高中数学必修二期末测试题
高中数学必修二 期末模拟卷01(含答案)
期末模拟试卷1一、单项选择题1. 若复数(1)(z m m i m =+-∈)R 的虚部为1,则z 在复平面对应的点的坐标为()A. (2,1)-B. (2,1)C. (2,1)-D. ( 2.1)--【答案】A 【解析】 【分析】本题考察复数的概念,共轭复数和复数的几何意义,属于基础题. 根据虚部为1求出m ,再根据共轭复数定义写出答案. 【解答】 解:(1)()z m m i m R =+-∈的虚部为1,11m ∴-=得2m =,所以2z i =+,2z i =-,故z 在复平面对应的点的坐标为(2,1)-, 故答案选.A2. “幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[]0,10内的一个数来表示,该数越接近10表示满意程度越高,现随机抽取6位小区居号,他们的幸福感指数分别为5,6,7,8,9,5,则这组数据的第80百分位数是()A. 7B. 7.5C. 8D. 9【答案】C 【解析】 【分析】本题考查一组数据的百分数问题,属于基础题.把该组数据从小到大排列,计算680%⨯,从而找出对应的第80百分位数; 【解答】解:该组数据从小到大排列为:5,5,6,7,8,9,且680% 4.8⨯=, 故选:.C3. 设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是()A. 若//a α,//b α,则//a bB. 若a α⊥,//a b ,则b α⊥C. 若a α⊥,b a ⊥,则//b αD. 若//a α,b a ⊥,则b α⊥【答案】B 【解析】 【分析】本题考查命题的真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养. 利用空间线线、线面、面面间的关系对每一个选项逐一分析判断得解. 【解答】解:若//a α,//b α,则a 与b 相交、平行或异面,故A 错误; 若a α⊥,//a b ,则由直线与平面垂直的判定定理知b α⊥,故B 正确; 若a α⊥,b a ⊥,则//b α或b α⊂,故C 错误;若//a α,b a ⊥,则//b α,或b α⊂,或b 与α相交,故D 错误. 故选:.B4. 在平行四边形ABCD 中,BE =13BC ,DF =12DC ,则EF = A. -23B. -12+23C.13-34D. -13+34【答案】B 【解析】【分析】本题考查平面向量的加减运算,属于基础题.利用向量的加法表示出EF ,再利用共线转化可得到答案. 【解答】解:因为13BE BC =,12DF DC =, 所以2112.3223EF EC CF BC CD AB AD =+=+=-+故答案选.B5. 已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则该圆锥的体积为()A.3B. C.23π D. 2π【答案】A 【解析】 【分析】本题主要考查圆的面积、周长、圆锥的侧面积及体积等知识点,考查运算求解能力,属于基础题型.设圆锥的底面半径为r ,高为h ,母线为l ,根据其表面积为3π,得到23rl r +=,再由它的侧面展开图是一个半圆,得到2r l ππ=,联立求得半径和高,利用体积公式求解. 【解答】解:设圆锥的底面半径为r ,高为h ,母线为l , 因为其表面积为3π,所以23rl r πππ+=,即23rl r +=,又因为它的侧面展开图是一个半圆, 所以2r l ππ=, 即2l r =,所以1,2,r l h ====所以此圆锥的体积为211.33V r h ππ=== 故选:.A6. 《史记》中讲述了田忌与齐王赛马的故事,其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马,若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.56B.23C.13D.16【答案】C 【解析】 【分析】本题考查古典概型,是基础题.本题先将所有的基本事件都列出来共9种,再将田忌的马获胜的事件选出共3种,最后计算概率即可. 【解答】解:设田忌的上等马为1A ,中等马为:2A ,下等马为3A , 齐王的上等马为1B ,中等马为:2B ,下等马为3B , 双方各自随机选1匹马进行1场比赛产生的基本事件为:11A B ,12A B ,13A B ,21A B ,22A B ,23A B ,31A B ,32A B ,33A B ,共9种;其中田忌的马获胜的事件为:12A B ,13A B ,23A B ,共3种, 所以田忌的马获胜的概率为:31.93P == 故选:.C7. 雕塑成了大学环境不可分割的一部分,有些甚至能成为这个大学的象征,在中国科学技术大学校园中就有一座郭沫若的雕像.雕像由像体AD 和底座CD 两部分组成.如图,在Rt ABC 中,70.5ABC ︒∠=,在Rt DBC 中,45DBC ︒∠=,且 2.3CD =米,求像体AD 的高度()(最后结果精确到0.1米,参考数据:sin 70.50.943︒≈,cos70.50.334︒≈,tan 70.5 2.824)︒≈A. 4.0米B. 4.2米C. 4.3米D. 4.4米【答案】B 【解析】 【分析】本题考查解三角形的实际应用中的高度问题的求解,属于基础题. 在Rt BCD 和Rt ABC 中,利用正切值可求得AC ,进而求得.AD 【解答】解:在Rt BCD 中, 2.3(tan CDBC DBC==∠米),在Rt ABC 中,tan 2.3 2.824 6.5(AC BC ABC =∠≈⨯≈米),6.5 2.3 4.2(AD AC CD ∴=-=-=米).故选:.B8. 如图,在平面直角坐标系xOy 中,原点O 为正八边形12345678PP P P P P P P 的中心,18PP x ⊥轴,若坐标轴上的点(M 异于点)O 满足j 0(i OM OP OP ++=其中1,8i j ,且i 、*)j N ∈,则满足以上条件的点M 的个数为()A. 2B. 4C. 6D. 8【答案】D 【解析】 【分析】本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题. 分点M 在x 、y 轴进行分类讨论,可得出点i P 、j P 关于坐标轴对称,由此可得出点M 的个数. 【解答】解:分以下两种情况讨论:①若点M 在x 轴上,则i P 、()*j 1,8,,P i j i j N∈关于x 轴对称,由图可知,1P 与8P 、2P 与7P 、3P 与6P 、4P 与5P 关于x 轴对称, 此时,符合条件的点M 有4个;②若点M 在y 轴上,则i P 、()*j 1,8,,P i j i j N∈关于y 轴对称,由图可知,1P 与4P 、2P 与3P 、5P 与8P 、6P 与7P 关于y 轴对称, 此时,符合条件的点M 有4个.综上所述,满足题中条件的点M 的个数为8. 故选:.D二、多项选择题9. 已知复数z 满足(1)2i z i -=,则下列关于复数z 的结论正确的是()A. ||z =B. 复数z 的共轭复数为1z i =--C. 复平面内表示复数z 的点位于第二象限D. 复数z 是方程2220x x ++=的一个根【答案】ABCD 【解析】 【分析】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确. 【解答】解:因为(1)2i z i -=,所以22(1)2211(1)(1)2i i i i z i i i i +-+====-+--+,所以||z ==A 正确;所以1z i =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)222220i i i i -++-++=--++=,所以D 正确. 故选:.ABCD10. 某市教体局对全市高三年级的学生身高进行抽样调查,随机抽取了100名学生,他们的身高都处在A ,B ,C ,D ,E 五个层次内,根据抽样结果得到统计图表,则下面叙述正确的是()A. 样本中女生人数多于男生人数B. 样本中B 层人数最多C. 样本中E 层次男生人数为6人D. 样本中D 层次男生人数多于女生人数【答案】ABC 【解析】 【分析】本题考查了统计图表,意在考查学生的计算能力和应用能力. 根据直方图和饼图依次判断每个选项的正误得到答案. 【解答】解:样本中女生人数为:924159360++++=,男生数为1006040-=,A 正确; 样本中A 层人数为:94010%13+⨯=;样本中B 层人数为:244030%36+⨯=;样本中C 层人数为:154025%25+⨯=;样本中D 层人数为:94020%17+⨯=; 样本中E 层人数为:34015%9+⨯=;故B 正确; 样本中E 层次男生人数为:4015%6⨯=,C 正确;样本中D 层次男生人数为:4020%8⨯=,女生人数为9,D 错误. 故选:.ABC11. 已知事件A ,B ,且()0.5P A =,()0.2P B =,则下列结论正确的是()A. 如果B A ⊆,那么()0.2P A B =,()0.5P AB = B. 如果A 与B 互斥,那么()0.7P A B ⋃=,()0P AB = C. 如果A 与B 相互独立,那么()0.7P A B ⋃=,()0P AB = D. 如果A 与B 相互独立,那么()0.4P AB =,()0.4P AB =【答案】BD 【解析】 【分析】本题考查在包含关系,互斥关系,相互独立的前提下的和事件与积事件的概率,是基础题.A 选项在B A ⊆前提下,计算出()0.5P AB =,()0.2P AB =,即可判断;B 选项在A 与B 互斥前提下,计算出()0.7P A B ⋃=,()0P AB =,即可判断;C 、D 选项在A 与B 相互独立前提下,计算出()0.7P A B ⋃=,()0.1P AB =,()()()0.4P AB P A P B =⋅=,()()()0.4P AB P A P B =⋅=,即可判断.【解答】解:A 选项:如果B A ⊆,那么()0.5P AB =,()0.2P AB =,故A 选项错误;B 选项:如果A 与B 互斥,那么()0.7P A B ⋃=,()0P AB =,故B 选项正确;C 选项:如果A 与B 相互独立,那么()0.7P A B ⋃=,()0.1P AB =,故C 选项错误;D 选项:如果A 与B 相互独立,那么()()()0.4P AB P A P B =⋅=,()()()0.4P AB P A P B =⋅=,故D 选项正确.故选:.BD12. 如图,正方体ABCD A B C D -''''的棱长为1,则下列四个命题正确的是()A. 若点M ,N 分别是线段A A ',A D ''的中点,则//MN BC 'B. 点C 到平面ABC D ''的距离为2C. 直线BC 与平面ABC D ''所成的角等于4πD. 三棱柱AA D BB C ''-''的外接球的表面积为3π【答案】ACD 【解析】 【分析】本题考查命题真假的判断,通过线线平行、点到面的距离、线面角,以及外接球的知识点来考查,解题时要注意空间思维能力的培养,是中档题. A 选项:通过平行的传递性得到结论;B 选项:根据点C 到平面ABCD ''的距离为CE ,进一步得到答案;C 选项:根据直线BC 与平面ABCD ''所成的角为CBC ∠',进一步得出结论; D 选项:根据三棱柱AA D BB C ''-''的外接球的半径为正方体ABCD A B C D -''''体对角线的一半,进一步得到答案.【解答】解:A 选项:若点M ,N 分别是线段A A ',A D ''的中点,则//MN AD '又//BC AD '' 所以//MN BC ',故A 正确;B 选项:连接CB '交BC '于点E ,由题易知点C 到平面ABCD ''的距离为CE ,正方体ABCD A B C D -''''的棱长为1,22CE ∴=,故B 错误;C 选项:易知直线BC 与平面ABCD ''所成的角为CBC ∠',4CBC π∴∠'=,故C 正确;D 选项:易知三棱柱AA D BB C ''-''的外接球的半径为正方体ABCD A B C D -''''体对角线的一半,3R ∴= ∴表面积为2234=4=32R πππ⎛⎫ ⎪ ⎪⎝⎭,故D 正确.故选:.ACD三、填空题13. 已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且cos cos sin b C c B a A +=,则A =__________.【答案】2π 【解析】 【分析】本题主要考查正弦定理的应用.解题的关键是利用正弦定理把等式中的边转化为角的正弦,属于基础题.根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sin A 的值进而求得.A【解答】解:cos cos sin b C c B a A +=,2sin cos sin cos sin()sin sin B C C B B C A A ∴+=+==,sin 0A ≠,sin 1A ∴=,∴由于A 为三角形内角,可得.2A π= 故答案为:.2π14. 已知数据1x ,2x ,3x ,…,n x 的平均数为10,方差为2,则数据121x -,221x -,321x -,…,21n x -的平均数为__________,方差为__________.【答案】198【解析】【分析】本题考查了平均数与方差的计算,考查了运算求解能力,属于基础题.由题意结合平均数公式和方差公式计算即可得解.【解答】 解:由已知条件可得12310n x x x x n++++=, ()()()()2222123101010102n x x x x n -+-+-++-=,所以数据121x -、221x -、321x -、、21n x -的平均数为()()()()12321212121n x x x x x n -+-+-++-=()12321210119n x x x x n++++=-=⨯-=,方差为 ()()()()222212322119211921192119n x x x x s n --+--+--++--⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦=()()()()2222123220*********n x x x x n -+-+-++-=22221234[(10)(10)(10)(10)]428n x x x x n-+-+-++-==⨯=,故答案为:19;8.15. 已知||3a =,||2b =,(2)(3)18a b a b +⋅-=-,则a 与b 的夹角为__________.【答案】3π 【解析】 【分析】本题考查运用向量数量积的定义与运算求向量的夹角,是基础题.先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为.3π 【解答】解:||3a =,2b =,22||9a a ∴==,22||4b b ==,||||cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,(2)(3)18a b a b +⋅-=-,22696cos ,6418a a b b a b ∴-⋅-=-<>-⨯=-,整理得:1cos ,2a b <>=, a ∴与b 的夹角为:.3π 故答案为:3π16. 如图,在三棱锥V ABC -中,22AB =,VA VB =,1VC =,且AV BV ⊥,AC BC ⊥,则二面角V AB C --的余弦值是__________.【答案】34【解析】【分析】本题考查二面角余弦值的计算,考查二面角的定义,考查计算能力,属于中等题. 取AB 的中点O ,连接VO 、OC ,证明出VO AB ⊥,OC AB ⊥,可得出二面角V AB C --的平面角为VOC ∠,计算出VO 、OC ,利用余弦定理求得cos VOC ∠,由此可得出二面角V AB C --的余弦值.【解答】解:取AB 的中点O ,连接VO 、OC ,如下图所示:VA VB =,O 为AB 的中点,则VO AB ⊥,且AV BV ⊥,22AB =122VO AB ∴== 同理可得OC AB ⊥,且2OC =,所以,二面角V AB C --的平面角为VOC ∠, 由余弦定理得2223cos 24VO OC VC VOC VO OC +-∠==⋅, 因此,二面角V AB C --的余弦值为3.4故答案为:3.4四、解答题17. 已知向量(2,1)a =,(3,1).b =-(1)求向量a 与b 的夹角;(2)若(3,)()c m m R =∈,且(2)a b c -⊥,求m 的值【答案】解:()(1)2,1a =,()3,1b =-,()23115a b ∴⋅=⨯+⨯-=,由题得2||21a =+2||3(b =+=设向量a 与b 的夹角为θ,则5cos 2||||5a b a b θ⋅===⨯, []0,θπ∈,所以4πθ=, 即向量a 与b 的夹角为.4π ()(2)2,1a =,()3,1b =-,()24,3a b ∴-=-,()2a b c -⊥,()20a b c ∴-⋅=,()3,c m =,()4330m ∴-⨯+=,解得 4.m =【解析】本题考查了向量的夹角公式,向量的坐标运算和向量的垂直的条件,属于中档题.(1)根据向量的坐标运算和向量的夹角公式即可求出.(2)根据向量的坐标运算先求出()24,3a b -=-,再由垂直的条件得到()4330m -⨯+=,解得即可.18. 已知a 、b 、c 分别为ABC 三个内角A 、B 、C 的对边,且a =1c =,2.3A π=(1)求b 及ABC 的面积S ;(2)若D 为BC 边上一点,且,______,求ADB ∠的正弦值.从①1AD =,②6CAD π∠=这两个条件中任选一个,补充在上面问题中,并作答. 【答案】解:(1)由余弦定理得2222cos a b c bc A =+-, 整理得260b b +-=, 0b >,2b ∴=,1133sin 212222S bc A ∴==⨯⨯⨯=; (2)选①,如下图所示:在ABC 中,由正弦定理得2sin sin 3AC BC B π=∠, 可得2sin213sin 7AC B BC π∠==, 在ABD 中,AD AB =,则ADB B ∠=∠,21sin sin ADB B ∴∠=∠=选②,在ABC 中,由正弦定理得2sin sin 3AB BC C π=∠, 可得2sin213sin AB C BC π∠== 由于C ∠为锐角,则257cos 1sin 14C C ∠=-∠=,6ADB C π∠=∠+, sin sin ()6ADB C π∴∠=∠+ 31sin cos 22C C =∠+∠ 32115727+.2142147=⨯⨯= 【解析】本题考查利用正、余弦定理解三角形以及三角形面积的计算,同时也考查了三角恒等变换,考查计算能力,属于中档题.(1)利用余弦定理可得出关于b 的二次方程,可解出b 的值,进而可求得ABC 的面积S ;(2)选①,在ABC 中,利用正弦定理可求得sin B ∠的值,再由AD AB =可得出ADB B ∠=∠,进而可求得ADB ∠的正弦值;选②,利用正弦定理求得sin C ∠的值,由同角三角函数的基本关系可求得cos C ∠,再利用两角和的正弦公式可求得sin ADB ∠的值.19. 在四面体A BCD -中,点E ,F ,M 分别是AB ,BC ,CD 的中点,且2BD AC ==,1.EM =(1)求证://EF 平面ACD ;(2)求异面直线AC 与BD 所成的角.【答案】解:(1)由题意,点E ,F 分别是AB ,BC 的中点,所以//EF AC , 因为EF ⊂/平面ACD ,AC ⊂平面ACD ,所以//EF 平面ACD ;(2)由(1)知//EF AC ,因为点F ,M 分别是BC ,CD 的中点,可得//FM BD ,所以EFM ∠即为异面直线AC 与BD 所成的角(或其补角).在EFM 中,1EF FM EM ===,所以EFM 为等边三角形,所以60EFM ︒∠=, 即异面直线AC 与BD 所成的角为60.︒【解析】本题主要考查了线面平行的判定与证明,以及异面直线所成角的求解.(1)由点E ,F 分别是AB ,BC 的中点,得到//EF AC ,结合线面平行的判定定理,即可求解;(2)由(1)知//EF AC 和//FM BD ,得到EFM ∠即为异面直线AC 与BD 所成的角,在EFM 中,即可求解.20.溺水、校园欺凌等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,甲、乙两个中学代表队狭路相逢,假设甲队每人回答问题正确的概率均为23,乙队每人回答问题正确的概率分别为123,,234,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.【答案】解:(1)记“甲队总得分为3分”为事件A,记“甲队总得分为1分”为事件B,甲队得3分,即三人都回答正确,其概率为()2228 33327P A=⨯⨯=,甲队得1分,即三人中只有1人回答正确,其余两人都答错,其概率为()2222222222(1)(1)(1)(1)(1)(1). 3333333339P B=⨯-⨯-+-⨯⨯-+-⨯-⨯=∴甲队总得分为3分与1分的概率分别为827,2.9(2)记“甲队得分为2分”为事件C,记“乙队得分为1分”为事件D,事件C即甲队三人中有2人答对,其余1人答错,则()2222222224(1)(1)(1) 3333333339P C=⨯⨯-+⨯-⨯+-⨯⨯=,事件D即乙队3人中只有1人答对,其余2人答错,则()1231231231(1)(1)(1)(1)(1)(1) 2342342344P D=⨯-⨯-+-⨯⨯-+-⨯-⨯=,由题意得事件C与事件D相互独立,∴甲队总得分为2分且乙队总得分为1分的概率:()()()411.949P CD P C P D ==⨯= 【解析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.(1)记“甲队总得分为3分”为事件A ,记“甲队总得分为1分”为事件B ,甲队得3分,即三人都回答正确,甲队得1分,即三人中只有1人回答正确,其余两人都答错,由此利用相互独立事件概率乘法公式能求出甲队总得分为3分与1分的概率.(2)记“甲队得分为2分”为事件C ,记“乙队得分为1分”为事件D ,事件C 即甲队三人中有2人答对,其余1人答错,事件D 即乙队3人中只有1人答对,其余2人答错,由题意得事件C 与事件D 相互独立,由此利用相互独立事件概率乘法公式能求出甲队总得分为2分且乙队总得分为1分的概率.21. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,AB BC ⊥,2PA AB BC ===,点D 为线段AC 的中点,点E 为线段PC 上一点.(1)求证:平面BDE ⊥平面.PAC(2)当//PA 平面BDE 时,求三棱锥P BDE -的体积.【答案】解:(1)证明:因为PA ⊥底面ABC ,且BD ⊂底面ABC ,所以.PA BD ⊥因为AB BC =,且点D 为线段AC 的中点,所以.BD AC ⊥又PA AC A =,所以BD ⊥平面.PAC又BD ⊂平面BDE ,所以平面BDE ⊥平面.PAC(2)解:因为//PA 平面BDE ,PA ⊂平面PAC ,平面PAC平面BDE ED =,所以//.ED PA因为点D 为AC 的中点,所以点E 为PC 的中点.法一: 由题意知点P 到平面BDE 的距离与点A 到平面BDE 的距离相等,所以P BDE A BDE V V --=1124E ABD E ABC P ABC V V V ---=== 111222432=⨯⨯⨯⨯⨯ 1.3= 所以三棱锥P BDE -的体积为1.3法二:因为//PA 平面BDE ,由题意知点P 到平面BDE 的距离与点A 到平面BDE 的距离相等.所以P BDE A BDE V V --=,又AC =AD =BD =1DE =,由(1)知,AD BD ⊥,又AD DE ⊥,且BD DE D ⋂=,所以AD ⊥平面BDE , 所以13A BDE BDE V AD S -=⋅1111.323=⨯= 所以三棱锥P BDE -的体积为1.3法三:又AC =AD =BD =1DE =,由(1)知:BD ⊥平面PDE ,且111222PDE S DE AD =⋅=⨯= 所以P BDE B PDE V V --=13PDE BD S =⋅11.323== 所以三棱锥P BDE -的体积为1.3【解析】本题考查面面垂直的证明,三棱锥的体积,是中档题.(1)先证明PA BD ⊥,再证明BD AC ⊥,从而证明BD ⊥平面PAC ,最后证明平面BDE ⊥平面PAC ;(2)先判断点E 为PC 的中点,再判断三棱锥P BDE -的体积等于三棱锥A BDE -的体积,最后求体积即可.22.2020年开始,山东推行全新的高考制度,新高考不再分文理科,采用“33”模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还需要依据想考取的高校及专业要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科满分100分,2020年初受疫情影响,全国各地推迟开学,开展线上教学.为了了解高一学生的选科意向,某学校对学生所选科目进行线上检测,下面是100名学生的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如图所示.(1)求频率分布直方图中a的值;(2)由频率分布直方图;()i求物理、化学、生物三科总分成绩的中位数;()ii估计这100名学生的物理、化学、生物三科总分成绩的平均数(同一组中的数据用该组区间的中点值作代表);(3)为了进一步了解选科情况,由频率分布直方图,在物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中,用分层随机抽样的方法抽取7名学生,再从这7名学生中随机抽取2名学生进行问卷调查,求抽取的这2名学生来自不同组的概率.【答案】解:(1)由(0.0020.00950.0110.01250.00750.0025)201a ++++++⨯=, 得0.005a =;(2)()i 因为(0.0020.00950.011)200.450.5++⨯=<,(0.0020.00950.0110.0125)200.70.5+++⨯=>,所以中位数在[220,240),设中位数为x ,所以(220)0.01250.05x -⨯=,解得224x =,所以物理、化学、生物三科总分成绩的中位数为224;()ii 这100名学生的物理、化学、生物三科总分成绩的平均数为(0.0021700.00951900.0112100.01252300.0075250⨯+⨯+⨯+⨯+⨯0.0052700.0025290)20(0.34 1.805 2.31 2.875 1.875 1.350.725)+⨯+⨯⨯=++++++20⨯11.2820225.6=⨯=(3)物理、化学、生物三科总分成绩在[220,240)和[260,280)的两组中的人数分别为:0.01252010025⨯⨯=人,0.0052010010⨯⨯=人,根据分层随机抽样可知,从成绩在[220,240)的组中应抽取25752510⨯=+人,记为,,,,a b c d e , 从成绩在[260,280)的组中应抽取2人,记为,f g ,从这7名学生中随机抽取2名学生的所有基本事件为:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a d a e a f a g b c b d b e b f b g c d c e c f c g ,(,),(,),(,),(,),(,),(,)d e d f d g e f e g f g ,共有21种,其中这2名学生来自不同组的共有10种,根据古典概型的概率公式可得所求概率为10.21【解析】本题考查了利用频率分布直方图求中位数、平均数,考查了分层抽样,考查了古典概型的概率公式,属于中档题.(1)根据7组频率和为1列方程可解得结果;(2)()i 根据前三组频率和为0.450.5<,前四组频率和为0.70.5>可知中位数在第四组,设中位数为x ,根据(220)0.01250.05x -⨯=即可解得结果;()ii 利用各组的频率乘以各组的中点值,再相加即可得解;(3)根据分层抽样可得从成绩在[220,240)的组中应抽取5人,从成绩在[260,280)的组中应抽取2人,再用列举法以及古典概型的概率公式可得解.。
人教版高中数学必修二期末考试试题
人教版高中数学必修二期末考试试题一、选择题1. 若函数 $f(x)=x^3-3x^2+bx+c$ 的图像过点 $(1,5)$,则$b=$()A.$-1$ B.$-2$ C.$-3$ D.$-4$2. 函数 $y=\frac{x+1}{x-1}$ 的图象关于直线 $y=-x$ 对称。
3. 从集合 $\{1,2,3,4,5,6\}$ 中取两个不同的元素组成一个二元组,则其中不含 $3$ 的二元组的数目为()。
A.$20$ B.$10$ C.$15$ D.$18$4. 已知集合$A=\{x\mid 2x-1\in \mathbb{N}\}$,则$A=$()。
A.$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$ B .$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots,b\bigr\}$C.$\bigl\{1,2,3,\cdots\bigr\}$ D.$\bigl\{\cdots,-\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$5. 如图所示,大三角形的三个点坐标分别为 $A(-2,0)$,$B(0,2)$,$C(2,-4)$,以 $C$ 为顶点小三角形顶点的坐标为()。
A.$(-\frac{7}{5},-\frac{14}{5})$ B.$(\frac{7}{5},\frac{6}{5})$C.$(\frac{2}{5},-\frac{18}{5})$ D.$(\frac{6}{5},-\frac{4}{5})$二、填空题6. 下列各组数中互为相反数的是()。
$${1\over3},-{1\over3};\qquad {\sqrt{10}},-\sqrt{10};\qquad -3,3\sqrt{2}$$7. 容量为 $500 \rm mL$ 的杯中盛满水,再加进糖水搅拌,这时每 $100 \rm mL$ 的液体中含糖 $10\%$。
【易错题】高中必修二数学下期末试题附答案
【解析】
三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径,
若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,
可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,
可得 ,解得r=3.
球O的表面积为: .
点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
【易错题】高中必修二数学下期末试题附答案
一、选择题
1.设 , 为两条不同的直线, , 为两个不同的平面,则( )
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是
详解:四棱锥 的体积是三棱柱体积的 , ,当且仅当 时,取等号.
∴ .
故选C.
点睛:本题考查棱柱与棱锥的体积,考查用基本不等式求最值.解题关键是表示出三棱柱的体积.
8.C
解析:C
【解析】
当 时,不等式 可化为 ,显然恒成立;当 时,若不等式 恒成立,则对应函数的图象开口朝上且与 轴无交点,则 解得: ,综上 的取值范围是 ,故选C.
A. B.
C. D.
5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把 个面包分给 个人,使每个人所得成等差数列,且使较大的三份之和的 是较小的两份之和,则最小的一份为()
高中数学选择性必修二 高二上学期数学期末测试卷(A卷 夯实基础)同步单元AB卷(含答案)
班级 姓名 学号 分数高二上学期数学期末测试卷(A 卷·夯实基础)注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.过两点()()5,,3,1A y B -的直线的倾斜角是135°,则y 等于( ) A .2 B .2- C .3 D .3-【答案】D 【详解】因为斜率tan1351k ︒==-,所以1153y k +==--,得3y =-. 故选:D.2.40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是( ) A50y ++= B.40x += C.50x += D.0x +=【答案】C 【详解】40y --=,令0x =,解得4y =-, 设()0,4A -,关于直线10x y +-=的对称点为(),B m n , 则4141022n mm n +⎧=⎪⎪⎨-⎪+-=⎪⎩,解得51m n =⎧⎨=⎩,即()5,1B ,40y --=,令x =1y =-,设)1C-,关于直线10x y +-=的对称点为(),D a b ,则11102b =--=,解得21a b =⎧⎪⎨=⎪⎩(2,1D ,BD k ==直线BD:)15y x -=-,即50x =。
故选:C3.已知异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==,则,a b 夹角的大小是( ) A .56πB .34π C .3π D .6π【答案】C 【详解】异面直线,a b 的方向向量分别是()()2,1,3,1,3,2m n --==∴21132371cos ,1424m n m n m n⨯+⨯-+⨯-⋅-====-, 异面直线,a b 所成角为范围为02πθ<≤,,a b ∴夹角的大小是3π故选:C4.设数列{}n a 的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16C .49D .64【答案】A 【详解】878644915a S S =-=-= 故选:A5.已知在等比数列{}n a 中,3544a a a =,等差数列{}n b 的前n 项和为n S ,且74b a =,则13S =( ) A .26 B .52 C .78 D .104【答案】B 【详解】因为在等比数列{}n a 中,3544a a a =,可得2444a a =,40a ≠,解得44a =,又因为数列{}n b 是等差数列,744b a ==,则()13113711313134522S b b b =⨯+==⨯=.故选:B.6.直三棱柱111ABC A B C -中,90BCA ∠=,M 、N 分别是11A B 、11A C 的中点,1BC CA CC ==,则BM 与NA 所成的角的余弦值为( )A .BCD . 【答案】C 【详解】由题意可知1CC ⊥平面ABC ,且90BCA ∠=,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设12BC CA CC ===,则()2,0,0A 、()0,2,0B 、()1,0,2N 、()1,1,2M ,()1,0,2AN =-,()1,1,2BM =-,30cos ,56AN BM AN BM AN BM⋅<>===⨯⋅故BM 与NA 30故选:C.7.设抛物线C :y 2=4x 的焦点为F ,M 为抛物线C 上一点,N (2,2),则MF MN +的最小值为( ) A .3 B .2C .1D .4【答案】A 【详解】因为抛物线C :y 2=4x 的焦点为F (1,0),准线为1x =-, 根据抛物线定义可知MF =1M x +,所以当MN 垂直抛物线准线时,MF MN +最小, 最小值为:13N x +=. 故选:A .8.已知椭圆C :2222x y a b +=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为34,点P 为椭圆上一点,若∠F 1PF 2=π2,且F 1PF 2内切圆的半径为1,则C 的方程为( ) A .22167x y +=1B .223214x y +=1C .24x +y 2=1D .22447x y +=1【答案】A 【详解】易知F 1PF 2中,内切圆半径r =1212-2PF PF F F +=a -c =1,又离心率为34c a =,解得a =4,c =3,所以椭圆C 的方程为22167x y +=1. 故选:A二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知等差数列{}n a 的公差为d ,前n 项和为n S ,316a =,512a =,则( ) A .2d =- B .124a =C .2628a a +=D .n S 取得最大值时,11n =【答案】AC 【详解】解法一:由题可得11216,412a d a d +=⎧⎨+=⎩,解得120,2,a d =⎧⎨=-⎩故选项A 正确,选项B 错误;易知()()2012222n a n n =+-⨯-=-+,则26181028a a +=+=,选项C 正确.因为1020a =>,110a =,1220a =-<,所以当10n =或11时,n S 取得最大值(技巧:由0d <得数列{}n a 递减,进而判断n S 最大时的临界项) 选项D 错误. 故选:AC解法二:对于A :易知53212164d a a =-=-=-,所以2d =-,选项A 正确;对于B :()132162220a a d =-=-⨯-=,选项B 错误; 对于C :263528a a a a +=+=,选项C 正确;对于D :易知()()2012222n a n n =+-⨯-=-+,1020a =>,110a =,1220a =-<(技巧:由0d <得数列递减,进而判断n S 最大时的临界项)所以当10n =或11时,n S 取得最大值,所以选项D 错误. 故选:AC10.已知直线:440l kx y k -+-=与圆22:4440M x y x y +--+=,则下列说法中正确的是( )A .直线l 与圆M 一定相交B .若0k =,则直线l 与圆M 相切C .当1k =时,直线l 被圆M 截得的弦最长D .圆心M 到直线l的距离的最大值为【答案】BCD【详解】22:4440M x y x y +--+=,即()()22224x y -+-=,是以()2,2为圆心,以2为半径的圆,A.因为直线:440l kx y k -+-=,直线l 过()4,4,2244444440+-⨯-⨯+>,则()4,4在圆外,所以直线l 与圆M 不一定相交,故A 错误;B.若0k =,则直线:4l y =,直线l 与圆M 相切,故B 正确;C.当1k =时,直线l 的方程为0x y -=,过圆M 的圆心,即直线l 是直径所在直线,故C 正确;D.由圆的性质可知当直线l 与过点()4,4的直径垂直时,圆心M 到直线l 的距离的最大,此时=故D 正确,故选:BCD.11.已知点P 在双曲线22:1169x y C -=上,1F ,2F 分别为双曲线的左、右焦点,若12PF F △的面积为20,则下列说法正确的是( ) A .点P 到x 轴的距离为4 B .12523PF PF += C .12PF F △为钝角三角形 D .1260F PF ∠=︒【答案】AC 【详解】由双曲线的方程可得4a =,3b =,则5c =,由12PF F △的面积为20,得112102022P P c y y ⨯⨯=⨯⨯=,解得4P y =,即点P 到x 轴的距离为4,故A 选项正确; 将4P y =代入双曲线方程可得203P x =,根据双曲线的对称性可设20,43P ⎛⎫⎪⎝⎭,则2133PF =,由双曲线的定义知1228PF PF a -==,则11337833PF =+=, 则12133750333PF PF +=+=,故B 选项错误; 在12PF F △中,12371321033PF c PF =>=>=, 则24012020553PF k -==>-,21PF F ∠为钝角,则12PF F △为钝角三角形,故C 选项正确;()2222121212121212122100cos 22PF PF PF PF PF PF F F F PF PF PF PF PF -+-+-∠==13376410021891331133713372233-+⨯⨯⨯==-≠⨯⨯⨯, 则1260F PF ∠=︒错误, 故选:AC.12.已知函数()2ln f x x x =,下列说法正确的是( )A .当1x >时,()0f x >;当01x <<时,()0f x <B .函数()f x的减区间为(,增区间为)+∞C .函数()f x 的值域1,2e ⎡⎫-+∞⎪⎢⎣⎭D .()1f x x ≥-恒成立 【答案】ACD 【详解】对于选项A ,当01x <<时,ln 0x <;当1x >时,ln 0x >,故选项A 正确; 对于选项B ,2ln 2ln 1fxx x x x x ,令()0f x '>可得2ln 10x ,有x >知函数()f x 的减区间为⎛⎝,增区间为⎫+∞⎪⎭,故选项B 错误;对于选项C ,由上可知()min 11e 2e f x f ===-,x →+∞时,()f x →+∞,故选项C 正确;对于选项D ,()22111ln 10ln 0f x x x x x x x x ≥-⇔-+≥⇔-+≥,令()211ln g x x x x=-+,有()()()22333121212x x x x x g x x x x x '-++--===+,令()0g x '>可得1x >,故函数()g x 的增区间为()1,+∞,减区间为()0,1,可得()()min 10g x g ==,故选项D 正确. 故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.与直线3250x y -+=的斜率相等,且过点()4,3-的直线方程为_________ 【答案】392y x =+【详解】直线3250x y -+=的斜率为32,故所求直线方程为()3342-=+y x ,即392y x =+.故答案为:392y x =+. 14.数列{}n a 中,11a =,()*12,2nn n a a n N a +=∈+,则5a =___________ 【答案】13【详解】 122nn n a a a +=+,11a =, 则1212223a a a ==+,2322122a a a ==+,3432225a a a ==+,4542123a a a ==+. 故答案为:13.15.若函数()ln f x x x =+在x =1处的切线与直线y =kx 平行,则实数k =___________. 【答案】2 【详解】∵()ln f x x x =+, ∴1()1f x x '=+,1(1)121f '=+=,又函数()ln f x x x =+在x =1处的切线与直线y =kx 平行, ∴2k =. 故答案为:2.16.设5(4P -是双曲线2222:1(0,0)x y C a b a b -=>>上一点,1(2,0)F -是C 的左焦点,Q 是C右支上的动点,则C 的离心率为______,1PQF △面积的取值范围是_______. 【答案】2)+∞ 【详解】双曲线C 的右焦点为2(2,0)F,则13||2PF =,27||2PF ,因点P 在双曲线C 上,则由双曲线定义得2122a PF PF =-=,即1a =,又2c =, 所以双曲线C 的离心率为2ce a==;因直线PF 1的斜率1PF k =ba=1PF 与双曲线C 在第一、三象限的渐近线平行,则这条渐近线与直线1PF 0y -+的距离d ==上的点Q 到直线PF 1距离h d >=,于是得11113222PQF SPF h =⋅⋅>⨯所以1PQF △面积的取值范围是)+∞.故答案为:2;)+∞ 四、解答题(本大题共6小题,共70分)17.已知圆()22:20C x y mx y m R ++-=∈,其圆心在直线0x y +=上.(1)求m 的值;(2)若过点()1,1的直线l 与C 相切,求l 的方程. 【答案】 (1)2m =(2)20x y +-=或0x y -= 【详解】 (1)圆C 的标准方程为:222(1)124m m x y ⎛⎫++-=+⎪⎝⎭, 所以,圆心为,12m ⎛⎫- ⎪⎝⎭由圆心在直线0x y +=上,得2m =. 所以,圆C 的方程为:22(1)(1) 2.x y ++-=(2)由题意可知直线l 的斜率存在,设直线l 的方程为:()11y k x -=-, 即10,kx y k --+=由于直线l 和圆C解得:1k =±所以,直线方程为:20x y +-=或0x y -=.18.如图,在三棱锥P -ABC 中,△ABC 是以AC 为底的等腰直角三角形,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求直线PC 与平面PAM 所成角的正弦值. 【答案】 (1)证明见解析. (2【详解】 (1)证明:连接BO,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =,又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥,OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC ,(2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+,所以PC 与平面PAM 所成角的正弦值为则平面PAC 的法向量为() 1,0,0m =, 设平面MPA 的法向量(,,),n x y z =则(0,2,PA =--20,n PA y ⋅=--= ()()22220n AM x y λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即=13λ= 或 3λ=( 舍),设平面MPA的法向量(23,n =,(0,2,PC =-,设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>==+19.已知椭圆与双曲线221169x y -=具有共同的焦点1F 、2F ,点P 在椭圆上,12PF PF ⊥,____________①椭圆过点(),②椭圆的短轴长为10,③(①②③中选择一个) (1)求椭圆的标准方程; (2)求12PF F △的面积. 【答案】(1)条件选择见解析,椭圆方程为2215025x y += (2)1225PF F S=【详解】 (1)解:设椭圆方程()222222210,x y a b c a b a b+=>>=-.因为椭圆与双曲线221169x y -=具有共同的焦点,则225c =.选①:由已知可得a =225b =,椭圆方程为2215025x y +=; 选②:由已知可得5b =,则250a =,椭圆方程为2215025x y +=;选③得c a =,则250a =,椭圆方程为2215025x y +=. (2)解:由椭圆定义知122PF PF a +==, 又12PF PF ⊥,222124100PF PF c ∴+==②,由①可得2212121221002200PF PF PF PF PF PF ++⋅=+⋅=,解得1250PF PF ⋅=, 因此,12121252PF F SPF PF =⋅=. 20.设函数()322f x x x x =--++.(1)求()f x 在2x =-处的切线方程;(2)求()f x 的极大值点与极小值点;(3)求()f x 在区间[]5,0-上的最大值与最小值.【答案】(1)7100x y ++=;(2)极小值点为1x =-,极大值点为13x =; (3)()min 1f x =,()max 97f x =.【详解】(1)由题意得:()2321f x x x '=--+,则()212417f '-=-++=-,又()284224f -=--+=,()f x ∴在2x =-处的切线方程为()472y x -=-+,即7100x y ++=; (2)令()23210f x x x '=--+=,解得:1x =-或13x =, 则()(),,x f x f x '变化情况如下表:()f x ∴的极小值点为1x =-,极大值点为3x =; (3)由(2)知:()f x 在[)5,1--上单调递减,在(]1,0-上单调递增; 又()5125255297f -=--+=,()02f =,()111121f -=--+=, ()()min 11f x f ∴=-=,()()max 597f x f =-=.21.已知椭圆C 的离心率e =()1A ,)2A (1)求椭圆C 的方程;(2)设动直线:l y kx b =+与曲线C 有且只有一个公共点P ,且与直线2x =相交于点Q ,求证:以PQ 为直径的圆过定点()1,0N .【答案】(1)2212x y +=; (2)证明见解析.【详解】(1)椭圆长轴端点在x 轴上,∴可设椭圆方程为()222210x y a b a b+=>>,由题意可得:222a b c c e a a ⎧=+⎪⎪==⎨⎪⎪=⎩,解得:11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为:2212x y +=; (2) 由2212x y y kx b ⎧+=⎪⎨⎪=+⎩得:()222124220k x kbx b +++-=,曲线C 与直线l 只有一个公共点,()228120k b ∴=+-=,即2221b k =+,设(),P P P x y ,则()22422212P kb kb k x b b k =-=-=-+, 222221p P k b k y kx b b b b b-∴=+=-+==,21,k P b b ⎛⎫∴- ⎪⎝⎭; 由2y kx b x =+⎧⎨=⎩得:22x y k b =⎧⎨=+⎩,即()2,2Q k b +; ()1,0N ,211,k NP bb ⎛⎫∴=-- ⎪⎝⎭,()1,2NQ k b =+, 2210k k b NP NQ b b+∴⋅=--+=,即NP NQ ⊥, ∴以PQ 为直径的圆恒过定点()1,0N .22.已知函数()ln xe f x ax a x x=-+. (1)若a e =,求()f x 的极值点;(2)若()0f x ≥,求a 的取值范围.【答案】(1)极小值点为1,无极大值点(2)(,]e -∞【详解】(1)解:(1)()f x 定义域为(0,)+∞,222(1)(1)(1)()()x x x x xe e e x e e x x e ex f x e x x x x x -----'=-+=-=, 令(),(0,)x g x e ex x =-∈+∞,则()x g x e e '=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()10g x g ≥=,即0x e ex -≥,当01x <<时,()0f x '<,当1x >时,()0f x '>,所以函数()f x 在()0,1上递减,在()1,+∞上递增,()f x ∴的极小值点为1,无极大值点;(2)由()0f x ≥得ln (ln )x x e a x x --≥,令ln ,(0,)t x x x =-∈+∞,则t e at ≥,111x t x x-'=-=, 当01x <<时,0t '<,当1x >时,0t '>,所以函数ln ,(0,)t x x x =-∈+∞在()0,1上递减,在()1,+∞上递增,所以当1x =时,min 1t =,[1+t ∴∈∞,),te a t∴≤, 令(),[1,)te m t t t =∈+∞,则2(1)()0t e t m t t -'=≥, 所以函数()t e m t t=在[1,)t ∈+∞上递增,所以min ()(1)m t m e ==, 所以a e ≤,所以a 的取值范围为(,]e -∞.。
【易错题】高中必修二数学下期末试卷及答案
【易错题】高中必修二数学下期末试卷及答案一、选择题1.如图,在ABC ∆中,已知5AB =,6AC =,12BD DC =u u u v u u u v ,4AD AC ⋅=u u u v u u u v ,则AB BC ⋅=u u u v u u u vA .-45B .13C .-13D .-372.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 3.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .432⎛ ⎝⎭,B .432⎡⎢⎣⎦,C .432⎡⎢⎣⎭,D .43⎛ ⎝⎦4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .45.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23B .24C .25D .266.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .7.已知函数21(1)()2(1)ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增9.函数()lg ||f x x x =的图象可能是( )A .B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.在ABC ∆中,2cos (,b,22A b ca c c+=分别为角,,A B C 的对边),则ABC ∆的形状是( ) A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形D .正三角形二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示) 14.设a >0,b >0,若3是3a 与3b的等比中项,则11a b+的最小值是__. 15.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________16.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 .17.函数()2sin sin 3f x x x =+-的最小值为________.18.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______.19.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.20.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 三、解答题21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程.22.已知2()sin cos f x x x x =+ (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.记n S 为公差不为零的等差数列{}n a 的前n 项和,已知2219a a =,618S =.(1)求{}n a 的通项公式; (2)求n S 的最大值及对应n 的大小.25.已知二次函数()f x 满足()(1)2f x f x x -+=-且(0)1f =. (1)求()f x 的解析式;(2)当[1,1]x ∈-时,不等式()2x m f x >+恒成立,求实数m 的取值范围. 26.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】先用AB u u u v 和AC uuu v表示出2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,再根据,12BD DC =u u u v u u u v 用用AB u u u v 和AC uuu v 表示出AD u u u v,再根据4AD AC ⋅=u u u v u u u v 求出A AB C ⋅u u u v u u u v 的值,最后将A AB C ⋅u u u v u u u v 的值代入2A AB BC AB C AB ⋅=⋅-u u u v u u u v u u u v u u u v u u u v ,,从而得出答案. 【详解】()2 A =A AB BC AB C AB AB C AB ⋅=⋅-⋅-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,∵12BD DC =u u u v u u u v ,∴111B C ?C B 222AD A A AD AD A AD A -=-=-+u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v(),整理可得:12 AB 33AD AC +u u u v u u u v u u u v =,221A A 433AD AC AB C C ∴⋅⋅+=u u u v u u u v u u u v u u u v u u u v =∴ A =-12AB C ⋅u u u v u u u v , ∴2 =A =122537AB BC AB C AB ⋅⋅---=-u u u v u u u v u u u v u u u v u u u v .,故选:D . 【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题.2.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.3.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得2x <<故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 4.B 解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.5.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b b a ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=, 则()323266663213132?25a b a b a b a b a b ba b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【易错题】高中必修二数学下期末试题(含答案)
故选 D. 【点睛】 本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想 象能力.
6.D
解析:D 【解析】
试题分析: AB 2a, AC 2a b , AC AB b ,b AC AB BC .
由题意知 b
2, a b
a b cos120
1
2
1 2
棱 CC1 的中点,则异面直线 AB1 和 BM 所成的角为( )
A.
B.
C.
D.
2
3
11.已知 f x 是定义在 R 上的奇函数,当 x 0 时, f x 3 2x ,则不等式
f x 0 的解集为( )
A.
,
3 2
0,
3 2
B.
,
3 2
3 2
,
C.
3 2
,
3 2
【详解】
因为 b 在 a 上的投影(正射影的数量)为 2 ,
所以| b | cos a, b 2 ,
即
|
b
|
cos
2 a,
b
,而
1
cos
a,
b
0
,
所以| b | 2 ,
因为
a
2b
2
(a
2b)2
2
a
4a b
2
4b
|
a
|2
4
|
a
||
b|
cos
a, b
4
| b|2
=16 4 4 (2) 4 | b |2 48 4 | b |2
16.在四面体 ABCD中, AB=AD 2, BAD 60,BCD 90,二面角 A BD C 的大小为150 ,则四面体 ABCD 外接球的半径为__________.
【压轴题】高中必修二数学下期末试题(含答案)
D.
D. 7 8
8.已知函数
f
(x)
x
a x
1
(x 1)
x2 2x (x 1)
A. 0,1
B. 0,1
在 R 上单调递增,则实数 a 的取值范围是
C. 1,1
D. 1,1
9.函数 f (x) xlg | x | 的图象可能是( )
A.
B.
C.
D.
10.已知 a log0.6 0.5 , b ln 0.5 , c 0.60.5 ,则( )
位圆上所有点组成的集合,集合 B 表示直线 y x 上所有的点组成的集合,又圆
x2 y2 1 与直线 y x 相交于两点
2, 2
2 2
,
2 , 2
2 2
,则
A
B 中有 2 个元
素.故选 B.
【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和
化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解
由余弦定理得
,
解得
(
舍去),故选 D.
【考点】 余弦定理 【名师点睛】 本题属于基础题,考查内容单一,根据余弦定理整理出关于 b 的一元二次方程,再通过解方程 求 b.运算失误是基础题失分的主要原因,请考生切记!
2.A
解析:A
【解析】
a1
a3
a5
3a3
3, a3
1,
S5
5 2
(a1
a5 )
5 2
2a3
2
[ , 5 ]上的最大值为__. 6 12
15.已知 ABC , B 135 , AB 2 2,BC 4 ,求 AB AC ______.
高中数学选择性必修二 北京一零一实验学校高二下学期期末数学试题(含答案)
当 时, ,则 ,而 ,则 ,即 ;
当 时, ,则 ,而 ,则 ,即 ;
∴满足 的 的值是 .
故答案为:
14.已知f(x)=ln(x2+1),g(x)= -m,若对∀x1∈[0,3],∃x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是________.
【答案】
【解析】
【分析】求得 的最小值,以及 的最大值,根据已知条件的等价转化,列出不等式,则问题得解.
【详解】当x∈[0,3]时,f(x)min=f(0)=0,
当x∈[1,2]时,g(x)min=g(2)= -m,
对∀x1∈[0,3],∃x2∈[1,2]使得f(x1)≥g(x2)等价于f(x)min≥g(x)min,
【答案】
【解析】
【分析】分别求出集合A,B,再求两集合的交集
【详解】解:由 ,得 ,所以 ,
由 ,得 ,解得 ,所以 ,
所以 ,
故答案为:
12.写出“ ”的一个充分不必要条件_____.
【答案】 (答案不唯一)
【解析】
【分析】先由不等式 求出解集,在解集内的任何数或范围,都可以是“ ”的一个充分不必要条件.
(2)设函数 为“ 函数”,且存在 ,使 ,求证:
(3)试写出一个“ 函数”,满足 ,且使集合 中元素最少(只需写出你的结论)
【答案】(1) 是“ 函数”, 不是“ 函数”;(2)证明见解析;(3) (答案不唯一).
【解析】
【分析】(1)利用“ 函数”定义,结合 与 解析式,判断 上的符号,利用作差法、函数单调性比较对应函数 的大小,进而确定是否为“ 函数”;
A.16B.25C.9D.36
【答案】B
高中数学必修二期末试卷及答案
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.1.在直角坐标系中,已知A(-1,2),B(3,0),那么线段AB中点的坐标为中点的坐标为(().A.(2,2)B.(1,1)C.(-2,-2)D.(-1,-1) 2.右面三视图所表示的几何体是.右面三视图所表示的几何体是(().A.三棱锥.三棱锥B.四棱锥.四棱锥C.五棱锥.五棱锥D.六棱锥.六棱锥3.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为的值为(().A.2 B.21C.-2 D.-214.一个球的体积和表面积在数值上相等,则该球半径的数值为.一个球的体积和表面积在数值上相等,则该球半径的数值为(().A.1 B.2 C.3 D.4 5.下面图形中是正方体展开图的是.下面图形中是正方体展开图的是(().6.圆x2+y2-2x-4y-4=0的圆心坐标是的圆心坐标是(().A.(-2,4) B.(2,-4) C.(-1,2) D.(1,2)7.直线y=2x+1关于y轴对称的直线方程为轴对称的直线方程为(().A.y=-2x+1 B.y=2x-1 C.y=-2x-1 D.y=-x-1 8.已知两条相交直线a,b,a∥平面 a,则b与a 的位置关系是的位置关系是(().A.bÌ平面a B.b⊥平面aC.b∥平面a D.b与平面a相交,或b∥平面a9.在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出是不重合的平面,则下列条件中可推出a∥b的是的是(().A.aÌa,bÌb,a∥b B.a∥a,bÌbC.a⊥a,b⊥a D.a⊥a,bÌa10.圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是的位置关系是(().正视图正视图 侧视图侧视图俯视图俯视图(第2题)11.如图,正方体ABCD —A'B'C'D'中,直线D'A 与DB 所成的角可以表示为所成的角可以表示为(( ). A .∠D'DB B .∠AD' C' C .∠ADBD .∠DBC'12. 圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于轴截得的弦长等于(( ). A . 1 B .23C . 2 D . 3 13.如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是中点,则下列叙述正确的是(( ).A .CC 1与B 1E 是异面直线是异面直线 B .AC ⊥平面A 1B 1BAC .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E14.有一种圆柱体形状的笔筒,底面半径为4 4 cm cm ,高为12 12 cm cm .现要为100个这种相同规格的笔筒涂色个这种相同规格的笔筒涂色((笔筒内外均要涂色,笔筒厚度忽略不计要涂色,笔筒厚度忽略不计)). 如果每0.5 kg 涂料可以涂1 m 2,那么为这批笔筒涂色约需涂料.,那么为这批笔筒涂色约需涂料.A .1.23 kg B .1.76 kg C .2.46 kg D .3.52 kg 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.分.把答案填在题中横线上. 15.坐标原点到直线4x +3y -12=0的距离为的距离为 .16.以点A (2,0)为圆心,且经过点B (-1,1)的圆的方程是 .17.如图,在长方体ABCD —A 1B 1C 1D 1中,棱锥A 1——ABCD 的体积与长方体的体积之比为_______________.18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.分.解答应写出文字说明,证明过程或演算步骤. 19.已知直线l 经过点经过点((0,-2),其倾斜角是60°. (1)求直线l 的方程;的方程;(2)求直线l 与两坐标轴围成三角形的面积.与两坐标轴围成三角形的面积. 20.如图,在三棱锥P —ABC 中,PC ⊥底面ABC , AB ⊥BC ,D ,E 分别是AB ,PB 的中点.的中点.(1)求证:DE ∥平面P AC ;CBAD A ¢ B ¢C ¢D ¢(第11题)A 1 B 1 C 1 ABEC(第13题)ABC DD1 C 1 B 1 A 1 (第17题)ACPE(2)求证:AB ⊥PB ;21.已知半径为5的圆C 的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.相切. (1)求圆C 的方程;的方程;(2)设直线ax -y +5=0与圆C 相交于A ,B 两点,求实数a 的取值范围;的取值范围;(3) 在(2)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.存在,请说明理由.22.为C 的圆经过点A(1,1)和B(2,-2)且圆心C 在直线L:x-y+1=0上,求圆心为C 的圆的标准方程 23.知圆22:68210C x y x y +--+=和直线:430l kx y k --+=.⑴ 证明:不论证明:不论k 取何值,直线l 和圆C 总相交;总相交;⑵ 当当k 取何值时,圆C 被直线l 截得的弦长最短?并求最短的弦的长度截得的弦长最短?并求最短的弦的长度24知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为27;③圆心在直线x -3y =0上. 求圆C 的方程. 25,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证:(1) FD ∥平面ABC; (2) AF ⊥平面EDB.26.图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.F EDCBAM FGE C1D1A1B1DC ABPD 1B 1D B。
高中数学选择性必修二 高二数学上学期期末测试卷01()(含答案)
2021-2022学年上学期期末卷01高二数学·全解全析【解析由214y x =化为24x y =,抛物线焦点在y 轴正半轴,且2p =, 则准线方程为1y =-. 故选:A .2.【答案】D【解析】当4k =时,直线1l 的斜率不存在,直线2l 的斜率存在,两直线不平行;当4k ≠时,两直线平行的一个必要条件是334kk k-=--,解得3k =或5k =,但必须满足截距不相等,经检验知3k =或5k =时两直线的截距都不相等. 故选:D . 3.【答案】C【解析】联立2010x y x y -=⎧⎨--=⎩得12x y =-⎧⎨=-⎩. 把12x y =-⎧⎨=-⎩代入280x ky ++=得3k =.故选:C4.【答案】B【解析】①当0b =时,a 与c 不一定共线,故①错误;②当a ,b ,c 共面时,它们所在的直线平行于同一平面,或在同一平面内, 故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误. 故选:B . 5.【答案】B【解析】在等差数列{}n a 中573a a =,所以7723a d a -=,所以()72+0a d =,即80a =, 又等差数列{}n a 中10a >,公差0d <,所以等差数列{}n a 是单调递减数列,所以1278910...0...a a a a a a >>>>=>>,所以等差数列{}n a 的前n 项和为n S 取得最大值,则n 的值为7或8. 故选:B .6.【答案】D【解析】设该高阶等差数列的第8项为x , 根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:由图可得341295y x y -=⎧⎨-=⎩,则14146x y =⎧⎨=⎩. 故选:D 7.【答案】B【解析】设P 为第一象限的交点,1||PF m =、2||PF n =, 则12m n a +=、22m n a -=,解得12m a a =+、12n a a =-,在12PF F ∆中,由余弦定理得:2221241cos 22m n mn F c F P +-∠==,∴2224m n mn c +-=,∴22212121212()()()()4a a a a a a a a c ++--+-=,∴2221234a a c +=,∴22122234a a c c+=,∴2221314e e +=,设112sin e α=,21e α,则12112sin )6e e πααα+==+,当3πα=时,1211e e +,此时1e =2e,12e e +=故选:B8.【答案】D【解析】在①中,∵1111AC B D ⊥,111A C BB ⊥,1111B D BB B ⋂=, 且111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D , ∴111AC BD ⊥, 同理,11DC BD ⊥, ∵1111AC DC C ⋂=,且111,A C DC ⊂平面11AC D , ∴直线1BD ⊥平面11AC D ,正确; 在②中,∵11//A D B C ,1A D ⊂平面11AC D ,1B C ⊄平面11AC D ,∴1//B C 平面11AC D ,∵点P 在线段1B C 上运动,∴P 到平面11AC D 的距离为定值,又11A C D 的面积是定值, ∴三棱锥11P AC D -的体积为定值,正确; 在③中,∵11//A D B C ,∴异面直线AP 与1A D 所成角为直线AP 与直线1B C 的夹角. 易知1AB C 为等边三角形, 当P 为1B C 的中点时,1AP B C ⊥;当P 与点1B 或C 重合时,直线AP 与直线1B C 的夹角为3π.故异面直线AP 与1A D 所成角的取值范围是,32ππ⎡⎤⎢⎥⎣⎦,错误;在④中,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为1,则(),1,P a a ,()10,1,1C ,()1,1,0B ,()10,0,1D , 所以()1,0,1C P a a =-,()11,1,1D B =-.由①正确:可知()11,1,1D B =-是平面11AC D 的一个法向量,∴直线1C P 与平面11AC D所成角的正弦值为:1111C P D B C P D Ba ⋅==⋅, ∴当12a =时,直线1C P 与平面11AC D ,正确. 故选:D9.【答案】CD【解析】对于A :在平行六面体1111ABCD A B C D -中,有11B B BC BC +=,()11//B B BC A D ∴+,故A 错误;对于B :111111A A A D A B A D A B BD +-=-=,1AB AD ==,60BAD ︒∠=,21BD =,又2111A B =,∴()22111111A A A D A BA B +-=,故B 错误;对于C :11A B AD AB AD DB -=-=,()111AC A B AD ⋅-=()11()()()()AB AD AA AB AD AB AD AB AD AA AB AD ++⋅-=+⋅-+⋅-,由题知,1AB AD ==,12AA =,1145BAA DAA ∠=∠=︒,60BAD ∠=︒,所以,()221111AC A B AD AB AD AA ⋅-=-+10AB AA AD ⋅-⋅=,故C 正确; 对于D:AC AB AD =+,111AC AC AA AB AD AA =+=++,21AC =()21AB AD AA ++222111||||222AB AD AA AB AD AB AA AD AA =+++⋅+⋅+⋅112211cos6021cos 45︒︒+⨯⨯⨯+⨯21cos 459︒+⨯=.所以13AC =.故D 正确,故选:CD. 10.【答案】ABC【解析】由圆22:4O x y +=可得圆心()0,0O ,半径2r ,对于A :因为2PQ OP OQ ===,所以POQ △是边长为2的等边三角形, 若PQ 中点为M ,则OM PQ ⊥,且OM =所以点M 的轨迹是以()0,0O所以点M 的轨迹方程为223x y +=,故选项A 正确;对于B :设()00,P x y ,BP 中点为(),x y ,则00222x x y y +⎧=⎪⎪⎨⎪=⎪⎩,所以00222x x y y =-⎧⎨=⎩,因为()00,P x y 在圆22:4O x y +=上,所以22004x y +=,所以()()222224x y -+=,所以()2211x y -+=即BP 中点轨迹方程为()2211x y -+=,故选项B 正确; 对于C :设()00,P x y ,CP 的中点(),x y ,则00322x x y y +⎧=⎪⎪⎨⎪=⎪⎩,所以00232x x y y =-⎧⎨=⎩,因为()00,P x y 在圆22:4O x y +=上,所以22004x y +=,所以()()222324x y -+=,即22312x y ⎛⎫-+= ⎪⎝⎭,所以CP 的中点轨迹方程为22312x y ⎛⎫-+= ⎪⎝⎭,故选项C 正确;对于D :设AP 的中垂线与OP 的交点为M ,由垂直平分线的性质可得MA MP =,所以21MO MA MO MP OP OA +=+==>=,所以点M 的轨迹是以O ,A 为焦点,长轴长为2的椭圆,故选项D 不正确; 故选:ABC .11.【答案】ACD 【解析】对于选项A ,令2y t x+=,则2y tx =-, 因为点(),P x y 在圆22:(1)(1)2C x y -+-=上,所以直线2y tx =-与圆22:(1)(1)2C x y -+-=有交点,因此圆心到直线的距离d =≤7k ≤-或1k ,故A 正确; 对于选项B ,由10kx y k ---=,得()()110k x y --+=,因此直线10kx y k ---=过定点()1,1P -,因为213312PM k +==-,111312PN k +==---,且313-<<,所以12k ≤-或32k ≥,故B 错误;对于选项C ,圆222(0)x y r r +=>的圆心直线l的距离2d =因为点(),P a b 是圆222(0)x y r r +=>外一点,所以222a b r +>,因此2d r =<,即直线与圆相交,故C 正确;对于选项D ,到点()1,0N 的距离为1点在圆()2211x y -+=上, 由题意可知,圆()2211x y -+=与圆222:(4)(4)(0)M x y r r -+-=>相交, 故圆心距5d MN ==,且11r d r -<<+,解得46r <<,故D 正确. 故选:ACD .12.【答案】BCD【解析】22:21n n C x y a n +=++的圆心为()0,0,半径为r =所以圆心到直线:n l y x =d ==则()()2224421n n n A B r d a =-=+,所以121n n a a +=+,则()1121n n a a ++=+所以()111122n n n a a -+=+=,得21n n a =- ,故A 错,B 正确;前n 项和为()12122212n n n S n n +-=-=---,故C 正确;由()()11111111122111221212121212121ii n nnni i n n i i i i i i i a a +++++===+-⎛⎫==-=-= ⎪------⎝⎭∑∑∑,故D 正确. 故选:BCD13.【答案】1【解析】圆C :()()22211x k y k -++-=的圆心为()21,k k -因为圆C 与x 轴和y 轴均相切,所以211k k -== 解得1k = 故答案为:114.【答案】14【解析】因为四面体ABCD 的每条棱长都等于1,点G 是棱CD 的中点,所以AG AC CG =+,且12CG =,1AC =,1BC =,所以()AC CG A BC AG BC BC BC C CG ⋅=⋅⋅+=+⋅ 111cos60cos120244AC BC G BC C ⋅=-⋅⋅+⋅==, 故答案为:1. 15.-【解析】如图,取1PF 的中点A ,连接OA ,12OA OF OP ∴=+,212OA F P =, ∴12OFOP F P +=,11()0PF OF OP +=,∴120PF F P =,∴12PF F P ⊥,12||2||PF PF =,不妨设2||PF m =,则1||PF , 21||||2PF PF a m +==,1)ma ∴==,12||2F F c =,2222242334(3cm m m a∴=+==⨯-,∴2229c a=-=,e ∴=-16.【答案】20202021-【解析】由题意可知,对任意的n *∈N ,0n a >且22n n n S a a =+.当1n =时,则21112a a a =+,解得11a =.当2n ≥时,由22n n n S a a =+可得21112n n n S a a ---=+,上述两式作差得22112n n n n n a a a a a --=-+-,可得()()1110n n n n a a a a --+--=, 所以,11n n a a --=,所以,数列{}n a 是等差数列,且首项和公差均为1,则11n a n n =+-=,()12n n n S +=, 则()()()()211211111112nn n n n n a c n n n n n S +⎛⎫=+ ⎪++=--⎝+=⎭-, 因此,数列{}n c 的前2020项之和为202011111111202011223342020202120212021T ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20202021-. 17.【解析】(1)因为11n n n S S a +=++,所以11n n n S S a +-=+,即11n n a a +=+, 所以数列{}n a 是首项为1a ,公差为1的等差数列.选①.由4713a a +=,得113613a d a d +++=,即12139a d =-, 所以1213914a =-⨯=,解得12a =.所以()()112111n a a n d n n =+-=+-⨯=+, 即数列{}n a 的通项公式为1n a n =+.选②.由1a ,3a ,7a 成等比数列,得()()211126a d a a d +=+,则2221111446a a d d a a d ++=+,所以12a =.所以()()112111n a a n d n n =+-=+-⨯=+.选③.因为10111091010452S a d a d ⨯=+⨯=+, 所以11045165a +⨯=,所以12a =.所以()()112111n a a n d n n =+-=+-=+.(2)由题可知122n n na n +=,所以2323412222n n n T +=+++⋅⋅⋅+, 所以234112*********n n n n n T ++=+++⋅⋅⋅++,两式相减,得23411111111222222n n n n T ++=++++⋅⋅⋅+-2311111111112222222n n n -++⎛⎫=+⨯++++⋅⋅⋅+- ⎪⎝⎭ 111111133212222212nn n n n ++-++=+⨯-=--, 所以332n n n T +=-.18.【解析】(1)在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,则,,AB AD AP 两两垂直,以A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图:则(0,0,0)A ,()2,0,0B ,()0,0,4P ,()2,4,0C ,()0,4,0D ,连BD,则BD =BP =BD BP ,PBD △是等腰三角形,而M 是PD 上一点,且BM PD ⊥,于是得M 是PD 的中点,即()0,2,2M , 因此,()2,4,0AC =,()0,2,2AM =,()2,0,0AB =,设平面ACM 的一个法向量为(,,)n x y z =,则240220n AC x y n AM y z ⎧⋅=+=⎨⋅=+=⎩,令1z =,得()2,1,1n =-,所以点B 到平面ACM的距离为46AB n h n⋅===. (2)由(1)知,()2,2,2BM =-,()2,4,4PC =-,则4cos ,||||12BMPC BM PC BM PC ⋅-〈〉===所以异面直线BM 与PC 19.【解析】(1)证明:因为直线()():2129120l k x k y k ++-+-=,所以()()292120k x y x y -+++-=.令2902120x y x y -+=⎧⎨+-=⎩解得36x y =⎧⎨=⎩,所以不论k 取何值,直线l 必过定点()3,6P .(2)由(1)知:直线l 经过圆C 内一定点()3,6P ,圆心()2,3C , 设圆心C 到直线l 的距离为d ,则12ABCSAB d=== 因为(0,d∈,所以d =ABC 面积的最大值为4. 20.【解析】(1)证明:连接BO ,AB BC ==O 是AC 的中点,BO AC ∴⊥,且 2BO =, 又 2PA PC PB AC ====,,PO AC PO ∴⊥=222PB PO BO =+,则PO OB ⊥, OB AC O =,OB ⊂平面ABC ,AC ⊂平面ABC ,PO ∴⊥平面ABC, (2)解:建立以 O 为坐标原点,,,OB OC OP 分别为,,x y z 轴的空间直角坐标系如图所示,则()0,2,0A -,(0,0,P ,()0,2,0C ,()2,0,0B ,设(2,2,0)BM BC λλλ==-()01λ≤≤,则()()(2,2,0)2,2,022,22,0AM BM BA λλλλ=-=----=-+, 则平面PAC 的法向量为()1,0,0m =, 设平面MPA的法向量(,,),n x y z = 则(0,2,PA =-- 20,n PA y ⋅=--= ()()22220n AM xy λλ⋅=-++=,令1z =,则y =(11x λλ+=-,二面角M PA C --为30︒,∴3cos302m n m n︒⋅==⋅, 即31=+⨯13λ= 或 3λ=( 舍 ),设平面MPA 的法向量(23,n =,(0,2,PC =-, 设PC 与平面PAM 所成的角为θ,则|sin |cos ,|12PC n θ-=<>===+所以PC 与平面P AM21.【解析】(1)由题意,从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b ,∴{}n a 是以20(1+5%)为首项,1+5%为公比的等比数列;{}n b 是以6 1.57.5+=为首项,1.5为公差的等差数列,∴()2015%nn a =+,6 1.5n b n =+.(2)设今年起n 年内通过填埋方式处理的垃圾总量为n S , ∴()()11n n n S a b a b =-++-()()1212n n a a a b b b =+++-+++()()220 1.0520 1.0520 1.057.596 1.5n n =⨯+⨯++⨯-++++()()()20 1.051 1.057.56 1.51 1.052n n n +⨯-=-++-2327420 1.0542044n n n =⨯---, 当5n =时,63.5n S ≈.∴今年起5年内通过填埋方式处理的垃圾总量约为63.5万吨.22.【解析】(1)12c e a ==,1AF a c =-=,∴2a =,1c =,2223b a c =-=,∴22143x y +=; (2)设()11,C x y ,()22,D x y ,则()11,B x y --,CF :1x my =-联立221143x my x y =-⎧⎪⎨+=⎪⎩ ∴()234690m y my +--=,∴122122934634y y m m y y m -⎧=⎪⎪+⎨⎪+=⎪+⎩()()()()()()22121211212212121212121121232321212y y x y my y my k x my y y y k y x y my y my my y y x ----+-=====+-+++-1221211229627333434343993434m m m y y m m m m my y m m -⎛⎫---+ ⎪++⎝⎭+===--++++。
【易错题】高中必修二数学下期末试卷(带答案)(2)
【易错题】高中必修二数学下期末试卷(带答案)(2)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?3.在ABC ∆中,2AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v v ,则·AE AO u u u v u u u v 的值为( )A .12B .1C .22D .324.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或5.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( )A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭6.要得到函数2sin 2y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位7.若||1OA =u u u v ,||OB u u u v 0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( )A .13B .3C .3D 8.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 9.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35 C .25D .1510.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称11.1()xf x e x=-的零点所在的区间是( )A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)212.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线二、填空题13.在平面直角坐标系xOy 中, 已知圆C 1 : x 2 + y 2=8与圆C 2 : x 2+y 2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为______.14.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.15.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.16.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为17.已知点()M a b ,在直线3415x y +=22a b +_______. 18.若a 10=12,a m =22,则m =______. 19.设α为锐角,若4cos()65πα+=,则sin(2)12πα+的值为______. 20.若两个向量a v 与b v 的夹角为θ,则称向量“a b ⨯v v”为向量的“外积”,其长度为sin a b a b θ⨯=v v v v .若已知1a =v ,5b =v ,4a b ⋅=-v v ,则a b ⨯=v v .三、解答题21.已知:a b c v v v、、是同一平面内的三个向量,其中()1,2a =v(1)若25c =v ,且//c a v v ,求c v的坐标;(2)若5b =v2a b +v v 与2a b -v v 垂直,求a v 与b v 的夹角θ. (3)若()1,1b =v ,且a v 与a b λ+v v的夹角为锐角,求实数λ的取值范围.22.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值; (2)当ABC ∆的面积为3时,求a+c 的值.23.已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.24.已知ABC ∆中,内角,,A B C 所对边分别为,,a b c ,若()20a c cosB bcosC --=. (1)求角B 的大小;(2)若2b =,求a c +的取值范围. 25.已知数列{a n }满足a 1=1,1114n na a +=-,其中n ∈N *.(1)设221 nnba=-,求证:数列{b n}是等差数列,并求出{a n}的通项公式.(2)设41nnacn=+,数列{c n c n+2}的前n项和为T n,是否存在正整数m,使得11nm mTc c+<对于n∈N*,恒成立?若存在,求出m的最小值;若不存在,请说明.26.以原点为圆心,半径为r的圆O222:()0O x y r r+=>与直线380x y--=相切.(1)直线l过点(2,6)-且l截圆O所得弦长为43求直线l l的方程;(2)设圆O与x轴的正半轴的交点为M,过点M作两条斜率分别为12,k k12,k k的直线交圆O于,A B两点,且123k k⋅=-,证明:直线AB恒过一个定点,并求出该定点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】∵集合{}124A,,=,{}2|40B x x x m=-+=,{}1A B⋂=∴1x=是方程240x x m-+=的解,即140m-+=∴3m=∴{}{}{}22|40|43013B x x x m x x x=-+==-+==,,故选C2.A解析:A【解析】试题分析:由程序框图知第一次运行112,224k S=+==+=,第二次运行213,8311k S=+==+=,第三次运行314,22426k S=+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.3.D解析:D 【解析】 【分析】根据平面向量基本定理可知()12AE AB AC =+u u u v u u u v u u u v,将所求数量积化为1122AB AO AC AO ⋅+⋅u u uv u u u v u u u v u u u v ;由模长的等量关系可知AOB ∆和AOC ∆为等腰三角形,根据三线合一的特点可将AB AO ⋅u u u v u u u v 和AC AO ⋅u u u v u u u v 化为212AB u u uv 和212AC u u u v ,代入可求得结果.【详解】E Q 为BC 中点 ()12AE AB AC ∴=+u u u v u u u v u u u v()111222AE AO AB AC AO AB AO AC AO ∴⋅=+⋅=⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v222OA OB OC ==u u u v u u u v u u u v Q AOB ∴∆和AOC ∆为等腰三角形211cos 22AB AO AB AO OAB AB AB AB ∴⋅=∠=⋅=u u u v u u u v u u u v u u u v u u u v u u u v u u u v ,同理可得:212AC AO AC ⋅=u u u v u u u v u u u v22111314422AE AO AB AC ∴⋅=+=+=u u u v u u u v u u u v u u u v本题正确选项:D 【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.4.A解析:A 【解析】 【分析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122baa⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.5.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.6.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.7.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,2OC OA ∴<>=u u u r u u u rOC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()2mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r=1OA =Q,OB =,0OA OB ⋅==229m n∴=又CQ在AB上m∴>,0n>3mn∴=故选:B【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8.B解析:B【解析】【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项.【详解】依题意01a b<<<,由于12xy⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b>,故A选项不等式成立.由于lny x=为定义域上的增函数,故ln ln0a b<<,则11ln lna b>,所以B选项不等式不成立,D选项不等式成立.由于01a b<<<,故11a b>,所以C选项不等式成立.综上所述,本小题选B.【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.9.C解析:C【解析】选取两支彩笔的方法有25C种,含有红色彩笔的选法为14C种,由古典概型公式,满足题意的概率值为142542105CpC===.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.10.D解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.11.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.12.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知12EO ON EN ===,5,2MF BF BM ==∴=BM EN ∴≠,故选B .【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.二、填空题13.【解析】【分析】先求得直线为:再分别讨论或和的情况根据几何性质求解即可【详解】由题则直线为:当或时设到的距离为因为等腰直角三角形所以即所以所以解得当时经过圆心则即故答案为:【点睛】本题考查圆与圆的位 解析:{}8,825,825-+【解析】 【分析】先求得直线AB 为:280x y a ++-=,再分别讨论90PAB ∠=︒或90PBA ∠=︒和90APB ∠=︒的情况,根据几何性质求解即可 【详解】由题,则直线AB 为:280x y a ++-=,当90PAB ∠=︒或90PBA ∠=︒时,设1C 到AB 的距离为d , 因为ABP △等腰直角三角形, 所以12d AB =,即2182d d =-,所以2d =, 228221a d -==+,解得825a =±当90APB ∠=︒时,AB 经过圆心1C ,则80a -=,即8a =, 故答案为:{}8,825,825-+ 【点睛】本题考查圆与圆的位置关系的应用,考查点到直线距离公式的应用,考查分类讨论思想和数形结合思想14.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60o【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DEDF DD DC ==Q,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠.易知11A BC ∆为等边三角形,1160BA C ∴∠=o.故答案为:60o . 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.15.2米【解析】【分析】【详解】如图建立直角坐标系设抛物线方程为将A (2-2)代入得m=-2∴代入B 得故水面宽为米故答案为米考点:抛物线的应用解析:6米 【解析】 【分析】 【详解】如图建立直角坐标系,设抛物线方程为2x my =, 将A (2,-2)代入2x my =, 得m=-2,∴22x y =-,代入B ()0,3x -得06x =故水面宽为266 考点:抛物线的应用16.20【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x ﹣解析:6 【解析】 【分析】根据题意可知,过(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可. 【详解】解:圆的标准方程为(x ﹣3)2+(y ﹣4)2=52, 由题意得最长的弦|AC |=2×5=10,根据勾股定理得最短的弦|BD |=2251-=6,且AC ⊥BD , 四边形ABCD 的面积S =|12AC |•|BD |12=⨯10×6=6. 故答案为6. 【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半.17.3【解析】【分析】由题意可知表示点到点的距离再由点到直线距离公式即可得出结果【详解】可以理解为点到点的距离又∵点在直线上∴的最小值等于点到直线的距离且【点睛】本题主要考查点到直线的距离公式的应用属于解析:3 【解析】 【分析】22a b +()0,0到点(),a b 的距离,再由点到直线距离公式即可得出结果.【详解】()0,0到点(),a b的距离,又∵点(),M a b在直线:3425l x y+=()0,0到直线34150x y+-=的距离,且3d==.【点睛】本题主要考查点到直线的距离公式的应用,属于基础题型.18.5【解析】解析:5【解析】5,52a m====19.【解析】试题分析:所以考点:三角恒等变形诱导公式二倍角公式同角三角函数关系【思路点晴】本题主要考查二倍角公式两角和与差的正弦公式题目的已知条件是单倍角并且加了我们考虑它的二倍角的情况即同时求出其正弦解析:50【解析】试题分析:247cos(2)213525πα⎛⎫+=⋅-=⎪⎝⎭,24sin(2)325πα+=,所以sin(2)sin(2)1234πππαα+=+-2472252550⎫=-=⎪⎝⎭.考点:三角恒等变形、诱导公式、二倍角公式、同角三角函数关系.【思路点晴】本题主要考查二倍角公式,两角和与差的正弦公式.题目的已知条件是单倍角,并且加了6π,我们考虑它的二倍角的情况,即247cos(2)213525πα⎛⎫+=⋅-=⎪⎝⎭,同时求出其正弦值24sin(2)325πα+=,而要求的角sin(2)sin(2)1234πππαα+=+-,再利用两角差的正弦公式,就能求出结果.在求解过程中要注意正负号.20.3【解析】【分析】【详解】故答案为3【点评】本题主要考查以向量的数量积为载体考查新定义利用向量的数量积转化是解决本题的关键解析:3【解析】【分析】【详解】44 155a b a b a b cos cos a b θθ⋅-⋅∴-⨯v v v v v vv v Q ====33[0sin 15355sin a b a b θπθθ∈∴⨯=⨯⨯v v Q v v ,),=,==故答案为3. 【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,三、解答题21.(1)(2,4)或(-2,-4) (2)π (3)()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭【解析】 【分析】(1)设(,)c x y =r,根据条件列方程组解出即可;(2)令(2)(2)0a b a b +⋅-=r rr r 求出a b ⋅r r ,代入夹角公式计算;(3)利用()0a a b λ+>⋅r r r ,且a r 与a λb +r r 不同向共线,列不等式求出实数λ的取值范围.【详解】 解:设(,)c x y =r,∵c =r //c a r r,∴222020y x x y -=⎧⎨+=⎩,解得24x y =⎧⎨=⎩或24x y =-⎧⎨=-⎩, ∴(2,4)c =r 或(2,4)c =--r;(2)∵2a b +r r 与2a b -r r垂直,∴(2)(2)0a b a b +⋅-=r rr r ,即222320a a b b +⋅-=r r r r ,∴52a b ⋅=-r r ,∴5cos 1||||a ba b θ-⋅===-r r r r ,∴a r与b r的夹角为π;(3)a r Q 与a λb +r r的夹角为锐角则()0a a b λ+>⋅r r r ,且a r 与a λb +rr 不同向共线,()25(12)0a aa ab b λλλ+==+>∴⋅++⋅r r r r rr ,解得:53λ>-, 若存在t ,使()a b a t λ=+r r r,0t > ()()1,21,1(1,2)a b λλλλ+=+=++r rQ则()1,2(1,2)t λλ=++,122t t t t λλ+=⎧∴⎨+=⎩,解得:10t λ=⎧⎨=⎩, 所以53λ>-且0λ≠, 实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭. 【点睛】本题考查了平面向量的数量积运算,利用数量积研究夹角,注意夹角为锐角,数量积大于零,但不能同向共线,夹角为钝角,数量积小于零,但不能反向共线,本题是中档题. 22.(1)53a =(2)a c +=【解析】试题分析:(1)利用同角三角函数的基本关系式,求出sin B ,利用正弦定理求出a 即可.(2)通过三角形的面积求出ac 的值,然后利用余弦定理即可求出a +c 的值. 试题解析: 解:(1)43cos ,sin 55B B =∴=Q . 由正弦定理得10,sin sin 3sin 6a b a A B π==可得. 53a ∴=. (2)ABC ∆Q 的面积13sin ,sin 25S ac B B ==, 33,1010ac ac ∴==. 由余弦定理2222cos b a c ac B =+-, 得4=22228165a c ac a c +-=+- ,即2220a c +=.∴()()22220,40a c ac a c +-=+=,∴a c +=点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.23.(1)11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列.理由见解析;(3)12n n a n -=⋅.【解析】 【分析】(1)根据题中条件所给的数列{}n a 的递推公式()121n n na n a +=+,将其化为()121n n n a a n++=,分别令1n =和2n =,代入上式求得24a =和312a =,再利用nn a b n=,从而求得11b =,22b =,34b =; (2)利用条件可以得到121n na a n n+=+,从而 可以得出12n n b b +=,这样就可以得到数列{}n b 是首项为1,公比为2的等比数列;(3)借助等比数列的通项公式求得12n n a n-=,从而求得12n n a n -=⋅.【详解】(1)由条件可得()121n n n a a n++=.将1n =代入得,214a a =,而11a =,所以,24a =. 将2n =代入得,323a a =,所以,312a =. 从而11b =,22b =,34b =;(2){}n b 是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即12n n b b +=,又11b =, 所以{}n b 是首项为1,公比为2的等比数列; (3)由(2)可得11122n n nn a b n--==⨯=,所以12n n a n -=⋅. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{}n b 的通项公式,借助于{}n b 的通项公式求得数列{}n a 的通项公式,从而求得最后的结果. 24.(1)3B π=;(2)(]2,4.【解析】 【分析】(1)利用正弦定理化简()20a c cosB bcosC --=得:() 2sinA sinC cosB sinBcosC -=,再由正弦两角和差公式和化为:()2sinAcosB sinBcosC cosBsinC sin B C =+=+,再由()sin B C sinA +=得出cos B的值即可;(2)由sin 3b B =得出a A =,c C =,得到a c A C +=+,进而得到sin 6a c A π+=+⎛⎫ ⎪⎝⎭,再根据角的范围得到sin 6A π⎛⎫ ⎪⎝⎭+的范围即可.【详解】(1)Q 由()20a c cosB bcosC --=, 可得:() 2sinA sinC cosB sinBcosC -=,2sinAcosB sinBcosC cosBsinC ∴=+,可得:()2sinAcosB sin B C sinA =+=,(0,)A π∈Q ,0sinA >,∴可得12cosB =, 又由(0,)B π∈得:3B π=,(2)sin b B =Qa A =,c C =, Q 23A C π+=,]sin sin sin()333a c A C A A B ∴+=+=++1sin sin()sin sin 32A A A A A π⎤⎤=++=+⎥⎥⎦⎣⎦14cos 4sin()26A A A π⎤=+=+⎥⎣⎦,203A π<<Q ,5666A πππ<+<, 可得:1sin ,162A π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦, ∴a c +的取值范围(]2,4.【点睛】本题主要考查解三角形,侧重考查正弦定理的应用,考查辅助角公式的运用,考查逻辑思维能力和运算能力,属于中档题. 25.(1)12n n a n+=;(2)3 【解析】 试题分析:(1)结合递推关系可证得b n +1-b n =2,且b 1=2,即数列{b n }是首项为2,公差为2的等差数列,据此可得数列{}n a 的通项公式为12n n a n+=. (2)结合通项公式裂项有21122n n c c n n ,+⎛⎫=-⎪+⎝⎭求和有111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.据此结合单调性讨论可得正整数m 的最小值为3. 试题解析: (1)证明:b n +1-b n 1222121n n a a +=---222112114n n a a =--⎛⎫-- ⎪⎝⎭ 4222121n n n a a a =-=--. 又由a 1=1,得b 1=2,所以数列{b n }是首项为2,公差为2的等差数列,所以b n =2+(n -1)×2=2n ,由221n n b a =-,得12n n a n+=. (2)解:2n c n =,()2411222n n c c n n n n +⎛⎫==- ⎪++⎝⎭所以111213212n T n n ⎛⎫=+--< ⎪++⎝⎭.依题意,要使11n m m T c c +<对于n ∈N *恒成立,只需()134m m +≥,解得m ≥3或m ≤-4.又m >0,所以m ≥3,所以正整数m 的最小值为3.26.(1)2x =-或20x +-=100x +-=;(2)(2,0). 【解析】分析:(1)先由直线和圆相切得到圆的方程,再由垂径定理列式,分直线斜率存在与不存在两种情况得到结果;(3)联立直线和圆,由韦达定理得到交点的坐标,由这两个点写出直线方程,进而得到直线过定点. 详解:(1)∵圆222:(0)O x y r r +=>与直线0x y -+=80x --=相切, ∴圆心O到直线的距离为4d ==,∴圆O 的方程为:2216x y +=若直线l 的斜率不存在,直线l 为2x =- 1x =, 此时直线l截圆所得弦长为若直线l 的斜率存在,设直线l为()2y k x =+()1y k x =-,由题意知,圆心到直线的距离为1d == 2d =,解得:k = 此时直线l为100x +-=,则所求的直线l 为2x =-或20x +-=-100x += (2)由题意知,()4,0M ()2,0A -,设直线()1:4MA y k x =-,与圆方程联立得:()12224y k x x y ⎧=+⎨+=⎩ ()122416y k x x y ⎧=-⎨+=⎩, 消去y 得:()()222211114440k x k x k +++-= ()22221111816160k x k x k +-+-=,∴()21211611M A k x x k -=+∴()2121411Ak xk -=+,12181Ak yk -=+ 用13k -换掉1k 得到B 点坐标 ∴21213649B k x k -=+,121249B k y k =+ 12141B k y k =+ ∴直线AB 的方程为21112221118444131k k k y x k k k ⎛⎫-+=- ⎪+-+⎝⎭整理得:()121423k y x k =-- 则直线AB 恒过定点为()2,0.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。
高中数学必修二期末考试试卷(三)(含答案解析)
高中数学必修二期末考试试卷(三)(含答案解析)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线l 经过原点和(1,-1),则l 的倾斜角是( ) A.45° B.-45° C.135° D.45°和135° 答案 C解析 ∵直线l 经过坐标原点和点(1,-1),∴直线l 的斜率k =-11=-1,∴直线l 的倾斜角α=135°,故选C.2.已知过点M (-2,a ),N (a,4)的直线的斜率为-12,则|MN |等于( )A.10B.180C.6 3D.6 5考点 两点间的距离公式 题点 求两点间的距离 答案 D 解析 k MN =a -4-2-a=-12,解得a =10,即M (-2,10),N (10,4),所以|MN |=(-2-10)2+(10-4)2=65,故选D.3.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A.k ≥34或k ≤-4B.-4≤k ≤34C.-34≤k ≤4D.以上都不对考点 直线的图象特征与倾斜角、斜率的关系 题点 倾斜角和斜率关系的其他应用 答案 A解析 建立如图所示的直角坐标系.由图可得k ≥k PB 或k ≤k P A .∵k PB =34,k P A =-4,∴k ≥34或k ≤-4.4.若光线从点P (-3,3)射到y 轴上,经y 轴反射后经过点Q (-1,-5),则光线从点P 到点Q 走过的路程为( ) A.10 B.5+17 C.4 5D.217考点 对称问题的求法 题点 光路可逆问题 答案 C解析 Q (-1,-5)关于y 轴的对称点为Q 1(1,-5),易知光线从点P 到点Q 走过的路程为|PQ 1|=42+(-8)2=4 5.5.到直线3x -4y -1=0的距离为2的直线方程是( ) A.3x -4y -11=0B.3x -4y -11=0或3x -4y +9=0C.3x -4y +9=0D.3x -4y +11=0或3x -4y -9=0 答案 B解析 直线3x -4y -11=0与3x -4y +9=0到直线3x -4y -1=0的距离均为2, 又因为直线3x -4y +11=0到直线3x -4y -1=0的距离为125,故不能选择A ,C ,D ,所以答案为B.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( ) A.-32 B.-23 C.25 D.2考点 直线的两点式方程 题点 利用两点式求直线方程 答案 A解析 由两点式y -19-1=x +13+1,得y =2x +3,令y =0,得x =-32,即为在x 轴上的截距.7.若直线mx +ny +2=0平行于直线x -2y +5=0,且在y 轴上的截距为1,则m ,n 的值分别为( ) A.1和2 B.-1和2 C.1和-2D.-1和-2 考点 直线的一般式方程与直线的平行关系 题点 根据平行求参数的值答案 C解析 由已知得直线mx +ny +2=0过点(0,1),则n =-2,又因为两直线平行,所以-m n =12,解得m =1.8.若直线(2m -3)x -(m -2)y +m +1=0恒过某个点P ,则点P 的坐标为( ) A.(3,5) B.(-3,5) C.(-3,-5) D.(3,-5)答案 C解析 方程(2m -3)x -(m -2)y +m +1=0可整理得m (2x -y +1)-(3x -2y -1)=0,联立⎩⎪⎨⎪⎧ 2x -y +1=0,3x -2y -1=0,得⎩⎪⎨⎪⎧x =-3,y =-5.故P (-3,-5).9.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2过定点( ) A.(0,4) B.(0,2) C.(-2,4)D.(4,-2)考点 对称问题的求法 题点 直线关于点的对称问题 答案 B解析 ∵l 1:y =k (x -4)过定点M (4,0), 而点M 关于点(2,1)的对称点为N (0,2), 故直线l 2过定点(0,2).10.直线y =ax +1a的图象可能是( )考点 直线的斜截式方程 题点 直线斜截式方程的应用 答案 B解析 根据斜截式方程知,斜率与直线在y 轴上的纵截距同正负.11.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m 等于( ) A.-1 B.1 C.12 D.-12考点 直线的一般式方程与直线的垂直关系 题点 根据垂直求参数的值 答案 B解析 由两直线垂直,得12×⎝⎛⎭⎫-2m =-1,解得m =1. 12.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且两者之间的距离是5,则m +n 等于( ) A.-1 B.0 C.1 D.2考点 两条平行直线间的距离公式及应用 题点 利用两条平行直线间的距离求参数的值 答案 B解析 由题意知,所给两条直线平行,∴n =-2. 由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0.二、填空题(本大题共4小题,每小题5分,共20分)13.过点(-2,-3)且在x 轴,y 轴上的截距相等的直线方程为____________. 考点 直线的截距式方程 题点 利用截距式求直线方程 答案 x +y +5=0或3x -2y =0解析 当直线过原点时,所求直线的方程为3x -2y =0;当直线不过原点时,所求直线的方程为x +y +5=0.14.过两直线x -3y +1=0和3x +y -3=0的交点,并且与原点的最短距离为12的直线的方程为________.答案 x =12或x -3y +1=0解析 易求得两直线交点的坐标为⎝⎛⎭⎫12,32,当斜率不存在时,显然直线x =12满足条件.当斜率存在时,设过该点的直线方程为y -32=k ⎝⎛⎭⎫x -12, 化为一般式得2kx -2y +3-k =0, 因为直线与原点的最短距离为12,所以|3-k |4+4k 2=12,解得k =33,所以所求直线的方程为x -3y +1=0.15.已知直线x -2y -2k =0与两坐标轴围成的三角形的面积不大于1,则实数k 的取值范围是________________. 答案 [-1,0)∪(0,1]解析 令x =0,得y =-k ,令y =0,得x =2k , ∴三角形的面积S =12|xy |=k 2.又S ≤1,即k 2≤1.∴-1≤k ≤1.又当k =0时,直线过原点,与两坐标轴构不成三角形,故应舍去. ∴实数k 的取值范围是[-1,0)∪(0,1].16.已知直线l 与直线y =1,x -y -7=0分别相交于P ,Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为________. 考点 中点坐标公式 题点 求过中点的直线方程 答案 -23解析 设P (x,1),则Q (2-x ,-3),将点Q 的坐标代入x -y -7=0,得2-x +3-7=0. ∴x =-2,∴P (-2,1),∴k l =-23.三、解答题(本大题共6小题,共70分)17.(10分)已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得直线l ′的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0).∵直线l 的斜率k =3,∴其倾斜角θ=60°. 若直线l 绕点M 逆时针方向旋转30°, 则直线l ′的倾斜角为60°+30°=90°, 此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan 30°=33, 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.18.(12分)已知直线l 经过点(0,-2),其倾斜角的大小是60°. (1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积.解 (1)由直线的点斜式方程得直线l 的方程为y +2=tan 60°·x ,即3x -y -2=0. (2)设直线l 与x 轴、y 轴的交点分别为A ,B , 令y =0得x =233;令x =0得y =-2.所以S △AOB =12|OA |·|OB |=12×233×2=233,故所求三角形的面积为233.19.(12分)已知直线l 1的方程为x +2y -4=0,若l 2在x 轴上的截距为32,且l 1⊥l 2.(1)求直线l 1与l 2的交点坐标;(2)已知直线l 3经过l 1与l 2的交点,且在y 轴上的截距是在x 轴上的截距的2倍,求l 3的方程. 解 (1)设l 2的方程为2x -y +m =0, 因为l 2在x 轴上的截距为32,所以3-0+m =0,m =-3, 即l 2:2x -y -3=0.联立⎩⎪⎨⎪⎧ x +2y -4=0,2x -y -3=0得⎩⎪⎨⎪⎧x =2,y =1.直线l 1与l 2的交点坐标为(2,1). (2)当l 3过原点时,l 3的方程为y =12x .当l 3不过原点时,设l 3的方程为x a +y2a =1(a ≠0),又直线l 3经过l 1与l 2的交点, 所以2a +12a =1,得a =52,l 3的方程为2x +y -5=0.综上,l 3的方程为x -2y =0或2x +y -5=0.20.(12分)已知点A (5,1)关于x 轴的对称点为B (x 1,y 1),关于原点的对称点为C (x 2,y 2). (1)求△ABC 中过AB ,BC 边上中点的直线方程; (2)求△ABC 的面积. 考点 中点坐标公式 题点 与中位线有关的问题解 (1)∵点A (5,1)关于x 轴的对称点为B (x 1,y 1),∴B (5,-1), 又∵点A (5,1)关于原点的对称点为C (x 2,y 2), ∴C (-5,-1),∴AB 的中点坐标是(5,0),BC 的中点坐标是(0,-1).过(5,0),(0,-1)的直线方程是y -0-1-0=x -50-5, 整理得x -5y -5=0.(2)易知|AB |=|-1-1|=2,|BC |=|-5-5|=10,AB ⊥BC , ∴△ABC 的面积S =12|AB |·|BC |=12×2×10=10.21.(12分)已知直线l 1:y =-k (x -a )和直线l 2在x 轴上的截距相等,且它们的倾斜角互补,又知直线l 1过点P (-3,3).如果点Q (2,2)到直线l 2的距离为1,求l 2的方程. 考点 直线的一般式方程题点 求直线的一般式方程及各种方程的互化 解 由题意,可设直线l 2的方程为y =k (x -a ), 即kx -y -ak =0,∵点Q (2,2)到直线l 2的距离为1,∴|2k -2-ak |k 2+1=1,①又∵直线l 1的方程为y =-k (x -a ), 且直线l 1过点P (-3,3),∴ak =3-3k .② 由①②得|5k -5|k 2+1=1,两边平方整理得12k 2-25k +12=0,解得k =43或k =34.∴当k =43时,代入②得a =-34,此时直线l 2的方程为4x -3y +3=0;当k =34时,代入②得a =1,此时直线l 2的方程为3x -4y -3=0.综上所述,直线l 2的方程为4x -3y +3=0或3x -4y -3=0.22.(12分)已知直线l :y =4x 和点P (6,4),点A 为第一象限内的点且在直线l 上,直线P A 交x 轴的正半轴于点B ,(1)当OP ⊥AB 时,求AB 所在直线的方程;(2)求△OAB 面积的最小值,并求当△OAB 面积取最小值时点B 的坐标. 考点 点到直线的距离题点 与点到直线的距离有关的最值问题解 (1)∵点P (6,4),∴k OP =23.又∵OP ⊥AB ,∴k AB =-32.∵AB 过点P (6,4),∴直线AB 的方程为y -4=-32(x -6),化为一般式可得3x +2y -26=0.(2)设点A (a,4a ),a >0,点B 的坐标为(b,0),b >0,当直线AB 的斜率不存在时,a =b =6,此时△OAB 的面积S =12×6×24=72.当直线AB 的斜率存在时,有4a -4a -6=0-4b -6,解得b =5aa -1, 故点B 的坐标为⎝⎛⎭⎫5a a -1,0,故△OAB 的面积S =12·5a a -1·4a =10a 2a -1,即10a 2-Sa +S =0.①由题意可得方程10a 2-Sa +S =0有解, 故判别式Δ=S 2-40S ≥0,∴S ≥40,故S 的最小值为40,此时①为a 2-4a +4=0,解得a =2. 综上可得,△OAB 面积的最小值为40, 当△OAB 面积取最小值时,点B 的坐标为(10,0).。
新人教A版高中数学必修2期末考试试卷附参考答案
期末测试题考试时间:90分钟 试卷满分:100分、选择题点(1, - 1)到直线x — y + 1 = 0的距离是(过点(1 , 0)且与直线x — 2y — 2= 0平行的直线方程是(F 列直线中与直线 2x + y + 1 = 0垂直的一条是x — 2y + 1 = 0已知圆的方程为 x 2 + y 2 — 2x + 6y + 8 = 0,那么通过圆心的一条直线方程是(B. 2x + y + 1 = 06.直线3x + 4y — 5 = 0与圆2x 2 + 2y 2—4x —2y + 1 = 0的位置关系是 A .相离C. 相交但直线不过圆心D. 相交且直线过圆心7.过点P(a , 5)作圆(x + 2) 2+ (y — 1)2= 4的切线,切线长为2・..3,则a 等于(C .3. 21. 2. x — 2y — 1 = 0B . x — 2y + 1= 0C . 2x + y — 2 = 0 x + 2y — 1 = 03. 2x — y — 1 = 0 C . x + 2y + 1 = 0D .X + 丄 y — 1 =0 24. 2x — y — 1 = 0 C . 2x — y + 1 = 0 D . 2x + y — 1 = 05. 如图(1)、(2)、(3)、 (4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为A .三棱台、三棱柱、 圆锥、 圆台 C .三棱柱、四棱锥、 圆锥、 圆台(2)(3)B .三棱台、三棱锥、 D .三棱柱、三棱台、 圆锥、 圆锥、 圆台 圆台B .相切).b5E2RGbCAP(4)& 圆 A : X 2 + y 2+ 4x + 2y + 1 = 0 与圆 B : x 2+ y 2— 2x — 6y + 1 = 0 的位置关系是( ).p1EanqFDPwA .相交B .相离C .相切D .内含9.已知点 A(2, 3, 5) , B( — 2, 1 , 3),则 | AB| =( ).A . ,6B . 2 . 6C .2D . 2 .. 2 10 .如果一个正四面体的体积为 9 dm 3,则其表面积S 的值为().点,则异面直线 A 1E 与GF 所成角余弦值是( ).DXDiTa9E3dD 1 _______________________13 .直角梯形的一个内角为 45 °下底长为上底长的-,此梯形绕下底所在直线旋转一周所成的旋转体15 、2 c /0A .BC .D . 0525312 .正六棱锥底面边长为 a ,体积为 a ,则侧棱与底面所成的角为2( ) A . 30 ° B45 °C . 60 °D . 75 °Fa(第11题)A . 18、3dm 22B . 18 dmC . 12 3 dm 22D . 12 dm11.如图,长方体 ABCD — A 1B 1C 1D 1 中, AA 1 = AB = 2, AD = 1 , E , F , G 分别是DD 1, AB , CC 1的中JiG C2D. BE与平面PAD不平行,且BE与平面PAD所成的角小于30 °二、填空题15. __________________________________________________________________ 在y轴上的截距为—6,且与y轴相交成30。
高中数学必修二 期末考测试(提升)(含答案)
期末考测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·浙江)如图,正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是( )A .2+B .8C .6D .2+【答案】B【解析】由题意O B ''OABC 中,1OA BC ==,OB =OB OA ⊥,所以3OC AB ==, 所以四边形的周长为:2(13)8⨯+=. 故选:B .2.(2021·全国· 专题练习 )复数21i-(i 为虚数单位)的共轭复数是( ) A .1i + B .1i -C .1i -+D .1i --【答案】B【解析】化简可得21z i =-()()()21111i i i i +==+-+,∴21i-的共轭复数1z i =-,故选:B . 3.(2021·黑龙江·哈尔滨三中高一月考)如图,向量AB a =,AC b =,CD c =,则向量BD 可以表示为( )A .a b c +-B .a b c -+C .b a c -+D .b a c --【答案】C【解析】依题意BD AD AB AC CD AB =-=+-,即BD b a c =-+,故选:C.4.(2021·全国·专题练习)我国古代数学著作《九章算术》有如下问题:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,始与岸齐,问水深、葭长各几何?”意思是说:“有一个边长为1丈的正方形水池,在池的正中央长着一根芦苇,芦苇露出水面1尺.若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面.问水有多深?芦苇多长?”该题所求的水深为( ) A .12尺 B .10尺 C .9尺 D .14尺【答案】A【解析】设水深为x 尺,依题意得()22215x x +-=,解得12x =.因此,水深为12尺.故选:A.5.(2021·内蒙古·集宁一中)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,cC =A .π12 B .π6C .π4D .π3【答案】B【解析】sinB=sin(A+C)=sinAcosC+cosAsinC ,∵sinB+sinA(sinC ﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0,∴cosAsinC+sinAsinC=0, ∵sinC ≠0,∴cosA=﹣sinA ,∴tanA=﹣1, ∵π2<A <π,∴A= 3π4,由正弦定理可得c sin sin aC A=,∵a=2,sinC=sin c A a=12=22 , ∵a >c ,∴C=π6,故选B .6.(2021·浙江·高一期末)设非零向量a ,b 满足a b a b +=-,则 A .a ⊥bB .=a bC .a ∥bD .a b >【答案】A【解析】由a b a b +=-平方得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅=,则a b ⊥,故选A.7.(2021·上海市金山中学高一期末)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==则2b 2c bc ++的取值范围为( ) A .(1,9] B .(3,9] C .(5,9] D .(7,9]【答案】D 【解析】因为,3A a π==由正弦定理可得22sin sin sin 3ab c AB B π===⎛⎫- ⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭, 由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+ 28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3BB B =++ 22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.8.(2021·北京·清华附中 )如图,正四棱柱1111ABCD A B C D -满足12AB AA =,点E 在线段1DD 上移动,F 点在线段1BB 上移动,并且满足1DE FB =.则下列结论中正确的是( )A .直线1AC 与直线EF 可能异面B .直线EF 与直线AC 所成角随着E 点位置的变化而变化 C .三角形AEF 可能是钝角三角形D .四棱锥A CEF -的体积保持不变 【答案】D【解析】如图所示,连接有关线段.设M ,N 为AC ,A 1C 1的中点,即为上下底面的中心,MN 的中点为O ,则AC 1的中点也是O ,又∵DE =B 1F ,由对称性可得O 也是EF 的中点,所以AC 1与EF 交于点O ,故不是异面直线,故A 错误;由正四棱柱的性质结合线面垂直的判定定理易得AC ⊥平面11BB D D , 因为EF ⊂平面11BB D D ,∴,AC EF ⊥故B 错误; 设AB a ,则12AA a =,设1,02DE B F x x a ==<<, 易得()22222222,254,AE a x AF a a x a ax x =+=+-=-+ ()22222222684,EF a a x a ax x =+-=-+因为()222242220,AE AF EF ax x x a x +-=-=->EAF ∴∠为锐角;因为()22222224220,AE EF AF a ax x a x +-=-+=->AEF ∴∠为锐角,因为2222210124,AF EF AE a ax x +-=-+ 当3x 2a =时取得最小值为2222101890,a a a a -+=> AFE ∴∠为锐角,故△AEF 为锐角三角形,故C 错误; 三棱锥A -EFC 也可以看做F -AOC 和E -AOC 的组合体, 由于△AOB 是固定的,E ,F 到平面AOC 的距离是不变的 (∵易知BB 1,DD 1平行与平面ACC 1A 1),故体积不变, 故D 正确. 故选:D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·湖南·临澧县第一中学高一期末)设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件D .若||5()z z x i x R +=+∈,则实数a 的值为2 【答案】ACD【解析】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确 故选:ACD10.(2021·江苏南京·高一期末)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =3c =,3A C π+=,则下列结论正确的是( )A .cos C =B .sin B =C .3a =D .ABCS=【答案】AD【解析】3A C π+=,故2B C =,根据正弦定理:sin sin b cB C=,即32sin cos C C C =⨯,sin 0C ≠,故cos C =,sin C =sin sin 22sin cos 3B C C C ===2222cos c a b ab C =+-,化简得到2430a a -+=,解得3a =或1a =,若3a =,故4A C π==,故2B π=,不满足,故1a =.11sin 122ABC S ab C ==⨯⨯△故选:AD .11.(2021·安徽黄山·高一期末)在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续7天,每天新增疑似病例不超过5人”.过去7日,甲、乙、丙、丁四地新增疑似病例数据信息如下,则一定符合该标志的是( ) 甲地:总体平均数3x ≤,且中位数为0; 乙地:总体平均数为2,且标准差2s ≤; 丙地:总体平均数3x ≤,且极差2≤c ; 丁地:众数为1,且极差4c ≤. A .甲地 B .乙地C .丙地D .丁地【答案】CD【解析】甲地:满足总体平均数3x ≤,且中位数为0,举例7天的新增疑似病例为0,0,0,0,5,6,7,则不符合该标志;乙地:若7天新增疑似病例为1,1,1,1,2,2,6,满足平均数为2,标准差2s =,但不符合该标志;丙地:由极差2≤c 可知,若新增疑似病例最多超过5人,比如6人,那么最小值不低于4人, 那么总体平均数3x ≤就不正确,故每天新增疑似病例低于5人,故丙地符合该标志; 丁地:因为众数为1,且极差4c ≤,所以新增疑似病例的最大值5≤,所以丁地符合该标志. 故选:CD12.(2021·河北易县中学高一月考)已知ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则以下四个命题正确的有( ) A .当5,7,60a b A ===︒时,满足条件的三角形共有1个B.若sin :sin :sin 3:5:7A B C =则这个三角形的最大角是120 C .若222a b c +>,则ABC 为锐角三角形 D .若4Cπ,22a c bc -=,则ABC 为等腰直角三角形【答案】BD【解析】对于A,7sin 2sin 15b AB a===>,无解,故A 错误; 对于B,根据已知条件,由正弦定理得:::3:5:7a b c =,不妨令3a =,则5,7b c ==,最大角C 的余弦值为:222925491cos 2302a b c C ab +-+-===-,∴120C =︒,故B 正确;对于C ,由条件,结合余弦定理只能得到cos 0C >,即角C 为锐角,无法保证其它角也为锐角,故C 错误;对于D,2222 cos cos 2224a b c b bc b c C ab ab a π+-++=====,得到b c+=, 又()2222,,a c bc a bc c c b c -=∴=+=+=a∴=,sin 1,42A C A ππ∴===∴=,ABC ∴为等腰直角三角形,故D 正确.故选:BD.三、填空题(每题5分,4题共20分)13.(2021·甘肃省会宁县第一中学高一期末)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产.设该工厂连续5天生产的口罩数依次为1x ,2x ,3x ,4x ,5x (单位:十万只),若这组数据1x ,2x ,3x ,4x ,5x 的方差为1.44,且21x ,22x ,23x ,24x ,25x 的平均数为4,则该工厂这5天平均每天生产口罩__________十万只.【答案】1.6【解析】依题意,得22212520x x x +++=.设1x ,2x ,3x ,4x ,5x 的平均数为x , 根据方差的计算公式有()()()2221251 1.445x x x x x x ⎡⎤-+-++-=⎢⎥⎣⎦.()()2222125125257.2x x x x x x x x ∴+++-++++=,即22201057.2x x -+=, 1.6x ∴=.故答案为:1.614.(2021·江苏省海头高级中学高二月考)设复数z 满足341z i --=,则z 的最大值是_______. 【答案】6【解析】设复数(,)z x yi x y R =+∈,则22341,(3)(4)1x yi i x y +--=∴-+-=,所以复数对应的点的轨迹为(3,4)为圆心半径为1的圆,所以z 1516=+=.故答案为615.(2021·全国·高一单元测试)口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________. ①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P C E =;⑤()()P B P C =.【答案】①④【解析】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误; ④,P (C)631=155=-,P (E)1415=,8()15P CE =,从而()P C E P =(C)P +(E)()1P CE -=,故④正确; ⑤,C B ≠,从而P (B)P ≠(C),故⑤错误. 故答案为:①④.16.(2021·江苏省如皋中学高一月考)已知三棱锥O ABC -中,,,A B C 三点在以O 为球心的球面上,若2AB BC ==,120ABC ︒∠=,且三棱锥O ABC -O 的表面积为________.【答案】52π【解析】ABC 的面积122sin12032ABCS=⨯⨯= 设球心O 到平面ABC 的距离为h ,则1133O ABC ABCV Sh -===3h =, 在ABC 中,由余弦定理2222cos1208412AC AB BC AB BC =+-⋅=+=,∴=AC 设ABC 的外接圆半径为r ,由正弦定理 则2sin120ACr =,解得2r,设球的半径为R ,则22213R r h =+=, 所以球O 的表面积为2452S R ππ==. 故答案为:52π四、解答题(17题10分,其余每题12分,共70分)17.(2021·山西·长治市潞城区第一中学校高一月考)已知复数z 使得2z i R +∈,2zR i∈-,其中i 是虚数单位.(1)求复数z 的共轭复数z ;(2)若复数()2z mi +在复平面上对应的点在第四象限,求实数m 的取值范围.【答案】(1)42i +;(2)()2,2-.【解析】(1)设(),z x yi x y R =+∈,则()22z i x y i +=++ ∵2z i R +∈∴2y =- 又22242255z x i x x i R i i -+-==+∈--,∴4x =综上,有42z i =-∴42z i =+ (2)∵m 为实数,且()()()()2224212482z mi m i m m m i +=+-=+-+-⎡⎤⎣⎦∴由题意得()21240820m m m ⎧+->⎪⎨-<⎪⎩,解得22m -<<故,实数m 的取值范围是()2,2-18.(2021·江西省靖安中学)某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【答案】(1)频率为:0.08;平均分为102;(2)25.【解析】(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为: 700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯ 1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 19.(2021·河南·辉县市第一高级中学高一月考)已知三棱柱111ABC A B C -(如图所示),底面ABC 是边长为2的正三角形,侧棱1CC ⊥底面ABC ,14CC =,E 为11B C 的中点.(1)若G 为11A B 的中点,求证:1C G ⊥平面11A B BA ;(2)证明:1//AC 平面1A EB ;(3)求三棱锥1A EBA -的体积.【答案】(1)证明见解析;(2)证明见解析;【解析】(1)连接1C G ,由1CC ⊥底面ABC ,且11//CC BB ,可得1BB ⊥底面111A B C , 又由1C G ⊂底面111A B C ,所以11C G B B ⊥,又因为G 为正111A B C △边11A B 的中点,所以111C G A B ⊥,因为1111A B BB B =,且111,A B BB ⊂平面11A B BA ,所以1C G ⊥平面11A B BA .(2)连接1B A 交1A B 与G ,则O 为1A B 的中点,连接EO ,则1//EO AC .因为EO ⊂平面1EA B ,1AC ⊄平面1EA B ,所以1//AC 平面1EA B .(2)因为11A A BE E ABA V V --=,11142ABA S AB AA =⨯⨯=△.取1GB 的中点F ,连接EF ,则1//EF C G ,可得EF ⊥平面11A B BA ,即EF 为三棱锥1E ABA -的高,112EF C G ===,三棱锥1A EBA -的体积11111433A A BE E ABA ABA V V S EF --==⨯=⨯=△20.(2021·重庆第二外国语学校高一月考)已知1e ,2e 是平面内两个不共线的非零向量,122AB e e =+,12e e BE λ=-+,122EC e e =-+,且A ,E ,C 三点共线.(1)求实数λ的值;(2)若()12,1e =,()22,2e =-,求BC 的坐标;(3)已知()3,5D ,在(2)的条件下,若A ,B ,C ,D 四点按逆时针顺序构成平行四边形,求点A 的坐标.【答案】(1)32λ=-(2)(7,2)--(3)()10,7. 【解析】(1)()()()12121221AE AB BE e e e e e e λλ=+=++-+=++.因为A ,E ,C 三点共线,所以存在实数k ,使得AE k EC =,即()()121212e e k e e λ++=-+,得()1212(1)k e k e λ+=--.因为1e ,2e 是平面内两个不共线的非零向量, 所以12010k k λ+=⎧⎨--=⎩解得12k =-,32λ=-. (2)()()()121212136,31,17222,32B e BE EC e C e e e e ++=--=-+=--=--=---. (3)因为A ,B ,C ,D 四点按逆时针顺序构成平行四边形,所以AD BC =.设(),A x y ,则()3,5AD x y =--,因为()7,2BC =--,所以3752x x -=-⎧⎨-=-⎩解得107x y =⎧⎨=⎩ 即点A 的坐标为()10,7.21.(2021·安徽师大附属外国语学校高一月考)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,已知sin2sin .a B b A =(1)若3,a b ==c ;(2)求cos cos a C c A b-的取值范围. 【答案】(1)2c =;(2)()1,1-.【解析】(1)由sin 2sin a B b A =,得sin sin2sin sin A B B A =,得2sin sin cos sin sin A B A B A =,得1cos 2B =, 在ABC ,3B π∴=, 由余弦定理2222cos b c a ac B =+-, 得27923cos 3c c π=+-⨯,即2320c c -+=,解得1c =或2c =.当1c =时,22220,cos 0b c a A +-=-<< 即A 为钝角(舍),故2c =符合.(2)由(1)得3B π=, 所以23C A π=-,cos cos sin cos cos sin 22sin 3a C c A A C A C A b B π--⎛⎫∴===- ⎪⎝⎭, ABC 为锐角三角形,62A ππ∴<<,22333A πππ∴-<-<,2sin 23A π⎛⎫-< ⎪⎝⎭, cos cos 11a C c A b-∴-<<,故cos cos a C c A b-的取值范围是()1,1-. 22.(2021·全国·高一课时练习)如图在四棱锥P ABCD -中,底面ABCD 为菱形,PAD △为正三角形,平面PAD ⊥平面ABCD E F ,、分别是AD CD 、的中点.(1)证明:BD PF ⊥;(2)若M 是棱PB 上一点,三棱锥M PAD -与三棱锥P DEF -的体积相等,求M 点的位置.【答案】(1)证明见解析;(2)M 点在PB 上靠近P 点的四等分点处.【解析】(1)连接AC PA PD =,且E 是AD 的中点,PE AD ⊥∴.又平面PAD ⊥平面ABCD ,平面PAD 平面ABCD AD PE =⊂,平面PAD .PE ∴⊥平面ABCD BD ⊂,平面ABCD BD PE ∴⊥,. 又ABCD 为菱形,且E F 、分别为棱AD CD 、的中点,//EF AC ∴.BD AC BD EF ⊥∴⊥,,又BD PE PE EF E BD ⊥⋂=∴⊥,,平面PEF ;PF ∴⊂平面PEF BD PF ∴⊥,. (2)如图,连接MA MD 、, 设PM MBλ=,则1PM PB λλ=+, 11M PAD B PAD P ABD V V V λλλλ---∴==++, 14DEF DAC S S =△△,则1144P DEF P ACD P ABD V V V ---==,又M PAD P DEF V V --=. 114λλ∴=+. 解得13λ=,即M 点在PB 上靠近P 点的四等分点处.。
(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)
高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。
4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。
)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。
6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。
7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。
若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。
8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。
9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。
10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。
11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。
高中数学选择性必修二 期末模块检测(基础卷)(含答案)
选择性必修第二册 期末模块检测试卷 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知等比数列{}n a 中,1212a a +=,3134a a -=,则4=a ( )A .18- B .18C .4-D .4【答案】A 【分析】根据题意,将条件表示为1,a q 的形式,计算出1,a q ,再计算4a 即可. 【详解】∵等比数列{}n a 中,1212a a +=,3134a a -=,∴112111234a a q a a q ⎧+=⎪⎪⎨⎪-=⎪⎩,解得111,2a q ==-, ∴341311128a a q ⎛⎫=⨯-=-⎪⎝⎭= .故选:A.2.已知等差数列{}n a 的前n 项和为n S ,3a =5,则5S =( ) A .5B .25C .35D .50【答案】B 【分析】根据等差中项及等差数列求和公式即可求解. 【详解】由题意可知,{}n a 为等差数列,所以15355()5252525222a a a S +⨯⨯⨯==== 故选:B3.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日五尺,问日织几何?”意思是:“女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这名女子每天分别织布多少?”某数学兴趣小组依托某制造厂用织布机完全模拟上述情景,则从第一天开始,要使织布机织布的总尺数为165尺,则所需的天数为( ) A .7 B .8 C .9 D .10【答案】D 【分析】设该女子第一天织布x 尺,根据题意,求得531x =尺,结合等比数列的求和公式,列出方程,即可求解. 【详解】设该女子第一天织布x 尺,则5天共织布5(12)512x -=-,解得531x =尺,在情境模拟下,设需要n天织布总尺数达到165尺,则有5(12)3116512n -=-,整理得21024n=,解得10n =.故选:D . 4.观察下列式子:213122+<,221151233++<,222111712344+++<,…,则可归纳出()2221111231n +++⋅⋅⋅++小于( )A .1n n + B .211n n -+ C .211n n ++ D .21nn + 【答案】C 【分析】根据已知式子分子和分母的规律归纳出结论. 【详解】由已知式子可知所猜测分式的分母为1n +,分子第1n +个正奇数,即21n ,()2221112112311n n n ++++⋅⋅⋅+<++∴. 故选:C.5.设曲线1e x y ax -=-在点1x =处的切线方程为2y x =,则a =( ) A .0 B .1C .2D .3【答案】D 【分析】利用12x y ='=可求得答案. 【详解】1e x y a -'=-,∵112x y a ==-=',则3a =.故选:D6.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且713n n S n T n-=,则55a b =( ) A .3415B .2310C .317D .6227【答案】D 【分析】利用等差数列的性质以及前n 项和公式即可求解. 【详解】由713n n S n T n-=, ()()19551991955199927916229239272a a a a a a Sb b b b b b T ++⨯-======++⨯. 故选:D7.已知函数()331xf x x e =++,其导函数为()f x ',则()()()()2020202020212021f f f f ''+-+--的值为( )A .1B .2C .3D .4【答案】C 【分析】求得可得()'f x 的解析式,求出()f x '-解析式,可得()f x '为偶函数,即可求出()()20212021f f ''--的值,再求()()3f x f x +-=,即可求得()()20202020f f +-的值,即可求得答案. 【详解】()()22331xxe f x x e-'=++,()()()2222333()311xxxxe ef x x x ee----'-=+-=+++,所以()f x '为偶函数,所以()()202120210f f ''--=,因为()()33333331111x x x x x e f x f x x x e e e e -+-=++-=+=++++,所以()()202020203f f +-=,所以()()()()20202020202120213f f f f ''+-+--=. 故选:C .8.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞ B .()2e ,+∞C .()20,eD .()0,e【答案】B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x --'=,得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.二、多选题9.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a >B .6S 最大C .130S >D .110S >【答案】ABD 【分析】转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】因为57S S =,所以750S S -=,即670a a +=,因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确;所以()113137131302a a S a+⨯==<,故C 错误;所以()111116111102a a S a+⨯==>,故D 正确.故选:ABD.10.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如图所示,则下列叙述不正确的是( )A .()()()f a f e f d >>B .函数()f x 在[],a b 上递增,在[],b d 上递减C .函数()f x 的极值点为c ,eD .函数()f x 的极大值为f b 【答案】ABD 【分析】对A ,B 由导数与函数单调性的关系,即可判断()f a ,()f b ,()f c 的大小以及()f x 的单调性,对C ,D 由极值的定义即可判断. 【详解】解:由题图知可,当(),x c ∈-∞时,()0f x '>,当(),x c e ∈时,()0f x '<,当(),x e ∈+∞时,()0f x '>, 所以()f x 在(),c -∞上递增, 在(),c e 上递减,在(),e +∞上递增, 对A ,()()f d f e >,故A 错误;对B ,函数()f x )在[],a b 上递增,在[],b c 上递增,在[],c d 上递减,故B 错误;对C ,函数()f x 的极值点为c ,e ,故C 正确; 对D ,函数()f x 的极大值为()f c ,故D 错误. 故选:ABD.11.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍 【答案】BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6S 求出1a ,然后求出相应的项,判断各选项. 【详解】解:根据题意此人每天行走的路程成等比数列, 设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以611611()(1)23781112a a q S q ⎡⎤-⎢⎥-⎣⎦===--,解得1192a =.选项A :55611192()62a a q ==⨯=,故A 错误,选项B :由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确.选项C :211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D :2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为37833642-=, 而且336428÷=,D 正确. 故选:BCD . 【点睛】关键点点睛:本题考查等比数列的应用,解题关键是引入等比数列{}n a ,n a 表示第n 天行走的路程,根据前6项的和求出首项1a ,然后可得通项公式,从而判断出结论.12.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确; 121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=,故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n nn S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.三、填空题13.已知()2()21f x x xf =+',则()1f '等于__________.(用数字作答)【答案】-2【分析】求出()f x 的导函数,代入1x =即可求解.【详解】()2()21f x x xf =+',()()221f x x f ''∴=+,()()12121f f ''∴=⨯+,解得()12f '=-.故答案为:2-.14.()f x 对任意x ∈R 都有()()112f x f x +-=.数列{}n a 满足:()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭()11n f f n -⎛⎫++ ⎪⎝⎭,则n a =__________. 【答案】14n + 【分析】采用倒序相加法即可求得结果.【详解】由题意得:()()1012f f +=,1112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,2212n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,……, ()()12101n n a f f f f f n n n -⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()()12110n n n a f f f f f n n n --⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 122n n a +∴=,解得:14n n a +=.故答案为:14n +. 【点睛】本题考查利用倒序相加法求和的问题,属于基础题.15.已知32()263f x x x =-+,对任意的2][2x ∈-,都有()f x a ≤,则a 的取值范围为_______. 【答案】[3)+∞,【分析】利用导数研究函数的单调性,进而求得在给定区间上的最大值,根据不等式恒成立的意义即得实数a 的取值范围.【详解】由2()6120f x x x '=-=得0x =或2x =,在区间[-2,0)上()'0f x >,()f x 单调递增;在(0,2)内时()()'0,f x f x <单调递减. 又(2)37f -=-,(0)3f =,(2)5f =-,∴max ()3f x =,又()f x a ≤对于任意的x ∈[-2,2]恒成立,∴3a ≥,即a 的取值范围是[)3,+∞故答案为:[)3,+∞.【点睛】本题考查利用导数研究函数的在闭区间上的最值进而求不等式恒成立中的参数范围,属基础题,关键在于利用导数研究函数的单调性,求得在给定区间上的最大值.16.古代埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都可写成若干个单分数和的形式.例如2115315=+,可这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人13,余13,再将这13分2成5份,每人得115,这样每人分得11315+.形如)*2(3,21n n N n ∈-的分数的分解:2115315=+,2117428=+,2119545=+,按此规律,则221n =-________()*3,n n N ∈. 【答案】2112n n n+- 【分析】 根据21123133(231)=+⨯-⨯⨯-,21124144(241)=+⨯-⨯⨯-,21125155(251)=+⨯-⨯⨯-,…进行归纳推理. 【详解】 由题意得,2115315=+,即21123133(231)=+⨯-⨯⨯-, 2117428=+,即21124144(241)=+⨯-⨯⨯-, 2119545=+,即21125155(251)=+⨯-⨯⨯-, 由此归纳出)*211(3,21(21)n n N n n n n =+∈⨯--. 经验证112112(21)(21)21n n n n n n n -++==---,结论成立, ∴2211212n n n n=+--. 故答案为:2112n n n +-. 【点睛】方法点睛:由数列的前n 项归纳通项公式时,首先要分析项的结构,然后再探究结构中的各部分与项的序号n 间的函数关系,进而求得通项公式.四、解答题17.已知数列{}n a 各项均为正数,其前n 项和为n S ,且满足()241n n S a =+. (1)求数列{}n a 的通项公式.(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-;(2)21n n T n =+. 【分析】(1)由=1n 可得11a =,再由2n ≥时,()21141n n S a --=+与条件作差可得12n n a a --=,从而利用等差数列求通项公式即可; (2)由n b 1(21)(21)n n =-+利用裂项相消求和即可. 【详解】(1)∵()241n n S a =+,∴()21141a a =+,解得11a =,当2n ≥时,由()241n n S a =+①可得, ()21141n n S a --=+②,①-②:()()1120n n n n a a a a --+--=,∵0n a >,∴10n n a a -+≠,∴120n n a a ---=,即∴12n n a a --=,∴{}n a 是以11a =为首项,以2d =为公差的等差数列,∴1(1)12(1)21n a a n d n n =+-=+-=-综上所述,结论是:21n a n =-.(2)由(1)可得11n n n b a a +=1(21)(21)n n =-+11122121n n ⎛⎫=- ⎪-+⎝⎭∴2n a n T b b b =+++111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭ 11122121n n n ⎛⎫=-= ⎪++⎝⎭, 综上所述,21n n T n =+. 18.在①133a a b +=,②254b S b +=-,③194a a +=-这三个条件中任选两个,补充在下面的问题中.若问题中的m 存在,求出m 的值;若不存在,请说明理由.设等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,设前n 项和为n T ,若 , ,且1422,5b T T ==.是否存在大于2的正整数m ,使得134,,m S S S 成等比数列?(注:如果选择多个条件分别解答,按第一个解答计分.)【答案】答案见解析.【分析】由等比数列的条件,求得2q ,可得等比数列的通项公式.然后分别选取条件①②,条件①③,条件②③,列出关于等差数列首项与公差的方程组,求得首项与公差,得到等差数列的通项公式及前n 项和,再由14S ,3S ,m S 成等比数列列式求解m 值即可.【详解】解:设{}n a 的 公差为d ,{}n b 的公比为(0)q q >,由题意知1q ≠,所以421142(1)(1)5511b q b q T T q q--===--, 整理得215q +=,因为0q >,所以2q ,所以2n n b =.(1)当选取的条件为①②时,有1358416a a S +=⎧⎨+=-⎩,所以1122824a d a d +=⎧⎨+=-⎩, 解得1128a d =⎧⎨=-⎩. 所以2820,416n n a n S n n =-+=-+.所以21312,12,416m S S S m m ===-+,若134,,m S S S 成等比数列,则2314m S S S =,所以241630m m -+=,解得2m = 因为m 为正整数,所以不符合题意,此时m 不存在.(2)当选取的条件为①③时,有131984a a a a +=⎧⎨+=-⎩,所以11228284a d a d +=⎧⎨+=-⎩, 解得162a d =⎧⎨=-⎩. 所以228,7n n a n S n n =-+=-+.所以2136,12,7m S S S m m ===-+,若134,,m S S S 成等比数列,则2314m S S S =,所以2760m m -+=,解得6m =或1m =(舍去)此时存在正整数6m =满足题意.(3)当选取的条件为②③时,有1954416a a S +=-⎧⎨+=-⎩,所以1128424a d a d +=-⎧⎨+=-⎩, 解得161a d =-⎧⎨=⎩. 所以2137,2n n n n a n S -=-=. 所以213136,15,2m m m S S S -=-=-=, 若134,,m S S S 成等比数列,则2314m S S S =,即22524m S =-,所以2452750m m -+=,解得132m =, 因为m 为正整数,所以不符合题意,此时m 不存在.【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.19.已知数列{}n a 中,11a =,()*13n n n a a n N a +=∈+ (1)证明:数列112n a ⎧⎫+⎨⎬⎩⎭是等比数列 (2)若数列{}n b 满足()312n n n n n b a -=⋅,求数列{}n b 的前n 项和nT . 【答案】(1)证明见解析 ;(2)1242n n n T -+=-. 【分析】(1)由()*13n n n a a n N a +=∈+可得11111322n n a a +⎛⎫+=+ ⎪⎝⎭,然后可得答案; (2)由(1)可算出231n n a =-,12n n n b -=,然后用错位相减法可算出答案. 【详解】 (1)证明:由()*13n n n a a n N a +=∈+,知11111322n n a a +⎛⎫+=+ ⎪⎝⎭又111322a +=,∴112n a ⎧⎫+⎨⎬⎩⎭是以32为首项,3为公比的等比数列 (2)解:由(1)知111333222n n n a -+=⨯=,∴231n n a =-,12n n n b -= 0122111111123(1)22222n n n T n n --=⨯+⨯+⨯++-⨯+⨯ 211111112(1)22222n n n T n n -=⨯+⨯++-⨯+⨯ 两式相减得012111111222222222n n n nT n n -+=++++-⨯=- ∴1242n n n T -+=- 20.已知函数()()x x f x a a R e=-∈ (1)求函数()f x 的单调区间;(2)若方程()f x =0有两个不相等的实数根,求实数a 的取值范围.【答案】(1)()f x 的单调递增区间是(,1)-∞,单调递减区间是(1,)+∞.(2)10a e <<【分析】(1)首先求出函数的导函数,再解不等式即可得到函数的单调区间;(2)由()0x x f x a e =-=得x x a e =, 将此方程的根看作函数x x y e=与y a =的图象交点的横坐标,结合(1)中相关性质得到函数的图象,数形结合即可得到参数的取值范围;【详解】解:(1)∵()()x x f x a a R e=-∈ 所以21()()x x x x e xe x f x e e--'== ∴当1x <时,()0f x '>,当1x >时,()0f x '<;即()f x 的单调递增区间是(,1)-∞,单调递减区间是(1,)+∞.(2)由()0x x f x a e =-=得xx a e =, 将此方程的根看作函数x x y e =与y a =的图象交点的横坐标, 由(1)知函数x x y e =在1x =时有极大值1e,作出其大致图象,∴实数a 的取值范围是10a e<<. 【点睛】 本题考查利用导数研究函数的单调性及函数的零点问题,属于基础题.21.设函数()21x f x e ax x =---,a R ∈. (1)0a =时,求()f x 的最小值.(2)若()0f x ≥在[)0,+∞恒成立,求a 的取值范围.【答案】(1)0;(2)1(,]2-∞.【分析】(1)当0a =时,求导可得()1xf x e '=-,令()0f x '=,解得0x =,分别讨论(),0x ∈-∞和()0,∞+时,()'f x 的正负,即可得()f x 的单调性,即可求得答案;(2)求导可得()21x f x e ax '=--,设()21(0)x h x e ax x =--≥,分别讨论12a ≤和12a >时()h x '的正负,可得()h x 的单调性,进而可得()f x 的单调性,综合分析,即可得答案.【详解】(1)当0a =时,()1x f x e x =--,则()1xf x e '=-, 令()0f x '=,解得0x =,当(),0x ∈-∞时,()0f x '<,所以()f x 在(),0-∞单调递减函数;当()0,x ∈+∞时,()0f x '>,所以()f x 在()0,∞+单调递增函数;所以()()min 00f x f ==.(2)()21x f x e ax x =---,则()21xf x e ax '=--, 设()21(0)xh x e ax x =--≥,则()2x h x e a '=-, 当12a ≤时,()0h x '≥,所以()h x 在[)0,+∞上为增函数, 又(0)0h =,所以()(0)0h x h ≥=,即()0f x '≥,所以()f x 在在[)0,+∞上为增函数,又(0)0f =,所以()(0)0f x f ≥=,满足题意; 当12a >时,令()0h x '=,解得ln2x a =, 当(0,ln 2)x a ∈时,()0h x '<,所以()h x 在(0,ln 2)a 为减函数,所以当[0,ln 2)x a ∈时,()(0)0h x h ≤=,即()0f x '≤,所以()f x 在[0,ln 2)x a ∈为减函数,又(0)0f =所以()(0)0f x f ,不满足题意,综上:a 的取值范围是1(,]2-∞【点睛】解题的关键是熟练掌握利用导数求解函数单调性,极(最)值的方法,若处理恒成立问题时,需满足min ()0f x ≥,若处理存在性问题时,需满足max ()0f x ≥,需仔细审题,进行求解,属中档题. 22.已知2()2ln f x x x a x =-+.(1)若函数()f x 在2x =处取得极值,求实数a 的值;(2)若()()g x f x ax =-,求函数()g x 的单调递增区间;(3)若2a =,存在正实数12,x x ,使得()()1212f x f x x x +=+成立,求12x x +的取值范围.【答案】(1)4-;(2)答案见解析;(3)32⎡⎫++∞⎪⎢⎪⎣⎭. 【分析】(1)由题意结合极值的概念可得(2)0f '=,解得4a =-后,验证即可得解;(2)求导得(1)(2)()(0)x x a g x x x--'=>,按照0a ≤、02a <<、2a =、2a >分类讨论,求得()0g x '>的解集即可得解;(3)转化条件得()()()212121212322ln x x x x x x x x +-+=-,令12t x x =,()22ln (0)t t t t ϕ=->,求导确定()t ϕ的单调性和值域即可得解.【详解】(1)222()22(0)a x x a f x x x x x-+-+'==>, ∵函数()f x 在2x =处取得极值,∴84(2)0a f x -+'==,解得4a =-, 当4a =-时,()2222(1)(2)()x x x x f x x x'--+-==. ∴当02x <<时,()0f x '<,()f x 单调递减;当2x >时,()0f x '>,()f x 单调递增;∴当4a =-时,函数()f x 在2x =处取得极小值;(2)2()()(2)ln g x f x ax x a x a x =-=-++, ∴22(2)(1)(2)()2(2)(0)a x a x a x x a g x x a x x x x-++--'=-++==>, 令()0f x '=,则1x =或2a x =, ①当0a ≤时,令()0g x '>可得1x >,∴函数()g x 的单调递增区间为(1,)+∞;②当02a <<时,令()0g x '>可得02a x <<或1x >, ∴函数()g x 的单调递增区间为0,,(1,)2a ⎛⎫+∞ ⎪⎝⎭; ③当2a =时,()0g x '≥在(0,)x ∈+∞上恒成立,∴函数()g x 的单调递增区间为(0,)+∞;④当2a >时,令()0g x '>可得01x <<或2a x >,∴函数()g x 的单调递增区间为(0,1),,2a⎛⎫+∞ ⎪⎝⎭; (3)2a =,∴2()22ln f x x x x =-+,()()1212f x f x x x +=+,∴()()221212121222ln x x x x x x x x +-++=+,整理可得()()()212121212322ln x x x x x x x x +-+=-,令12t x x =,()22ln (0)t t t t ϕ=->, 12(1)()21t tt tϕ-⎛⎫'=-= ⎪⎝⎭,令()0t ϕ'=,解得1t =, 当01t <<时,()0t ϕ'<,()t ϕ单调递减;当1t >时,()0t ϕ'>,()t ϕ单调递增; ∴当1t =时,()t ϕ取得极小值即最小值为()12ϕ=,∴()()2121232x x x x +-+≥即()()21212320x x x x +-+-≥,解得1232x x +≤(舍去)或1232x x +≥,∴12x x +的取值范围为⎫+∞⎪⎪⎣⎭. 【点睛】本题考查了导数的综合应用,考查了运算求解能力、逻辑推理能力、分类讨论思想,属于中档题.。
高中数学必修二 期末模拟卷03(无答案)
期末模拟卷3一.选择题(共8小题)1.复数z满足z(1+i)=1﹣i,则z的虚部等于()A.﹣i B.﹣1C.0D.12.在一个随机试验中,彼此互斥的事件A,B,C,D发生的概率分别为0.1,0.1,0.4,0.4,则下列说法正确的是()A.A与B+C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+B与C+D是互斥事件,但不是对立事件D.A+C与B+D是互斥事件,也是对立事件3.已知△ABC中,AB=2,BC=3,AC=,则cos B=()A.B.C.D.4.如图,非零向量,,且BC⊥OA,C为垂足,若,则λ=()A.B.C.D.5.某班统计一次数学测验的平均分与方差,计算完毕以后才发现有位同学的卷子还未登分,只好重算一次.已知原平均分和原方差分别为、s2,新平均分和新方差分别为、s12,若此同学的得分恰好为,则()A.=,s2=s12B.=,s2<s12C.=,s2>s12D.<,s2=s126.如图所示,一个水平放置的平面图形的斜二测直观图是等腰梯形OA'B'C',且直观图OA'B'C'的面积为2,则该平面图形的面积为()A.2B.4C.4D.27.某实验单次成功的概率为0.8,记事件A为“在实验条件相同的情况下,重复3次实验,各次实验互不影响,则3次实验中至少成功2次”,现采用随机模拟的方法估计事件A的概率:先由计算机给出0~9十个整数值的随机数,指定0,1表示单次实验失败,2,3,4,5,6,7,8,9表示单次实验成功,以3个随机数为组,代表3次实验的结果经随机模拟产生了20组随机数,如表:752029714985034437863694141469037623804601366959742761428261根据以上方法及数据,估计事件A的概率为()A.0.384B.0.65C.0.9D.0.9048.已知三棱锥P﹣ABC的各顶点都在同一球面上,且P A⊥平面ABC,AB=2,AC=1,∠ACB=90°,若该棱锥的体积为,则此球的表面积为()A.16πB.20πC.8πD.5π二.多选题(共4小题)9.某公司生产三种型号的轿车,产量分别为1500辆,6000辆和2000辆.为检验该公司的产品质量,公司质监部要抽取57辆进行检验,则下列说法正确的是()A.应采用分层随机抽样抽取B.应采用抽签法抽取C.三种型号的轿车依次应抽取9辆,36辆,12辆D.这三种型号的轿车,每一辆被抽到的概率都是相等的10.下列叙述中,正确的是()A.若||=0,则=0B.若||=0,则∥C.若∥,∥,则∥D.若=,=,则=11.雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.为比较甲,乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是()A.甲的逻辑推理能力指标值优于乙的逻辑推理能力指标值B.甲的数学建模能力指标值优于乙的直观想象能力指标值C.乙的六维能力指标值整体水平优于甲的六维能力指标值整体水平D.甲的数学运算能力指标值优于甲的直观想象能力指标值12.如图,棱长为2的正方体ABCD﹣A1B1C1D1中,P在线段BC1(含端点)上运动,则下列判断正确的是()A.A1P⊥B1DB.三棱锥D1﹣APC的体积不变,为C.A1P∥平面ACD1D.A1P与D1C所成角的范围是三.填空题(共4小题)13.如表为武汉市2018年月平均降水量:月份123456789101112月平均降水量/cm5.8 4.8 5.3 4.6 5.6 5.6 5.17.1 5.6 5.36.4 6.6则武汉市2018年月平均降水量的三个四分位数分别为cm,cm,cm .14.已知i是虚数单位,则=.15.已知等边△ABC,D 为BC中点,若点M是△ABC 所在平面上一点,且满足,则=.16.某广场设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样大的四面体得到的(如图).则该几何体共有个面;如果被截正方体的棱长是50cm,那么石凳的表面积是cm2.四.解答题(共6小题)17.设=(2,0),=(1,).(1)若(﹣λ)⊥,求实数λ的值;(2)若=x+y(x,y∈R),且||=2,与的夹角为,求x,y的值.18.甲,乙,丙三名射击运动员分别对一目标射击1次,甲射中的概率为0.90,乙射中的概率为0.95,丙射中的概率为0.95.求:(1)三人中恰有一人没有射中的概率;(2)三人中至少有两人没有射中的概率.(精确到0.001)19.如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB.20.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①=;②2c cos C=a cos B+b cos A;③△ABC的面积为c(a sin A+b sin B﹣c sin C).已知△ABC的内角A,B,C的对边分别为a,b,c,且_____.(1)求C;(2)若D为AB中点,且c=2,CD=,求a,b.21.“肥桃”因产于山东省泰安市肥城市境内而得名,已有1100多年的栽培历史.明代万历十一年(1583年)的《肥城县志》载:“果亦多品,惟桃最著名”.2016年3月31日,原中华人民共和国农业部批准对“肥桃”实施国家农产品地理标志登记保护.某超市在旅游旺季销售一款肥桃,进价为每个10元,售价为每个15元销售的方案是当天进货,当天销售,未售出的全部由厂家以每个5元的价格回购处理.根据该超市以往的销售情况,得到如图所示的频率分布直方图:(1)估算该超市肥桃日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个肥桃,假设当天的需求量为x个(x∈N,0≤x≤240),销售利润为y元.(ⅰ)求y关于x的函数关系式;(ⅱ)结合上述频率分布直方图,以频率估计概率的思想,估计当天利润y不小于650元的概率.22.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P﹣ABC中,P A⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空:⊥,则三棱锥P﹣ABC 为“鳖臑”;(2)如图,已知AD⊥PB,垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(ⅰ)证明:平面ADE⊥平面P AC;(ⅱ)设平面ADE与平面ABC的交线为l,若P A=2,AC=2,求二面角E﹣l﹣C的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.在直角坐标系中,已知A (-1,2),B (3,0),那么线段AB 中点的坐标为( ). A .(2,2)
B .(1,1)
C .(-2,-2)
D .(-1,-1)
2.右面三视图所表示的几何体是( ). A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥
3.如果直线x +2y -1=0和y =kx 互相平行,则实数k 的值为( ). A .2
B .2
1
C .-2
D .-2
1
4.一个球的体积和表面积在数值上相等,则该球半径的数值为( ). A .1
B .2
C .3
D .4
5.下面图形中是正方体展开图的是( ).
A B C D
(第5题)
6.圆x 2+y 2-2x -4y -4=0的圆心坐标是( ). A .(-2,4)
B .(2,-4)
C .(-1,2)
D .(1,2)
7.直线y =2x +1关于y 轴对称的直线方程为( ). A .y =-2x +1 B .y =2x -1 C .y =-2x -1
D .y =-x -1
8.已知两条相交直线a ,b ,a ∥平面 α,则b 与 α 的位置关系是( ). A .b ⊂平面α
B .b ⊥平面
α
正视
侧视
俯视(第2题)
C .b ∥平面α
D .b 与平面α相交,或b ∥平面α
9.在空间中,a ,b 是不重合的直线,α,β是不重合的平面,则下列条件中可推出 a ∥b 的是( ).
A .a ⊂α,b ⊂β,α∥β
B .a ∥α,b ⊂β
C .a ⊥α,b ⊥α
D .a ⊥α,b ⊂α
10. 圆x 2+y 2=1和圆x 2+y 2-6y +5=0的位置关系是( ). A .外切
B .内切
C .外离
D .内含
11.如图,正方体ABCD —A'B'C'D'中,直线D'A 与DB 所成的角可以表示为( ).
A .∠D'D
B B .∠AD' C'
C .∠ADB
D .∠DBC'
12. 圆(x -1)2+(y -1)2=2被x 轴截得的弦长等于( ). A . 1
B .
2
3 C . 2 D . 3
13.如图,三棱柱A 1B 1C 1—ABC 中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( ).
A .CC 1与
B 1E 是异面直线 B .A
C ⊥平面A 1B 1BA
C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1
D .A 1C 1∥平面AB 1E
14.有一种圆柱体形状的笔筒,底面半径为4 cm ,高为12 cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计). 如果每0.5 kg 涂料可以涂1 m 2,那么为这批笔筒涂色约需涂料.
A .1.23 kg
B .1.76 kg
C .2.46 kg
D .3.52 kg
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.坐标原点到直线4x +3y -12=0的距离为 . 16.以点A (2,0)为圆心,且经过点B (-1,1)的圆的方程是 .
C
B
A
D A '
B '
C '
D '
(第11题)
A 1
B 1
C 1
A
B
E
C
(第13题)
A
B
C D
D 1
C 1
B 1
A 1
(第17题)
17.如图,在长方体ABCD —A 1B 1C 1D 1中,棱锥A 1——ABCD 的体积与长方体的体积之比为_______________.
18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________.
三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤. 19.已知直线l 经过点(0,-2),其倾斜角是60°. (1)求直线l 的方程;
(2)求直线l 与两坐标轴围成三角形的面积.
20.如图,在三棱锥P —ABC 中,PC ⊥底面ABC , AB ⊥BC ,D ,E 分别是AB ,PB 的中点.
(1)求证:DE ∥平面P AC ; (2)求证:AB ⊥PB ;
(3)若PC =BC ,求二面角P —AB —C 的大小.
21.已知半径为5的圆C 的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -
A
C
P
B
D
E
(第20题)
29=0相切.
(1)求圆C 的方程;
(2)设直线ax -y +5=0与圆C 相交于A ,B 两点,求实数a 的取值范围;
(3) 在(2)的条件下,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.
参考答案
一、选择题 1.B 2.D 3.D 4.C 5.A 6.D
7.A
8.D
9.C
10.A
11.D
12.C
13.C
14.D
二、填空题15.
5
12
. 16.(x -2)2+y 2=10. 17.1:3. 18.到四个面的距离之和为定值.
三、解答题19.解:(1)因为直线l 的倾斜角的大小为60°,故其斜率为tan 60°=3,又直线l 经过点(0,-2),所以其方程为3x -y -2=0.
(2)由直线l 的方程知它在x 轴、y 轴上的截距分别是
3
2,-2,所以直线l 与两坐标轴
围成三角形的面积S =21·3
2·2=332.
20.(1)证明:因为D ,E 分别是AB ,PB 的中点, 所以DE ∥P A .
因为P A ⊂平面P AC ,且DE ⊄平面P AC , 所以DE ∥平面P AC .
A
C
P
B
D
E
(第20题)
(2)因为PC ⊥平面ABC ,且AB ⊂平面ABC , 所以AB ⊥PC .又因为AB ⊥BC ,且PC ∩BC =C . 所以AB ⊥平面PBC . 又因为PB ⊂平面PBC ,
所以AB ⊥PB . (3)由(2)知,PB ⊥AB ,BC ⊥AB ,
所以,∠PBC 为二面角P —AB —C 的平面角. 因为PC =BC ,∠PCB =90°, 所以∠PBC =45°,
所以二面角P —AB —C 的大小为45°. 21.解:(1)设圆心为M (m ,0)(m ∈Z ).
由于圆与直线4x +3y -29=0相切,且半径为5,所以,5
294-m =5,
即|4m -29|=25. 因为m 为整数,故m =1.
故所求的圆的方程是(x -1)2+y 2=25.
(2)直线ax -y +5=0即y =ax +5.代入圆的方程,消去y 整理,得 (a 2+1)x 2+2(5a -1)x +1=0.
由于直线ax -y +5=0交圆于A ,B 两点,故△=4(5a -1)2-4(a 2+1)>0, 即12a 2-5a >0,解得a <0,或a >
12
5. 所以实数a 的取值范围是(-∞,0)∪(
12
5
,+∞). (3)设符合条件的实数a 存在,由(2)得a ≠0,则直线l 的斜率为-a
1
,l 的方程为y =-
a
1
(x +2)+4, 即x +ay +2-4a =0.由于l 垂直平分弦AB ,故圆心M (1,0)必在l 上.所以1+0+2-4a =0,解得a =
43.由于43∈(12
5
,+∞),故存在实数a =43,使得过点 P (-2,4)的直线l 垂直平分弦AB .。