAGEReference Voltage V REF I REF < 2 mA 2.37 2.47 2.57V OSCILLATORSynchronization Range f CLK Pin 25 connected to external clock2001,000kHz Oscillator Frequency f CLK Pin 24 = V DD; (R = 150 kΩ;8001,0001,250kHzPin 25 = GND)LOGIC CONTROL*Logic Low Input Threshold0.2V Logic High Input Threshold3V Logic Low Output Level0.2V Logic High Output Threshold V DD– 0.2V*Logic inputs meet typical CMOS I/O conditions for source/sink current (~1 µA).Specifications subject to change without notice.–2–REV. CREV. CADN8830–3–CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADN8830 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommendedto avoid performance degradation or loss of functionality.ABSOLUTE MAXIMUM RATINGS *Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 V Input Voltage . . . . . . . . . . . . . . . . . . . . . . .GND to V S + 0.3 V Storage Temperature Range . . . . . . . . . . . . .–65°C to +150°C Operating Temperature Range . . . . . . . . . . . .–40°C to +85°C Operating Junction Temperature . . . . . . . . . . . . . . . . . .125°C Lead Temperature Range (Soldering, 10 sec) . . . . . . . .300°CESD RATINGS883 (Human Body) Model . . . . . . . . . . . . . . . . . . . . . .1.0 kV*Stresses above those listed under Absolute Maximum Ratings may cause perma-nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.PIN CONFIGURATION24 COMPOSC 23 PGND 22 N121 P1THERMFAULT 1THERMIN 2SD 32 N C 20 PVDD 19 OUT A18 COMPSWIN 17 COMPSWOUTO U T B 9N 2 10P 2 11T E M P C T L 12C O M P F B 13C O M P O U T 1V L I M 15V T E C 16TEMPSET 4TEMPLOCK 5NC 6VREF 7AVDD 81 T E M P O U T 0 A G N D 9 P H A S E 8 S Y N C O U T 7 S O F T S T A R T 6 F R E Q 5 S Y N C I NNC = NO CONNECTPackage Type JA *JC Unit 32-Lead LFCSP (ACP)3510°C/W*JA is specified for worst-case conditions, i.e., JA is specified for a device soldered in a 4-layer circuit board for surface-mount packages.ORDERING GUIDEModelTemperature Range Package DescriptionPackage Option ADN8830ACP–40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP)CP-32-1ADN8830ACP-REEL –40°C to +85°C 32-Lead Lead Frame Chip Scale Package (LFCSP)CP-32-1ADN8830ACP-REEL7–40°C to +85°C32-Lead Lead Frame Chip Scale Package (LFCSP)CP-32-1ADN8830-EVALEvaluation BoardADN8830PIN FUNCTION DESCRIPTIONSPin No.Mnemonic Type Description1THERMFAULT Digital Output Indicates an Open or Short-Circuit Condition from Thermistor.2THERMIN Analog Input Thermistor Feedback Input.3SD Digital Input Puts Device into Low Current Shutdown Mode. Active low.4TEMPSET Analog Input Target Temperature Input.5TEMPLOCK Digital Output Indicates when Thermistor Temperature is within ±0.1°C of Target Tem-perature as Set by TEMPSET Voltage.6NC No Connection, except as Noted in the Application Notes Section.7VREF Analog Output 2.5 V Reference Voltage.8AVDD Power Power for Nondriver Sections. 3.0 V min; 5.5 V max.9OUT B Analog Input Linear Output Feedback. Will typically connect to TEC+ pin of TEC.10N2Analog Output Drives Linear Output External NMOS Gate.11P2Analog Output Drives Linear Output External PMOS Gate.12TEMPCTL Analog Output Output of Error Amplifier. Connects to COMPFB through feedforwardsection of compensation network.13COMPFB Analog Input Feedback Summing Node of Compensation Amplifier. Connects toTEMPCTL and COMPOUT through compensation network.14COMPOUT Analog Output Output of Compensation Amplifier. Connects to COMPFB through feed-back section of compensation network.15VLIM Analog Input Sets Maximum Voltage across TEC.16VTEC Analog Output Indicates Relative Voltage across the TEC. The 1.5 V corresponds to 0 Vacross TEC. The 3.0 V indicates maximum output voltage, maximum heattransfer through TEC.17COMPSWOUT Analog Output Compensation for Switching Amplifier.18COMPSWIN Analog Input Compensation for Switching Amplifier. Capacitor connected betweenCOMPSWIN and COMPSWOUT.19OUT A Analog Input PWM Output Feedback. Will typically connect to TEC– pin of TEC.20PVDD Power Power for Output Driver Sections. 3.0 V min; 5.5 V max.21P1Digital Output Drives PWM Output External PMOS Gate.22N1Digital Output Drives PWM Output External NMOS Gate.23PGND Ground Power Ground. External NMOS devices connect to PGND. Can beconnected to digital ground as noise sensitivity at this node is not critical. 24COMPOSC Analog Input Connect as Indicated in the Application Notes Section.25SYNCIN Digital Input Optional Clock Input. If not connected, clock frequency set by FREQ pin. 26FREQ Analog Input Sets Switching Frequency.27SOFTSTART Analog Input Controls Initialization Time for ADN8830 with Capacitor to Ground.28SYNCOUT Digital Output Phase Adjusted Clock Output. Phase set from PHASE pin. Can be used todrive SYNCIN of other ADN8830 devices.29PHASE Analog Input Sets Switching and SYNCOUT Clock Phase Relative to SYNCIN Clock. 30AGND Ground Analog Ground. Should be low noise for highest accuracy.31TEMPOUT Analog Output Indication of Thermistor Temperature.32NC No Connection.–4–REV. CREV. C Typical Performance Characteristics–ADN8830–5–TIME (20ns/DIV)V O L T A G E (1V /D I V )TPC 1.N1 and P1 Rise Time TIME (20ns/DIV)V O L T A G E (1V /D I V )TPC 2.N1 and P1 Fall Time3603200P H A S E S H I F T (D e g r e e s )1601208040240200280VPHASE (V)2.40.40.81.21.62.0TPC 3.Clock Phase Shift vs. Phase Voltage 3200P H A S E S H I F T (D e g r e e s )1601208040240200280VPHASE (V)0360TPC 4.Clock Phase Shift vs. Phase VoltageTEMPERA TURE (؇C)2.4802.4752.455–4085–15V R E F ( V )1035602.4702.4652.460TPC 5.V REF vs. TemperatureR FREQ (k ⍀)1,000800600400200S W I T C H I N G F R E Q U E N C Y (k H z )TPC 6.Switching Frequency vs. R FREQREV. C–6–ADN8830TEMPERA TURE (؇C)1,000920S W I T C H I N G F R E Q U E N C Y (k H z )980960940930990970950TPC 7.Switching Frequency vs. Temperature TEMPERA TURE (؇C)7030–4085–15O F F S E T V O L T A G E (V )10356055453565605040TPC 8.Offset Voltage vs. Temperature COMMON-MODE VOL T AGE (V)200–100–4000 2.00.2O F F S E T V O L T A G E (V )0.40.60.8 1.0 1.2 1.4 1.6 1.81000–200–300TPC 9.Offset Voltage vs. Common-Mode VoltageSWITCHING FREQUENCY (kHz)45400S U P P L Y C U R R E N T (m A )2015105302535TPC 10.Supply Current vs. Switching FrequencyTEMPERA TURE (؇C)2.062.02–4085–15T H E R M F A U L T U P P E R T H R E S H O L D (V )1035602.042.032.05TPC 11.Open Thermistor Fault Threshold vs. TemperatureTEMPERA TURE (؇C)0.260.23–4085–15T H E R M F A U L T L O W E R T H R E S H O L D (V )1035600.250.24TPC 12.Short Thermistor Fault Threshold vs.TemperatureREV. C ADN8830–7–APPLICATION NOTES Principle of OperationThe ADN8830 is a controller for a TEC and is used to set and stabilize the temperature of the TEC. A voltage applied to the input of the ADN8830 corresponds to a target temperature setpoint. The appropriate current is then applied to the TEC to pump heat either to or away from the object whose tem-perature is being regulated. The temperature of the object is measured by a thermistor and is fed back to the ADN8830 to correct the loop and settle the TEC to the appropriate finaltemperature. For best stability, the thermistor should be mounted in close proximity to the object. In most laser diode modules,the TEC and thermistor are already mounted in the unit and are used to regulate the temperature of the laser diode.A complete TEC controller solution requires:•A precision input amplifier stage to accurately measure the difference between the target and object temperatures.•A compensation amplifier to optimize the stability and temperature settling time.•A high output current stage. Because of the high output currents involved, a TEC controller should operate with high efficiency to minimize the heat generated from power dissipation.In addition, an effective controller should operate down to 3.3 V and have an indication of when the target temperature has been reached. The ADN8830 accomplishes all of these requirements with a minimum of external components. Figure 1 shows a reference design for a typical application.Temperature is monitored by connecting the measurement thermistor to a precision amplifier, called the error amplifier,with a simple resistor divider. This voltage is compared against the temperature set input voltage, creating an error voltage that is proportional to their difference. To maintain accurate wave-length and power from the laser diode, this difference voltage must be as accurate as possible. For this reason, self-correction auto-zero amplifiers are used in the input stage of the ADN8830,providing a maximum offset voltage of 250 µV over time and temperature. This results in final temperature accuracy within ±0.01°C in typical applications, eliminating the ADN8830 as an error source in the temperature control loop. A logic output is provided at TEMPLOCK to indicate when the target temperature has been reached.The output of the error amplifier is then fed into a compensa-tion amplifier. An external network consisting of a few resistors and capacitors is connected around the compensation amplifier.This network can be adjusted by the user to optimize the stepTEC–Figure 1.Typical Application SchematicREV. C–8–ADN8830response of the TEC ’s temperature either in terms of settling time or maximum current change. Details of how to adjust the compen-sation network are given in the Compensation Loop section.The ADN8830 can be easily integrated with a wavelength locker for fine-tune temperature adjustment of the laser diode for a specific wavelength. This is a useful topology for tunable wave-length lasers. Details are highlighted in the Using the TEC Controller ADN8830 with a Wave Locker section.The TEC is driven differentially using an H-bridge configura-tion to maximize the output voltage swing. The ADN8830drives external transistors that are used to provide current to the TEC. These transistors can be selected by the user based on the maximum output current required for the TEC. The maximum voltage across the TEC can be set through use of the VLIM pin on the ADN8830.To further improve the power efficiency of the system, one side of the H-bridge uses a switched output. Only one inductor and one capacitor are required to filter out the switching frequency.The output voltage ripple is a function of the output inductor and capacitor and the switching frequency. For most applica-tions, a 4.7 µH inductor, 22 µF capacitor, and switching frequency of 1 MHz maintains less than ±0.5% worst-case output voltage ripple across the TEC. The other side of the H-bridge does not require any additional circuitry.The oscillator section of the ADN8830 controls the switched output section. A single resistor sets the switching frequency from 100 kHz to 1 MHz. The clock output is available at the SYNCOUT pin and can be used to drive another ADN8830device by connecting to its SYNCIN pin. The phase of the clock is adjusted by a voltage applied to the PHASE pin, which can be set by a simple resistor divider. Phase adjustment allows two or more ADN8830 devices to operate from the same clock frequency and not have all outputs switch simultaneously, which could create an excessive power supply ripple. Details of how to adjust the clock frequency and phase are given in the Setting the Switching Frequency section.For effective indication of a catastrophic system failure, the ADN8830 alerts to open-circuit or short-circuit conditions from the thermistor, preventing an erroneous and potentially damaging temperature correction from occurring. With some additional external circuitry, output overcurrent detection can be imple-mented to provide warning in the event of a TEC short-circuit failure. This circuit is highlighted in the Setting Maximum Output Current and Short-Circuit Protection section.Signal Flow DiagramFigure 2 shows the signal flow diagram through the ADN8830.The input amplifier is fixed with a gain of 20. The voltage at TEMPCTL can be expressed asTEMPCTL TEMPSET THERMIN =×()+2015–.(1)When the temperature is settled, the thermistor voltage will be equal to the TEMPSET voltage, and the output of the input amplifier will be 1.5 V.The voltage at TEMPCTL is then fed into the compensation amplifier whose frequency response is dictated by the compen-sation network. Details on the compensation amplifier can be found in the Compensation Loop section. When configured as asimple integrator or PID loop, the dc forward gain of the compensation section is equal to the open-loop gain of the compensation amplifier, which is over 80 dB or 10,000. The output from the compensation loop at COMPOUT is then fed to the linear amplifier. The output of the linear amplifier at OUT B is fed with COMPOUT into the PWM amplifier whose output is OUT A. These two outputs provide the voltage drive directly to the TEC. Including the external transistors, the gain of the differential output section is fixed at 4. Details on the output amplifiers can be found in the Output Driver Amplifiers section.TEMPSETTHERMINCOMPFBFigure 2.Signal Flow Block Diagram of the ADN8830Thermistor SetupThe temperature of the thermal object, such as a laser diode, isdetected with a negative temperature coefficient (NTC) thermistor.The thermistor ’s resistance exhibits an exponential relationship to the inverse of temperature, meaning the resistance decreases at higher temperatures. Thus, by measuring the thermistor resistance,temperature can be ascertained. Betatherm is a leading supplier of NTC thermistors. Thermistor information and details can be found at .For this application, the resistance is measured using a voltage divider. The thermistor is connected between THERMIN (Pin 2)and AGND (Pin 30). Another resistor (R X ) is connected between VREF (Pin 7) and THERMIN (Pin 2), creating a voltage divider for the VREF voltage. Figure 3 shows the schematic for this configuration.V R THERMR XFigure 3.Connecting a Thermistor to the ADN8830With the thermistor connected from THERMIN to AGND, the voltage at THERMIN will decrease as temperature increases.To maintain the proper input-to-output polarity in this configu-ration, OUT A (Pin 19) should connect to the TEC – pin on the TEC, and OUT B (Pin 9) should connect to the VTEC+ pin.The thermistor can also be connected from VREF to THERMIN with R X connecting to ground. In this case, OUT A must connect to TEC+ with OUT B connected to TEC – for proper operation.REV. CADN8830–9–Although the thermistor has a nonlinear relationship to tem-perature, near optimal linearity over a specified temperature range can be achieved with the proper value of R X . First, the resistance of the thermistor must be known, whereR R T T R T T R T T THERM T LOWT MIDT HIGH======123@@@(2)T LOW and T HIGH are the endpoints of the temperature range and T MID is the average. These resistances can be found in most thermistor data sheets. In some cases, only the coefficients corresponding to the Steinhart-Hart equation are given. The Steinhart-Hart equation is1113T a b n R c n R =+()+()[](3)where T is the absolute temperature of the thermistor in Kelvin (K = °C + 273.15), and R is the resistance of the thermistor at that temperature. Based on the coefficients a , b , and c , R THERM can be calculated for a given T , albeit somewhat tediously, by solving the cubic roots of this equationR THERM =++++exp –––χχψχχψ24272427231213231213(4)whereX a T c=–1and ψ=bc R X is then found asR R R R R R R R R R X T T T T T T T T T =++12231313222––(5)For the best accuracy as well as the widest selection range for resistances, R X should be 0.1% tolerance. Naturally, the smaller the temperature range required for control, the more linear the voltage divider will be with respect to temperature. The voltage at THERMIN isV VREFR R R X THERM THERM X=+(6)where VREF has a typical value of 2.47 V.The ADN8830 control loop will adjust the temperature of the TEC until V X equals the voltage at TEMPSET (Pin 4), which we define as V SET. Target temperature can be set byV m T T V SET MID XMID=()+–(7)where T equals the target temperature, andm V V T TX HIGH X LOWHIGH LOW=,,––(8)V X for high, mid, and low are found by using Equation 6 and substituting R T3, R T2, and R T1, respectively, for R THERM . The variable m is the change in V X with respect to temperature and is expressed in V/°C.The setpoint voltage can be driven from a DAC or another voltage source, as shown in Figure 4. The reference voltage for the DAC should be connected to VREF (Pin 7) on the ADN8830 to ensure best accuracy from device to device.For a fixed target temperature, a voltage divider network can be used as shown in Figure 5. R1 is set equal to R X , and R2 is equal to the value of R THERM at the target temperature.3.3VFigure ing a DAC to Control the TemperatureSetpoint3.3V R2R1Figure ing a Voltage Divider to Set a Fixed Temperature Setpoint Design Example 1A laser module requires a constant temperature of 25°C. From the manufacturer ’s data sheet, we find the thermistor in the laser module has a value of 10 k Ω at 25°C. Because the laser is not required to operate at a range of temperatures, the value of R X can be set to 10 k Ω. TEMPSET can be set by a simple resistor divider as shown in Figure 5, with R1 and R2 both equal to 10k Ω.Design Example 2A laser module requires a continuous temperature control from 5°C to 45°C. The manufacturer ’s data sheet shows the thermistor has a value of 10 k Ω at 25°C, 25.4 k Ω at 5°C, and 4.37k Ω at 45°C. Using Equation 5, R X is calculated to be 7.68 k Ω to yield the most linear temperature-to-voltage conversion. A DAC will be used to set the TEMPSET voltage.DAC Resolution for TEMPSETThe temperature setpoint voltage to THERMIN can be set from a DAC. The DAC must have a sufficient number of bits to achieve adequate temperature resolution from the system. The voltage range for THERMIN is found by multiplying the variable m from Equation 8 by the temperature range.THERMIN Voltage Range m T T MAX MIN=×()–(9)From Design Example 2, 40°C of the control temperature range is achieved with a voltage range of only 1 V.REV. C–10–ADN8830To eliminate the resolution of the DAC as the principal source of system error, the step size of each bit, V STEP , should be lower than the desired system resolution. A practical value for absolute DAC resolution is the equivalent of 0.05°C. The value of V STEP should be less than the value of m from Equation 8 multiplied by the desired temperature resolution, orV C mSTEP <°×005.(10)where m is the slope of the voltage-to-temperature conversion line, as found from Equation 8. From Design Example 2, where m = 25 mV/°C, we see the DAC should have resolution better than 1.25 mV per step.The minimum number of bits required is then given asNumber of Bits V V FS STEP=()()()log –log log 2(11)where V FS is the full-scale output voltage from the DAC, which should be equal to the reference voltage from the ADN8830,VREF = 2.47 V as given in the Specifications table for the Reference Voltage. In this example, the minimum resolution is 11bits. A 12-bit DAC, such as the AD7390, can be readily found.It is important that the full-scale voltage input to the DAC is tied to the ADN8830 reference voltage, as shown in Figure 4. This eliminates errors from slight variances of VREF.Thermistor Fault and Temperature Lock IndicationsBoth the THERMFAULT (Pin 1) and TEMPLOCK (Pin 5)outputs are CMOS compatible outputs that are active high.THERMFAULT will be a logic low while the thermistor is operating normally and will go to a logic high if a short or open is detected at THERMIN (Pin 2). The trip voltage for THERMFAULT is when THERMIN falls below 0.2 V or exceeds 2.0 V. THERMFAULT provides only an indication of a fault condition and does not activate any shutdown or protec-tion circuitry on the ADN8830. To shut down the ADN8830, a logic low voltage must be asserted on Pin 3, as described in the Shutdown Mode section.TEMPLOCK will output a logic high when the voltage at THERMIN is within 2.5 mV of TEMPSET. This voltage can be related to temperature by solving for m from Equation 8. For most laser diode applications, 2.5 mV is equivalent to ±0.1°C.If the voltage difference between THERMIN and TEMPSET is greater than 2.5 mV, then TEMPLOCK will output a logic low.The input offset voltage of the ADN8830 is guaranteed to within 250 µV, which for most applications is within ±0.01°C.Setting the Switching FrequencyThe ADN8830 has an internal oscillator to generate the switch-ing frequency for the output stage. This oscillator can be either set in free-run mode or synchronized to an external clock signal. For free-run operation, SYNCIN (Pin 25) should be connected to ground and COMPOSC (Pin 24) should be connected to AVDD. The switching frequency is then set by a single resistor connected from FREQ (Pin 26) to ground.Table I shows R FREQ for some common switching frequencies.Table I.Switching Frequencies vs. R FREQf SWITCH R FREQ 100 kHz 1.5 M Ω250 kHz 600 k Ω500 kHz 300 k Ω750 kHz 200 k Ω1 MHz150 k ΩFor other frequencies, the value for this resistor, R FREQ , should be set toR f FREQSWITCH=×150109(12)where f SWITCH is the switching frequency in Hz.Higher switching frequencies reduce the voltage ripple across the TEC. However, high switch frequencies will create more power dissipation in the external transistors. This is due to the more frequent charging and discharging of the transistors ’ gate capacitances. If large transistors are needed for a high output current application, faster switching frequencies could reduce the overall power efficiency of the circuit. This is covered in detail in the Calculating Power Dissipation and Efficiency section.The switching frequency of the ADN8830 can be synchronized with an external clock by connecting the clock signal to SYNCIN (Pin 25). Pin 24 should also be connected to an R-C network, as shown in Figure 6. This network is simply used to compensate a PLL to lock on to the external clock. To ensure the quickest synchronization lock-in time, R FREQ should be set to 1.5 M Ω.Figure ing an R-C Network on Pin 24 with an External ClockThe relative phase of the ADN8830 internal oscillator compared to the external clock signal can be adjusted. This is accomplished by adjusting the voltage to PHASE (Pin 29) according to TPCs 3and 4. The phase shift versus voltage can be approximated asPhase Shift V VREFPHASE °=°×360(13)where V PHASE is the voltage at Pin 29, and VREF has a typical value of 2.47 V.To ensure the oscillator operates correctly, V PHASE should remain higher than 100 mV and lower than 2.3 V. This is required for either internal clock or external synchronization operation. A resistor divider from VREF to ground can establish this voltage easily, although any voltage source, such as a DAC, could be used as well. If phase is not a consideration, for example with a single ADN8830 being used, Pin 29 can be tied to Pin 6, which pro-vides a 1.5V reference voltage.。